JP4379719B2 - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JP4379719B2
JP4379719B2 JP2004238168A JP2004238168A JP4379719B2 JP 4379719 B2 JP4379719 B2 JP 4379719B2 JP 2004238168 A JP2004238168 A JP 2004238168A JP 2004238168 A JP2004238168 A JP 2004238168A JP 4379719 B2 JP4379719 B2 JP 4379719B2
Authority
JP
Japan
Prior art keywords
valve
valve member
opening
inflow opening
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004238168A
Other languages
Japanese (ja)
Other versions
JP2006002932A (en
Inventor
健一郎 金子
博 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2004238168A priority Critical patent/JP4379719B2/en
Priority to US11/122,093 priority patent/US7428914B2/en
Publication of JP2006002932A publication Critical patent/JP2006002932A/en
Application granted granted Critical
Publication of JP4379719B2 publication Critical patent/JP4379719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Fluid-Driven Valves (AREA)

Description

本発明は、燃料タンクのブリーザ回路などに用いられる流量制御バルブに関する。   The present invention relates to a flow control valve used in a breather circuit of a fuel tank.

自動車の燃料タンク近傍には、エバポ回路と称される気化燃料回収システムが設けられている。このエバポ回路は、気化した燃料を燃料タンクから外部のキャニスタに導き、活性炭などに吸着させて一時蓄えることで、気化燃料が外気へ排出されるのを防ぐものである。キャニスタはエンジンに連結され、エンジンの吸気負圧により活性炭から気化燃料を放出させ混合気中に混合することで、吸着された気化燃料を再び燃料として使用している。   A vaporized fuel recovery system called an evaporation circuit is provided in the vicinity of the fuel tank of the automobile. This evaporation circuit prevents vaporized fuel from being discharged to the outside air by guiding the vaporized fuel from the fuel tank to an external canister and adsorbing the vaporized fuel to activated carbon or the like for temporary storage. The canister is connected to the engine, and the vaporized fuel is discharged from the activated carbon by the intake negative pressure of the engine and mixed in the air-fuel mixture, so that the adsorbed vaporized fuel is used again as fuel.

ところで自動車の燃料タンクへの給油時には、給油口からの新しいエアの巻き込みが多いと、燃料タンク内では燃料の気化が促進されるためキャニスタに流れるガス量が多くなり、キャニスタの吸着量が増大してしまうという問題があった。そこで、燃料タンク内の気相部と外気とを連通するブリーザチューブが設けられている。このブリーザチューブは、一端がインレットパイプの給油口近傍に連結され、他端が燃料タンクの気相に連通するように固定されたブリーザニップルに挿通されている。したがって給油時に燃料タンク内に存在する気化燃料は、ブリーザニップルからブリーザチューブを通りインレットパイプに循環されるので、新規エアの巻き込みが低減され燃料の気化が抑制される。したがってキャニスタの吸着量を低減できる。   By the way, when refueling the fuel tank of an automobile, if a lot of new air is caught from the refueling port, vaporization of the fuel is promoted in the fuel tank, so that the amount of gas flowing to the canister increases and the amount of adsorption of the canister increases. There was a problem that. Therefore, a breather tube is provided to communicate the gas phase portion in the fuel tank and the outside air. One end of the breather tube is connected to the vicinity of the fuel inlet of the inlet pipe, and the other end is inserted into a breather nipple fixed so as to communicate with the gas phase of the fuel tank. Therefore, the vaporized fuel existing in the fuel tank at the time of refueling is circulated from the breather nipple to the inlet pipe through the breather tube, so that the entrainment of new air is reduced and the vaporization of the fuel is suppressed. Therefore, the adsorption amount of the canister can be reduced.

そして給油口で巻き込まれるエア量よりもブリーザチューブからインレットパイプに循環されるブリーザガス量が大きくならないように、ブリーザニップル内部にはオリフィスが形成されている。   Further, an orifice is formed inside the breather nipple so that the amount of breather gas circulated from the breather tube to the inlet pipe is not larger than the amount of air caught at the fuel filler opening.

以下、燃料タンク→ブリーザニップル→ブリーザチューブ→インレットパイプ→燃料タンクのガス循環回路をブリーザ回路と称する。   Hereinafter, the gas circulation circuit of the fuel tank → the breather nipple → the breather tube → the inlet pipe → the fuel tank is referred to as a breather circuit.

しかしながら給油ガンの仕様と使い方により、給油時の給油速度は低速度(代表値15L/分)と高速度(代表値38L/分)の2種類があり、高速給油の方がエアの巻き込み量が多いので、ブリーザ回路を循環するブリーザガス量は高速給油時には多く必要となる。そこでブリーザニップルのオリフィスの開口を大きくすると、低速給油時にもブリーザ回路を循環するブリーザガス量が多くなり、給油口からのベーパリークが生じてしまう。   However, depending on the specifications and usage of the lubrication gun, there are two types of lubrication speeds during refueling: low speed (typical value: 15 L / min) and high speed (typical value: 38 L / min). Since there are many, the amount of breather gas which circulates through a breather circuit is needed at the time of high-speed oil supply. Therefore, if the opening of the orifice of the breather nipple is enlarged, the amount of breather gas circulating in the breather circuit increases even during low-speed fueling, and vapor leaks from the fuel filler port.

図6にこれらの関係の概念図を示す。実際は低速給油と高速給油の2段階であるが、図6では給油速度が連続的に増減するものとして示している。給油速度に応じてエア巻き込み量は連続的に変化する(直線A)。低速給油時に対応する開口径の小さなオリフィスの場合には、低速給油時にはブリーザガス流量がエア巻き込み量に対応しているが、給油速度が増大するにつれてエア巻き込み量とブリーザガス流量との差が大きくなってしまい、新規エアの巻き込みによってタンク内では燃料の気化が促進され、キャニスタの吸着量が増大してしまう(曲線B)。一方、高速給油時に対応する開口径の大きなオリフィスの場合には、給油速度が低い範囲でブリーザガス流量がエア巻き込み量を上回るようになり、ベーパリークが生じる(曲線C)。   FIG. 6 shows a conceptual diagram of these relationships. Actually, there are two stages of low-speed oil supply and high-speed oil supply, but FIG. 6 shows that the oil supply speed continuously increases and decreases. The air entrainment amount changes continuously according to the oil supply speed (straight line A). In the case of an orifice with a small opening diameter corresponding to low-speed oil supply, the breather gas flow rate corresponds to the air entrainment amount at low-speed oil supply, but the difference between the air entrainment amount and the breather gas flow rate increases as the oil supply speed increases. Thus, the entrainment of new air promotes the vaporization of fuel in the tank, and the amount of adsorption of the canister increases (curve B). On the other hand, in the case of an orifice having a large opening diameter corresponding to high-speed oil supply, the breather gas flow rate exceeds the air entrainment amount in a range where the oil supply speed is low, and vapor leak occurs (curve C).

すなわち一つのオリフィスのみを有する従来のブリーザニップルのみでは、給油速度の増減による必要ブリーザガス流量の増減に対応できない。そのため特開平08−216707号公報には、ブリーザ回路に圧力に応じて燃料蒸発ガス循環量を調整する可変手段を設けた燃料蒸発ガス排出防止装置が提案されている。また特開2003−028010号公報には、圧力に応じて燃料蒸発ガス循環量を調整するバルブ内蔵コネクタをブリーザ回路に配置することが提案されている。   That is, only the conventional breather nipple having only one orifice cannot cope with the increase or decrease in the required breather gas flow rate due to the increase or decrease in the oil supply speed. For this reason, Japanese Patent Application Laid-Open No. 08-216707 proposes a fuel evaporative emission prevention device in which a breather circuit is provided with a variable means for adjusting the amount of fuel evaporative gas circulation according to the pressure. Japanese Patent Laid-Open No. 2003-0208010 proposes that a breather circuit is provided with a connector with a built-in valve that adjusts the fuel evaporative gas circulation rate in accordance with the pressure.

しかしながらこれらの公報に記載の技術では、流路を開閉するバルブを設けているだけであるため、低速給油と高速給油の両方の場合でブリーザガス量を適切に制御することが困難である。このことを図7を参照しながら説明する。   However, in the techniques described in these publications, since only a valve for opening and closing the flow path is provided, it is difficult to appropriately control the breather gas amount in both cases of low speed oil supply and high speed oil supply. This will be described with reference to FIG.

循環ガスの圧力は、温度にも大きく影響を受けるので、低速給油時あるいは高速給油時においてそれぞれバラツキがある。したがって、低速給油時に確保すべきブリーザガスの流量を(イ)、高速給油時に確保すべきブリーザガスの流量を(ロ)とすると、理想とするガス圧とガス流量との関係は曲線Dのようになる。低速給油時には循環ガスの圧力は(a)〜(b)の幅を有し、高速給油時にはブリーザガスの圧力は(c)〜(d)の幅を有している。   Since the pressure of the circulating gas is greatly affected by the temperature, there are variations at low speed or high speed. Accordingly, assuming that the flow rate of the breather gas to be secured at the time of low-speed refueling is (b) and the flow rate of breather gas to be secured at the time of high-speed refueling is (b), the relationship between the ideal gas pressure and gas flow rate is as shown by curve D. . During low-speed refueling, the pressure of the circulating gas has a width of (a) to (b), and during high-speed refueling, the pressure of the breather gas has a width of (c) to (d).

しかし従来のバルブでは、ガス圧が高まるにつれてバルブが開き、徐々にブリーザガス流量が増大する構造である。そのため、例えば給油口からのベーパリークが生じないように低速給油時に想定される最高ガス圧(b)でバルブが開くようにバルブを調整した場合、ガス圧とブリーザガス流量との関係は曲線Eのようになる。したがってX点のように高速給油時でガス圧が低めにばらついた場合には、ブリーザガス流量が不足してキャニスタへ流れるガス量が増大してしまう。   However, the conventional valve has a structure in which the valve opens as the gas pressure increases, and the breather gas flow rate gradually increases. For this reason, for example, when the valve is adjusted so that the valve opens at the highest gas pressure (b) assumed at the time of low-speed refueling so that vapor leak from the fuel filler port does not occur, the relationship between the gas pressure and the breather gas flow rate is as shown by curve E become. Therefore, when the gas pressure varies slightly during high-speed refueling as indicated by point X, the breather gas flow rate is insufficient and the amount of gas flowing to the canister increases.

一方、高速給油時に想定される最低ガス圧(c)で所定のブリーザガス流量がほぼ確保されるように調整すると、ガス圧とブリーザガス流量との関係は曲線Fのようになり、Y点のように低速給油時でガス圧が高めにばらついた場合には、ブリーザガス流量が過大となってベーパリークが生じてしまう。   On the other hand, when adjusting so that a predetermined breather gas flow rate is almost secured at the lowest gas pressure (c) assumed at the time of high-speed refueling, the relationship between the gas pressure and the breather gas flow rate becomes a curve F, as shown by the Y point. If the gas pressure varies at a high speed during low-speed refueling, the breather gas flow rate becomes excessive and vapor leak occurs.

また従来の技術では、ブリーザ回路の途中に圧力に応じて燃料蒸発ガス循環量を調整する可変手段を設けているために、部品点数が増大するとともに、スペース上の問題がある。また上記公報に記載の提案では、ブリーザ回路内でさらに通気抵抗が発生するため、タンク内圧自体で管理する場合に比べて制御が不安定となり管理しにくいという問題がある。   In the prior art, since the variable means for adjusting the fuel evaporative gas circulation amount according to the pressure is provided in the middle of the breather circuit, the number of parts increases and there is a problem in space. In addition, the proposal described in the above publication has a problem in that since the ventilation resistance is further generated in the breather circuit, the control becomes unstable and difficult to manage compared to the case where the tank internal pressure itself is used.

さらに特開2003−028010号公報に記載のようなバルブ内蔵コネクタにおいては、コネクタ内のガス流路は直線状であり、バルブが内蔵されているため、コネクタの全長が比較的長い。一方、ブリーザチューブはインレットパイプに極力沿うように配置することで、配置スペースを小さくすることが求められ、インレットパイプの外周面から軸方向と直交する方向に突出する部分のブリーザチューブの長さは極力短くされている。そのためバルブ内蔵コネクタをブリーザ回路に配置する場合には、ブリーザチューブとインレットパイプとの結合部分に配置することが困難であり、ブリーザチューブの途中に配置せざるを得ない。しかしこの場合でも、インレットパイプの側壁から突出してコネクタに結合されるパイプをL字状に曲げる必要があり、コスト面で不具合がある。すなわち特開2003−028010号公報に記載のようなバルブ内蔵コネクタにおいては、配置位置が規制され、設計の自由度が低いという不具合があった。
特開平08−216707号 特開2003−028010号
Furthermore, in a connector with a built-in valve as described in Japanese Patent Application Laid-Open No. 2003-028010, the gas flow path in the connector is linear and the valve is built in, so the total length of the connector is relatively long. On the other hand, it is required that the breather tube be arranged along the inlet pipe as much as possible to reduce the arrangement space, and the length of the breather tube at the portion protruding from the outer peripheral surface of the inlet pipe in the direction orthogonal to the axial direction is It has been shortened as much as possible. Therefore, when the connector with a built-in valve is arranged in the breather circuit, it is difficult to arrange the connector at the connecting portion between the breather tube and the inlet pipe, and it must be arranged in the middle of the breather tube. However, even in this case, it is necessary to bend the pipe that protrudes from the side wall of the inlet pipe and is coupled to the connector into an L shape, which is disadvantageous in terms of cost. That is, in the connector with a built-in valve as described in Japanese Patent Application Laid-Open No. 2003-028010, there is a problem that the arrangement position is restricted and the degree of freedom in design is low.
JP 08-216707 JP2003-0208010

本発明は上記した事情に鑑みてなされたものであり、給油速度の増減などによる必要ブリーザガス流量の増減に正確に対応できるようにすることを解決すべき課題とする。   The present invention has been made in view of the above-described circumstances, and an object to be solved is to be able to accurately cope with an increase / decrease in the necessary breather gas flow rate due to an increase / decrease in the oil supply speed.

上記課題を解決する本発明の流量制御バルブの特徴は、流体が流入する流入開口と流入開口から流入した流体が外部へ流出する流出開口とを有し流入開口に向かって突出する凸部を有するハウジングと、上方に開口する略有底筒状をなしハウジング内に移動自在に配置された弁部材と、弁部材を流入開口へ近接する方向へ付勢する付勢手段と、からなる流量制御バルブであって、
凸部と弁部材との間に形成され流入開口から遠ざかる方向への弁部材の移動に伴って流入開口と流出開口との連通を徐々に閉じる第1弁部と、
弁部材とハウジングとの間に形成され流入開口から遠ざかる方向への弁部材の移動に伴って流入開口と流出開口との連通を開く第2弁部と、を備え、
流入開口側の流体圧が所定値以下のときには第1弁部が開状態かつ第2弁部が閉状態であり、流入開口側と流出開口側との圧力差が所定値を超えたときに第2弁部が流入開口と流出開口との連通を一気に開くように構成されたことにある。
The flow control valve of the present invention that solves the above problem has an inflow opening through which a fluid flows in and an outflow opening through which the fluid that flows in from the inflow opening flows out, and has a convex portion that protrudes toward the inflow opening. A flow rate control valve comprising a housing, a valve member that has a substantially bottomed cylindrical shape that opens upward, and is movably disposed in the housing, and a biasing means that biases the valve member in a direction close to the inflow opening. Because
A first valve portion which is formed between the convex portion and the valve member and gradually closes communication between the inflow opening and the outflow opening as the valve member moves in a direction away from the inflow opening;
A second valve portion that is formed between the valve member and the housing and opens the communication between the inflow opening and the outflow opening as the valve member moves in a direction away from the inflow opening,
When the fluid pressure on the inflow opening side is below a predetermined value, the first valve portion is open and the second valve portion is closed, and when the pressure difference between the inflow opening side and the outflow opening side exceeds a predetermined value, This is because the two valve portions are configured to open the communication between the inflow opening and the outflow opening at a stretch.

弁部材は凸部に外挿され、弁部材側壁の開口部と凸部により第1弁部を形成することが望ましい。また、弁部材は鍔部をもち、鍔部とハウジングとの間に第2弁部が形成される構成とすることもできる。 It is desirable that the valve member is extrapolated to the convex portion, and the first valve portion is formed by the opening and the convex portion of the valve member side wall. Further, the valve member may have a flange portion, and the second valve portion may be formed between the flange portion and the housing.

ハウジングは、流入開口側の流体圧が所定値以下のときに弁部材が着座する座面をもち、ハウジング及び弁部材の少なくとも一方には、他方に係合して座面と弁部材との間に隙間を形成する係合部をもつことが望ましい。   The housing has a seating surface on which the valve member is seated when the fluid pressure on the inflow opening side is equal to or lower than a predetermined value. At least one of the housing and the valve member is engaged with the other so as to be between the seating surface and the valve member. It is desirable to have an engaging portion that forms a gap.

また、燃料タンクのブリーザ回路に用いられる流量制御バルブに適用することが好ましい。この場合、ハウジングは燃料タンクの上部に気密に固定され、流入開口が燃料タンクの気相に連通し、流出開口がブリーザニップルに連通した構成とすることができる。この場合、ハウジングの下部には、流入開口に連通する筒状部が形成されていることが望ましい。   Moreover, it is preferable to apply to the flow control valve used for the breather circuit of a fuel tank. In this case, the housing can be hermetically fixed to the upper part of the fuel tank, the inflow opening can communicate with the gas phase of the fuel tank, and the outflow opening can communicate with the breather nipple. In this case, it is desirable that a cylindrical portion communicating with the inflow opening is formed in the lower portion of the housing.

本発明の流量制御バルブによれば、流入開口側の流体圧が所定値以下のときには、第1弁部が開状態であるので、流体は第1弁部を通じて流入開口から流出開口へ流れる。流入開口側の流体圧が所定値を超えると、弁部材が移動して第1弁部が閉じる。この時、流入開口側の圧力と流出開口側のハウジング内の圧力との差圧が急激に増大するため、弁部材は流入開口から遠ざかる方向へ一気に移動して第2弁部が一気に開き、ハウジング内の流体は流出開口から一気に流出する。したがって本発明の流量制御バルブは応答性に優れ、燃料タンクのブリーザ回路に用いた場合には、高速給油と低速給油とに柔軟に対応することができる。   According to the flow control valve of the present invention, when the fluid pressure on the inflow opening side is equal to or lower than the predetermined value, the first valve portion is in the open state, so that the fluid flows from the inflow opening to the outflow opening through the first valve portion. When the fluid pressure on the inflow opening side exceeds a predetermined value, the valve member moves and the first valve portion closes. At this time, since the differential pressure between the pressure on the inflow opening side and the pressure in the housing on the outflow opening side suddenly increases, the valve member moves in a direction away from the inflow opening and the second valve portion opens at a stretch. The fluid inside flows out at once from the outflow opening. Therefore, the flow control valve of the present invention is excellent in responsiveness, and when used in a fuel tank breather circuit, can flexibly cope with high-speed and low-speed oil supply.

そして、ハウジングは流入開口側の流体圧が所定値以下のときに弁部材が着座する座面をもち、ハウジング及び弁部材の少なくとも一方には、他方に係合して座面と弁部材との間に隙間を形成する係合部をもつ構造とすれば、弁部材が座面に固着するのを防止でき作動の信頼性が向上する。また、ハウジングに流入した液体燃料などを隙間から流入開口を通じて流出させることもできる。   The housing has a seating surface on which the valve member is seated when the fluid pressure on the inflow opening side is equal to or lower than a predetermined value. At least one of the housing and the valve member is engaged with the other to connect the seating surface and the valve member. If the structure has an engaging portion that forms a gap therebetween, the valve member can be prevented from adhering to the seat surface, and the operation reliability is improved. Also, liquid fuel or the like that has flowed into the housing can be discharged from the gap through the inflow opening.

またハウジングの下部に流入開口に連通する筒状部が形成されていれば、満タン液面位置が異なる各種の燃料タンクにも、筒状部の長さを調整するのみで容易に対応することができる。   Also, if a cylindrical part communicating with the inflow opening is formed in the lower part of the housing, it is possible to easily cope with various fuel tanks with different full liquid level positions by simply adjusting the length of the cylindrical part. Can do.

さらに本発明の流量制御バルブは、流入開口の中心軸と流出開口の中心軸とを互いに交差するように設計することが容易である。したがって弁部材の移動を許容するだけの全長とすることができるので、きわめてコンパクトとすることができる。そのためブリーザチューブとインレットパイプとの結合部分に用いても、ブリーザチューブをインレットパイプに近接して配置することができ、ブリーザ回路の設計の自由度が大きく向上する。   Furthermore, the flow control valve of the present invention can be easily designed so that the central axis of the inflow opening and the central axis of the outflow opening intersect each other. Therefore, since it can be made the full length which allows the movement of a valve member, it can be made very compact. For this reason, even if the breather tube and the inlet pipe are connected to each other, the breather tube can be disposed close to the inlet pipe, and the degree of freedom in designing the breather circuit is greatly improved.

請求項1に記載の流量制御バルブを燃料タンクのブリーザ回路に用いた場合で説明すると、流入開口側のガス圧が所定値以下のときには、第1弁部が開状態かつ第2弁部が閉状態であるので、流入開口からハウジングに流入したガスは第1弁部を通じて流出開口から流出する。そして流入開口側の流体圧が所定値を超えると、弁部材は流入開口から遠ざかる方向へ移動し、それに伴って第1弁部の開口面積が狭まるので、流速が大きくなる。例えば弁部材が鍔部をもち、鍔部とハウジングとの間に第2弁部が形成されている場合には、ハウジング内の鍔部上部の圧力が下がる。この時、一時的にハウジング内の鍔部上部の圧力と流入開口側の圧力との差が急激に増大する。   When the flow control valve according to claim 1 is used in a breather circuit of a fuel tank, when the gas pressure on the inflow opening side is below a predetermined value, the first valve portion is open and the second valve portion is closed. Since it is in a state, the gas flowing into the housing from the inflow opening flows out from the outflow opening through the first valve portion. When the fluid pressure on the inflow opening side exceeds a predetermined value, the valve member moves in a direction away from the inflow opening, and accordingly, the opening area of the first valve portion is reduced, so that the flow velocity is increased. For example, when the valve member has a flange portion and the second valve portion is formed between the flange portion and the housing, the pressure at the upper portion of the flange portion in the housing decreases. At this time, the difference between the pressure at the upper portion of the flange in the housing and the pressure at the inflow opening side suddenly increases rapidly.

ブリーザ回路の流量制御バルブの場合、流出開口側はほぼ大気圧となっている。そのため高速給油時に流入開口側のガス圧と流出開口側のガス圧の差が所定値を超えると、第2弁部が流入開口と流出開口との連通を一気に開き、流入開口側のガスは第2弁部を通じて急速に流出開口から流出するので、燃料タンク内のガス圧が一気に放出され、安定した給油が可能となる。   In the case of a flow control valve of a breather circuit, the outflow opening side is almost atmospheric pressure. Therefore, when the difference between the gas pressure on the inflow opening side and the gas pressure on the outflow opening side exceeds a predetermined value during high-speed refueling, the second valve portion opens the communication between the inflow opening and the outflow opening at once, and the gas on the inflow opening side Since the gas quickly flows out from the outflow opening through the two valve portions, the gas pressure in the fuel tank is released at once, and stable oil supply becomes possible.

例えばブリーザ回路に設けられる流量制御バルブにおいて、低速給油時のガス圧と高速給油時のガス圧とのばらつきが大きい場合には、図7におけるガス圧(b)とガス圧(c)との間隔が狭くなる。するとガス圧が高まるにつれて徐々にブリーザガス流量が多くなる従来の流量制御バルブでは、ブリーザガス流量の過不足が生じやすく、キャニスタへ流れるガス量が増大したりベーパリークが生じ易くなる。しかし本発明の流量制御バルブでは、ガス圧(b)とガス圧(c)との間隔が狭い場合でもガス圧(b)とガス圧(c)との間で一気にブリーザガス流量が増大するので、描かれる曲線は理想曲線(D)に近いものとなる。   For example, in the flow control valve provided in the breather circuit, when there is a large variation between the gas pressure during low-speed lubrication and the gas pressure during high-speed lubrication, the interval between the gas pressure (b) and the gas pressure (c) in FIG. Becomes narrower. Then, in the conventional flow control valve in which the breather gas flow rate gradually increases as the gas pressure increases, the breather gas flow rate tends to be excessive or insufficient, and the amount of gas flowing to the canister tends to increase or vapor leak tends to occur. However, in the flow control valve of the present invention, even if the interval between the gas pressure (b) and the gas pressure (c) is narrow, the breather gas flow rate increases at a stretch between the gas pressure (b) and the gas pressure (c). The drawn curve is close to the ideal curve (D).

流体としては、液体及び気体のどちらも利用できる。   As the fluid, both liquid and gas can be used.

ハウジングの固定位置は目的に応じて種々設定できるが、例えばブリーザニップル部に適用する場合は、ハウジングは燃料タンクの上部に気密に固定される。この場合、流入開口が燃料タンクの気相に連通し、流出開口がブリーザニップルに連通している。ハウジングは燃料タンクの外部に突出していてもよいし、燃料タンク内部に配置することも可能である。ハウジングを燃料タンクに固定するには、機械的に固定する方法、接着あるいは溶着で固定する方法など特に制限されない。   The fixing position of the housing can be variously set according to the purpose. For example, when applied to the breather nipple portion, the housing is airtightly fixed to the upper portion of the fuel tank. In this case, the inflow opening communicates with the gas phase of the fuel tank, and the outflow opening communicates with the breather nipple. The housing may protrude outside the fuel tank, or can be arranged inside the fuel tank. In order to fix the housing to the fuel tank, there is no particular limitation such as a method of mechanically fixing or a method of fixing by adhesion or welding.

ブリーザニップル部に適用する場合、ハウジングの下部には、燃料タンク内に延びる筒状部をもつことが好ましい。燃料タンクには満タン検知バルブが設けられ、燃料液面が所定の位置に到達すると満タン検知バルブが作動し、タンク内圧の上昇によって給油ガンのオートストップが働くように構成されている。もし満タン検知時に筒状部の下端がタンクの気相に位置していると、ブリーザ回路を通じて給油口からのベーパリークが生じてしまう。したがって筒状部の下端開口の位置を満タン時の液面位置より下方にしておくことで、給油口からのベーパリークを防ぐことができる。   When applied to the breather nipple portion, it is preferable that the lower portion of the housing has a cylindrical portion extending into the fuel tank. The fuel tank is provided with a full tank detection valve. When the fuel level reaches a predetermined position, the full tank detection valve is actuated, and an automatic stop of the fuel gun is activated by an increase in the tank internal pressure. If the lower end of the cylindrical portion is located in the gas phase of the tank when full tank is detected, vapor leak from the fuel filler port will occur through the breather circuit. Accordingly, by setting the position of the lower end opening of the cylindrical portion below the liquid level position when the tank is full, vapor leak from the fuel filler port can be prevented.

燃料タンク内に延びる筒状部はハウジングと一体形成してもよいが、ハウジングとは別に形成された筒部材をハウジングと気密に一体化することが好ましい。このようにすれば、満タン液面位置が異なる各種の燃料タンクにも、筒部材の長さを調整するのみで容易に対応することができ、ハウジング及びブリーザニップルの大部分を複数種の燃料タンクで共用することができる。   Although the cylindrical portion extending into the fuel tank may be formed integrally with the housing, it is preferable that a cylindrical member formed separately from the housing is integrated with the housing in an airtight manner. In this way, it is possible to easily cope with various fuel tanks having different full liquid level positions by simply adjusting the length of the cylindrical member. Most of the housing and the breather nipple are made of a plurality of types of fuel. Can be shared in tanks.

本発明の流量制御バルブは、ハウジング内を移動自在な弁部材と弁部材を流入開口へ近接する方向へ付勢する付勢手段とを備え、弁部材とハウジングとの間に形成され流入開口から遠ざかる方向への弁部材の移動に伴って流入開口と流出開口との連通を徐々に閉じる第1弁部と、弁部材とハウジングとの間に形成され流入開口から遠ざかる方向への弁部材の移動に伴って流入開口と流出開口との連通を開く第2弁部と、を備えている。   The flow control valve of the present invention includes a valve member movable in a housing and a biasing means for biasing the valve member in a direction close to the inflow opening, and is formed between the valve member and the housing. The first valve portion that gradually closes the communication between the inflow opening and the outflow opening in accordance with the movement of the valve member in the direction of moving away, and the movement of the valve member in the direction of moving away from the inflow opening formed between the valve member and the housing. A second valve portion that opens the communication between the inflow opening and the outflow opening is provided.

この流量制御バルブにおいて、流入開口側の流体圧が付勢手段の付勢力より小さく、弁部材が流入開口に近接した状態では、第1弁部が開いているので、流入開口側の流体は第1弁部を通じて流出開口から流出する。そして流入開口側の流体圧の増大によって弁部材が流入開口から遠ざかる方向へ移動するにつれて、第1弁部の開口面積が徐々に狭まるため、流入開口側の流体圧が益々増大し、流入開口側の流体圧と流出開口側の流体圧の差が所定値を超えたときに第2弁部が流入開口と流出開口との連通を一気に開く。   In this flow control valve, when the fluid pressure on the inflow opening side is smaller than the urging force of the urging means and the valve member is close to the inflow opening, the first valve portion is open. It flows out from the outflow opening through one valve part. As the valve member moves in a direction away from the inflow opening due to the increase in fluid pressure on the inflow opening side, the opening area of the first valve portion gradually decreases, so the fluid pressure on the inflow opening side increases more and more. When the difference between the fluid pressure and the fluid pressure on the outflow opening side exceeds a predetermined value, the second valve portion opens the communication between the inflow opening and the outflow opening at once.

例えばブリーザニップル部に適用される流量制御バルブの場合は、付勢手段による付勢力が、低速給油時のタンク内ガス圧によって弁部材が浮き上がらない程度の付勢力となるように設計する。これにより、低速給油時にタンク内ガス圧がばらついても第1弁部が閉じるのが防止され、キャニスタへの吸着量の増大を抑制できる。そして高速給油時の大きなタンク内ガス圧によって弁部材が浮き上がるように設計しておけば、弁部材が流入開口から遠ざかる方向へ移動するにつれて第1弁部の開口面積が徐々に狭まり、流入開口側の流体圧と流出開口側の流体圧の差が所定値を超えたときに第2弁部が流入開口と流出開口との連通を一気に開くように構成することができる。したがってガス圧とブリーザガス流量との関係は、図7の理想曲線(D)に近くなり、ベーパリークやキャニスタへの吸着量の増大を抑制できる。   For example, in the case of a flow rate control valve applied to the breather nipple portion, the urging force by the urging means is designed to be an urging force that does not lift the valve member due to the gas pressure in the tank during low-speed fueling. As a result, even if the gas pressure in the tank varies during low-speed refueling, the first valve portion is prevented from closing, and an increase in the amount of adsorption to the canister can be suppressed. If the valve member is designed to be lifted by a large tank gas pressure during high-speed fueling, the opening area of the first valve portion gradually decreases as the valve member moves away from the inflow opening. When the difference between the fluid pressure and the fluid pressure on the outlet opening side exceeds a predetermined value, the second valve portion can be configured to open the communication between the inlet opening and the outlet opening at once. Therefore, the relationship between the gas pressure and the breather gas flow rate is close to the ideal curve (D) in FIG. 7, and an increase in the amount of adsorption to the vapor leak and the canister can be suppressed.

弁部材は略有底筒状をなし、ハウジングは流入開口に向かって突出する凸部を有している。凸部を筒状とするとともに、弁部材の筒部は凸部の内周又は外周形状に対応した形状とし、筒部の一端に凸部が進入する、あるいは凸部の内部に弁部材が進入することで、第1弁部が徐々に閉状態となり流入開口側と流出開口側との圧力差が発生するので、弁部材をより一気に移動させることができる。 The valve member has a substantially bottomed cylindrical shape, and the housing has a convex portion protruding toward the inflow opening . The convex portion is cylindrical, and the cylindrical portion of the valve member has a shape corresponding to the inner or outer peripheral shape of the convex portion, and the convex portion enters one end of the cylindrical portion, or the valve member enters the inside of the convex portion. By doing so, the first valve portion is gradually closed and a pressure difference is generated between the inflow opening side and the outflow opening side, so that the valve member can be moved more quickly.

弁部材は凸部に外挿され、弁部材側壁の開口部と凸部により第1弁部を形成している。このようにしたことで、弁部材が移動初期に凸部と干渉することが防止でき、凸部の案内によって弁部材を安定して移動させることができる。この場合、弁部材又は凸部の側周面に貫通孔を形成しておき、弁部材の移動に伴って貫通孔が徐々に塞がれるようにすることで第1弁部を形成することができる。 The valve member is extrapolated to the convex part, and the first valve part is formed by the opening part and convex part of the valve member side wall . By doing in this way, it can prevent that a valve member interferes with a convex part in the movement initial stage, and can move a valve member stably by guidance of a convex part. In this case, the first valve portion may be formed by forming a through hole in the side peripheral surface of the valve member or the convex portion and gradually closing the through hole as the valve member moves. it can.

また第2弁部は、弁部材とハウジングとの間に形成され、流入開口から遠ざかる方向への弁部材の移動に伴って流入開口と流出開口との連通を開くものであり、例えば弁部材に流入開口と流出開口を仕切る鍔部を形成し、弁部材が移動することで鍔部が仕切りを解除するように構成することで、弁部材とハウジングとの間に第2弁部を形成することができる。第1弁部が開いている状態では第2弁部は流入開口と流出開口との連通を閉じ、弁部材が移動し始めた瞬間に第2弁部が開くように設計してもよいが、弁部材が所定量移動して第1弁部が閉じると同時に第2弁部が開くように設計することが好ましい。また鍔部を設けることで受圧面積が増大するので、弁部材がより移動し易くなるという効果もある。   The second valve portion is formed between the valve member and the housing, and opens the communication between the inflow opening and the outflow opening as the valve member moves in a direction away from the inflow opening. Forming the second valve portion between the valve member and the housing by forming a flange portion that partitions the inflow opening and the outflow opening, and by configuring the flange portion to release the partition when the valve member moves. Can do. While the first valve portion is open, the second valve portion may be designed so that the communication between the inflow opening and the outflow opening is closed and the second valve portion is opened at the moment when the valve member starts to move. It is preferable to design the valve member so that the second valve portion opens at the same time that the valve member moves by a predetermined amount and the first valve portion closes. Further, since the pressure receiving area is increased by providing the collar portion, there is an effect that the valve member is more easily moved.

ブリーザ回路のブリーザニップル部に適用される流量制御バルブの場合に上記のように設計すれば、第1弁部が閉じた時に、弁部材より下流側のハウジング内の圧力は大気圧となり、弁部材より上流側のハウジング内の圧力はタンク内圧となるので、差圧が大きくなり弁部材がさらに速やかに移動するようになる。したがって、低速給油時のガス圧と高速給油時のガス圧のばらつきが大きく図7のガス圧(b)とガス圧(c)の間が狭くとも、第2弁部が一気に開くため、ベーパリークするのが防止され、キャニスタへの吸着量が増大するのも抑制できるので、給油速度の増減によるブリーザガス流量の増減に正確に対応することができ、必要ブリーザガス流量を確保することができる。   In the case of the flow control valve applied to the breather nipple portion of the breather circuit, when the first valve portion is closed, the pressure in the housing on the downstream side of the valve member becomes atmospheric pressure when the first valve portion is closed. Since the pressure in the housing on the upstream side becomes the tank internal pressure, the differential pressure increases and the valve member moves more rapidly. Accordingly, even if the gas pressure at the time of low-speed oil supply and the gas pressure at the time of high-speed oil supply vary widely and the gap between the gas pressure (b) and gas pressure (c) in FIG. Therefore, the increase in the amount of adsorption to the canister can be suppressed, so that it is possible to accurately cope with the increase / decrease in the breather gas flow rate due to the increase / decrease in the oil supply speed, and to secure the necessary breather gas flow rate.

付勢手段は、弁部材自身の自重としてもよいし、スプリングなどを用いることもできる。その付勢力は、目的に応じて種々設定することができる。   The biasing means may be the weight of the valve member itself, or a spring or the like may be used. The biasing force can be variously set according to the purpose.

ところでブリーザ回路に設けられる流量制御バルブの場合には、ハウジング内に液体燃料が進入する場合がある。このような場合で、流入開口側のガス圧が所定値以下のときに弁部材が着座する座面をもつ場合には、液体燃料を介して弁部材が座面に固着し作動が不安定となる恐れがある。   By the way, in the case of the flow control valve provided in the breather circuit, liquid fuel may enter the housing. In such a case, when the valve member has a seat surface on which the gas pressure on the inflow opening side is below a predetermined value, the valve member is fixed to the seat surface via liquid fuel, and the operation becomes unstable. There is a fear.

そこでこのような場合には、ハウジング及び弁部材の少なくとも一方に、他方に係合して座面と弁部材との間に隙間を形成する係合部を形成することが好ましい。このようにすれば、ハウジングに流入した液体燃料を隙間から流出させることができるので、弁部材が座面に固着するのを防止でき作動の信頼性が向上する。この係合部としては、突起、段差部、溝、凹凸面などが例示される。   Therefore, in such a case, it is preferable to form an engaging portion that engages with the other of at least one of the housing and the valve member to form a gap between the seating surface and the valve member. In this way, since the liquid fuel that has flowed into the housing can be discharged from the gap, the valve member can be prevented from adhering to the seat surface, and the operation reliability can be improved. Examples of the engaging portion include a protrusion, a stepped portion, a groove, and an uneven surface.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

(実施例1)
図1に本実施例の流量制御バルブの断面図を示す。この流量制御バルブは、図2に示すように燃料タンク 100の上部に溶着固定され、ニップル部11にブリーザチューブ 200が挿通される。ブリーザチューブ 200はインレットパイプ 300の給油口近傍に連結されている。
Example 1
FIG. 1 shows a cross-sectional view of the flow control valve of this embodiment. As shown in FIG. 2, the flow control valve is welded and fixed to the upper portion of the fuel tank 100, and the breather tube 200 is inserted into the nipple portion 11. The breather tube 200 is connected to the vicinity of the filler opening of the inlet pipe 300.

本実施例の流量制御バルブは、二色成形により製造されたカバー1と、カバー1に溶着固定された筒部材2と、弁部材3と、スプリング5と、から構成されている。   The flow control valve of the present embodiment includes a cover 1 manufactured by two-color molding, a cylindrical member 2 welded and fixed to the cover 1, a valve member 3, and a spring 5.

カバー1は有底円筒状の容器状部10と、容器状部10から径方向外方に突出するニップル部11と、容器状部10の開口周縁部に形成されたリング状の溶着部13とを有し、容器状部10とニップル部11は、変性ポリエチレン製の外層14とポリアミド製の内層15とから形成され、溶着部13は外層14と同一の変性ポリエチレンから形成されている。また容器状部10の上底部中心からは、先端に円錐部をもつ円柱状の凸部16が筒部材2の軸方向に突出形成されている。   The cover 1 includes a bottomed cylindrical container 10, a nipple part 11 projecting radially outward from the container part 10, and a ring-shaped weld part 13 formed on the opening peripheral edge of the container part 10. The container-like portion 10 and the nipple portion 11 are formed of an outer layer 14 made of modified polyethylene and an inner layer 15 made of polyamide, and the welded portion 13 is made of the same modified polyethylene as the outer layer 14. Further, from the center of the upper bottom portion of the container-like portion 10, a cylindrical convex portion 16 having a conical portion at the tip is formed so as to protrude in the axial direction of the cylindrical member 2.

筒部材2は、有底円筒状の第1筒部20と、第1筒部20から同軸的に延び第1筒部20より径の小さな第2筒部21と、第1筒部20と第2筒部21の境界部に形成され径方向外方に突出するフランジ部22とからなり、全体がポリアミドから形成されている。そして第1筒部20がカバー1の容器状部10に嵌合し、フランジ部22が容器状部10の内層15に溶着されることで、筒部材2はカバー1と一体となっている。これにより第1筒部20と容器状部10との間に、ハウジング4が形成されている。筒部材2の第1筒部20の底部にはガス流入孔23が貫通し、ハウジング4は第2筒部21及びガス流入孔23を介して燃料タンク 100内の気相と連通している。ハウジング4、容器状部10から突出する凸部16、ガス流入孔23、第2筒部21は同軸上に位置している。   The cylindrical member 2 includes a bottomed cylindrical first cylindrical portion 20, a second cylindrical portion 21 that extends coaxially from the first cylindrical portion 20 and has a smaller diameter than the first cylindrical portion 20, a first cylindrical portion 20, and a first cylindrical portion 20. The flange portion 22 is formed at the boundary portion of the two cylinder portions 21 and protrudes outward in the radial direction, and is entirely formed of polyamide. The first tubular portion 20 is fitted into the container-like portion 10 of the cover 1 and the flange portion 22 is welded to the inner layer 15 of the container-like portion 10, so that the tubular member 2 is integrated with the cover 1. As a result, the housing 4 is formed between the first cylindrical portion 20 and the container-like portion 10. A gas inflow hole 23 passes through the bottom of the first cylinder portion 20 of the cylinder member 2, and the housing 4 communicates with the gas phase in the fuel tank 100 through the second cylinder portion 21 and the gas inflow hole 23. The housing 4, the convex portion 16 projecting from the container-like portion 10, the gas inflow hole 23, and the second cylindrical portion 21 are located on the same axis.

弁部材3は、図3〜5に拡大して示すように、有底筒状の筒部30と、筒部30の外周表面から径方向外方に突出する鍔部31とから構成され、ポリアセタール樹脂から形成されている。筒部30の底部中心にはガス流入孔23より径の小さな貫通孔32が形成されている。鍔部31の外径は、ハウジング4の内径より僅かに小さく、また筒部30の内径は凸部16の外径より僅かに大きく、弁部材3はハウジング4内を軸方向に移動自在となっている。   The valve member 3 is composed of a bottomed cylindrical tube portion 30 and a flange portion 31 protruding radially outward from the outer peripheral surface of the tube portion 30 as shown in FIGS. It is formed from resin. A through hole 32 having a diameter smaller than that of the gas inflow hole 23 is formed at the center of the bottom of the cylindrical portion 30. The outer diameter of the collar portion 31 is slightly smaller than the inner diameter of the housing 4, and the inner diameter of the cylindrical portion 30 is slightly larger than the outer diameter of the convex portion 16, so that the valve member 3 can move in the housing 4 in the axial direction. ing.

そしてハウジング4の上底部と鍔部31の間にはスプリング5が介装され、スプリング5は弁部材3をハウジング4の下底部に向かってごく弱い力で付勢している。この状態では、図3に示すように筒部30の開口端面と凸部16との間に隙間40が形成され、鍔部31の外周表面はニップル部11の開口より下方でハウジング4の内周表面に近接して対向している。また凸部16、筒部30、貫通孔32、ガス流入孔23は同軸上に位置している。   A spring 5 is interposed between the upper bottom portion of the housing 4 and the flange portion 31, and the spring 5 biases the valve member 3 toward the lower bottom portion of the housing 4 with a very weak force. In this state, as shown in FIG. 3, a gap 40 is formed between the opening end face of the cylindrical portion 30 and the convex portion 16, and the outer peripheral surface of the flange portion 31 is below the opening of the nipple portion 11 and the inner periphery of the housing 4. Facing close to the surface. The convex portion 16, the cylindrical portion 30, the through hole 32, and the gas inflow hole 23 are located on the same axis.

本実施例の流量制御バルブは、カバー1が燃料タンク 100の上表面に形成された開口 101を覆うように、カバー1の溶着部13が開口 101の周縁部に溶着固定され、筒部材2の第2筒部21が燃料タンク 100の気相に位置している。ガス流入孔23が流入開口に相当し、ニップル部11に最も近いハウジング4の開口が流出開口に相当する。   In the flow control valve of this embodiment, the welded portion 13 of the cover 1 is welded and fixed to the peripheral edge of the opening 101 so that the cover 1 covers the opening 101 formed on the upper surface of the fuel tank 100, and The second cylinder part 21 is located in the gas phase of the fuel tank 100. The gas inflow hole 23 corresponds to the inflow opening, and the opening of the housing 4 closest to the nipple portion 11 corresponds to the outflow opening.

本実施例の流量制御バルブによれば、低速給油時には、燃料タンク 100内のガスは第2筒部21からガス流入孔23、貫通孔32、隙間40を通過し、ブリーザガスはニップル部11からブリーザチューブ 200、インレットパイプ 300を循環する。このとき、弁部材3に作用する燃料タンク 100内のガス圧は、ガス流入孔23に表出する貫通孔32の周縁部表面に作用するが、スプリング5の付勢力と弁部材3の自重との合計がそのガス圧から受ける力より大きいので、弁部材3は移動しない。なおこの時の隙間40の開口面積は、合計流路断面積でφ3(7mm2)に相当している。   According to the flow control valve of this embodiment, during low-speed refueling, the gas in the fuel tank 100 passes from the second cylinder portion 21 through the gas inflow hole 23, the through hole 32, and the gap 40, and the breather gas passes from the nipple portion 11 to the breather. Circulate the tube 200 and the inlet pipe 300. At this time, the gas pressure in the fuel tank 100 acting on the valve member 3 acts on the peripheral surface of the through hole 32 exposed to the gas inflow hole 23, but the urging force of the spring 5 and the weight of the valve member 3 Is larger than the force received from the gas pressure, the valve member 3 does not move. The opening area of the gap 40 at this time corresponds to φ3 (7 mm 2) in terms of the total channel cross-sectional area.

高速給油時には、燃料タンク 100内のガス圧が上昇し、その圧力が弁部材3に作用することで、弁部材3は凸部16に近接する方向へ移動を開始する。すると筒部30の下底部と第1筒部20の底部との間に隙間33が生じ、鍔部31にタンク内のガス圧が作用するので、弁部材3はさらに押し上げられる。このように弁部材3が移動すると、図4に示すように、隙間40の開口面積が絞られる。そうなると弁部材3の鍔部31より上方側(給油口側)は大気圧であるので、鍔部31より下方側(タンク内側)との圧力差が急激に高まる。これにより図5に示すように弁部材3が一気に上昇し、隙間41の開口面積が一気に増大して開弁する。なお隙間41の開口面積は、最大時の流路断面積がφ5(19mm2)(ニップル部11の流路断面積)に相当している。すなわち本実施例では、隙間40が第1弁部を、隙間41が第2弁部を構成している。   During high-speed refueling, the gas pressure in the fuel tank 100 rises, and the pressure acts on the valve member 3, so that the valve member 3 starts moving in the direction close to the convex portion 16. Then, a gap 33 is formed between the lower bottom portion of the cylindrical portion 30 and the bottom portion of the first cylindrical portion 20, and the gas pressure in the tank acts on the flange portion 31, so that the valve member 3 is further pushed up. When the valve member 3 moves in this manner, the opening area of the gap 40 is reduced as shown in FIG. Then, since the upper side (fuel supply port side) of the valve member 3 from the flange 31 is atmospheric pressure, the pressure difference from the lower side (tank inside) of the flange 31 increases rapidly. As a result, as shown in FIG. 5, the valve member 3 rises at once, and the opening area of the gap 41 increases at a stretch and opens. In addition, the opening area of the gap 41 corresponds to the maximum channel cross-sectional area of φ5 (19 mm 2) (the channel cross-sectional area of the nipple portion 11). That is, in this embodiment, the gap 40 constitutes the first valve part, and the gap 41 constitutes the second valve part.

そして低速給油時あるいは給油が停止された場合には、スプリング5の付勢力によって弁部材3は速やかに移動して図3の状態に戻る。   When the low-speed refueling or when the refueling is stopped, the valve member 3 is quickly moved by the urging force of the spring 5 and returns to the state shown in FIG.

すなわち本実施例の流量制御バルブによれば、ガス圧とブリーザガス流量との関係が図7の理想曲線Dのようになるので、給油速度の増減に対する追従性に優れ、ブリーザガス流量が瞬時に増減する。したがってキャニスタに余分なガスが流入したり、ベーパリークが生じるのを抑制することができる。そして従来のオリフィスとバルブの2部材を用いる場合に比べて調整が容易であり、かつ簡単な構成であるので、安価となる。さらに筒部材2をカバー1と別部材で構成したので、燃料タンク 100の形状や容積に応じて第2筒部21の長さを調整する場合も筒部材2を変更するだけでよく、カバー1及び弁部材3を共用することができる。   That is, according to the flow rate control valve of the present embodiment, the relationship between the gas pressure and the breather gas flow rate is as shown by the ideal curve D in FIG. 7, so that the followability with respect to the increase and decrease in the fueling speed is excellent, and the breather gas flow rate increases and decreases instantaneously. . Therefore, it is possible to suppress an excess gas from flowing into the canister or a vapor leak. The adjustment is easier than in the case of using two members of the conventional orifice and valve, and the structure is simple, so that the cost is low. Furthermore, since the cylindrical member 2 is configured as a separate member from the cover 1, only the cylindrical member 2 needs to be changed when the length of the second cylindrical portion 21 is adjusted in accordance with the shape and volume of the fuel tank 100. And the valve member 3 can be shared.

なおブリーザガスの循環量にもよるが、隙間40(第1弁部)の開口面積が徐々に減少するとともに、隙間41(第2弁部)の開口面積を徐々に増大させる作動であってもよい。   Although depending on the circulation amount of the breather gas, the opening area of the gap 40 (first valve portion) may be gradually decreased and the opening area of the gap 41 (second valve portion) may be gradually increased. .

(実施例2)
上記実施例において、低速給油時には弁部材3がガス流入孔23の周縁部に着座している。したがってハウジング4内に液体燃料が進入している場合には、液体燃料が弁部材3とガス流入孔23の周縁部との界面に侵入し、液体張力によって弁部材3が固着して作動が不安定となる場合がある。
(Example 2)
In the above embodiment, the valve member 3 is seated on the peripheral edge of the gas inflow hole 23 during low-speed refueling. Therefore, when liquid fuel enters the housing 4, the liquid fuel enters the interface between the valve member 3 and the peripheral edge of the gas inflow hole 23, and the valve member 3 is fixed due to the liquid tension, resulting in an operation failure. It may become stable.

そこで本実施例では、図8に示すように、ガス流入孔23の周縁部に周方向に間隔を隔てて上方に突出する複数の突起24を形成している。このようにすることで、弁部材3は突起24の頂部に着座し、接触面積が小さくなるので、弁部材3の固着が防止され作動の安定性が向上する。   Therefore, in the present embodiment, as shown in FIG. 8, a plurality of protrusions 24 are formed on the peripheral edge of the gas inflow hole 23 so as to protrude upwardly at intervals in the circumferential direction. By doing so, the valve member 3 is seated on the top of the protrusion 24 and the contact area is reduced, so that the valve member 3 is prevented from sticking and the operation stability is improved.

なお、突起24を弁部材3の底面に形成してもよいし、突起24に代えて溝、シボ模様などをガス流入孔23の周縁部あるいは弁部材3の底部の少なくとも一方に形成しても同様の作用効果が奏される。   The protrusion 24 may be formed on the bottom surface of the valve member 3, or a groove, a texture pattern or the like may be formed on at least one of the peripheral edge of the gas inflow hole 23 or the bottom of the valve member 3 instead of the protrusion 24. Similar effects are achieved.

(実施例3)
実施例2と同様に弁部材3の固着を防止する手段として、図9に示すように、ハウジング4の内周表面に周方向に間隔を隔てた複数のリブ26を形成し、鍔部31などがリブ26に係合することでそれ以上の弁部材3の下降を規制することもできる。
(Example 3)
As shown in FIG. 9, a plurality of ribs 26 spaced apart in the circumferential direction are formed on the inner peripheral surface of the housing 4 as means for preventing the valve member 3 from sticking in the same manner as in the second embodiment. By engaging with the rib 26, further lowering of the valve member 3 can be restricted.

(実施例4)
図10〜12に示す本実施例の流量制御バルブは、実施例1における弁部材3、筒部材7、凸部16の構造を変更したこと以外は実施例1と同様のものである。
(Example 4)
The flow control valve of the present embodiment shown in FIGS. 10 to 12 is the same as that of the first embodiment except that the structure of the valve member 3, the cylindrical member 7, and the convex portion 16 in the first embodiment is changed.

この流量制御バルブは、二色成形により製造されたカバー6と、カバー6に溶着固定された筒部材7と、弁部材8と、座板9と、スプリング5と、から構成されている。   This flow control valve includes a cover 6 manufactured by two-color molding, a cylindrical member 7 welded and fixed to the cover 6, a valve member 8, a seat plate 9, and a spring 5.

カバー6は有底円筒状の容器状部60と、容器状部60から径方向外方に突出するニップル部61と、容器状部60の開口周縁部に形成されたリング状の溶着部62とを有し、容器状部60とニップル部61は、変性ポリエチレン製の外層63とポリアミド製の内層64とから形成され、溶着部62は外層63と同一の変性ポリエチレンから形成されている。   The cover 6 has a bottomed cylindrical container-like part 60, a nipple part 61 projecting radially outward from the container-like part 60, and a ring-like welded part 62 formed on the opening peripheral edge of the container-like part 60. The container-like portion 60 and the nipple portion 61 are formed of a modified polyethylene outer layer 63 and a polyamide inner layer 64, and the welded portion 62 is formed of the same modified polyethylene as the outer layer 63.

ポリアミド製の筒部材7は、中間部に内径が縮小された縮径部70を有し、縮径部70の外周にはフランジ部71が形成されている。そして上部がカバー6の容器状部60に嵌合し、フランジ部71が容器状部60の内層64に溶着されることで、筒部材7はカバー6と一体となっている。これによりカバー6の内部にハウジング4が形成されている。筒部材7の縮径部70にはガス流入孔72が貫通している。また縮径部70には、周方向に間隔を隔てて複数の突起73が、ハウジング4に向かって突出形成されている。   The tube member 7 made of polyamide has a reduced diameter portion 70 whose inner diameter is reduced at an intermediate portion, and a flange portion 71 is formed on the outer periphery of the reduced diameter portion 70. The upper portion is fitted into the container-like portion 60 of the cover 6, and the flange portion 71 is welded to the inner layer 64 of the container-like portion 60, so that the cylindrical member 7 is integrated with the cover 6. As a result, the housing 4 is formed inside the cover 6. A gas inflow hole 72 passes through the reduced diameter portion 70 of the cylindrical member 7. In addition, a plurality of protrusions 73 are formed on the reduced diameter portion 70 so as to protrude toward the housing 4 at intervals in the circumferential direction.

弁部材8は、有底筒状の筒部80と、筒部80の中間部の外周表面から径方向外方に突出する鍔部81とから構成され、ポリアセタール樹脂から形成されている。筒部80の底部には内側へ突出する凸部82が形成され、凸部82には軸方向に貫通する通気孔83が形成されている。鍔部81の外径は、ハウジング4の内径より僅かに小さく、また筒部80の外径はガス流入孔72の径より大きく、弁部材8は縮径部70によって下方への移動を規制された状態でハウジング4内を上下方向に移動自在となっている。また筒部80の先端側壁には、筒部80の内外を径方向に貫通する貫通孔84が周方向に間隔を隔てて複数個形成されている。   The valve member 8 includes a bottomed cylindrical tubular portion 80 and a flange portion 81 that protrudes radially outward from the outer peripheral surface of the intermediate portion of the tubular portion 80, and is formed of polyacetal resin. A convex portion 82 that protrudes inward is formed at the bottom of the cylindrical portion 80, and a vent hole 83 that penetrates in the axial direction is formed in the convex portion 82. The outer diameter of the flange 81 is slightly smaller than the inner diameter of the housing 4, the outer diameter of the cylinder 80 is larger than the diameter of the gas inflow hole 72, and the valve member 8 is restricted from moving downward by the reduced diameter portion 70. In this state, the inside of the housing 4 is movable up and down. In addition, a plurality of through holes 84 that penetrate the inside and outside of the cylinder portion 80 in the radial direction are formed in the distal end side wall of the cylinder portion 80 at intervals in the circumferential direction.

座板9は、円板状の基部90と、基部90の周縁部に間隔を隔てて列設された複数の係止爪91と、基部90の中心から軸方向に突出し中央に凹部93をもつ凸部92と、から構成され、ポリアセタール樹脂から形成されている。筒部材7の先端には係止孔73が形成され、係止爪91が係止孔73に係合することで、座板9が筒部材7に固定されている。なお凸部92の外径は、弁部材8の筒部80の内径より小さく、弁部材8は凸部92に案内されて上下方向に移動自在となっている。   The seat plate 9 has a disk-shaped base 90, a plurality of locking claws 91 arranged at intervals around the periphery of the base 90, and a recess 93 at the center that protrudes in the axial direction from the center of the base 90. And a convex portion 92, which is made of polyacetal resin. A locking hole 73 is formed at the tip of the cylindrical member 7, and the seat plate 9 is fixed to the cylindrical member 7 by engaging the locking claw 91 with the locking hole 73. The outer diameter of the convex portion 92 is smaller than the inner diameter of the cylindrical portion 80 of the valve member 8, and the valve member 8 is guided by the convex portion 92 and is movable in the vertical direction.

そしてスプリング5が凸部82と凸部92の間に介装され、弁部材8はガス流入口72に向かう方向に付勢されている。この状態では、図11に示すように、鍔部81の外周表面はニップル部61の開口より下方でハウジング4の内周表面に近接して対向している。   The spring 5 is interposed between the convex portion 82 and the convex portion 92, and the valve member 8 is urged in a direction toward the gas inlet 72. In this state, as shown in FIG. 11, the outer peripheral surface of the collar portion 81 is opposed to the inner peripheral surface of the housing 4 below the opening of the nipple portion 61.

本実施例の流量制御バルブは、実施例1と同様に、カバー6が燃料タンク 100の上表面に形成された開口 101を覆うように、カバー6の溶着部62が開口 101の周縁部に溶着固定され、筒部材7の下端が燃料タンク 100の気相に位置している。ガス流入孔72が流入開口に相当し、ニップル部61に最も近いハウジング4の開口が流出開口に相当する。   As in the first embodiment, the flow control valve of the present embodiment is welded to the peripheral edge of the opening 101 so that the cover 6 covers the opening 101 formed on the upper surface of the fuel tank 100. It is fixed and the lower end of the cylinder member 7 is located in the gas phase of the fuel tank 100. The gas inflow hole 72 corresponds to the inflow opening, and the opening of the housing 4 closest to the nipple portion 61 corresponds to the outflow opening.

本実施例の流量制御バルブによれば、低速給油時には、燃料タンク 100内のガスは筒部材7の下端からガス流入孔72、通気孔83、貫通孔84を通過し、ブリーザガスはニップル部61からブリーザチューブ 200、インレットパイプ 300を循環する。このとき、燃料タンク100内のガス圧が弁部材8に作用しても、スプリング5の付勢力と弁部材8の自重との合計がそのガス圧から受ける力より大きいので、弁部材8は移動しない。図11に示すこの状態では、凸部92の先端は貫通孔84の上端より上方に位置し、貫通孔84を流通するガスの流通が妨げられることはなく、ブリーザ回路が安定して機能する。そして液体燃料がハウジング4内に存在しても、弁部材8は突起73の頂部に着座し、弁部材8と縮径部70との間に隙間が形成されるので、弁部材8の固着が防止され作動の安定性が高い。   According to the flow control valve of the present embodiment, during low-speed refueling, the gas in the fuel tank 100 passes from the lower end of the cylindrical member 7 through the gas inflow hole 72, the vent hole 83, and the through hole 84, and the breather gas passes from the nipple portion 61. Circulates breather tube 200 and inlet pipe 300. At this time, even if the gas pressure in the fuel tank 100 acts on the valve member 8, the sum of the biasing force of the spring 5 and the dead weight of the valve member 8 is larger than the force received from the gas pressure. do not do. In this state shown in FIG. 11, the tip of the convex portion 92 is located above the upper end of the through hole 84, the flow of the gas flowing through the through hole 84 is not hindered, and the breather circuit functions stably. Even if liquid fuel is present in the housing 4, the valve member 8 is seated on the top of the protrusion 73, and a gap is formed between the valve member 8 and the reduced diameter portion 70, so that the valve member 8 is firmly fixed. It is prevented and the operation stability is high.

高速給油時には、燃料タンク 100内のガス圧が上昇し、その圧力が弁部材8に作用することで、弁部材8は凸部92に近接する方向へ移動を開始する。すると凸部92の先端が貫通孔84とラップし、弁部材8の上昇に伴って貫通孔84の開口面積が徐々に狭まる。つまり貫通孔84が第1弁部として作用し、第1弁部が徐々に閉じられる。それと同時に鍔部81も上昇するが、初期の間は鍔部81がニップル部61の開口に表出することがない。   During high-speed refueling, the gas pressure in the fuel tank 100 rises, and the pressure acts on the valve member 8 so that the valve member 8 starts to move in the direction approaching the convex portion 92. Then, the tip of the convex portion 92 wraps with the through hole 84, and the opening area of the through hole 84 gradually narrows as the valve member 8 rises. That is, the through hole 84 acts as the first valve portion, and the first valve portion is gradually closed. At the same time, the collar portion 81 also rises, but the collar portion 81 does not appear at the opening of the nipple portion 61 during the initial period.

そして燃料タンク 100内のガス圧の上昇に伴い貫通孔84の開口面積が徐々に狭まって抵抗が大きくなり、ついには貫通孔84が凸部92で閉じられるため、鍔部81より下方側(タンク側)のガス圧と、鍔部81より上方側(給油口側)の圧力(大気圧)との差が急激に増大する。すると弁部材8は一気に上昇し、図12に示すようにニップル部61の開口とガス流入孔72とが連通する。つまり鍔部81が第2弁部として機能し、これによって第2弁部が全開状態となる。   As the gas pressure in the fuel tank 100 rises, the opening area of the through hole 84 gradually narrows and resistance increases. Finally, the through hole 84 is closed by the convex portion 92, so that the lower side (tank of the tank 81) The difference between the gas pressure on the side) and the pressure (atmospheric pressure) on the upper side (fuel supply port side) from the flange 81 increases rapidly. Then, the valve member 8 rises at a stretch, and the opening of the nipple portion 61 and the gas inflow hole 72 communicate with each other as shown in FIG. That is, the collar part 81 functions as a second valve part, whereby the second valve part is fully opened.

したがって本実施例の流量制御バルブによれば、実施例1と同等の作用効果が奏される。さらに、弁部材8が縮径部70に着座している状態でも、弁部材8の筒部80の先端に凸部92の先端が進入した状態となっているため、弁部材8は凸部92の案内によって円滑に移動し、干渉によって移動が阻害されるのが確実に防止されている。またスプリング5の径を実施例1より小さくすることができるので、全体形状をよりコンパクトにすることができる。そして本実施例の流量制御バルブの組立時には、筒部材7、弁部材8、スプリング5、及び座板9を予め一体化しておくことができるので、カバー6と筒部材7との溶着時の工数を実施例1に比べて低減することができる。   Therefore, according to the flow control valve of the present embodiment, the same effects as those of the first embodiment can be obtained. Further, even when the valve member 8 is seated on the reduced diameter portion 70, the valve member 8 is in the state where the tip of the convex portion 92 has entered the tip of the cylindrical portion 80 of the valve member 8. Therefore, it is reliably prevented that the movement is hindered by the interference. Moreover, since the diameter of the spring 5 can be made smaller than that of the first embodiment, the overall shape can be made more compact. When the flow rate control valve of this embodiment is assembled, the cylinder member 7, the valve member 8, the spring 5, and the seat plate 9 can be integrated in advance, so that the man-hours for welding the cover 6 and the cylinder member 7 are increased. Can be reduced as compared with the first embodiment.

(実施例5)
図13に示す本実施例の流量制御バルブは、ブリーザ回路のブリーザチューブとインレットパイプとを接続するコネクタとして用いられる。
(Example 5)
The flow control valve of this embodiment shown in FIG. 13 is used as a connector for connecting a breather tube and an inlet pipe of a breather circuit.

この流量制御バルブは、カバー6と、カバー6に溶着固定されたニップル75と、弁部材8と、スプリング5と、から構成されている。   This flow control valve includes a cover 6, a nipple 75 welded and fixed to the cover 6, a valve member 8, and a spring 5.

カバー6は有底円筒状の容器状部60と、容器状部60から径方向外方に突出するコネクタ部65とを有している。容器状部60の底部からは、実施例4の座板9と同様の形状の、中央に凹部をもつ凸部66が突出している。また容器状部60の側壁には、コネクタ部65と連通する流出開口67が形成されている。   The cover 6 has a bottomed cylindrical container-like part 60 and a connector part 65 projecting radially outward from the container-like part 60. From the bottom part of the container-like part 60, a convex part 66 having a concave part in the center and having the same shape as the seat plate 9 of the fourth embodiment projects. In addition, an outflow opening 67 communicating with the connector portion 65 is formed on the side wall of the container-like portion 60.

コネクタ部65は筒状に形成され、内部に2本のオーリング68が介装されている。また外側開口部には、複数の係止爪69が縮径・拡径可能に揺動自在に配置されている。   The connector portion 65 is formed in a cylindrical shape, and two O-rings 68 are interposed therein. In addition, a plurality of locking claws 69 are swingably disposed in the outer opening so as to be able to reduce and expand the diameter.

ニップル75の外周表面には、ファーツリー形状のリング状の係止突起76が複数個形成されている。また反対側には、内径が拡径された筒部77が形成され、筒部77がカバー6の容器状部60に嵌合している。なお筒部77には、流出開口67に連通する開口78が形成されている。また中間部の内部には、段差部79が形成されている。そして中間部の外周で、カバー6と溶着されて一体化されている。筒部77は、弁部材8を安定して移動させるためのガイドとして機能する。   On the outer peripheral surface of the nipple 75, a plurality of fur-tree-shaped ring-shaped locking projections 76 are formed. On the opposite side, a cylindrical portion 77 having an enlarged inner diameter is formed, and the cylindrical portion 77 is fitted to the container-like portion 60 of the cover 6. Note that an opening 78 communicating with the outflow opening 67 is formed in the cylindrical portion 77. A stepped portion 79 is formed inside the intermediate portion. And it is welded and integrated with the cover 6 at the outer periphery of the intermediate part. The cylinder part 77 functions as a guide for moving the valve member 8 stably.

弁部材8は、実施例4と同様のもので同様に配置され、凸部66内に配置されたスプリング5によって段差部79に着座する方向に付勢されている。   The valve member 8 is the same as that of the fourth embodiment, and is similarly arranged. The valve member 8 is urged in the direction in which the valve member 8 is seated on the stepped portion 79 by the spring 5 arranged in the convex portion 66.

本実施例の流量制御バルブは、ニップル75にブリーザチューブ 200が挿通固定され、コネクタ部65にインレットパイプ 300の側壁から突出するパイプ 301が挿入される。パイプ 301の外周表面には係止鍔 302が形成され、外周表面にオーリング68が弾接するとともに係止鍔 302に係止爪69が係合することで、パイプ 301はコネクタ部65に気密に固定される。   In the flow control valve of this embodiment, the breather tube 200 is inserted and fixed to the nipple 75, and the pipe 301 protruding from the side wall of the inlet pipe 300 is inserted into the connector portion 65. A locking rod 302 is formed on the outer peripheral surface of the pipe 301, and the O-ring 68 is elastically contacted with the outer peripheral surface and the locking claw 69 is engaged with the locking rod 302, so that the pipe 301 is airtight to the connector portion 65. Fixed.

本実施例の流量制御バルブによれば、低速給油時には、燃料タンク 100内のガスはブリーザチューブ 200からニップル75に流入し、通気孔83、貫通孔84を通過し、開口78、流出開口67を通過してインレットパイプ 300に流入する。このとき、燃料タンク 100内のガス圧が弁部材8に作用しても、スプリング5の付勢力と弁部材8の自重との合計がそのガス圧から受ける力より大きいので、弁部材8は移動しない。この状態では、凸部66の先端は貫通孔84の上端より上方に位置し、貫通孔84を流通するガスの流通が妨げられることはなく、ブリーザ回路が安定して機能する。そして高速給油時には、実施例4と同様に弁部材8が作動し、実施例4と同等の作用効果が奏される。   According to the flow control valve of the present embodiment, during low-speed refueling, the gas in the fuel tank 100 flows into the nipple 75 from the breather tube 200, passes through the vent hole 83 and the through hole 84, and opens the opening 78 and the outflow opening 67. Passes through and flows into the inlet pipe 300. At this time, even if the gas pressure in the fuel tank 100 acts on the valve member 8, the sum of the urging force of the spring 5 and the weight of the valve member 8 is larger than the force received from the gas pressure. do not do. In this state, the tip of the convex portion 66 is located above the upper end of the through hole 84, the gas flowing through the through hole 84 is not hindered, and the breather circuit functions stably. And at the time of high-speed oil supply, the valve member 8 act | operates similarly to Example 4, and an effect equivalent to Example 4 is show | played.

さらに本実施例の流量制御バルブによれば、流入開口の中心軸と流出開口の中心軸とが互いに交差しているので、ブリーザチューブ 200とインレットパイプ 300の結合部分にコネクタとして配置することができる。そして中心軸とが互いに交差していることから、コネクタ部65の長さとカバー6の径との合計を、例えば特開2003−028010号公報に記載のコネクタより短くすることができるので、ブリーザチューブ 200とインレットパイプ 300との距離を短くすることができる。またパイプ 301をL字状に曲げる必要もない。したがって設計及び配置の自由度が格段に向上する。   Furthermore, according to the flow control valve of the present embodiment, since the central axis of the inflow opening and the central axis of the outflow opening intersect with each other, it can be disposed as a connector at the connecting portion between the breather tube 200 and the inlet pipe 300. . Since the central axis intersects each other, the total length of the connector portion 65 and the diameter of the cover 6 can be made shorter than the connector described in, for example, Japanese Patent Application Laid-Open No. 2003-028010. The distance between 200 and the inlet pipe 300 can be shortened. Further, it is not necessary to bend the pipe 301 into an L shape. Therefore, the degree of freedom in design and arrangement is greatly improved.

なお本実施例では筒部77を容器状部60に嵌合しているが、筒部77を形成せずに容器状部60の内周壁面で弁部材8を案内することも可能である。またニップル75に代えてコネクタ部を形成することもでき、コネクタ部65に代えてニップル部を形成してもよい。   In this embodiment, the cylindrical portion 77 is fitted to the container-shaped portion 60, but the valve member 8 can be guided by the inner peripheral wall surface of the container-shaped portion 60 without forming the cylindrical portion 77. In addition, a connector portion can be formed in place of the nipple 75, and a nipple portion may be formed in place of the connector portion 65.

本発明の流量制御バルブは、ブリーザ回路のブリーザニップル部に用いられる他、ブリーザ回路に設けられるコネクタ、カットオフバルブとキャニスターとの間に配置されるバルブなどに利用することができる。   The flow control valve of the present invention can be used for a breather nipple portion of a breather circuit, a connector provided in the breather circuit, a valve disposed between a cutoff valve and a canister, and the like.

本発明の一実施例の流量制御バルブの断面図である。It is sectional drawing of the flow control valve of one Example of this invention. 本発明の一実施例の流量制御バルブを備えたブリーザ回路の説明図である。It is explanatory drawing of the breather circuit provided with the flow control valve of one Example of this invention. 本発明の一実施例の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the flow control valve of one Example of this invention. 本発明の一実施例の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the flow control valve of one Example of this invention. 本発明の一実施例の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the flow control valve of one Example of this invention. 従来のブリーザ回路の流量制御における給油速度とブリーザガス流量との関係を示す説明図である。It is explanatory drawing which shows the relationship between the oil supply speed and breather gas flow volume in the flow control of the conventional breather circuit. 従来の流量制御バルブにおけるブリーザ回路のガス圧力とブリーザガス流量との関係と、その理想関係を示す説明図である。It is explanatory drawing which shows the relationship between the gas pressure of a breather circuit and the breather gas flow volume in the conventional flow control valve, and the ideal relationship. 本発明の第2の実施例の流量制御バルブの要部拡大断面図である。It is a principal part expanded sectional view of the flow control valve of 2nd Example of this invention. 本発明の第3の実施例の流量制御バルブの要部拡大断面図である。It is a principal part expanded sectional view of the flow control valve | bulb of the 3rd Example of this invention. 本発明の第4の実施例の流量制御バルブの断面図である。It is sectional drawing of the flow control valve | bulb of the 4th Example of this invention. 本発明の第4の実施例の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the flow control valve of the 4th Example of this invention. 本発明の第4の実施例の流量制御バルブの作動を示す説明図である。It is explanatory drawing which shows the action | operation of the flow control valve of the 4th Example of this invention. 本発明の第5の実施例の流量制御バルブの断面図である。It is sectional drawing of the flow control valve of the 5th Example of this invention.

符号の説明Explanation of symbols

1:カバー 2:筒部材 3:弁部材
40:隙間 41:隙間
1: Cover 2: Tube member 3: Valve member
40: Clearance 41: Clearance

Claims (7)

流体が流入する流入開口と該流入開口から流入した流体が外部へ流出する流出開口とを有し該流入開口に向かって突出する凸部を有するハウジングと、上方に開口する略有底筒状をなし該ハウジング内に移動自在に配置された弁部材と、該弁部材を該流入開口へ近接する方向へ付勢する付勢手段と、からなる流量制御バルブであって、
該凸部と該弁部材との間に形成され該流入開口から遠ざかる方向への該弁部材の移動に伴って該流入開口と該流出開口との連通を徐々に閉じる第1弁部と、
該弁部材と該ハウジングとの間に形成され該流入開口から遠ざかる方向への該弁部材の移動に伴って該流入開口と該流出開口との連通を開く第2弁部と、を備え、
該流入開口側の流体圧が所定値以下のときには該第1弁部が開状態かつ該第2弁部が閉状態であり、該流入開口側と該流出開口側との圧力差が所定値を超えたときに該第2弁部が該流入開口と該流出開口との連通を一気に開くように構成されたことを特徴とする流量制御バルブ。
A housing having an inflow opening through which fluid flows in and an outflow opening through which the fluid flowing in from the inflow opening flows out to the outside, and a convex portion protruding toward the inflow opening, and a substantially bottomed cylindrical shape opening upward None , a flow rate control valve comprising a valve member movably disposed in the housing, and a biasing means for biasing the valve member in a direction close to the inflow opening,
A first valve portion formed between the convex portion and the valve member and gradually closing the communication between the inflow opening and the outflow opening as the valve member moves in a direction away from the inflow opening;
A second valve portion that is formed between the valve member and the housing and opens the communication between the inflow opening and the outflow opening as the valve member moves in a direction away from the inflow opening.
When the fluid pressure on the inflow opening side is less than or equal to a predetermined value, the first valve portion is open and the second valve portion is closed, and the pressure difference between the inflow opening side and the outflow opening side has a predetermined value. A flow rate control valve characterized in that the second valve portion is configured to open the communication between the inflow opening and the outflow opening at a stroke when exceeding.
前記弁部材は前記凸部に外挿され、該弁部材側壁の開口部と前記凸部により前記第1弁部を形成した請求項1に記載の流量制御バルブ。 The flow control valve according to claim 1 , wherein the valve member is extrapolated to the convex portion, and the first valve portion is formed by an opening of the valve member side wall and the convex portion. 前記弁部材は鍔部をもち、該鍔部と前記ハウジングとの間に前記第2弁部が形成される請求項1又は請求項2に記載の流量制御バルブ。 The flow rate control valve according to claim 1, wherein the valve member has a flange portion, and the second valve portion is formed between the flange portion and the housing. 前記ハウジングは前記流入開口側の流体圧が所定値以下のときに前記弁部材が着座する座面をもち、前記ハウジング及び前記弁部材の少なくとも一方には、他方に係合して前記座面と前記弁部材との間に隙間を形成する係合部をもつ請求項1〜3のいずれかに記載の流量制御バルブ。 The housing has a seat surface on which the valve member is seated when the fluid pressure on the inflow opening side is equal to or lower than a predetermined value, and at least one of the housing and the valve member is engaged with the other to engage the seat surface. The flow control valve according to claim 1, further comprising an engagement portion that forms a gap with the valve member. 前記ハウジングは燃料タンクの上部に気密に固定され、前記流入開口が燃料タンクの気相に連通し、前記流出開口がブリーザニップルに連通している請求項1〜4のいずれかに記載の流量制御バルブ。 The flow rate control according to any one of claims 1 to 4 , wherein the housing is hermetically fixed to an upper portion of a fuel tank, the inflow opening communicates with a gas phase of the fuel tank, and the outflow opening communicates with a breather nipple. valve. 前記ハウジングの下部には、前記流入開口に連通する筒状部が形成されている請求項5に記載の流量制御バルブ。 The flow rate control valve according to claim 5 , wherein a cylindrical portion communicating with the inflow opening is formed in a lower portion of the housing. 前記流入開口の中心軸と前記流出開口の中心軸とは、互いに交差している請求項1に記載の流量制御バルブ。   The flow control valve according to claim 1, wherein a central axis of the inflow opening and a central axis of the outflow opening intersect each other.
JP2004238168A 2004-05-19 2004-08-18 Flow control valve Expired - Fee Related JP4379719B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004238168A JP4379719B2 (en) 2004-05-19 2004-08-18 Flow control valve
US11/122,093 US7428914B2 (en) 2004-05-19 2005-05-05 Flow control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004149456 2004-05-19
JP2004238168A JP4379719B2 (en) 2004-05-19 2004-08-18 Flow control valve

Publications (2)

Publication Number Publication Date
JP2006002932A JP2006002932A (en) 2006-01-05
JP4379719B2 true JP4379719B2 (en) 2009-12-09

Family

ID=35771483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004238168A Expired - Fee Related JP4379719B2 (en) 2004-05-19 2004-08-18 Flow control valve

Country Status (1)

Country Link
JP (1) JP4379719B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831422B2 (en) 2006-07-19 2011-12-07 豊田合成株式会社 Variable flow valve
JP5348031B2 (en) * 2010-03-16 2013-11-20 豊田合成株式会社 Flow control valve
JP7006553B2 (en) * 2018-09-26 2022-01-24 浜名湖電装株式会社 Purge control valve

Also Published As

Publication number Publication date
JP2006002932A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP4831422B2 (en) Variable flow valve
US7428914B2 (en) Flow control valve
US6941966B2 (en) Outflow-limiting device of fuel tank
JP3284746B2 (en) Float valve for fuel tank
EP1705051B1 (en) Low profile overfill limit device with reverse flow capability
US6591855B2 (en) Fuel cutoff valve
US20040238033A1 (en) Fuel cutoff valve
JP2006097674A (en) Fuel cut-off valve
JP3909837B2 (en) Fuel tank fuel spill regulating device
US20090211649A1 (en) Fuel cutoff valve
JP3953916B2 (en) Fuel tank fuel spill regulating device
JP2004257264A (en) Full tank control valve structure
JP2019143580A (en) Fuel valve
JP4482806B2 (en) Flow control valve
US7448364B2 (en) Fuel cutoff valve and breather pipe
JP4379719B2 (en) Flow control valve
JP2012071639A (en) Fuel shut-off valve
US6779545B2 (en) Pressure control valve for fuel tank
WO2022168384A1 (en) Full tank regulation valve
JP4131399B2 (en) Fuel tank fuel spill regulating device
JP5461087B2 (en) Fuel shut-off valve
JP2006069236A (en) Flow rate control valve
JP2006069238A (en) Flow rate control valve
JP4207875B2 (en) Fuel shut-off valve
JP2006069237A (en) Flow rate control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees