JP2006068747A - Method for preventing variation of level of molten metal due to bulging in continuous casting mold - Google Patents

Method for preventing variation of level of molten metal due to bulging in continuous casting mold Download PDF

Info

Publication number
JP2006068747A
JP2006068747A JP2004251515A JP2004251515A JP2006068747A JP 2006068747 A JP2006068747 A JP 2006068747A JP 2004251515 A JP2004251515 A JP 2004251515A JP 2004251515 A JP2004251515 A JP 2004251515A JP 2006068747 A JP2006068747 A JP 2006068747A
Authority
JP
Japan
Prior art keywords
bulging
level
casting
fluctuation
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004251515A
Other languages
Japanese (ja)
Other versions
JP4501597B2 (en
Inventor
Atsushi Kubota
淳 久保田
Koichi Tsutsumi
康一 堤
Tomoyuki Kato
朝行 加藤
Akira Hosokawa
晃 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004251515A priority Critical patent/JP4501597B2/en
Publication of JP2006068747A publication Critical patent/JP2006068747A/en
Application granted granted Critical
Publication of JP4501597B2 publication Critical patent/JP4501597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the variation of the level of molten metal due to the bulging between rolls by predicting the variation of the level of the molten metal due to the bulging between the rolls in the coagulation shell when slab ingots are continuously cast, and then by appropriately selecting casting conditions based on the predicted results. <P>SOLUTION: When the slab ingots are continuously cast, the maximum amplitude of the variation of the level of the molten metal due to the bulging in the casting mold is determined by the following expression (1) such that one or more casting conditions among the intensity of cooling the casting mold, the intensity of secondary cooling, the continued length of the same roll pitch, and the casting speed are adjusted so that the maximum amplitude determined from the expression (1) becomes lower than a required value. The expression (1) is written as ΔX<SB>M</SB>=L<SB>C</SB>×δ×W<SB>liq</SB>/A, where X<SB>M</SB>is the maximum amplitude (mm) of the variation of the level of the molten metal due to the bulging, L<SB>C</SB>is the continued length of the same roll pitch (mm), δ is the amount of the bulging (mm), W<SB>liq</SB>is the width (mm) of not yet solidified portion at the end of the ingot, and A is the cross sectional area (mm<SP>2</SP>) of the casting mold. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スラブ鋳片の連続鋳造において、凝固シェルのロール間バルジングを原因として発生する鋳型内の湯面変動を防止する方法に関するものである。   The present invention relates to a method for preventing fluctuations in a molten metal surface in a mold caused by bulging between rolls of a solidified shell in continuous casting of a slab slab.

溶融金属の連続鋳造において長周期の鋳型内湯面変動が生じる場合がある。図1に鋼の連続鋳造における鋳型内湯面変動及び鋳造速度の例を示す。図1において、鋳造領域Aでは鋳型内の湯面変動は少なく湯面レベルは安定しているが、鋳造領域Bでは周期的な湯面変動が発生しており、この周期的な湯面変動の発生に応じて鋳造速度を低下させている。この鋳型内湯面変動の周期は数秒〜十数秒であり、その振幅は数mm〜数十mmに達する。このような現象が生じると、鋳型内溶湯の上下動によって鋳型に付着しているモールドパウダーを巻き込んだり、また、湯面変動量が時間に伴って増大するような条件では溶湯が鋳型からオーバーフローしたりする恐れもあるため、鋳片品質の低下のみならず鋳造そのものの続行が困難となる場合も発生する。   In continuous casting of molten metal, there may be a case where a long period of mold surface fluctuation occurs in the mold. FIG. 1 shows an example of mold surface fluctuation and casting speed in continuous casting of steel. In FIG. 1, in the casting area A, the molten metal surface level in the mold is small and the molten metal surface level is stable, but in the casting region B, the cyclic molten metal surface fluctuation occurs. The casting speed is reduced according to the occurrence. The cycle of the molten metal surface in the mold is several seconds to several tens of seconds, and the amplitude reaches several mm to several tens of mm. When such a phenomenon occurs, the molten metal overflows from the mold under the condition that the mold powder adhering to the mold is entrained by the vertical movement of the molten metal in the mold or the amount of molten metal surface fluctuation increases with time. In some cases, it is difficult not only to deteriorate the quality of the slab but also to continue the casting itself.

このような湯面変動が発生した場合には、図1に示すように鋳造速度を下げて湯面変動量が減少するのを待つことが通常行なわれているが、鋳造速度を低下させることは生産能率の低下につながる。また、鋳造速度を低下させないで鋳造が続行できたとしても、上述のようにモールドパウダーの巻き込みによる鋳片品質の悪化が発生する。   In the case where such a molten metal level fluctuation occurs, it is usual to wait for the molten metal level fluctuation amount to decrease by lowering the casting speed as shown in FIG. This leads to a decrease in production efficiency. Even if the casting can be continued without reducing the casting speed, the quality of the slab is deteriorated due to the entrainment of the mold powder as described above.

この湯面変動の発生原因は次のように考えることができる。即ち、図2に凝固シェルのバルジングと鋳型内湯面変動との関係を模式的に示すように、凝固シェル4が静鉄圧によって鋳片支持ロール2のロール間で凸状にバルジングし、このバルジング部(凸部)が鋳片の引き抜きによって次の鋳片支持ロール2に差し掛かった時に、バルジング部が鋳片支持ロール2に沿って元に戻ることなく、凝固シェル4の一部が変形することによってバルジング部を残したまま鋳片が未凝固部側に押し戻されるような現象が発生する。このようなバルジング現象は一般に「非定常バルジング」と呼ばれている。この非定常バルジングが、同一のロールピッチの連続する区間で且つ各ロール部位で一斉に生じると、鋳片の凝固シェルは広範囲に渡って一斉に未凝固部側に押し戻され、また、逆にロール間に押し出される動きが、鋳片の引抜きに伴って周期的に発生する。これによって図1に示すような長周期の湯面変動が生じると考えられている。以降、この湯面変動を「バルジング性湯面変動」と称する。尚、図2において、1は鋳型、2は鋳片支持ロール、3は溶鋼湯面、4は凝固シェル、5は未凝固部である。   The cause of the molten metal surface fluctuation can be considered as follows. That is, as schematically shown in FIG. 2, the relationship between the bulging of the solidified shell and the fluctuation of the molten metal surface in the mold, the solidified shell 4 is bulged in a convex shape between the rolls of the slab support roll 2 by static iron pressure. When the part (convex part) reaches the next slab support roll 2 by pulling out the slab, the bulging part does not return along the slab support roll 2 and part of the solidified shell 4 is deformed. As a result, a phenomenon occurs in which the slab is pushed back to the unsolidified portion side while leaving the bulging portion. Such a bulging phenomenon is generally called “unsteady bulging”. When this unsteady bulging occurs at the same roll pitch in a continuous section and at each roll site, the solidified shell of the slab is pushed back to the unsolidified part side over a wide area, and conversely the roll The movement pushed out in between occurs periodically with the drawing of the slab. It is thought that this causes long-term fluctuations in the molten metal surface as shown in FIG. Hereinafter, this hot water surface fluctuation is referred to as “bulging hot water surface fluctuation”. In FIG. 2, 1 is a mold, 2 is a slab support roll, 3 is a molten steel surface, 4 is a solidified shell, and 5 is an unsolidified portion.

バルジング性湯面変動の解決手段としては、前述したように鋳造速度を減速し、バルジングの生じている該当ロール間での凝固シェル厚みを増大させてバルジング量を低減させ、湯面変動量を小さくする方法がある。しかしながらこの方法では、鋳造速度をどこまで減速するかは鋳造操作員の経験によって行なわれることがほとんどであり、対策が定量的でない上に過度な減速は連続鋳造の生産性を下げることになる。   As described above, as a means of solving the bulging level fluctuation, the casting speed is reduced, the thickness of the solidified shell between the bulging rolls is increased, the bulging amount is reduced, and the fluctuation level is reduced. There is a way to do it. However, in this method, how much the casting speed is reduced is mostly determined by the experience of the casting operator, and the countermeasure is not quantitative, and excessive deceleration reduces the productivity of continuous casting.

また、特許文献1には、ピンチロールモーターの電流値の周期性と、湯面レベル値及び湯面制御信号値のうち何れかまたは双方の合成値の周期性とが一致したとき、非定常バルジングの発生と判断し、湯面レベル制御ゲインの変更、鋳造速度の変更、及び二次冷却条件の変更のうち、少なくとも1つの変更を行なうとしている。しかしながら、特許文献1では、これらの条件をどの程度変更すればバルジング性湯面変動を抑制できるかが明確でなく、一定量の変更を繰返し実施してバルジング性湯面変動を収束させている。   Further, Patent Document 1 discloses that when the periodicity of the current value of the pinch roll motor and the periodicity of the composite value of either or both of the molten metal surface level value and the molten metal surface control signal value coincide, Therefore, at least one of the change of the molten metal level control gain, the change of the casting speed, and the change of the secondary cooling condition is performed. However, in Patent Document 1, it is not clear how much these conditions are changed to suppress bulging hot water surface fluctuation, and a certain amount of change is repeatedly performed to converge the bulging hot water surface fluctuation.

従って、この方法では一回の変更量が少なすぎるとバルジング湯面変動量の収束までに時間を要するし、一方、一回の変更量が多すぎるとオーバーシュートを生じる可能性がある。また、この方法は実操業において非定常バルジングが生じてから対策を講ずるわけであって、バルジング性湯面変動が生じにくいような鋳造条件に予め設定する手段としては用いることができない。同様の方法は特許文献2にも開示されているが、鋳型銅板温度の温度変化の周期性を検知して非定常バルジングの発生と判断しているので、特許文献1と同様に予め鋳造条件を設計するための評価手段を提供するものではない。   Therefore, in this method, if the amount of change at one time is too small, it takes time to converge the amount of fluctuation of the bulging hot water surface. On the other hand, if the amount of change at one time is too large, overshoot may occur. In addition, this method takes measures after unsteady bulging occurs in actual operation, and cannot be used as a means for presetting the casting conditions such that fluctuations in the bulging level are unlikely to occur. Although the same method is also disclosed in Patent Document 2, since the periodicity of the temperature change of the mold copper plate temperature is detected and it is determined that the unsteady bulging occurs, the casting conditions are set in advance as in Patent Document 1. It does not provide an evaluation tool for designing.

また、特許文献3には、バルジング性湯面変動を生じさせないための二次冷却の条件が数式によって提案されているが、前提条件として鋳造速度が0.5〜1.2m/min、また、鋳片幅が700〜1380mm、鋳片厚みが150〜200mmなどの条件が付いているため、この範囲を外れる鋳造条件には適用が困難である。
特開平11−170021号公報 特開平10−249492号公報 特開平7−303951号公報
Further, Patent Document 3 proposes a secondary cooling condition in order to prevent the bulging surface level fluctuation from occurring, but as a precondition, the casting speed is 0.5 to 1.2 m / min, Since conditions such as a slab width of 700 to 1380 mm and a slab thickness of 150 to 200 mm are attached, it is difficult to apply to casting conditions outside this range.
Japanese Patent Laid-Open No. 11-170021 JP-A-10-249492 JP-A-7-303951

以上説明したように、従来のバルジング性湯面変動の防止方法は、鋳造条件に基づいて予めバルジング性湯面変動を予測することが不可能であったり、予測できるものの幅広い鋳造条件には適用できないものであったりして、未だ改善の余地が十分に残されているのが現状である。   As described above, the conventional method for preventing fluctuations in the bulging hot water level cannot be predicted in advance based on the casting conditions or can be predicted but cannot be applied to a wide range of casting conditions. In reality, there is still a lot of room for improvement.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、スラブ鋳片を連続鋳造するに際し、凝固シェルのロール間バルジングに起因して発生する鋳型内の湯面変動量を広範な鋳造条件であっても予測することができると同時に、鋳造条件を適宜選択することでロール間バルジングに起因して発生する鋳型内湯面変動を抑制することのできる、連続鋳造鋳型内におけるバルジング性湯面変動の防止方法を提供することである。   The present invention has been made in view of the above circumstances. The object of the present invention is to provide a wide range of variations in the molten metal surface in the mold caused by bulging between rolls of the solidified shell when continuously casting a slab slab. Bulging performance in continuous casting molds, which can be predicted even under various casting conditions, and at the same time, by appropriately selecting the casting conditions, it is possible to suppress mold surface fluctuation caused by bulging between rolls. It is to provide a method for preventing the hot water surface fluctuation.

上記課題を解決するための第1の発明に係る連続鋳造鋳型内におけるバルジング性湯面変動の防止方法は、スラブ鋳片の連続鋳造に際し、鋳型内におけるバルジング性湯面変動の最大振幅量を下記の(1)式で定め、(1)式から求められる最大振幅量が所定の値以下になるように、鋳型冷却の強度、二次冷却の強度、同一ロールピッチの連続長さ、鋳造速度のうちの1つの鋳造条件または2つ以上の鋳造条件を調整することを特徴とするものである。   According to the first aspect of the present invention for solving the above-described problem, the method for preventing fluctuation of the bulging level in the continuous casting mold is as follows. Of the mold cooling, the strength of the secondary cooling, the continuous length of the same roll pitch, and the casting speed so that the maximum amplitude obtained from the expression (1) is not more than a predetermined value. Of these, one casting condition or two or more casting conditions are adjusted.

Figure 2006068747
Figure 2006068747

但し、(1)式において、ΔXM はバルジング性湯面変動量の最大振幅量(mm)、LC は同一ロールピッチの連続長さ(mm)、δはバルジング量(mm)、Wliq は鋳片未凝固部の幅(mm)、Aは鋳型断面積(mm2 )である。ここでδは下記の(2)式で表わされる。 However, in the equation (1), ΔX M is the maximum amplitude amount (mm) of the bulging surface level variation, L C is the continuous length (mm) of the same roll pitch, δ is the bulging amount (mm), and W liq is The width (mm) of the slab unsolidified portion and A is the mold cross-sectional area (mm 2 ). Here, δ is expressed by the following equation (2).

Figure 2006068747
Figure 2006068747

但し、(2)式において、Pは静鉄圧(kg/mm2 )、Lはロールピッチ(mm)、Kは鋳造材の塑性係数(kg/mm2 )、dは凝固シェル厚(mm)である。 However, in the formula (2), P is the static iron pressure (kg / mm 2 ), L is the roll pitch (mm), K is the plastic coefficient of the cast material (kg / mm 2 ), and d is the solidified shell thickness (mm). It is.

第2の発明に係る連続鋳造鋳型内におけるバルジング性湯面変動の防止方法は、第1の発明において、前記(1)式から求められるバルジング性湯面変動量の最大振幅量を20mm以下に調整することを特徴とするものである。   The method for preventing fluctuations in the bulging level in the continuous casting mold according to the second aspect of the invention is the first invention, wherein the maximum amplitude of the fluctuation amount of the bulging level is calculated to be 20 mm or less. It is characterized by doing.

本発明によれば、連続鋳造鋳型内におけるバルジング性湯面変動量を、同一ロールピッチの連続長さ(LC )、鋳片のバルジング量(δ)、鋳片未凝固部の幅(Wliq )及び鋳型断面積(A)の4つの因子から求めるので、如何なる鋳造条件であっても鋳造に先立ってバルジング性湯面変動量を予め把握することが可能となる。そして、これら4つの因子から求められるバルジング性湯面変動量が所定の値以下になるように、これら4つの因子に直接影響を及ぼす鋳造条件である、鋳型冷却の強度、二次冷却の強度、同一ロールピッチの連続長さ、鋳造速度のうちの少なくとも1つの鋳造条件を調整するので、バルジング性湯面変動を抑えた状態で鋳造することが可能となる。換言すれば、バルジング性湯面変動量を任意の所定値以下とするために必要な鋳型冷却の強度、二次冷却の強度、同一ロールピッチの連続長さ、鋳造速度の4つの鋳造条件を的確に定めることが可能となる。その結果、モールドパウダーの巻き込みのない高品質の鋳片を高生産性で安定して製造することが可能となり、工業上有益な効果がもたらされる。 According to the present invention, the amount of fluctuation of the bulging surface in the continuous casting mold is determined by the continuous length of the same roll pitch (L C ), the bulging amount of the slab (δ), the width of the slab unsolidified portion (W liq ) And the mold cross-sectional area (A), it is possible to grasp in advance the amount of fluctuation of the bulging surface level before casting under any casting condition. Then, the mold cooling strength, the secondary cooling strength, which are casting conditions that directly affect these four factors so that the amount of fluctuation of the bulging hot water surface determined from these four factors is below a predetermined value, Since at least one casting condition of the continuous length of the same roll pitch and the casting speed is adjusted, it is possible to perform casting while suppressing fluctuation of the bulging hot water surface. In other words, the four casting conditions of mold cooling strength, secondary cooling strength, continuous length of the same roll pitch, and casting speed required to make the amount of fluctuation of the bulging hot water surface below an arbitrary predetermined value are accurately determined. Can be determined. As a result, it is possible to stably produce a high-quality slab free of mold powder with high productivity, which brings about an industrially beneficial effect.

以下、本発明を具体的に説明する。   The present invention will be specifically described below.

バルジング性湯面変動の生じにくい鋳造条件を予め設定するためには、バルジング性湯面変動量を鋳造条件から予測する式を作る必要がある。そこで先ず、鋳造条件からバルジング性湯面変動量を予測する式を検討した。   In order to set in advance the casting conditions in which bulging hot water surface fluctuations are unlikely to occur, it is necessary to create an equation for predicting the bulging hot water surface fluctuation amount from the casting conditions. Therefore, firstly, an equation for predicting the bulging amount of the molten metal surface from the casting conditions was examined.

バルジング性湯面変動の発生メカニズムを前述した図2のように考えると、バルジング性湯面変動量は以下に示す溶湯のバランスで生じることになる。即ち、湯面変動による鋳型内溶湯の体積変化は、非定常バルジング起因の鋳片凝固シェルの押し戻しによって生ずる鋳片未凝固部の体積変化に一致する。   When the generation mechanism of the bulging hot water surface fluctuation is considered as shown in FIG. 2 described above, the bulging hot water surface fluctuation amount is caused by the balance of the molten metal shown below. That is, the volume change of the molten metal in the mold due to the fluctuation of the molten metal surface coincides with the volume change of the slab unsolidified portion caused by pushing back the slab solidified shell due to unsteady bulging.

このうち、湯面変動による鋳型内溶湯の体積変化は下記の(3)式で表される。但し、(3)式において、ΔVXMは湯面変動による鋳型内溶湯の体積変化(mm3 )、ΔXM はバルジング性湯面変動量の最大振幅量(mm)、Aは鋳型断面積(mm2 )である。 Among these, the volume change of the molten metal in the mold due to the molten metal surface fluctuation is expressed by the following equation (3). However, in the equation (3), ΔV XM is the volume change (mm 3 ) of the molten metal in the mold due to the molten metal surface variation, ΔX M is the maximum amplitude (mm) of the amount of bulging molten metal surface variation, and A is the mold cross-sectional area (mm 2 ).

Figure 2006068747
Figure 2006068747

一方、非定常バルジング起因の鋳片凝固シェルの押し戻しによって生じる鋳片未凝固部の体積変化は下記の(4)式で表される。但し、(4)式において、ΔVUBは非定常バルジング起因の鋳片凝固シェルの押し戻しによって生じる鋳片未凝固部の体積変化(mm3 )、LC は同一ロールピッチの連続長さ(mm)、δはバルジング量(mm)、Wliq は鋳片未凝固部の幅(mm)である。 On the other hand, the volume change of the slab unsolidified portion caused by pushing back the slab solidified shell due to unsteady bulging is expressed by the following equation (4). However, in the equation (4), ΔV UB is the volume change (mm 3 ) of the slab unsolidified portion caused by pushing back the slab solidified shell due to unsteady bulging, and L C is the continuous length (mm) of the same roll pitch. , Δ is the bulging amount (mm), and W liq is the width (mm) of the unsolidified portion of the slab.

Figure 2006068747
Figure 2006068747

ここで、ΔVXM=ΔVUBとしてΔXM について解くと、前述した(1)式が得られる。即ち、バルジング性湯面変動量の最大振幅量(ΔXM )を、同一ロールピッチの連続長さ(LC )、鋳片のバルジング量(δ)、鋳片未凝固部の幅(Wliq )及び鋳型断面積(A)の4つの因子から求める式を得ることができる。 Here, when ΔV M is solved with ΔV XM = ΔV UB , the above-described equation (1) is obtained. That is, the maximum amplitude amount (ΔX M ) of the amount of fluctuation of the bulging hot water surface is defined as the continuous length (L C ) of the same roll pitch, the bulging amount of the slab (δ), and the width (W liq ) of the unsolidified portion of the slab. And a formula obtained from the four factors of the mold cross-sectional area (A).

次に、バルジング性湯面変動量の最大振幅量(ΔXM )を算出する上で(1)式右辺の各項の値を求める方法について説明する。 Next, a method for obtaining the value of each term on the right side of the equation (1) in calculating the maximum amplitude amount (ΔX M ) of the bulging hot water surface fluctuation amount will be described.

同一ロールピッチの連続長さ(LC )は、バルジング性湯面変動量の最大振幅量(ΔXM )の計算を行なおうとしているロール間の前後に存在する同一ロールピッチ区間の鋳込み方向長さである。従って、各々の連続鋳造機のロール配置図から求めることができる。 The continuous length (L C ) of the same roll pitch is the length in the casting direction of the same roll pitch section existing before and after the rolls about to calculate the maximum amplitude (ΔX M ) of the amount of fluctuation of the bulging level. That's it. Therefore, it can obtain | require from the roll layout drawing of each continuous casting machine.

鋳型断面積(A)は、鋳型内面空間の鋳片引き抜き方向に直交する断面における長辺方向長さと短辺方向長さとの積として求めることができる。即ち、鋳片の鋳造方向と直交する断面積から求めることができる。   The mold cross-sectional area (A) can be obtained as the product of the length in the long side direction and the length in the short side direction in the cross section perpendicular to the slab drawing direction of the inner surface of the mold. That is, it can be determined from the cross-sectional area perpendicular to the casting direction of the slab.

鋳片未凝固部の幅(Wliq )は、スラブ鋳片の幅から、最大振幅量(ΔXM )の計算を行なおうとしているロール間位置における短辺部凝固シェル厚みを差し引くことにより、求めることができる。短辺部凝固シェル厚みは、当該鋳造条件下で伝熱凝固計算を行なうことにより、或いは、一般に簡便な凝固シェル厚み計算法として用いられている「凝固時間の平方根に凝固厚みが比例」する計算式を適用することによって求めることができる。 The width (W liq ) of the slab unsolidified part is obtained by subtracting the thickness of the short side solidified shell at the position between the rolls where the maximum amplitude (ΔX M ) is to be calculated from the width of the slab slab, Can be sought. The short side solidified shell thickness is calculated by performing heat transfer solidification calculation under the casting conditions, or the “solidified thickness is proportional to the square root of solidification time”, which is generally used as a simple calculation method for solidified shell thickness. It can be determined by applying an equation.

鋳片のバルジング量(δ)は、種々の計算式で求めることができるが、本発明では両端支持梁モデルに基づく、前述した(2)式によって求めることとする。   The bulging amount (δ) of the slab can be obtained by various calculation formulas, but in the present invention, it is obtained by the above-described formula (2) based on the both-end support beam model.

このようにして定めた同一ロールピッチの連続長さ(LC )、鋳片のバルジング量(δ)、鋳片未凝固部の幅(Wliq )及び鋳型断面積(A)の4つの因子を(1)式に代入することで、バルジング性湯面変動量の最大振幅量(ΔXM )を鋳造前に予め把握することが可能となる。 Four factors such as the continuous length (L C ), the bulging amount (δ) of the slab, the width (W liq ) of the unsolidified portion of the slab, and the mold cross-sectional area (A) determined in this way are as follows. By substituting into the equation (1), it becomes possible to grasp in advance the maximum amplitude (ΔX M ) of the amount of fluctuation of the bulging hot water surface before casting.

そして、求めたバルジング性湯面変動量の最大振幅量(ΔXM )が所定の値よりも大きくなった場合には、鋳型冷却の強度、二次冷却の強度、同一ロールピッチの連続長さ、鋳造速度のうちの1つの鋳造条件または2つ以上の鋳造条件を変更して、バルジング性湯面変動量の最大振幅量(ΔXM )を再度算出し、算出されるバルジング性湯面変動量の最大振幅量(ΔXM )が所定の値以下になるまで計算を繰り返す。算出されたバルジング性湯面変動量の最大振幅量(ΔXM )が所定の値以下になった鋳造条件で鋳造を実施する。バルジング性湯面変動量の最大振幅量(ΔXM )の目安としては、算出される最大振幅量(ΔXM )が20mm以下望ましくは15mm以下となる鋳造条件で鋳造することが好ましい。 Then, when the maximum amplitude amount (ΔX M ) of the obtained bulging hot water surface fluctuation amount is larger than a predetermined value, the strength of mold cooling, the strength of secondary cooling, the continuous length of the same roll pitch, By changing one casting condition or two or more casting conditions of the casting speed, the maximum amplitude (ΔX M ) of the bulging level fluctuation amount is calculated again, and the calculated bulging level fluctuation amount is calculated. The calculation is repeated until the maximum amplitude (ΔX M ) is equal to or less than a predetermined value. Casting is performed under casting conditions in which the calculated maximum amplitude (ΔX M ) of the amount of fluctuation of the molten bulging surface is equal to or less than a predetermined value. As a standard for the maximum amplitude (ΔX M ) of the amount of fluctuation of the bulging hot water surface, casting is preferably performed under casting conditions such that the calculated maximum amplitude (ΔX M ) is 20 mm or less, preferably 15 mm or less.

この場合、鋳型冷却の強度、二次冷却の強度、鋳造速度の鋳造条件のうちの1つでも変更すると、鋳片の凝固シェル厚が変化するので、その都度伝熱凝固計算などにより凝固シェル厚を求め、計算の精度を高める必要がある。また、鋳片表面の割れ防止などのために、一部の鋳片支持ロール帯についてはバルジング性湯面変動量の最大振幅量(ΔXM )を所定値以下にすることができない場合も発生するが、一部の支持ロール帯についてのみバルジング性湯面変動量の最大振幅量(ΔXM )を所定値以下にした場合でも、それなりに鋳型内の湯面変動は抑制されるので、このような場合が生じても構わない。 In this case, if any one of the casting cooling strength, the secondary cooling strength, and the casting speed is changed, the solidified shell thickness of the slab will change. It is necessary to improve the accuracy of calculation. In addition, in order to prevent cracks on the surface of the slab, the maximum amplitude (ΔX M ) of the amount of fluctuation of the bulging level cannot be reduced to a predetermined value or less for some slab support roll bands. However, even when the maximum amplitude amount (ΔX M ) of the bulging level fluctuation amount is set to a predetermined value or less only for a part of the support roll belt, the level fluctuation in the mold is suppressed as such. Cases may arise.

このようにして設定した鋳造条件で鋳造することにより、バルジング性湯面変動を抑えた状態で鋳造することが可能となり、モールドパウダーの巻き込みのない高品質の鋳片を高生産性で安定して製造することが達成される。   By casting under the casting conditions set in this way, it becomes possible to cast in a state in which fluctuations in the bulging level are suppressed, and high quality slabs without mold powder entrainment can be stably produced with high productivity. Manufacturing is achieved.

スラブ連続鋳造機を用いて異なる3種類の鋳造条件で溶鋼を鋳造し、そのときのバルジング性湯面変動量と鋳造条件とを対比する試験を実施した。試験を行なった連続鋳造機は、機長が42m、垂直部が2.5mである溶鋼用の垂直曲げ型スラブ連続鋳造機であり、厚みが238mm、幅が1250mmである低炭素Alキルド鋼のスラブ鋳片を、下向き25度の2つの吐出孔を有する浸漬ノズルを用いて2.5m/minの鋳造速度で鋳造した。表1に試験を実施した連続鋳造機の仕様を示し、表2に試験鋳造時の鋳造条件を示し、また、表3に溶鋼の代表的な成分値を示す。   Using a slab continuous casting machine, molten steel was cast under three different casting conditions, and a test was performed to compare the amount of bulging surface level fluctuation and casting conditions at that time. The tested continuous casting machine is a vertical bending slab continuous casting machine for molten steel with a machine length of 42m and a vertical part of 2.5m, a slab of low carbon Al killed steel with a thickness of 238mm and a width of 1250mm. The slab was cast at a casting speed of 2.5 m / min using an immersion nozzle having two discharge holes of 25 degrees downward. Table 1 shows the specifications of the continuous casting machine tested, Table 2 shows the casting conditions during the test casting, and Table 3 shows typical component values of the molten steel.

Figure 2006068747
Figure 2006068747

Figure 2006068747
Figure 2006068747

Figure 2006068747
Figure 2006068747

試験は、二次冷却強度のみを3種類(水準1〜3)に変更して実施し、その他の鋳造条件は同一とした。水準1は、バルジング性湯面変動の発生を考慮せずに、連続鋳造機の上流側から下流側に向かって徐々に冷却強度が弱くなる二次冷却パターンで行なった。水準2及び水準3は、水準1におけるバルジング性湯面変動の発生状況を把握した上でバルジング性湯面変動を抑制するために行なった試験であり、水準2では、二次冷却帯の第4ゾーンに起因するバルジング性湯面変動を抑制すべく、第3ゾーン及び第4ゾーンの冷却強度を水準1よりも高めた二次冷却パターンを採用し、水準3では、二次冷却帯の第4ゾーンに加えて更に第5ゾーンに起因するバルジング性湯面変動をも抑制すべく、第3ゾーン及び第4ゾーンの冷却強度を水準2よりも更に高めた二次冷却パターンを採用した。   The test was conducted by changing only the secondary cooling strength to three types (levels 1 to 3), and other casting conditions were the same. Level 1 was performed in a secondary cooling pattern in which the cooling strength gradually decreased from the upstream side to the downstream side of the continuous casting machine without considering the occurrence of bulging hot water level fluctuation. Levels 2 and 3 are tests conducted to grasp the occurrence of bulging level fluctuations at level 1 and suppress bulging level fluctuations. Level 2 is the fourth level of the secondary cooling zone. In order to suppress bulging level fluctuation caused by the zone, a secondary cooling pattern in which the cooling strength of the third zone and the fourth zone is higher than the level 1 is adopted. In addition to the zone, a secondary cooling pattern in which the cooling strength of the third zone and the fourth zone was further increased from the level 2 was adopted in order to further suppress the bulging surface level fluctuation caused by the fifth zone.

先ず、水準1で鋳造した。水準1はバルジング性湯面変動を考慮した二次冷却パターンではないので、18〜38mmの大きな振幅のバルジング性湯面変動が観察された。そこで、バルジング性湯面変動の原因となっている二次冷却帯のゾーンを特定するために、湯面レベル変動信号のスペクトル解析を行ない、バルジング性湯面変動の周波数を求めた。この周波数の逆数と鋳造速度(m/s)との積から相当するロールピッチが求まり、該当するロールピッチを有する冷却ゾーンを特定することができる。このケースでは、第3ゾーンから第7ゾーンまでの各ゾーンに相当するロールピッチが算出された。   First, it was cast at level 1. Since Level 1 is not a secondary cooling pattern considering bulging hot water level fluctuation, a large amplitude bulging hot water level fluctuation of 18 to 38 mm was observed. Therefore, in order to identify the zone of the secondary cooling zone that causes the bulging hot water level fluctuation, spectrum analysis of the hot water level fluctuation signal was performed to determine the frequency of the bulging hot water level fluctuation. The corresponding roll pitch is obtained from the product of the reciprocal of this frequency and the casting speed (m / s), and the cooling zone having the corresponding roll pitch can be specified. In this case, the roll pitch corresponding to each zone from the third zone to the seventh zone was calculated.

そこで、水準2及び水準3では、第3ゾーン及び第4ゾーンの冷却を強化して熱伝達係数を増大させ、凝固シェル厚を増大させてバルジング量を低減し、バルジング性湯面変動量を低減することにした。   Therefore, in Level 2 and Level 3, the cooling of the third and fourth zones is strengthened to increase the heat transfer coefficient, the solidified shell thickness is increased to reduce the bulging amount, and the amount of bulging level fluctuation is reduced. Decided to do.

熱伝達係数を増加させる方法としては、スプレー水量を増加させる方法、また、2流体ミストスプレーではエアーの流量をスプレー水量に合わせて増加させる方法がある。また更に、他の方法としては、例えば特開2004−16846号公報及び特開2004−50121号公報に開示されている、2流体ミストスプレーノズルであってスラブ幅方向と直交する方向の噴射角度を広げたノズルを使用する方法、或いは、特開2003−275852号公報に開示されている、一流体スプレーであって10N/cm2 以上の衝突圧となる高圧水スプレーを使用する方法などがある。本実施例では上記の特開2004−50121号公報に開示されている方法を採用した。 As a method of increasing the heat transfer coefficient, there are a method of increasing the amount of spray water, and a method of increasing the flow rate of air in accordance with the amount of spray water in the two-fluid mist spray. Furthermore, as another method, for example, a two-fluid mist spray nozzle disclosed in Japanese Patent Application Laid-Open No. 2004-16846 and Japanese Patent Application Laid-Open No. 2004-50121, the injection angle in a direction perpendicular to the slab width direction is set. There are a method of using an expanded nozzle or a method of using a high-pressure water spray which is a one-fluid spray and has a collision pressure of 10 N / cm 2 or more, which is disclosed in JP-A-2003-275852. In this embodiment, the method disclosed in the above Japanese Patent Application Laid-Open No. 2004-50121 is adopted.

表4及び表5に、本実施例で用いたスラブ連続鋳造機における二次冷却帯の各ゾーンのうちで第3ゾーンから第7ゾーンまでの各諸元を示す。表4には、鋳型内の溶鋼湯面から各々のゾーン入口までの距離、ロールピッチ(L)、同一ロールピッチの連続長さ(LC )、ゾーン入口での静鉄圧(P)をそれぞれ示した。これらは、各冷却ゾーンにおけるバルジング量及びバルジング性湯面変動量を計算する上での共通諸元である。表5には、各冷却ゾーンにおける鋳片表面での熱伝達係数を掲げた。熱伝達係数はスプレー冷却、ロールとの接触伝導伝熱、及び大気への放射伝熱を含んだゾーン内平均の熱伝達係数である。 Tables 4 and 5 show the specifications from the third zone to the seventh zone among the zones of the secondary cooling zone in the slab continuous casting machine used in this example. Table 4 shows the distance from the molten steel surface in the mold to each zone inlet, the roll pitch (L), the continuous length of the same roll pitch (L C ), and the static iron pressure (P) at the zone inlet. Indicated. These are common specifications for calculating the bulging amount and the bulging level fluctuation amount in each cooling zone. Table 5 lists the heat transfer coefficient on the slab surface in each cooling zone. The heat transfer coefficient is the average heat transfer coefficient in the zone including spray cooling, heat transfer in contact with the roll, and radiant heat transfer to the atmosphere.

Figure 2006068747
Figure 2006068747

Figure 2006068747
Figure 2006068747

次に、バルジング性湯面変動量の計算過程を順に説明する。先ず、水準1〜3の各冷却条件下において伝熱凝固計算を行なった。伝熱凝固計算の計算手順は、日本鉄鋼協会共同研究会熱経済部会,加熱炉小委員会編「連続鋼片加熱炉における伝熱実験と計算方法」(1971年日本鉄鋼協会発行)の68ページ「5.伝熱計算法」に示されている手順を採用した。伝熱凝固計算結果からバルジング性湯面変動量の計算に必要な諸量を求めた。求めた諸量を表6に示す。   Next, the calculation process of the amount of bulging hot water surface fluctuation will be described in order. First, heat transfer solidification calculation was performed under each cooling condition of levels 1 to 3. The calculation procedure for heat transfer solidification calculation is page 68 of “The Heat Transfer Experiment and Calculation Method in Continuous Steel Slab Reheating Furnace” edited by the Japan Iron and Steel Institute Joint Research Group Heat Economy Subcommittee (published by the Japan Iron and Steel Institute in 1971) The procedure shown in “5. Heat transfer calculation method” was adopted. From the heat transfer solidification calculation results, various quantities required for the calculation of bulging level fluctuations were obtained. Table 6 shows the determined amounts.

Figure 2006068747
Figure 2006068747

表6に示す塑性係数は、上述の伝熱凝固計算によって求まる凝固シェルの厚み方向平均温度に対応する値を採用した。また、凝固シェル厚は伝熱凝固計算で求まる値である。これらの数値を用いて前述の(2)式から計算した、各冷却ゾーン入口におけるバルジング量(δ)を表6に示した。また、(1)式によってバルジング性湯面変動量を計算する際に使用する鋳片未凝固部の幅(Wliq )の値についても表6に示した。鋳片未凝固部の幅(Wliq )は、「(鋳片未凝固部の幅)=(スラブ幅)−2×(シェル厚)」として求めた。 As the plastic coefficient shown in Table 6, a value corresponding to the average temperature in the thickness direction of the solidified shell obtained by the above-described heat transfer solidification calculation was adopted. The solidified shell thickness is a value obtained by heat transfer solidification calculation. Table 6 shows the bulging amount (δ) at each cooling zone inlet calculated from the above-described equation (2) using these numerical values. Table 6 also shows the value of the width (W liq ) of the unsolidified portion of the slab used for calculating the amount of fluctuation of the bulging hot water surface by the equation (1). The width (W liq ) of the unsolidified part of the slab was determined as “(width of unsolidified part of the slab) = (slab width) −2 × (shell thickness)”.

このようにして求めた値を用いて(1)式から算出されるバルジング性湯面変動量の最大振幅幅の計算値を表7に示す。   Table 7 shows calculated values of the maximum amplitude width of the amount of fluctuation of the bulging hot water surface calculated from the equation (1) using the values thus obtained.

Figure 2006068747
Figure 2006068747

表7に示すように、水準2及び水準3では各冷却ゾーンとも水準1と比較して最大振幅量の計算値が低下している。この実施例に示すスラブ連続鋳造機ではバルジング性湯面変動量に関して操業上・品質上問題の生じない上限値を15mmと設定している。従って、表7によれば、水準2では第4ゾーンでの最大振幅幅の計算値が15mm以下となり、この連続鋳造機の湯面変動量上限基準値を満足している。従って、水準2の条件では第4ゾーンが原因となって発生するバルジング性湯面変動による操業上・品質上の問題は生じないはずである。   As shown in Table 7, at level 2 and level 3, the calculated value of the maximum amplitude is lower in each cooling zone than level 1. In the slab continuous casting machine shown in this embodiment, the upper limit value that does not cause a problem in terms of operation and quality with respect to the amount of fluctuation of the bulging hot water surface is set to 15 mm. Therefore, according to Table 7, at level 2, the calculated value of the maximum amplitude width in the fourth zone is 15 mm or less, which satisfies the molten steel surface fluctuation amount upper limit reference value of the continuous casting machine. Therefore, under the condition of level 2, there should be no problem in terms of operation and quality due to fluctuations in the bulging level caused by the fourth zone.

ここで、前述した(1)式によるバルジング性湯面変動量の推定が妥当であるか否かを検証するために、水準1〜3の各条件における鋳造の際にバルジング性湯面変動量を実測し、前述したように湯面変動のスペクトル解析から原因となっている冷却ゾーンを割り出した。割り出した冷却ゾーン毎のバルジング性湯面変動量の実測最大値を図3に示す。また、図4では、水準1〜3において冷却ゾーン毎のバルジング性湯面変動量の(1)式に基づく計算値を横軸とし、図3に示したバルジング性湯面変動量の実測最大値を縦軸としてプロットした。図4からも明らかなように、(1)式によるバルジング性湯面変動量の計算値は、実際のバルジング性湯面変動量を良く推定していることが分かる。   Here, in order to verify whether or not the estimation of the amount of fluctuation of the bulging level due to the above-described equation (1) is appropriate, the amount of fluctuation of the bulging level is calculated during casting under each of the levels 1 to 3. As a result of actual measurement, as described above, the cause of the cooling zone was determined from the spectrum analysis of the molten metal surface fluctuation. FIG. 3 shows the measured maximum value of the amount of fluctuation of the bulging hot water surface for each calculated cooling zone. Further, in FIG. 4, the calculated maximum value of the amount of fluctuation of the bulging hot water surface shown in FIG. Is plotted on the vertical axis. As is apparent from FIG. 4, it can be seen that the calculated value of the fluctuation amount of the bulging hot water surface according to the equation (1) is a good estimate of the actual fluctuation amount of the bulging hot water surface.

水準2における第4ゾーン起因のバルジング性湯面変動量の議論に戻るが、図3においても水準2の条件下での第4ゾーン起因の湯面変動量は14.0mmとなっており、従って水準2の条件では、第4ゾーンが原因となって発生するバルジング性湯面変動による操業上・品質上の問題は生じないことが分かる。   Returning to the discussion of the bulging level fluctuation due to the fourth zone at level 2, the level fluctuation due to the fourth zone under the level 2 condition is also 14.0 mm in FIG. Under Level 2 conditions, it can be seen that there are no operational or quality problems due to bulging fluctuations caused by the fourth zone.

同様に第5ゾーンについては、水準3の二次冷却パターンを採用することで、表7に示すように、この連続鋳造機の湯面変動量上限基準値である15mmをほぼクリアしており、実測値でも、図3に示すように、15mm以下を確保していた。即ち、水準3では、第4ゾーン及び第5ゾーンに起因するバルジング性湯面変動を抑制することができた。   Similarly, for the fifth zone, by adopting the level 3 secondary cooling pattern, as shown in Table 7, the molten steel surface fluctuation amount upper limit reference value of this continuous casting machine is almost cleared, Even in the actual measurement value, 15 mm or less was secured as shown in FIG. That is, at level 3, fluctuations in the bulging level caused by the fourth zone and the fifth zone could be suppressed.

一方、第6ゾーン及び第7ゾーンに関しては水準2及び水準3の冷却パターンでもバルジング性湯面変動量の計算値は、湯面変動量上限基準値を上回っており、実測値でも同様の傾向にある。従って、第6ゾーン及び第7ゾーンについても(1)式によりバルジング性湯面変動を良く推定できているといえる。第6ゾーン及び第7ゾーン起因のバルジング性湯面変動量を上限基準以下にするためには、第3ゾーン及び第4ゾーンの冷却強化に続いて第5ゾーン〜第7ゾーンの二次冷却を、(1)式で計算されるバルジング性湯面変動量の最大値が上限基準値よりも小さくなるように、設定することが必要であることはいうまでもない。   On the other hand, for the 6th and 7th zones, the calculated value of the bulging level fluctuation is higher than the upper limit reference value of the level fluctuation even in the cooling patterns of level 2 and level 3, and the actual value shows the same tendency. is there. Therefore, it can be said that the fluctuation of the bulging hot water level can be well estimated by the expression (1) for the sixth zone and the seventh zone. In order to make the fluctuation amount of the bulging level due to the sixth zone and the seventh zone below the upper limit reference, the secondary cooling of the fifth zone to the seventh zone is carried out following the cooling enhancement of the third zone and the fourth zone. Needless to say, it is necessary to set the maximum value of the fluctuation amount of the bulging hot water surface calculated by the equation (1) to be smaller than the upper limit reference value.

本実施例では、二次冷却スプレーを調節することでバルジング性湯面変動量を低減したが、鋳型冷却の強度、同一ロールピッチの連続長さ、鋳造速度の1つを調節することでもバルジング性湯面変動量を抑制することが可能である。   In this embodiment, the amount of fluctuation of the bulging surface is reduced by adjusting the secondary cooling spray, but the bulging property can also be adjusted by adjusting one of the mold cooling strength, the continuous length of the same roll pitch, and the casting speed. It is possible to suppress the amount of hot water fluctuation.

鋼の連続鋳造における鋳型内湯面変動及び鋳造速度の例を示す図である。It is a figure which shows the example of the hot metal surface fluctuation | variation in a casting_mold | template in the continuous casting of steel, and a casting speed. 凝固シェルのバルジングと鋳型内湯面変動との関係を模式的に示す図である。It is a figure which shows typically the relationship between the bulging of a solidification shell and the hot metal surface fluctuation | variation in a casting_mold | template. 実施例1の試験結果であって、湯面変動のスペクトル解析から割り出した冷却ゾーン毎のバルジング性湯面変動量の実測最大値を示す図である。It is a test result of Example 1, and is a diagram showing an actually measured maximum value of the amount of bulging hot water surface fluctuation for each cooling zone determined from spectrum analysis of hot water surface fluctuation. 実施例1の試験結果であって、バルジング性湯面変動量の計算値を横軸とし、バルジング性湯面変動量の実測最大値を縦軸としてプロットした図である。It is the test result of Example 1, Comprising: It is the figure which plotted the calculated value of the bulging property level fluctuation amount as a horizontal axis, and the actual measurement maximum value of the bulging property level fluctuation amount as a vertical axis.

符号の説明Explanation of symbols

1 鋳型
2 鋳片支持ロール
3 溶鋼湯面
4 凝固シェル
5 未凝固部
1 Mold 2 Slab Support Roll 3 Molten Steel Surface 4 Solidified Shell 5 Unsolidified Part

Claims (2)

スラブ鋳片の連続鋳造に際し、鋳型内におけるバルジング性湯面変動の最大振幅量を下記の(1)式で定め、(1)式から求められる最大振幅量が所定の値以下になるように、鋳型冷却の強度、二次冷却の強度、同一ロールピッチの連続長さ、鋳造速度のうちの1つの鋳造条件または2つ以上の鋳造条件を調整することを特徴とする、連続鋳造鋳型内におけるバルジング性湯面変動の防止方法。
ΔXM=LC×δ×Wliq/A …(1)
但し、(1)式において各記号は以下を表すものである。
ΔXM :バルジング性湯面変動量の最大振幅量(mm)
C :同一ロールピッチの連続長さ(mm)
δ:バルジング量(mm)
liq :鋳片未凝固部の幅(mm)
A:鋳型断面積(mm2
ここでδは下記の(2)式で表わされる。
δ=P×L4/(32×K×d3) …(2)
但し、(2)式において各記号は以下を表すものである。
P:静鉄圧(kg/mm2
L:ロールピッチ(mm)
K:鋳造材の塑性係数(kg/mm2
d:凝固シェル厚(mm)
In the continuous casting of the slab slab, the maximum amplitude amount of bulging level in the mold is defined by the following equation (1), and the maximum amplitude amount obtained from the equation (1) is not more than a predetermined value. Bulging in a continuous casting mold characterized by adjusting one casting condition or two or more casting conditions among mold cooling strength, secondary cooling strength, continuous length of the same roll pitch, casting speed How to prevent hot water fluctuation.
ΔX M = L C × δ × W liq / A… (1)
However, in the formula (1), each symbol represents the following.
ΔX M : Maximum amplitude of bulging level fluctuation (mm)
L C : Continuous length of the same roll pitch (mm)
δ: Bulging amount (mm)
W liq : Width of unsharded slab (mm)
A: Mold cross section (mm 2 )
Here, δ is expressed by the following equation (2).
δ = P × L 4 / (32 × K × d 3 )… (2)
However, in the formula (2), each symbol represents the following.
P: Static iron pressure (kg / mm 2 )
L: Roll pitch (mm)
K: Plasticity coefficient of cast material (kg / mm 2 )
d: Solidified shell thickness (mm)
前記(1)式から求められるバルジング性湯面変動量の最大振幅量を20mm以下に調整することを特徴とする、請求項1に記載の連続鋳造鋳型内におけるバルジング性湯面変動の防止方法。   The method for preventing bulging level fluctuation in a continuous casting mold according to claim 1, wherein the maximum amplitude of the bulging level fluctuation obtained from the equation (1) is adjusted to 20 mm or less.
JP2004251515A 2004-08-31 2004-08-31 Prevention of bulging level fluctuation in continuous casting mold. Active JP4501597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251515A JP4501597B2 (en) 2004-08-31 2004-08-31 Prevention of bulging level fluctuation in continuous casting mold.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251515A JP4501597B2 (en) 2004-08-31 2004-08-31 Prevention of bulging level fluctuation in continuous casting mold.

Publications (2)

Publication Number Publication Date
JP2006068747A true JP2006068747A (en) 2006-03-16
JP4501597B2 JP4501597B2 (en) 2010-07-14

Family

ID=36149888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251515A Active JP4501597B2 (en) 2004-08-31 2004-08-31 Prevention of bulging level fluctuation in continuous casting mold.

Country Status (1)

Country Link
JP (1) JP4501597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035011A (en) * 2011-08-05 2013-02-21 Jfe Steel Corp Method and device for estimation of temperature
CN107866537A (en) * 2017-11-17 2018-04-03 首钢集团有限公司 A kind of method and device for controlling plate slab crystallizer liquid fluctuating
WO2021139051A1 (en) * 2020-01-11 2021-07-15 大连理工大学 Method for predicting bulging deformation of continuous casting billet by means of hilbert-huang transform

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968647U (en) * 1982-10-26 1984-05-09 川崎製鉄株式会社 Continuous casting machine roller apron device
JPS61150760A (en) * 1984-12-24 1986-07-09 Kawasaki Steel Corp Continuous casting machine for molten metal
JPH07323355A (en) * 1994-04-07 1995-12-12 Mitsubishi Heavy Ind Ltd Continuous casting method and belt type continuous casting apparatus
JPH08267207A (en) * 1995-03-30 1996-10-15 Kawasaki Steel Corp Continuous casting method
JP2001191156A (en) * 1999-10-28 2001-07-17 Sumitomo Metal Ind Ltd Apparatus and method for continuous casting slab
JP2003285147A (en) * 2002-03-25 2003-10-07 Jfe Steel Kk Method for secondary cooling of continuous cast slab
JP2004034091A (en) * 2002-07-03 2004-02-05 Jfe Steel Kk Continuous casting machine and method of producing continuously cast slab

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968647U (en) * 1982-10-26 1984-05-09 川崎製鉄株式会社 Continuous casting machine roller apron device
JPS61150760A (en) * 1984-12-24 1986-07-09 Kawasaki Steel Corp Continuous casting machine for molten metal
JPH07323355A (en) * 1994-04-07 1995-12-12 Mitsubishi Heavy Ind Ltd Continuous casting method and belt type continuous casting apparatus
JPH08267207A (en) * 1995-03-30 1996-10-15 Kawasaki Steel Corp Continuous casting method
JP2001191156A (en) * 1999-10-28 2001-07-17 Sumitomo Metal Ind Ltd Apparatus and method for continuous casting slab
JP2003285147A (en) * 2002-03-25 2003-10-07 Jfe Steel Kk Method for secondary cooling of continuous cast slab
JP2004034091A (en) * 2002-07-03 2004-02-05 Jfe Steel Kk Continuous casting machine and method of producing continuously cast slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035011A (en) * 2011-08-05 2013-02-21 Jfe Steel Corp Method and device for estimation of temperature
CN107866537A (en) * 2017-11-17 2018-04-03 首钢集团有限公司 A kind of method and device for controlling plate slab crystallizer liquid fluctuating
WO2021139051A1 (en) * 2020-01-11 2021-07-15 大连理工大学 Method for predicting bulging deformation of continuous casting billet by means of hilbert-huang transform

Also Published As

Publication number Publication date
JP4501597B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP5812113B2 (en) Method for estimating solidification completion state of slab in continuous casting, and continuous casting method
JP5098394B2 (en) Continuous casting slab manufacturing method, continuous casting machine
JP4501597B2 (en) Prevention of bulging level fluctuation in continuous casting mold.
JP4893068B2 (en) Method and apparatus for controlling solidification completion position of continuous cast slab and manufacturing method of continuous cast slab
JP4556720B2 (en) Cooling method of slab in continuous casting
JP6561822B2 (en) Steel continuous casting method
JP5949315B2 (en) Manufacturing method of continuous cast slab
JP2007185675A (en) Method for predicting dangerous portion causing surface defect in continuously cast slab, and method for manufacturing continuously cast slab
JP2019171435A (en) Method of continuous casting
KR100524628B1 (en) Method for predicting the characteristics of solidfied hook in the continuous casting, using the maximum acceleration of mold and cooling index
JP3214374B2 (en) Continuous casting of steel
JP5419394B2 (en) Slab manufacturing method
JP5747726B2 (en) Temperature estimation method and temperature estimation device
Thomas et al. Online dynamic control of cooling in continuous casting of thin steel slabs
JP5949316B2 (en) Manufacturing method of continuous cast slab
JP5958036B2 (en) Solidification state estimation device for slab and continuous casting method
JP5831118B2 (en) Method and apparatus for continuous casting of steel
JP2009233703A (en) Continuous casting method
JP5939002B2 (en) Solidification state estimation device, solidification state estimation method, and steel continuous casting method
JP6094368B2 (en) Continuous casting slab and continuous casting method
JP2001321901A (en) Method for continuously casting steel
JP4330518B2 (en) Continuous casting method
JP2011121063A (en) Continuous casting method with soft reduction
JP5413054B2 (en) Method and apparatus for determining surface maintenance of slab during continuous casting
CN117300086A (en) Method for pre-judging casting blank longitudinal crack risk before production and continuous casting method based on pre-production

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4501597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250