JP2006067944A - Synapse maturation-disordered model animal - Google Patents

Synapse maturation-disordered model animal Download PDF

Info

Publication number
JP2006067944A
JP2006067944A JP2004257060A JP2004257060A JP2006067944A JP 2006067944 A JP2006067944 A JP 2006067944A JP 2004257060 A JP2004257060 A JP 2004257060A JP 2004257060 A JP2004257060 A JP 2004257060A JP 2006067944 A JP2006067944 A JP 2006067944A
Authority
JP
Japan
Prior art keywords
drebrin
synaptic
gene
model animal
maturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004257060A
Other languages
Japanese (ja)
Other versions
JP4550530B2 (en
Inventor
Tomoaki Shirao
智明 白尾
Nobuhiko Kojima
伸彦 児島
Hiroyuki Yamazaki
博幸 山崎
Yuko Sekino
祐子 関野
Kenji Hanamura
健次 花村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004257060A priority Critical patent/JP4550530B2/en
Publication of JP2006067944A publication Critical patent/JP2006067944A/en
Application granted granted Critical
Publication of JP4550530B2 publication Critical patent/JP4550530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a model animal having only disordered synapse maturation but having normal other drebrin-associated functions and a method for screening a candidate treating agent of the synapse maturation disorder by using the model animal. <P>SOLUTION: The drebrin A knockout mouse is prepared by isolating a mouse-derived drebrin gene, preparing a targeting vector inserted with loxP sequences so as to nip a drebrin A specific exon 11A, performing a homologous recombination for ES (embryonic stem) cells, transducing the recombinant ES cells into individuals, obtaining descendants F1 having the recombinant gene by using chimera individuals having the body cells derived from the ES cells in a high ratio as parents and mating the individual F1 with a mouse expressing Cre gene to obtain individual bodies losing the drebrin A specific exon 11A nipped by 2 loxP sequences, and mating the female and male of the individuals. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シナプス成熟障害モデル動物や、該シナプス成熟障害モデル動物を用いたシナプス成熟障害の予防・治療剤のスクリーニング方法や、シナプス成熟障害治療薬を特定する試験方法に関する。   The present invention relates to a synaptic maturity disorder model animal, a screening method for a prophylactic / therapeutic agent for synapse maturation disorder using the synapse maturation disorder model animal, and a test method for identifying a therapeutic agent for synapse maturation disorder.

本発明者らは、発生過程の神経細胞に多量発現するアクチン結合タンパクドレブリン(Drebrin)を世界に先駆けて発見し(例えば、非特許文献1及び2参照)、このドレブリンがアクチンファイバーの性状を変えることにより神経細胞の形態形成、特に突起形成に関わっていること(例えば、非特許文献3〜5参照)や、発生中で移動している神経細胞では、細胞体と突起全体に存在するが、成熟した神経細胞では棘構造中に特異的に存在すること(例えば、非特許文献6〜8参照)を既に証明している。ドレブリンには、胚性型(embryonic type)のドレブリンEと成体型(adult type)のドレブリンAという2つのアイソフォームが存在しており(例えば、非特許文献9参照)、成熟した神経細胞のスパインに特異的に見られるドレブリンAは、神経細胞にしか発現しないという特徴を有している(例えば、非特許文献10及び11参照)。ドレブリンAはalternative splicing機構によりドレブリンEに“ins2”と呼ばれる領域が加わった配列をしている。すなわち、5’側から956〜1093baseにgtcgtccgtactgccctttcataaaggcatcggacagtgggccttcctcctcctcctcttcctcctcttcccctccacggactccctttccctatatcacctgccaccgcaccccaaacctctcttcctccctcccat(配列番号1)が挿入されて発現したものである(例えば、非特許文献12参照)。また、本発明者らは、ドレブリンAを初代培養神経細胞に発現させると自動的に樹状突起スパインに集まり、しかもその長さを長くすることを見い出した。この発見は、ある一つの蛋白合成量を変化させることによってスパインの形態を変化させることができることを発見した世界で最初の報告である(例えば、非特許文献13参照)。   The present inventors have discovered the world's first actin-binding protein Drebrin (Drebrin) that is highly expressed in developing neurons (see, for example, Non-Patent Documents 1 and 2), and this drebrin changes the properties of actin fibers. It is involved in the morphogenesis of neurons, particularly the formation of protrusions (see, for example, Non-Patent Documents 3 to 5), and in neurons that are moving during development, they exist in the entire cell body and protrusions, It has already been proved that mature neurons specifically exist in the spine structure (see, for example, Non-Patent Documents 6 to 8). There are two isoforms of drebrin: embryonic type drebrin E and adult type drebrin A (see, for example, Non-Patent Document 9), and spines of mature neurons Drebrin A, which is specifically found in, is characterized by being expressed only in nerve cells (see, for example, Non-Patent Documents 10 and 11). Drebrin A has a sequence in which a region called “ins2” is added to drebrin E by an alternative splicing mechanism. That is, gtcgtccgtactgccctttcataaaggcatcggacagtggcccctccttcctcctct cccctcccctccctccctcccctccctatccctatccctgtcctcc In addition, the present inventors have found that when drebrin A is expressed in primary cultured neurons, it automatically gathers in the dendritic spine and increases its length. This discovery is the first report in the world where it has been discovered that the form of spine can be changed by changing the amount of protein synthesis (for example, see Non-Patent Document 13).

J. Neurochem. 44, 1210-1216, 1985J. Neurochem. 44, 1210-1216, 1985 J. Biochem. 117, 231-236, 1995J. Biochem. 117, 231-236, 1995 J. Neurosci. Res. 38: 149-159, 1994J. Neurosci. Res. 38: 149-159, 1994 Exp. Cell Res. 215:145-153, 1994Exp. Cell Res. 215: 145-153, 1994 J. Biol. Chem. 269:29928-29933, 1994J. Biol. Chem. 269: 29928-29933, 1994 J. Neurosci. 15: 7161-7170, 1996J. Neurosci. 15: 7161-7170, 1996 Dev. Brain Res. 29, 233-244, 1986Dev. Brain Res. 29, 233-244, 1986 Brain Res. 413, 374-378, 1987Brain Res. 413, 374-378, 1987 J. Biochem.117, 231-236, 1995J. Biochem. 117, 231-236, 1995 Dev. Brain Res. 29, 233-244, 1986Dev. Brain Res. 29, 233-244, 1986 Brain Res. 413, 374-378, 1987Brain Res. 413, 374-378, 1987 Mol. Brain Res. 19, 101-114, 1993、Neuroreport 3, 109-112, 1992Mol. Brain Res. 19, 101-114, 1993, Neuroreport 3, 109-112, 1992 J. Neurosci. 19, 3918-3925, 1999J. Neurosci. 19, 3918-3925, 1999

樹状突起スパインのアクチン結合蛋白ドレブリンAの減少は、シナプス機能に障害が生じることがわかっており、この技術を用いてシナプス機能障害治療薬の開発方法の可能性が考えられていた。しかし、従来の技術では、ドレブリンAの発現を減少させると、ドレブリン総量が減少してしまい、また、動物間での発現抑制が変動するので、多数の均一なドレブリンA発現抑制動物を作ることが困難であった。本発明の課題は、シナプスの成熟のみが障害され、その他のドレブリン関連機能が正常であるモデル動物や、このモデル動物を用いたシナプス成熟障害の候補治療薬のスクリーニング方法を提供することにある。   It has been found that a decrease in the actin-binding protein drebrin A of the dendritic spine causes a disorder in synaptic function, and a possibility of developing a therapeutic drug for synaptic dysfunction using this technique has been considered. However, when the expression of drebrin A is decreased in the conventional technique, the total amount of drebrin is decreased and the suppression of expression varies between animals. Therefore, it is possible to produce a large number of animals that suppress drebrin A expression. It was difficult. An object of the present invention is to provide a model animal in which only synapse maturation is impaired and other drebrin-related functions are normal, and a method for screening a candidate therapeutic drug for synapse maturation disorder using the model animal.

本発明者らは、上記課題を解決すべく鋭意研究し、マウス由来のドレブリン遺伝子を単離し、ドレブリンA特異的エクソン11Aを挟むようにloxP配列を挿入したターゲティングベクターを作製し、ES細胞への相同組み換えを行い、組み換えES細胞を個体に導入し、ES細胞由来の体細胞を高割合で有するキメラ個体を親として、組み換え遺伝子を有する子孫F1を得て、この個体F1とCre遺伝子を発現するマウスとを交配させることによって2つのloxP配列に挟まれたドレブリンA特異的エクソン11Aを欠失させた個体を得た。この雌雄を掛け合わせることによって得たドレブリンAノックアウトマウスが、シナプスの成熟のみが障害されその他のドレブリン関連機能が正常であるモデル動物となることを見い出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above problems, isolated a mouse-derived drebrin gene, prepared a targeting vector having a loxP sequence inserted so as to sandwich a drebrin A-specific exon 11A, and applied it to ES cells. Homologous recombination is performed, recombinant ES cells are introduced into an individual, a chimera individual having a high proportion of ES cell-derived somatic cells as a parent, a progeny F1 having a recombinant gene is obtained, and this individual F1 and Cre gene are expressed By mating with a mouse, an individual in which the drebrin A specific exon 11A sandwiched between two loxP sequences was deleted was obtained. It was found that the drebrin A knockout mouse obtained by crossing the male and female became a model animal in which only the synapse maturation was impaired and other drebrin-related functions were normal, and the present invention was completed.

すなわち本発明は、ドレブリン遺伝子のエクソン11aを含む領域が欠失した変異遺伝子を有する全能性細胞を個体発生して得られる非ヒト哺乳動物及びその子孫動物であって、体細胞染色体中に上記ドレブリン変異遺伝子を保有し、ドレブリンAを発現する機能を失ない、かつドレブリンAに代えてドレブリンEを発現する機能を有する非ヒト動物からなるシナプス成熟障害モデル動物(請求項1)や、Cre−loxPを用いてドレブリン遺伝子のエクソン11aを含む領域が欠失した変異遺伝子であることを特徴とする請求項1記載のシナプス成熟障害モデル動物(請求項2)や、ドレブリン遺伝子のエクソン11aを含む領域が欠失した変異遺伝子が、ドレブリン遺伝子のエクソン11aの全部とエクソン11bの一部が欠失した変異遺伝子であることを特徴とする請求項1又は2記載のシナプス成熟障害モデル動物(請求項3)や、非ヒト動物がマウスであることを特徴とする請求項1〜3のいずれか記載のシナプス成熟障害モデル動物(請求項4)に関する。   That is, the present invention is a non-human mammal obtained by ontogenizing a totipotent cell having a mutant gene in which the region containing exon 11a of the drebrin gene is deleted, and its progeny animal, wherein the drebrin is incorporated in the somatic cell chromosome. A synaptic maturation disorder model animal comprising a non-human animal having a mutated gene, losing the function of expressing drebrin A, and having the function of expressing drebrin E instead of drebrin A (Claim 1), Cre-loxP A synaptic maturation disorder model animal according to claim 1 or a region containing exon 11a of the drebrin gene, wherein the region contains exon 11a of the drebrin gene. The deleted mutant gene is a mutation in which all of exon 11a and part of exon 11b of the drebrin gene are deleted. The synapse according to any one of claims 1 to 3, wherein the synapse maturation disorder model animal (claim 3) or the non-human animal is a mouse. The present invention relates to a maturity disorder model animal (Claim 4).

また本発明は、請求項1〜4のいずれか記載のシナプス成熟障害モデル動物に対し、出生前または出生後に被検物質を投与し、テタヌス刺激により誘導される海馬シナプス伝達の長期増強の改善の程度を評価するシナプス成熟障害の予防・治療剤のスクリーニング方法(請求項5)や、請求項1〜4のいずれか記載のシナプス成熟障害モデル動物に対し、出生前または出生後にシナプス成熟障害の候補治療薬を投与し、テタヌス刺激により誘導される海馬シナプス伝達の長期増強の改善の程度を指標としてシナプス成熟障害治療薬を特定する試験方法(請求項6)や、請求項1〜4のいずれか記載のシナプス成熟障害モデル動物に由来する神経細胞に被検物質を投与し、シナプス成熟障害の程度を評価するシナプス成熟障害の予防・治療剤のスクリーニング方法(請求項7)や、請求項1〜4のいずれか記載のシナプス成熟障害モデル動物に由来する神経細胞にシナプス成熟障害の候補治療薬を投与し、シナプス成熟障害の程度を指標としてシナプス成熟障害治療薬を特定する試験方法(請求項8)に関する。   Further, the present invention provides a method for improving long-term potentiation of hippocampal synaptic transmission induced by tetanus stimulation by administering a test substance to a synaptic maturation disorder model animal according to any one of claims 1 to 4 before or after birth. A method for screening a prophylactic / therapeutic agent for synaptic maturation disorder to evaluate the degree (Claim 5), or a candidate for synaptic maturation disorder before or after birth for a synaptic maturation disorder model animal according to any one of claims 1 to 4. A test method for administering a therapeutic agent and identifying a therapeutic agent for synaptic maturation disorder using the degree of improvement in long-term potentiation of hippocampal synaptic transmission induced by tetanus stimulation (Claim 6), or any one of Claims 1 to 4 A prophylactic / therapeutic agent for synapse maturation disorders, wherein a test substance is administered to nerve cells derived from the described synapse maturation disorder model animals and the degree of synapse maturation disorders is evaluated A candidate therapeutic drug for synaptic maturation disorder is administered to a neuron derived from a synaptic maturation disorder model animal according to any one of claims 1 to 4 and a cleaning method (Claim 7), and the synapse is evaluated using the degree of synapse maturation disorder as an index The present invention relates to a test method for identifying a therapeutic agent for maturation disorder (claim 8).

本発明のシナプス成熟障害モデル動物を用いると、シナプス成熟障害治療薬のスクリーニングや、シナプス成熟障害治療薬を特定する試験が可能となる。   By using the synaptic maturity disorder model animal of the present invention, it becomes possible to screen for therapeutic drugs for synaptic maturity disorders and to test for identifying therapeutic drugs for synaptic maturity disorders.

本発明のシナプス成熟障害モデル動物としては、ドレブリン遺伝子のエクソン11aを含む領域が欠失した変異遺伝子(アイソフォーム変換不能型の変異を導入したドレブリン変異遺伝子)を有する全能性細胞を個体発生して得られる非ヒト哺乳動物及びその子孫動物であって、体細胞染色体中に上記ドレブリン変異遺伝子を保有し、ドレブリンAを発現する機能を失ない、かつドレブリンAに代えてドレブリンEを発現する機能を有する非ヒト動物であれば特に制限されず、上記非ヒト動物としては、マウス、ラット、ウサギ、モルモット、ハムスター等を挙げることができるが、マウス等の齧歯類動物を好適に例示することができる。また、上記アイソフォーム変換不能型とは、変異を導入した結果、ドレブリンAに変換することがないことを意味し、上記全能性細胞としては、ES(embryonic stem)細胞、EG(embryonic germ)細胞等を例示することができ、ES細胞はマウス、ラット、サル、ウサギで、また、EG細胞はブタで確立している。   As a model animal for synaptic maturation disorder of the present invention, an allopotent cell having a mutant gene lacking the region containing exon 11a of the drebrin gene (drebrin mutant gene into which an isoform-invertible mutation has been introduced) is individually generated. The obtained non-human mammal and its progeny animals have the above-described drebrin mutant gene in the somatic chromosome, do not lose the function of expressing drebrin A, and have the function of expressing drebrin E instead of drebrin A The nonhuman animal is not particularly limited as long as it has a nonhuman animal, and examples of the nonhuman animal include mice, rats, rabbits, guinea pigs, hamsters, etc., and rodents such as mice can be preferably exemplified. it can. Moreover, the above-mentioned non-isoform-convertible type means that as a result of introducing a mutation, it does not convert to drebrin A. As the totipotent cells, ES (embryonic stem) cells, EG (embryonic germ) cells ES cells are established in mice, rats, monkeys, rabbits, and EG cells are established in pigs.

上記ドレブリン遺伝子のエクソン11a(ins2)を含む領域が欠失した変異遺伝子としては、非ヒト動物の内在性ドレブリンA遺伝子のエクソン11aの全部又は一部とエクソン11bの一部が破壊・欠損・置換等の遺伝子変異により不活性化され、エクソン11aとエクソン11bが転写されないが、エクソン11cは不活化されていないことにより転写されることにより、ドレブリンAに代えてドレブリンEを発現するようになったドレブリン変異遺伝子であれば特に制限されないが、Cre−loxPを用いてドレブリン遺伝子のエクソン11aを含む領域が欠失した変異遺伝子であることが好ましく、中でもドレブリン遺伝子のエクソン11aの全部とエクソン11bの一部が欠失した変異遺伝子が特に好ましい。以下、非ヒト動物がマウスの場合を例にとって説明する。   Examples of the mutant gene in which the region containing exon 11a (ins2) of the drebrin gene is deleted include all or part of exon 11a of exogenous drebrin A gene and part of exon 11b of non-human animals. The exon 11a and the exon 11b are not transcribed, but the exon 11c is transcribed because it is not inactivated. As a result, drebrin E is expressed instead of drebrin A. Although it is not particularly limited as long as it is a drebrin mutant gene, it is preferably a mutant gene in which the region containing exon 11a of the drebrin gene is deleted using Cre-loxP, and in particular, all of exons 11a of the drebrin gene and one of exon 11b Particularly preferred is a mutated gene having a deleted portion. Hereinafter, a case where the non-human animal is a mouse will be described as an example.

本発明のシナプス成熟障害モデルマウスは、配列番号1に示されるドレブリンA特異的挿入配列(ins2、エクソン11aに相当)をプローブとして、マウスの遺伝子ライブラリーをスクリーニングし、ドレブリンのコーディング領域を含む陽性クローンをいくつかの制限酵素で分断し、ドレブリンA特異的挿入配列(ins2)を含む断片を単離し、PCR等の方法によりエクソン11aの上流にloxPを、下流にfrtで挟んだneo耐性遺伝子、さらにこれより下流にもう一つのloxPを挿入し、5’末端側にジフテリアトキシンAフラグメント(DT−A)遺伝子や単純ヘルペスウイルスのチミジンキナーゼ(HSV−tk)遺伝子等の遺伝子を導入してターゲティングベクターを構築するか、ドレブリンA遺伝子をスクリーニングし、スクリーニングされたドレブリンA遺伝子のエクソン11aの全部又は一部とエクソン11bの一部を相同組み換え等により、例えばネオマイシン耐性遺伝子等のマーカー遺伝子で置換し、5′末端側にジフテリアトキシンAフラグメント(DT−A)遺伝子や単純ヘルペスウイルスのチミジンキナーゼ(HSV−tk)遺伝子等の遺伝子を導入してターゲティングベクターを構築し、この構築したターゲッティングベクターを線状化し、エレクトロポレーション(電気穿孔)法等によってES細胞に導入し、相同的組換えを行い、その相同的組換え体の中から、G418やガンシクロビア(GANC)等の抗生物質に抵抗性を示すES細胞を選択する。この選択されたES細胞が目的とする組換え体かどうかをサザンブロット法等により確認することが好ましい。   The synaptic maturation disorder model mouse of the present invention was screened for a mouse gene library using the drebrin A-specific insertion sequence shown in SEQ ID NO: 1 (corresponding to ins2, exon 11a) as a probe, and was positive containing the coding region of drebrin. The clone was cleaved with several restriction enzymes, a fragment containing the drebrin A specific insertion sequence (ins2) was isolated, and a neo-resistant gene sandwiched with loxP upstream of exon 11a and frt downstream by ex. Furthermore, another loxP is inserted downstream from this, and a gene such as a diphtheria toxin A fragment (DT-A) gene or a herpes simplex virus thymidine kinase (HSV-tk) gene is introduced into the 5 ′ end side to target vector. Or screen the drebrin A gene All or part of exon 11a and part of exon 11b of the drebrin A gene thus screened are replaced with a marker gene such as a neomycin resistance gene by homologous recombination, etc., and a diphtheria toxin A fragment on the 5 ′ end side A targeting vector is constructed by introducing a gene such as a (DT-A) gene or a herpes simplex virus thymidine kinase (HSV-tk) gene, the constructed targeting vector is linearized, and an electroporation method The ES cells are introduced into ES cells by the like, homologous recombination is performed, and ES cells that are resistant to antibiotics such as G418 and gancyclovir (GANC) are selected from the homologous recombinants. It is preferable to confirm whether or not the selected ES cell is the target recombinant by Southern blotting or the like.

上記組換えES細胞をマウスの胚盤胞中にマイクロインジェクションし、かかる胚盤胞を仮親のマウスに戻し、キメラマウスを作製する。このキメラマウスを野生型のマウスと交配させると、ヘテロ接合体マウスを得ることができ、また、このヘテロ接合体マウスを交配させることによって、ドレブリンノックアウトマウスを得ることができる。そして、かかるドレブリンノックアウトマウスにおけるドレブリン遺伝子 が染色体上で欠損していることを確認する方法としては、例えば、マウス尾部からゲノムDNAを単離してサザンブロット法等により調べる方法や、このマウスから抽出したタンパク質をイムノブロット分析等により調べる方法等を挙げることができる。   The recombinant ES cell is microinjected into a blastocyst of a mouse, and the blastocyst is returned to a temporary parent mouse to produce a chimeric mouse. When this chimeric mouse is mated with a wild-type mouse, a heterozygous mouse can be obtained, and a drebrin knockout mouse can be obtained by mating this heterozygous mouse. As a method for confirming that the drebrin gene in the drebrin knockout mouse is deficient on the chromosome, for example, genomic DNA is isolated from the mouse tail and examined by Southern blotting, or extracted from this mouse. Examples thereof include a method for examining proteins by immunoblot analysis and the like.

例えば、ドレブリン遺伝子のエクソン11aを含む領域を欠失させるため、Cre−loxPシステムを採用すると、脳内部特異的に変異を持ち込むことが可能となり、シナプスの成熟障害(シナプスの脆弱性)を惹起させうることから、Cre−loxPを用いることによりドレブリン遺伝子のエクソン11aを含む領域が欠失するように構築された変異遺伝子は、種々のヒト精神疾患のモデルとなる。上記バクテリオファージP1由来のCre−loxPシステムに代えて、出芽酵母(Saccharomyces cerevisiae)由来のFLP−FRTシステム、醤油酵母(Zygosaccharomyces rouxii)由来のR−RSシステム、バクテリオファージMu由来のGin−gixシステムも使用することができる。   For example, if the Cre-loxP system is used to delete the region containing exon 11a of the drebrin gene, it becomes possible to introduce mutations specifically in the brain, causing synaptic maturation disorder (synaptic vulnerability). Therefore, the mutant gene constructed so that the region containing exon 11a of the drebrin gene is deleted by using Cre-loxP becomes a model of various human psychiatric disorders. In place of the Cre-loxP system derived from the bacteriophage P1, the FLP-FRT system derived from Saccharomyces cerevisiae, the R-RS system derived from soy sauce yeast (Zygosaccharomyces rouxii), and the Gin-gix system derived from bacteriophage Mu Can be used.

本発明のシナプス成熟障害モデル動物は、シナプス成熟障害発症のメカニズムの解析に有用であり、本発明のシナプス成熟障害モデル動物を用いると、シナプス成熟障害治療薬のスクリーニングや、シナプス成熟障害治療薬を特定する試験が可能となる。すなわち、かかるシナプス成熟障害モデル動物を用いると、精神分裂病、精神分裂病的挙動、うつ病、老人性脳機能低下、アルツハイマー病、パーキンソン病等のシナプス成熟障害の予防・治療剤のスクリーニングや、これらシナプス成熟障害治療薬を特定する試験を行うことができる。   The synaptic maturity disorder model animal of the present invention is useful for analyzing the mechanism of the onset of synapse maturation disorder. When the synaptic maturation disorder model animal of the present invention is used, screening for synaptic maturation disorder therapeutic drugs and therapeutic drugs for synaptic maturation disorders Enables specific tests. That is, using such a synaptic maturation disorder model animal, screening for a prophylactic / therapeutic agent for synaptic maturation disorders such as schizophrenia, schizophrenic behavior, depression, senile brain function decline, Alzheimer's disease, Parkinson's disease, Tests can be conducted to identify these therapeutic agents for synaptic maturation disorders.

本発明のシナプス成熟障害の予防・治療剤のスクリーニング方法としては、本発明のシナプス成熟障害モデル動物に対し、出生前または出生後に被検物質を投与し、行動の変化の程度、及び/又は、テタヌス刺激により誘導される海馬シナプス伝達の長期増強の改善の程度を評価する方法や、本発明のシナプス成熟障害モデル動物に由来する神経細胞に被検物質を投与し、シナプス成熟障害の程度を評価する方法であれば特に制限されず、また、本発明のシナプス成熟障害治療薬を特定する試験方法としては、本発明のシナプス成熟障害モデル動物に対し、出生前または出生後にシナプス成熟障害の候補治療薬を投与し、行動の変化の程度、及び/又は、テタヌス刺激により誘導される海馬シナプス伝達の長期増強の改善の程度を指標とする方法や、本発明のシナプス成熟障害モデル動物に由来する神経細胞にシナプス成熟障害の候補治療薬を投与し、シナプス成熟障害の程度を評価する方法であればどのような方法でもよく、行動の変化の程度や海馬シナプス伝達の長期増強の改善の程度、及びシナプス成熟障害の程度の評価は、対照となる野生型、特に同腹の野生型と比較することが好ましい。上記被検物質やシナプス成熟障害の候補治療薬としては、抗精神薬、神経興奮薬、麻酔薬など、神経細胞の興奮を変化させる薬を好適に例示することができる。また、行動の変化としては、学習や記憶を調べる実験、反射的行動を取り入れた実験を具体的に挙げることができ、テタヌス刺激としては、条件刺激と無条件刺激の組合せ刺激を挙げることができ、海馬シナプス伝達の長期増強の改善の程度としては、コンテクスト依存性の恐怖反応(すくみ反応、フリージング)の程度を挙げることができる。   As a method for screening a prophylactic / therapeutic agent for synaptic maturation disorder of the present invention, a test substance is administered before or after birth to the synaptic maturation disorder model animal of the present invention, and the degree of behavioral change and / or A method for evaluating the degree of improvement in long-term potentiation of hippocampal synaptic transmission induced by tetanus stimulation, or the administration of a test substance to nerve cells derived from the synaptic maturation disorder model animal of the present invention to evaluate the degree of synaptic maturation disorder The test method for identifying the therapeutic agent for synaptic maturation disorder of the present invention is a candidate method for treating a synaptic maturation disorder before or after birth to the synaptic maturation disorder model animal of the present invention. Administer drugs and use the degree of behavioral change and / or the improvement of long-term potentiation of hippocampal synaptic transmission induced by tetanus stimulation as an indicator Any method may be used as long as it is a method for administering a candidate therapeutic drug for a synapse maturation disorder to a nerve cell derived from a synaptic maturation disorder model animal of the present invention and evaluating the degree of the synapse maturation disorder, and changes in behavior It is preferable to evaluate the degree of improvement in the degree of long-term potentiation of hippocampal synaptic transmission and the evaluation of the degree of synaptic maturation disorder in comparison with the wild type as a control, particularly the wild type of the litter. Preferred examples of the test substance and the candidate therapeutic drug for synaptic maturation disorders include drugs that change the excitement of nerve cells, such as antipsychotics, neurostimulants, and anesthetics. Examples of behavioral changes include experiments that examine learning and memory, and experiments that incorporate reflexive behavior. Tetanus stimuli can include combined stimuli of conditional and unconditional stimuli. As the degree of improvement of long-term potentiation of hippocampal synaptic transmission, the degree of context-dependent fear reaction (freezing reaction, freezing) can be mentioned.

上記本発明のシナプス成熟障害の予防・治療剤のスクリーニング方法により得られる予防・治療剤を医薬品として用いる場合、経口的あるいは非経口的に投与することができるが、静脈投与等の非経口的投与が好ましい。非経口投与剤として注射剤、経皮製剤あるいは座薬等とすることができる。また、経口投与剤としては散剤、顆粒剤、カプセル剤、錠剤などの固形製剤あるいはシロップ剤、エリキシル剤などの液状製剤とすることができる。これらの製剤は活性成分に薬理学的、製剤学的に認容される助剤を加えることにより常法に従って製造することができる。助剤としては、例えば、経口剤および粘膜投与剤にあっては、軽質無水ケイ酸、澱粉、乳糖、結晶セルロース、乳糖カルシウム等の賦形剤、カルボキシメチルセルロ−ス等の崩壊剤、ステアリン酸マグネシム等の滑沢剤などの製剤用成分が、また注射剤にあっては、生理食塩水、マンニトール、プロピレングリコ−ル等の溶解剤ないし溶解補助剤、界面活性剤などの懸濁化剤などの製剤用成分が、さらに外用剤にあっては、水性ないし油性の溶解剤ないし溶解補助剤、粘着剤などの製剤用成分が使用される。また、投与量は、対象疾患の種類、患者の年齢、性別、体重、症状、投与形態に応じて適宜決定することができる。   When the preventive / therapeutic agent obtained by the method for screening a prophylactic / therapeutic agent for synaptic maturation disorder according to the present invention is used as a pharmaceutical, it can be administered orally or parenterally, but it can be administered parenterally such as intravenous administration. Is preferred. The parenteral preparation can be an injection, a transdermal preparation, a suppository, or the like. Oral administration agents can be solid preparations such as powders, granules, capsules and tablets, or liquid preparations such as syrups and elixirs. These preparations can be produced according to a conventional method by adding pharmacologically and pharmaceutically acceptable auxiliaries to the active ingredient. As an auxiliary agent, for example, in oral preparations and mucosal administration agents, light anhydrous silicic acid, excipients such as starch, lactose, crystalline cellulose and lactose calcium, disintegrants such as carboxymethyl cellulose, stearic acid Ingredients for preparations such as lubricants such as magnesium, and for injections, solubilizers or solubilizers such as physiological saline, mannitol, propylene glycol, suspending agents such as surfactants, etc. In the case of the above-mentioned formulation components, the formulation components such as aqueous or oily solubilizers, solubilizers, and adhesives are used. In addition, the dose can be appropriately determined according to the type of target disease, the age, sex, weight, symptom, and dosage form of the patient.

以下、実施例により本発明のノックアウトマウスの作製方法をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   Hereinafter, although the Example demonstrates the production method of the knockout mouse of this invention more concretely, the technical scope of this invention is not limited to these illustrations.

(ドレブリン遺伝子の単離)
ラットドレブリンcDNAのA型特異的挿入配列(ins2)をプローブとして、B6JマウスBACライブラリー(RPCI−23)(アメリカ合衆国Children’s Hospital Oakland Research Institute BAC/PAC Resources)をスクリーニングし、ドレブリンのコーディング領域を含む陽性クローンを得た。
(Isolation of drebrin gene)
A B6J mouse BAC library (RPCI-23) (USA Children's Hospital Oakland Research Institute BAC / PAC Resources) was screened using the rat Drebrin cDNA type A-specific insertion sequence (ins2) as a probe, and positive including the coding region of Drebrin A clone was obtained.

(ターゲティングベクターの構築)
陽性クローン(全長約200kbp)をいくつかの制限酵素で分断し、A型特異的挿入配列(ins2、エクソン11aに相当)を含む断片 HK(13.5kb)(図1;drebrin gene HK 13.5Kb 参照)を単離した。PCRの方法を使ってエクソン11aの216塩基上流にloxPを、154塩基下流にfrtで挟んだneo耐性遺伝子(pKG−neo)、さらにこれより67塩基下流にもう一つのloxPを挿入した。これにより、ドレブリンA特異的エクソン11aはfrtで挟まれたneo遺伝子とともに2つのloxPで挟まれた形(…〈エクソン10〉…〈loxP〉…〈エクソン11a〉…〈frt・neo・frt〉…〈loxP〉…〈エクソン11c〉…)となる(図1;targeting vector 参照)。また、ターゲティングベクター5’端となるBサイトに後の組み換え体のネガティヴ選別のためにジフテリア毒素A遺伝子を挿入した。図1には、ターゲティングベクター構築の概略が示されている。
(Construction of targeting vector)
Fragment HK (13.5 kb) containing positive type clone (total length of about 200 kbp) with some restriction enzymes and containing type A specific insert (corresponding to ins2, exon 11a) (see FIG. 1; drebrin gene HK 13.5 Kb) ) Was isolated. Using the PCR method, loxP was inserted 216 bases upstream of exon 11a, a neo resistance gene (pKG-neo) sandwiched by frt 154 bases downstream, and another loxP was further inserted 67 bases downstream of this. Thus, drebrin A-specific exon 11a is sandwiched between two loxPs together with a neo gene sandwiched between frts (... <exon 10> ... <loxP> ... <exon 11a> ... <frt · neo · frt> ... <LoxP>... <Exon 11c> (see FIG. 1; targeting vector). In addition, the diphtheria toxin A gene was inserted into the B site at the 5 ′ end of the targeting vector for negative selection of the subsequent recombinants. FIG. 1 shows an outline of construction of a targeting vector.

(ES細胞への相同組み換え)
実施例2で構築したターゲティングベクターを直鎖状として、C57BL/6Jマウスで樹立したES細胞(MS12)にエレクトロポレーション(電気穿孔法)により導入し、G418存在下で生存、増殖するESクローンを単離した。単離したESクローンのうちターゲティングベクターが相同組み換えされたものをサザンブロットで選別した(図2参照)。すなわち、ES細胞のゲノムDNAをKpnIで消化しアガロースゲル電気泳動後ナイロン膜に転写し、RI標識したドレブリン遺伝子SacI-EcoRI断片あるいはエクソン11Aをプローブとしてハイブリッド形成させ、オートラジオグラムにより陽性バンドを検出した。野生型では、いずれのプローブによっても約5.8kbのバンドのみ検出されるが、相同組み換えを起こしたものでは野生型のバンドの他に約7.9kbのバンドも検出される。
(Homologous recombination into ES cells)
The targeting clone constructed in Example 2 was linearized and introduced into ES cells (MS12) established in C57BL / 6J mice by electroporation (electroporation), and ES clones that survived and proliferated in the presence of G418 were obtained. Isolated. Among the isolated ES clones, those in which the targeting vector was homologously recombined were selected by Southern blotting (see FIG. 2). Specifically, ES cell genomic DNA was digested with KpnI, agarose gel electrophoresed, transferred to nylon membrane, hybridized with RI-labeled drebrin gene SacI-EcoRI fragment or exon 11A, and positive band detected by autoradiogram did. In the wild type, only about 5.8 kb band is detected by any probe, but in the case of homologous recombination, a band of about 7.9 kb is also detected in addition to the wild type band.

(組み換えES細胞の個体への導入及びFloxマウスの作製)
組み換えES細胞をICR由来の桑実胚へマイクロインジェクションし、これを偽妊娠の仮親子宮内に移植した。ES細胞由来の体細胞を高割合で有するキメラ個体を親として、組み換え遺伝子を有する子孫F1を得た。また、組み換え遺伝子を有する個体F1と、C57BL/6とを掛け合わせて得た受精卵に組み換え酵素flippaseの発現ベクターをマイクロインジェクションし、それを仮親に移植し組み換えfrtで挟まれたneo遺伝子を欠失した個体を得た。この個体では組み換えES細胞クローンの選別に用いたneo遺伝子を欠失している(…〈エクソン10〉…〈loxP〉…〈エクソン11a〉…〈frt〉…〈loxP〉…〈エクソン11c〉…)が、2つのloxPがドレブリンA特異的なエクソン11a(ins2)を挟む形で挿入されている。このFloxマウスでは細胞種、発生時期や薬物誘導などにより時期限定して組み換え酵素Creを発現するマウスとの掛け合わせにより、loxPで挟まれた領域(ins2を含む)を条件性(conditional)に欠失させることが可能となる。
(Introduction of recombinant ES cells into individuals and production of Flox mice)
Recombinant ES cells were microinjected into ICR-derived morulas and transplanted into pseudopregnant foster mothers. With a chimera individual having a high proportion of somatic cells derived from ES cells as a parent, a progeny F1 having a recombinant gene was obtained. In addition, a fertilized egg obtained by crossing an individual F1 having a recombinant gene with C57BL / 6 is microinjected with an expression vector of the recombinant enzyme flippase, transplanted into a temporary parent, and lacking the neo gene sandwiched between recombinant frts. A lost individual was obtained. In this individual, the neo gene used for selection of recombinant ES cell clones is deleted (... <exon 10> ... <loxP> ... <exon 11a> ... <frt> ... <loxP> ... <exon 11c> ...) However, two loxPs are inserted in a form sandwiching exon 11a (ins2) specific to drebrin A. In this Flox mouse, the region sandwiched between loxP (including ins2) is lacking in conditionality by crossing with the mouse expressing the recombinant enzyme Cre for a limited time depending on the cell type, development time and drug induction. Can be lost.

(Cre−loxPを使った遺伝子組み換えによるドレブリンAノックアウトマウスの作製)
組み換え遺伝子を有する個体F1を片親とし、発生初期から全細胞で組み換え酵素Creを発現しているトランスジェニックマウス(E2A−Cre)をもう一方の片親とし、これらを掛け合わせることで、2つのloxPで挟まれた領域(ins2とneo遺伝子を含む)を欠失したマウスのヘテロ個体を得た。この結果生じた2つのloxP配列にはさまれたドレブリンA特異的エクソン11Aを欠失させたヘテロマウスの雌雄を掛け合わせることによってドレブリンA特異的ノックアウトマウスを得た。ノックアウトのホモ個体は尾のDNAを使ったgenotyping(PCRによる)によって同定した。すなわち、エクソン11A周辺のプライマーを使うことにより野生型(WT:1,171bp)、ノックアウトヘテロ(802bpと1,171bp)、ノックアウトホモ(KO:802bp)を判別した。このドレブリンA特異的ノックアウトマウスではドレブリンAアイソフォームだけが欠失し、ドレブリンAの代わりにドレブリンEが発現されることから、ドレブリンEアイソフォームは残っている(…〈エクソン10〉…〈loxP〉…〈エクソン11c〉…)。
(Preparation of drebrin A knockout mouse by gene recombination using Cre-loxP)
An individual F1 having a recombinant gene is used as one parent, and a transgenic mouse (E2A-Cre) expressing the recombinant enzyme Cre in all cells from the beginning of development is used as the other parent. A mouse heterozygous individual lacking the sandwiched region (including the ins2 and neo genes) was obtained. Drebrin A-specific knockout mice were obtained by crossing male and female heterozygous mice lacking drebrin A-specific exon 11A sandwiched between the two loxP sequences that resulted. Homozygous knockout individuals were identified by genotyping (by PCR) using tail DNA. That is, wild type (WT: 1,171 bp), knockout hetero (802 bp and 1,171 bp), and knockout homo (KO: 802 bp) were distinguished by using primers around exon 11A. In this drebrin A-specific knockout mouse, only drebrin A isoform is deleted, and drebrin E is expressed instead of drebrin A, so drebrin E isoform remains (... <exon 10> ... <loxP> ... <Exon 11c> ...).

(ドレブリンの発現)
(1)ウェスタンブロット分析1
生後5〜6週齢のドレブリンAノックアウトマウス(ホモ)と生後11週齢の野生型マウスとをエーテルで麻酔後、頚椎を脱臼させ、大脳皮質を取り出し、それぞれ100μg(湿重量)を用いてウェスタンブロット分析を行った。結果を図3に示す。図3において、1,3,5レーンは野生型マウス、2,4,6レーンはドレブリンAノックアウトマウスであり、1,2レーンにはドレブリンA及びドレブリンEのC末端を共に認識するM2F6モノクローナル抗体を用い、2,4レーンにはシナプスタンパク質であるPSD95を認識する抗PSD95抗体を用い、5,6レーンにはドレブリンA及びドレブリンEのN末端を共に認識する抗ドレブリンADF−Hドメイン血清を用いた。図3の1レーンのバンドはドレブリンAを示し(本来大脳皮質においてはドレブリンAのみが発現する)、2レーンは(ドレブリンAより分子量が小さい)ドレブリンEを示しており、ノックアウトマウスではドレブリンAを発現することはないが新たにドレブリンEを発現していることがわかる。また、図3の3レーンのバンドに比べて4レーンのバンドは薄く、ノックアウトマウスではシナプス異常が生じていることが示唆されている。図3の5レーンのバンドはドレブリンAを示し、6レーンは(ドレブリンAより分子量が小さい)ドレブリンEを示しており、本ノックアウトマウスではドレブリンのN末端部を有するドレブリン分解物ではなく、ドレブリンAの代わりに完全長のドレブリンEが発現していることがわかる。
(Drebrin expression)
(1) Western blot analysis 1
A 5-6 week old drebrin A knockout mouse (homo) and an 11 week old wild type mouse were anesthetized with ether, the cervical spine was dislocated, the cerebral cortex was taken out, and each 100 μg (wet weight) was used in Western. Blot analysis was performed. The results are shown in FIG. In FIG. 3, lanes 1, 3, and 5 are wild type mice, lanes 2, 4, and 6 are drebrin A knockout mice, and lanes 1 and 2 are M2F6 monoclonal antibodies that recognize both the C terminus of drebrin A and drebrin E. 2 and 4 lanes use anti-PSD95 antibody that recognizes the synaptic protein PSD95, and 5 and 6 lanes use anti-drebrin ADF-H domain serum that recognizes both the N-terminus of drebrin A and drebrin E. It was. The band in lane 1 of FIG. 3 shows drebrin A (originally, only drebrin A is expressed in the cerebral cortex), and lane 2 shows drebrin E (which has a molecular weight smaller than drebrin A). In knockout mice, drebrin A is expressed. Although it does not express, it turns out that drebrin E is newly expressed. Moreover, the band of 4 lanes is thinner than the band of 3 lanes of FIG. 3, suggesting that synaptic abnormalities occur in knockout mice. The 5 lane band in FIG. 3 shows drebrin A, 6 lane shows drebrin E (which has a lower molecular weight than drebrin A), and in this knockout mouse, drebrin A is not a drebrin degradation product having the N-terminal portion of drebrin. It can be seen that full-length drebrin E is expressed instead of.

(2)ウェスタンブロット分析2
上記ウェスタンブロット分析1で用いたドレブリンAノックアウトマウス(KO(-/-))と野生型マウス(WT(WT / WT))の大脳皮質のホモジェネートを8%ゲルで泳動して、ウェスタンブロット分析を行った。1次抗体としては、ドレブリンAを特異的に認識するDAS2抗血清(×10000)を用い、2次抗体としてはHRP α mouse(×10000)を用いた。結果を図4に示す。図4から、ドレブリンAノックアウトマウス(ホモ)は、野生型マウスが発現するドレブリンAを発現していないことがわかる。
(2) Western blot analysis 2
A homogenate of cerebral cortex of drebrin A knockout mouse (KO (-/-)) and wild type mouse (WT (WT / WT)) used in the above Western blot analysis 1 was run on an 8% gel to perform Western blot analysis. went. As the primary antibody, DAS2 antiserum (× 10000) that specifically recognizes drebrin A was used, and as the secondary antibody, HRP α mouse (× 10000) was used. The results are shown in FIG. FIG. 4 shows that drebrin A knockout mice (homo) do not express drebrin A expressed by wild-type mice.

(3)ウェスタンブロット分析3
生後10週齢のドレブリンAノックアウトマウスと同腹の野生型マウス(KO(WT / WT))をエーテルで麻酔後、頚椎を脱臼させ、脳を取り出し、大脳、小脳、海馬を分離し、各々について50×量のサンプルバッファーでホモゲナイズし、各5μLを用いてウェスタンブロット分析を行った。1次抗体としては、ドレブリンのC末端エピトープを認識するM2F6モノクローナル抗体(×10000)を用い、2次抗体としてはHRP α mouse(×10000)を用いた。KO(WT / WT)と同様に、ノックアウトヘテロ(KO(WT/-))や、ドレブリンAトランスジェニックマウス(No43+)や、(No43+)と同腹の野生型マウス(No43−)についても、ウェスタンブロット分析を行った。なおウェスタンブロットにおける陽性対照としてベーターアクチン(×10000)を用いた。結果を図4に示す。図5において、左のレーンからKO(-/-)、KO(WT/-)、No43+、No43−を示す。大脳や海馬では本来ドレブリンAのみが発現し、小脳ではドレブリンEが発現する。図5の大脳や海馬におけるKO(WT / WT)、(No43+)及び(No43−)のバンドはドレブリンAを示し、KO(WT/-)の上下近接した2つのバンドはドレブリンAと(ドレブリンAより分子量が小さい)ドレブリンEを示しており、ドレブリンAとドレブリンEが共に発現していることがわかる。図5の小脳におけるバンドは(小脳において本来発現する)すべてドレブリンEを示している。
(3) Western blot analysis 3
A 10-week-old drebrin A knockout mouse and a wild-type mouse (KO (WT / WT)) littered with ether were anesthetized with ether, the cervical vertebrae were dislocated, the brain was removed, and the cerebrum, cerebellum, and hippocampus were separated. Homogenize with x amount of sample buffer and perform Western blot analysis using 5 μL each. As the primary antibody, M2F6 monoclonal antibody (× 10000) that recognizes the C-terminal epitope of drebrin was used, and HRP α mouse (× 10000) was used as the secondary antibody. As with KO (WT / WT), Western blots were also used for knockout heterozygous (KO (WT /-)), drebrin A transgenic mice (No43 +), and wild-type mice (No43-) littered with (No43 +). Analysis was carried out. In addition, beta-actin (x10000) was used as a positive control in Western blot. The results are shown in FIG. In FIG. 5, KO (− / −), KO (WT / −), No 43+, and No 43− are shown from the left lane. In the cerebrum and hippocampus, only drebrin A is originally expressed, and drebrin E is expressed in the cerebellum. The bands of KO (WT / WT), (No43 +) and (No43-) in the cerebrum and hippocampus of FIG. 5 indicate drebrin A, and the two bands close to the top and bottom of KO (WT /-) are drebrin A and (drebrin A). It shows drebrin E (which has a lower molecular weight), and it can be seen that both drebrin A and drebrin E are expressed. The bands in the cerebellum in FIG. 5 all indicate drebrin E (originally expressed in the cerebellum).

(4)まとめ
図3〜5に示される結果から、ドレブリンAノックアウトマウス(ホモ)は、ドレブリンAを発現しない(図4)が、本来ドレブリンAが主に発現する大脳皮質や海馬においては、ドレブリンAに代わってドレブリンEが発現し、ドレブリンとしての発現総量は、野生型マウスのドレブリン発現総量に匹敵していることから、ドレブリンA欠損に起因するシナプスの成熟のみが障害され、その他のドレブリン関連機能が正常であることが示唆された。
(4) Summary From the results shown in FIGS. 3 to 5, drebrin A knockout mice (homo) do not express drebrin A (FIG. 4), but in cerebral cortex and hippocampus where drebrin A is primarily expressed, Drebrin E is expressed in place of A, and the total expression level of drebrin is comparable to the total expression amount of drebrin in wild-type mice. Therefore, only synaptic maturation due to drebrin A deficiency is impaired, and other drebrin-related It was suggested that the function was normal.

(ドレブリンA特異的欠失によるコンテクスト依存性恐怖条件づけの障害)
(1)方法
ドレブリンA特異的ノックアウトマウス(KO、n=9)およびその同腹の野生型マウス(WT、n=10)をショック箱に入れ1分後に条件刺激(70dBの10kHzトーンを10秒間)と無条件刺激(0.5mAの床からの電撃ショック、1秒間)の組合せ刺激(トーンの開始から9秒後にショック)を20秒間隔で2回提示し、その後1分後にホームケージに戻した。条件づけの1日後にマウスを再びショック箱に入れ、コンテクスト依存性の恐怖反応(すくみ反応、フリージング)を調べた。
Context-dependent fear conditioning impairment due to drebrin A specific deletion
(1) Method Drebrin A-specific knockout mice (KO, n = 9) and their wild-type mice (WT, n = 10) were placed in a shock box and conditioned after 1 minute (10 dB tone of 70 dB for 10 seconds) And unconditional stimulation (shock shock from 0.5 mA floor, 1 second) was presented twice at 20 second intervals (shock 9 seconds after the start of the tone), and then returned to the home cage after 1 minute. . One day after conditioning, the mice were placed again in the shock box and examined for context-dependent fear responses (freezing, freezing).

(2)結果
WTは1日前にショックを受けた箱に入れられると直ちに強いフリージングを起こした(コンテクスト依存性の恐怖反応、2分間の計測の平均71.5±4.9%)。一方KOではフリージングのレベルはWTに比べ有意に低かった(2分間の計測の平均44.3±11.7%、p<0.05)。生得的な情動を調べる行動テストではKOとWTに大きな違いはなかった。したがってドレブリンAアイソフォームの欠失は基本的な行動には影響しないが、少なくともある種の学習を障害する。学習記憶はそれに関連する神経回路上の機能的、構造的変化が必要であると考えられており、樹状突起スパインにおけるドレブリンAがその機序の鍵となる分子であることが示唆される。
(2) Results When WT was placed in a box that was shocked one day ago, it immediately caused a strong freezing (context-dependent fear response, average of 71.5 ± 4.9% over 2 minutes). On the other hand, in KO, the level of freezing was significantly lower than in WT (average of 44.3 ± 11.7% over 2 minutes, p <0.05). In behavioral tests to examine innate emotions, there was no significant difference between KO and WT. Thus, deletion of the drebrin A isoform does not affect basic behavior, but at least impairs some learning. Learning memory is thought to require functional and structural changes on the neural circuit associated with it, suggesting that drebrin A in dendritic spines is the key molecule.

本発明のドレブリンAノックアウトマウス作製に用いられるターゲティングベクターの構築の概略を示す図である。It is a figure which shows the outline of construction | assembly of the targeting vector used for preparation of the drebrin A knockout mouse of this invention. 本発明のドレブリンAノックアウトマウス(KO(-/-))の構築に用いられるターゲティングベクターのサザンブロットの結果を示す図である。It is a figure which shows the result of the Southern blot of the targeting vector used for construction | assembly of the drebrin A knockout mouse (KO (-/-)) of this invention. 本発明のドレブリンAノックアウトマウス(KO(-/-))と野生型マウス(WT(WT / WT))の大脳皮質におけるドレブリンの発現結果やシナプスタンパク質PSD95の発現結果を示す図である。It is a figure which shows the expression result of the drebrin in the cerebral cortex of the drebrin A knockout mouse | mouth (KO (-/-)) of this invention (WT (WT / WT)), and the expression result of synaptic protein PSD95. 本発明のドレブリンAノックアウトマウス(KO(-/-))と野生型マウス(WT(WT / WT))の大脳皮質におけるドレブリンAの発現結果を示す図である。It is a figure which shows the expression result of drebrin A in the cerebral cortex of the drebrin A knockout mouse | mouth (KO (-/-)) and wild type mouse | mouth (WT (WT / WT)) of this invention. 本発明のドレブリンAノックアウトマウスと同腹の野生型マウス(KO(WT / WT))、ノックアウトヘテロ(KO(WT/-))や、ドレブリンAトランスジェニックマウス(No43+)や、(No43+)と同腹の野生型マウス(No43−)の脳(大脳、小脳、海馬)におけるドレブリンAの発現結果を示す図である。Same as wild type mice (KO (WT / WT)), knockout heterozygous (KO (WT /-)), drebrin A transgenic mice (No43 +), and (No43 +) It is a figure which shows the expression result of drebrin A in the brain (cerebrum, cerebellum, hippocampus) of a wild type mouse (No43-).

Claims (8)

ドレブリン遺伝子のエクソン11aを含む領域が欠失した変異遺伝子を有する全能性細胞を個体発生して得られる非ヒト哺乳動物及びその子孫動物であって、体細胞染色体中に上記ドレブリン変異遺伝子を保有し、ドレブリンAを発現する機能を失ない、かつドレブリンAに代えてドレブリンEを発現する機能を有する非ヒト動物からなるシナプス成熟障害モデル動物。 A non-human mammal obtained by ontogenizing a totipotent cell having a mutant gene in which the region containing exon 11a of the drebrin gene is deleted, and a progeny animal thereof, having the drebrin mutant gene in a somatic cell chromosome Synaptic maturation disorder model animals comprising non-human animals that do not lose the function of expressing drebrin A and have the function of expressing drebrin E instead of drebrin A. Cre−loxPを用いてドレブリン遺伝子のエクソン11aを含む領域が欠失した変異遺伝子であることを特徴とする請求項1記載のシナプス成熟障害モデル動物。 The model animal for synaptic maturation disorder according to claim 1, wherein the gene is a mutant gene in which the region containing exon 11a of the drebrin gene is deleted using Cre-loxP. ドレブリン遺伝子のエクソン11aを含む領域が欠失した変異遺伝子が、ドレブリン遺伝子のエクソン11aの全部とエクソン11bの一部が欠失した変異遺伝子であることを特徴とする請求項1又は2記載のシナプス成熟障害モデル動物。 The synapse according to claim 1 or 2, wherein the mutant gene in which the region containing exon 11a of the drebrin gene is deleted is a mutant gene in which all of exon 11a and part of exon 11b of the drebrin gene are deleted. Maturation disorder model animal. 非ヒト動物がマウスであることを特徴とする請求項1〜3のいずれか記載のシナプス成熟障害モデル動物。 The synaptic maturity disorder model animal according to any one of claims 1 to 3, wherein the non-human animal is a mouse. 請求項1〜4のいずれか記載のシナプス成熟障害モデル動物に対し、出生前または出生後に被検物質を投与し、テタヌス刺激により誘導される海馬シナプス伝達の長期増強の改善の程度を評価するシナプス成熟障害の予防・治療剤のスクリーニング方法。 A synapse for administering a test substance to a synaptic maturation disorder model animal according to any one of claims 1 to 4 before or after birth, and evaluating the degree of improvement in long-term potentiation of hippocampal synaptic transmission induced by tetanic stimulation. A screening method for a prophylactic / therapeutic agent for maturation disorders. 請求項1〜4のいずれか記載のシナプス成熟障害モデル動物に対し、出生前または出生後にシナプス成熟障害の候補治療薬を投与し、テタヌス刺激により誘導される海馬シナプス伝達の長期増強の改善の程度を指標としてシナプス成熟障害治療薬を特定する試験方法。 A degree of improvement in long-term potentiation of hippocampal synaptic transmission induced by administering a candidate therapeutic drug for synaptic maturation disorder before or after birth to the synaptic maturation disorder model animal according to any one of claims 1 to 4 A test method for identifying drugs for treating synaptic maturity disorders using as an index. 請求項1〜4のいずれか記載のシナプス成熟障害モデル動物に由来する神経細胞に被検物質を投与し、シナプス成熟障害の程度を評価するシナプス成熟障害の予防・治療剤のスクリーニング方法。 A screening method for a prophylactic / therapeutic agent for synaptic maturation disorders, comprising administering a test substance to nerve cells derived from the synaptic maturation disorder model animal according to any one of claims 1 to 4, and evaluating the degree of synaptic maturation disorders. 請求項1〜4のいずれか記載のシナプス成熟障害モデル動物に由来する神経細胞にシナプス成熟障害の候補治療薬を投与し、シナプス成熟障害の程度を指標としてシナプス成熟障害治療薬を特定する試験方法。 A test method for administering a candidate therapeutic drug for a synaptic maturation disorder to nerve cells derived from the synaptic maturation disorder model animal according to any one of claims 1 to 4, and specifying the therapeutic drug for the synaptic maturation disorder using the degree of the synaptic maturation disorder as an index .
JP2004257060A 2004-09-03 2004-09-03 Synaptic maturation disorder animal model Expired - Fee Related JP4550530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257060A JP4550530B2 (en) 2004-09-03 2004-09-03 Synaptic maturation disorder animal model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257060A JP4550530B2 (en) 2004-09-03 2004-09-03 Synaptic maturation disorder animal model

Publications (2)

Publication Number Publication Date
JP2006067944A true JP2006067944A (en) 2006-03-16
JP4550530B2 JP4550530B2 (en) 2010-09-22

Family

ID=36149203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257060A Expired - Fee Related JP4550530B2 (en) 2004-09-03 2004-09-03 Synaptic maturation disorder animal model

Country Status (1)

Country Link
JP (1) JP4550530B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178351A (en) * 2007-01-25 2008-08-07 Tokyo Medical & Dental Univ Non-human model animal with mental retardation, and method for screening substance having activity for improving mental retardation symptoms
JP2011518566A (en) * 2008-04-25 2011-06-30 ニューヨーク ブラッド センター, インコーポレイテッド ABI1 / HSSH3BP1 conditional knockout mouse
KR101514282B1 (en) 2013-09-16 2015-04-23 한국생명공학연구원 A screening method of agent for regulating synaptogenesis using PTPRT and syntaxin-binding protein 1

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7244931B2 (en) * 2020-06-19 2023-03-23 アルメッド株式会社 Method for determining diseases caused by or associated with synaptic dysfunction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010036864, Mol.Brain Res., 1993, Vol.19, p.101−114 *
JPN6010036866, J.Neurosci., 1999, Vol.19, No.10, p.3918−3925 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178351A (en) * 2007-01-25 2008-08-07 Tokyo Medical & Dental Univ Non-human model animal with mental retardation, and method for screening substance having activity for improving mental retardation symptoms
JP2011518566A (en) * 2008-04-25 2011-06-30 ニューヨーク ブラッド センター, インコーポレイテッド ABI1 / HSSH3BP1 conditional knockout mouse
KR101514282B1 (en) 2013-09-16 2015-04-23 한국생명공학연구원 A screening method of agent for regulating synaptogenesis using PTPRT and syntaxin-binding protein 1

Also Published As

Publication number Publication date
JP4550530B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
Von Koch et al. Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice
US7745688B2 (en) Model mouse of Alzheimer&#39;s disease expressing FAD APP 716 and use thereof
US6452065B2 (en) Transgenic mouse expressing non-native wild-type and familial Alzheimer&#39;s Disease mutant presenilin 1 protein on native presenilin 1 null background
JP4550530B2 (en) Synaptic maturation disorder animal model
US20220192165A1 (en) Non-human animals having a humanized tslp gene, a humanized tslp receptor gene, and/or a humanized il7ra gene
KR101954726B1 (en) Animal model for pendred syndrome and method for producing the same
US8263346B2 (en) Nonhuman model animal lacking the ability to control lymphocyte migration
JP2004524843A (en) Transgenic knockout of BACE-1
JP5888693B2 (en) Interstitial pneumonia model and its use
JP2021058148A (en) Alzheimer&#39;s disease model non-human animal and its production method
JP5605718B2 (en) Alzheimer&#39;s disease model animals and uses thereof
JP4374438B2 (en) lab8a gene-deficient mouse
CA2375921C (en) Goodpasture&#39;s syndrome model mouse
WO2001024628A1 (en) Model animal of mesangial cell proliferative nephritis
JP6323876B2 (en) Knock-in mouse
WO2007144974A1 (en) Autoimmune nonhuman animal and screening method using the same
WO2018012497A1 (en) Disease model animal and disease therapeutic agent
WO2002034041A1 (en) Senescence marker protein 30-defective nonhuman animal, antibody and method of constructing the same
JP5186637B2 (en) Transgenic non-human mammal and use thereof
JP2009225697A (en) Abca12 GENE FUNCTION-DEFICIENT MOUSE
JP2004313191A (en) Megsin transgenic rat
WO1996035785A9 (en) Transgenic animals having a defective thyroid hormone receptor beta gene
WO2007080710A1 (en) Mouse deficient in vesicular gaba transporter gene
JP2004313192A (en) Endoplasmic reticulum stress model animal
JP2006042683A (en) Non-human animal whose expression of neuroglycan c gene is inhibited

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees