WO2018012497A1 - Disease model animal and disease therapeutic agent - Google Patents

Disease model animal and disease therapeutic agent Download PDF

Info

Publication number
WO2018012497A1
WO2018012497A1 PCT/JP2017/025273 JP2017025273W WO2018012497A1 WO 2018012497 A1 WO2018012497 A1 WO 2018012497A1 JP 2017025273 W JP2017025273 W JP 2017025273W WO 2018012497 A1 WO2018012497 A1 WO 2018012497A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
disease
fus
syngapα2
brain
Prior art date
Application number
PCT/JP2017/025273
Other languages
French (fr)
Japanese (ja)
Inventor
元 祖父江
診祐 石垣
聡 横井
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2018527612A priority Critical patent/JPWO2018012497A1/en
Publication of WO2018012497A1 publication Critical patent/WO2018012497A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knockout animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4711Alzheimer's disease; Amyloid plaque core protein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/20Animal model comprising regulated expression system
    • A01K2217/206Animal model comprising tissue-specific expression system, e.g. tissue specific expression of transgene, of Cre recombinase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0356Animal model for processes and diseases of the central nervous system, e.g. stress, learning, schizophrenia, pain, epilepsy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates

Definitions

  • the present invention belongs to the technical field of genetically modified experimental animals and therapeutic agents for diseases.
  • INDUSTRIAL APPLICABILITY The present invention is effective for a FUS gene-specific knockout model animal in the brain that exhibits symptoms of a disease accompanied by synaptic abnormalities (for example, frontotemporal lobar degeneration), a method for producing the same, or the disease using the model animal.
  • the present invention relates to a method for screening a therapeutic agent or a therapeutic agent for the disease.
  • dementia greatly reduces the patient's quality of life, and the burden on the caring family is very large. Symptoms due to dementia range from memory impairment, visual impairment, language impairment, behavioral problems, sleep disorders, and depressive symptoms.
  • Known brain degenerative diseases that cause such dementia include Alzheimer's disease, Lewy body dementia, cerebrovascular dementia, frontotemporal lobar degeneration (FTLD), and the like.
  • ⁇ Dementia caused by FTLD is progressive dementia, second only to Alzheimer's disease, especially in the West.
  • the main feature of FTLD is that the frontal lobe and temporal lobe are degenerative sites, and histopathological findings are of three types: frontal degeneration, Pick disease, and motor neuron disease.
  • Symptoms include behavioral abnormalities due to higher brain dysfunction such as personality disorder and social behavioral abnormalities.
  • the pathological condition of FTLD is very complicated, and research on diagnostic methods and therapeutic methods has not been sufficiently advanced so far, so that a fundamental therapeutic method has not yet been established.
  • FTLD FTLD
  • a model animal system is preferably a genetically modified model animal such as a knockout mouse.
  • FTLD is said to cause neurodegeneration by abnormal aggregation / accumulation and abnormal localization of FUS and TDP-43 proteins in nerve cells. Therefore, a dementia model animal such as FTLD has been produced by overexpression of a dementia-related gene, for example, by knocking in a gene.
  • the model itself may be based on abnormal findings because it is impossible to deny the possibility that the toxicity caused by the large amount of the specific gene causing neurodegeneration.
  • Patent Document 1 discloses a model mouse of amyotrophic lateral sclerosis and / or frontotemporal lobar degeneration.
  • the model mouse is a knock-in mouse in which at least one allele of endogenous TDP-43 is replaced with mutant TDP-43.
  • the model mouse exhibits the same pathological condition as amyotrophic lateral sclerosis and frontotemporal lobar degeneration, but it is a knock-in mouse, so it is difficult to determine whether the model itself is due to abnormal findings.
  • the group of the present inventors conducted research on the above-mentioned pathological condition of FTLD using mice, and as a result, there were mice that knocked down the FUS (Fused in sarcoma) gene in the mouse brain using a shRNA-expressing lentivirus. And FTLD-like disease state (see Non-Patent Document 1). Furthermore, in cultured cells in which the FUS gene is knocked down, the amount of glutamate receptor GluA1 protein present in the synapse is significantly reduced, and FUS has a function of specifically binding to and stabilizing GluA1 mRNA, and It was shown that FTLD-like pathology of mice knocked down by the above-mentioned FUS was recovered by GluA1 gene transfer.
  • SynGAP Synthetic Ras GTPase Activating Protein
  • PSD postsynaptic thick part
  • SynGAP protein has been found to exist from nematodes to higher mammals.
  • SynGAP protein has various types of splicing consisting of a combination of multiple types of C-terminal domains ( ⁇ 1, ⁇ 2, ⁇ , ⁇ , etc.) and multiple types of N-terminal domains (A, B, C, etc.). The existence of the variant is shown, suggesting its various functions (for example, see Non-Patent Document 4 and Non-Patent Document 5).
  • a model in which the FUS gene is injected with, for example, an adeno-associated virus and knocked down has a limited effect only on the hippocampus, and it is not easy to learn a technique.
  • All reported FUS gene knockout mice are crossbred, and in particular, the behavioral analysis may have different results depending on the strain.
  • tissue-specific knockout technology using the loxP-Cre system is known, the phenotype differs depending on the choice of promoter and the expression method of Cre. ) Is not always easy to produce.
  • the main object of the present invention is to provide a novel model animal exhibiting a symptom of a disease accompanied by synaptic abnormality (for example, FTLD) and a method for producing the same.
  • Another object of the present invention is to provide a method for screening a therapeutic agent effective for a disease accompanied by synaptic abnormality using the model animal, and a therapeutic agent and a therapeutic method for the disease.
  • the present inventors have found that the above problem can be solved by conditional knockout of the FUS gene in the brain, and have completed the present invention.
  • the present inventors have also found that increasing the protein SynGAP ⁇ 2 present in the post-synaptic thick part is effective for the treatment of diseases accompanied by synaptic abnormalities.
  • Examples of the present invention include the following.
  • [1] A model animal exhibiting a symptom of a disease accompanied by synaptic abnormality, which is produced by specific knockout of the FUS gene in the brain.
  • [2] The model animal according to [1] above, wherein the knockout is performed using a Cre-loxP system and a CamK2 promoter.
  • [3] The model animal according to [1] or [2] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
  • FTLD frontotemporal lobar degeneration
  • [4] The model animal according to any one of [1] to [3] above, wherein the animal is a mouse.
  • [5] The model animal according to any one of [1] to [4] above, wherein the animal is an inbred line.
  • [6] A model neuron or model neuron cell line obtained from the model animal according to any one of [1] to [5] above.
  • a method for producing a model animal exhibiting a symptom of a disease accompanied by a synaptic abnormality comprising an operation step of specifically knocking out a FUS gene in the brain.
  • the production method according to [7] above, wherein the operation step of specifically knocking out the FUS gene in the brain uses a Cre-loxP system and a CamK2 promoter.
  • the production method according to [7] or [8] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
  • FTLD frontotemporal lobar degeneration
  • a synapse comprising a step of using the model animal according to any one of [1] to [5] above, or the model nerve cell or model nerve cell line according to [6] above
  • a screening method for searching for a therapeutic drug for a disease accompanied by an abnormality [13] The screening method according to [12] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
  • FTLD frontotemporal lobar degeneration
  • a screening method for searching for a therapeutic agent for a disease associated with a synaptic abnormality comprising a step of measuring an increase or decrease of SynGAP ⁇ 2 due to application of a target drug.
  • the screening method according to [14] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
  • FTLD frontotemporal lobar degeneration
  • the method according to [18] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
  • FTLD frontotemporal lobar degeneration
  • motor neuron diseases such as frontotemporal lobar degeneration (FTLD) and motor neuron diseases
  • FTLD frontotemporal lobar degeneration
  • a drug containing a therapeutic drug found from such screening can be used for the treatment of the disease.
  • the upper diagram is a schematic diagram of a wild type gene (WT) before gene insertion
  • the middle diagram is a schematic diagram of an inserted vector gene
  • the lower diagram is a schematic diagram of a recombinant gene (KO) after gene insertion.
  • the upper figure is a schematic diagram of a wild type gene (WT)
  • the middle figure is a schematic diagram of a recombinant gene (KO) into which a vector has been inserted
  • the lower figure is a conditional knockout completed by removing the Neo cassette by crossing with FLP mice.
  • FIG. 4A a region containing exons 1 to 6 in the wild-type gene sequence of the FUS gene targeted for genetic manipulation is represented.
  • FIG. 4A a region containing exons 1 to 6 of the FUS gene.
  • FIG. 5A Represents the gene sequence of the AAV vector into which the SynGAP A ⁇ 2 gene sequence has been inserted.
  • FIG. 6A For the control mouse (Cre ⁇ ) and the FUS gene conditional knockout mouse expressing Cre (FUS-cKO mouse (Cre +)), FIG.
  • FIG. 4 shows Golgi-stained images of brain tissue sections in the hippocampal CA1 region for control mice (Cre-) and FUS-cKO mice (Cre +). It represents the total number of spines in the brain tissue section. The vertical axis represents the total number of spines per 100 ⁇ m of neurites. It represents the percentage of mature spine in the brain tissue section. The vertical axis shows the percentage (%) of mature spine in the total number of spines. The results of the open field test in control mice (Cre-) and FUS-cKO mice (Cre +) are represented.
  • the vertical axis represents the movement distance (mm) of the mouse in the arena. Elevated cruciform maze test in control mice (Cre-) and FUS-cKO mice (Cre +), figure (A) shows results with "walled road” or “wallless road” . The vertical axis represents the stay time (seconds). FIG. (B) shows the result for “road without walls”. The vertical axis represents the number of intrusions (times). For control mice (Cre ⁇ ) and FUS-cKO mice (Cre +), FIG. (A) represents the results of a novel object recognition test. The vertical axis represents search preference (%). Figure (B) represents the results of the fear conditioning test. The vertical axis shows the time (seconds) of the freezing reaction.
  • FIG. (A) shows the fluorescence immunostained image in the hippocampal CA1 region
  • FIG. (B) shows the Western blot result of the hippocampal CA1 region sample.
  • Golgi-stained images of brain tissue sections are shown for FUS-cKO mice (Cre +), FUS-cKO mice (Cre +), and control mice (Cre ⁇ ) supplemented with SynGAP A ⁇ 2. It represents the percentage of mature spine in the brain tissue section.
  • the vertical axis shows the percentage (%) of mature spine in the total number of spines.
  • the open field test results are shown for FUS-cKO mice (Cre +), FUS-cKO mice (Cre +) and control mice (Cre ⁇ ) supplemented with SynGAP A ⁇ 2.
  • the vertical axis represents the movement distance (cm).
  • the results of the elevated plus maze test are shown for FUS-cKO mice (Cre +), FUS-cKO mice (Cre +), and control mice (Cre ⁇ ) supplemented with SynGAP A ⁇ 2.
  • the vertical axis shows the number of times of intrusion (times) on a road without a wall.
  • Model animal according to the present invention A model animal according to the present invention (hereinafter referred to as “model animal of the present invention”) is produced by specific knockout of the FUS gene in the brain, and is characterized by diseases associated with synaptic abnormalities. Symptoms are present.
  • the “brain” in the present invention also exists in lower organisms, but particularly in higher organisms, mainly the cerebrum or a portion corresponding thereto, particularly the frontal lobe, temporal lobe, hippocampus and the like can be mentioned.
  • FUS gene FUS gene is used for fish such as nematodes and zebrafish, amphibians such as frogs, rodents such as mice, rats and guinea pigs, rabbits, ferrets, dogs, cats, pigs, sheep, goats, cattle, It is a gene that exists widely in horses and higher mammals such as monkeys and humans.
  • amphibians such as frogs
  • rodents such as mice, rats and guinea pigs, rabbits, ferrets, dogs, cats, pigs, sheep, goats, cattle
  • It is a gene that exists widely in horses and higher mammals such as monkeys and humans.
  • the base sequence information of the FUS gene in each animal can be obtained from, for example, Genbank, which is a gene information database.
  • Genbank which is a gene information database.
  • the FUS gene of the target animal is genetically manipulated using data such as a gene information database and specifically knocked out.
  • the model animal of the present invention is produced by specifically knocking out the FUS gene of the animal in the brain.
  • a conditional knockout method which is a method of knocking out a target gene of a target model animal in terms of time and space, can be mentioned.
  • a recombinant enzyme Cre (Cre recombinase) derived from bacteriophage P1 and its target sequence
  • a loxP sequence system (Cre-loxP system)
  • budding yeast Sacharomyces cerevisiae
  • soy sauce yeast Zaygosaccharomyces rouxii
  • bacteriophage Mu-derived recombinant enzyme Gin and its target Examples include Gix array systems and tetracycline ON-OFF systems. Of these, the Cre-loxP system is preferable.
  • the Cre-loxP system is a system using Cre recombinase, which is a gene recombination enzyme, and loxP sequence, which is a recognition sequence thereof.
  • the system is usually a genetically engineered model animal in which Cre recombinase is linked to a promoter that functions in a time-specific and / or site-specific manner, and the target gene is sandwiched between loxP sequences. Cre recombinase expressed in a manner causes deletion of the target gene flanked by loxP sequences.
  • the FUS gene can function normally without being knocked out at the stage of fertilized egg or early development, and the FUS gene can be specifically knocked out in the brain of the model animal at the stage of growth to adulthood.
  • the gene of interest is manipulated in the fertilized egg or the early stage of development of the model animal, for example, from the 2 cell stage to the blastocyst, the blastocyst, and the FUS gene conditional knockout which is the model animal of the present invention
  • a model animal (FUS-cKO model animal) is created.
  • the promoter into which the Cre recombinase gene is incorporated is not particularly limited as long as it specifically functions in the adult brain of the model animal, and examples thereof include CamK2, Arc, and Chat. Of these, the CamK2 promoter is preferred.
  • the mouse CamK2 promoter is a promoter in which significant gene expression is observed in the mouse brain after 2 months of age, and can specifically knock out the FUS gene in the adult brain.
  • FTLD frontotemporal lobar degeneration
  • motor neuron diseases examples include frontotemporal lobar degeneration (FTLD) and motor neuron diseases.
  • the model animal of the present invention develops degeneration mainly in the frontal and temporal lobes, and exhibits histopathological findings of frontal lobe degeneration and motor neuron disease.
  • Symptoms include, for example, marked atrophy of frontal and temporal lobes or behavioral abnormalities caused by higher brain dysfunction.
  • Examples of the synaptic abnormality exhibited by the model animal of the present invention include an abnormality of spine of dendrites existing in the cell body of nerve cells.
  • the form of spine present in the post-synapse changes to a mushroom type when the synapse formation matures, and it is said that the increase in the surface area in contact with the pre-synapse causes synaptic enhancement, which affects behavioral physiology (Hippocampus 2000; 10: 501, JCB 2010; 189: 619).
  • changes in dendritic spines, which are post-synaptic may be involved in the pathological condition (Annu Rev Pathol 2016; 11: 221, Neurosci Biobehav Rev 2015; 59: 208).
  • Examples of the spine abnormality exhibited by the model animal of the present invention include a decrease in the number of spines, a decrease in the number of mature spines, and an abnormality in the spine form.
  • an abnormality of a protein present in the synapse is caused along with the synapse abnormality.
  • Examples of abnormalities in the protein present at the synapse include abnormal localization of PSD-95 and a decrease in SynGAP ⁇ 2.
  • the disease accompanied by synaptic abnormality exhibited by the model animal of the present invention may show higher brain dysfunction as a result.
  • the higher brain dysfunction include hyperactivity (abnormal amount of behavior), anxiety behavior, memory impairment, depression-like behavior, personality disorder, social behavior abnormality, and pain sensitivity abnormality.
  • behavior tests for abnormal behavioral quantities include an open field test and a home cage activity analysis test.
  • anxiety behavior test include an elevated plus maze test (Elevated plus maze test) and a light / dark selection box test (Light / dark transition test).
  • Examples of the memory impairment behavior test include a novel object recognition test, a fear conditioning test, and a Morris water maze test.
  • Examples of the behavior test for depression-like behavior include a porsol forced swim test and a tail suspension test.
  • Examples of the behavioral test for abnormal social behavior include a social behavior test and a 24-hour home cage social behavior test.
  • Examples of tests for abnormal pain sensitivity include a hot plate test and a formalin test.
  • the animal species used for the production of the model animal of the present invention is not particularly limited as long as it is usually used as an experimental animal.
  • nematodes fish such as zebrafish, frogs, etc.
  • Amphibians rodents such as mice, rats and guinea pigs, primates such as monkeys and marmosets, rabbits, ferrets, dogs, cats, pigs, sheep, goats, cows and horses.
  • rodents such as mice, rats and guinea pigs, or primates such as monkeys and marmosets, and more preferred are mice.
  • Many of these animal strains are readily available from laboratory animal vendors.
  • the strain of the animal may be a hybrid or inbred, and is not particularly limited. However, in order to minimize individual differences in the results of animal experiments, an inbred strain with a uniform genetic background is preferable. Inbred experimental animals are usually obtained by inbred mating of 20 generations or more in the case of mice, and therefore have 0.01% or less heterozygous genes. It can be regarded as the same individual. Examples of general inbred experimental animals include the Wister system in rats and the DBA / 2 system, C57BL / 6 system, and BALB / c system in mice. These inbred experimental animals can be easily obtained from experimental animal manufacturers. It can also be established using an inbred animal production service such as the MAX-BAX program provided by an experimental animal company such as Charles River.
  • an inbred model animal especially a mouse suitable for experiments is also provided.
  • the present invention is a model neuron obtained from the model animal of the present invention (hereinafter referred to as “the model neuron of the present invention”) or a model neuron cell line (hereinafter “model neuron cell”). And “the model neuronal cell line of the present invention”).
  • the model neuron of the present invention is a primary cultured neuron obtained from the model animal of the present invention, and can be obtained and cultured by a known method used for primary culture of neurons.
  • the model nerve cells of the present invention are usually obtained from the brain of the model animal of the present invention or the nerve cells of the nervous system.
  • the model neuronal cell line of the present invention is a cell line (established cell) established by repeating subculture from the above-described model neuronal cell of the present invention.
  • the model neuron of the present invention and the model neuron cell line of the present invention have the advantage that they can be easily handled as compared with the model animal of the present invention, and are stored frozen in liquid nitrogen or the like, and thawed as necessary. You can also.
  • Known methods in the technical field of cell culture can be used for culturing, subculturing, cryopreserving, thawing and the like of the model neuron of the present invention.
  • Known methods in the technical field of cell culture can also be used for research, experiments, and tests using the model nerve cells of the present invention.
  • the “cell line” refers to a cell that has been maintained by in vitro subculture for a long period of time and has reached a certain stable property.
  • the present invention comprises a method for producing a model animal exhibiting a symptom of a disease accompanied by a synaptic abnormality characterized by having an operation step of specifically knocking out a FUS gene in the brain (hereinafter referred to as “production of the present invention”).
  • Method “FUS gene”, “disease with synaptic abnormality”, “animal species” and the like are as defined above.
  • Examples of the operation step for specifically knocking out the FUS gene in the brain according to the production method of the present invention include the conditional knockout method described in the section “1.2 Specific knockout of FUS gene in the brain”.
  • a system used in such a conditional knockout method for example, the same system as that shown in the same section can be cited, among which the Cre-loxP system is preferable.
  • the knockout operation it is preferable to use the Cre-loxP system and the CamK2 promoter.
  • a specific gene is genetically manipulated at the developmental stage of the target animal.
  • the method for performing such genetic manipulation include a microinjection method in which DNA is directly injected into the pronucleus of a fertilized egg, a method using a retroviral vector, a method using an ES cell, and a method using an iPS cell. be able to.
  • a gene injected into a fertilized egg or the like is integrated into a chromosome by, for example, homologous recombination.
  • Cre gene a FUS gene sandwiched between loxP sequences and a sequence encoding the full length of the Cre recombinase gene
  • Cre gene a sequence encoding the full length of the Cre recombinase gene
  • a fertilized egg is first collected from the oviduct of a female mouse in which mating has been confirmed, and after culturing, a desired DNA construct is injected into its pronucleus.
  • a DNA construct containing a Cre gene is used.
  • the CamK2 promoter which is a promoter sequence that enables time-specific expression of the transgene, can be used.
  • a FUS gene having a loxP sequence is inserted into the chromosome by homologous recombination.
  • the fertilized egg that has completed the injection operation is transplanted into the oviduct of a pseudopregnant mouse, and the transplanted mouse is bred for a predetermined period to obtain a pup mouse (F0).
  • the Cre gene and / or the FUS gene having the loxP sequence are properly integrated into the chromosome of the pup, extract DNA from the tail of the pup and use a primer specific to the transgene.
  • the appropriate recombinant mouse is selected by the conventional PCR method or dot hybridization method using a probe specific to the transgene.
  • the evaluation of whether or not the conditional knockout has been properly performed can be confirmed by examining the target tissue, that is, the brain tissue.
  • test method in a test for FUS protein, for example, immunostaining of a tissue section, Western blot of extracted protein, and for a test for FUS mRNA, for example, quantitative PCR, Northern hybridization, in situ hybridization is mentioned.
  • the present invention searches for a therapeutic agent for diseases associated with synaptic abnormalities, comprising the step of using the model animal of the present invention, or the model neuronal cell of the present invention or the model neuronal cell line of the present invention.
  • Screening method (hereinafter referred to as “the screening method of the present invention”).
  • the screening method of the present invention is usually applied to the model animal of the present invention that exhibits symptoms such as diseases associated with synaptic abnormalities such as frontotemporal lobar degeneration (FTLD) and motor neuron disease. This is done by administering a drug and assessing whether its characteristic symptoms, pathological findings, or higher brain dysfunction is alleviated and treated.
  • FTLD frontotemporal lobar degeneration
  • the target drug to the model animal of the present invention, when the characteristic symptoms, pathological findings or higher brain dysfunction is alleviated and treated, it is evaluated that the drug may treat or alleviate the disease can do.
  • the target drug is administered to the model animal of the present invention.
  • a step of measuring a change (a change before and after administration) of a protein or mRNA of a gene associated with a disease accompanied by a synaptic abnormality, particularly a brain, caused as a result thereof can be mentioned.
  • genes associated with diseases associated with such synaptic abnormalities include SynGAP ⁇ 2, Tau, and GluA1. Among these, it is preferable to measure increase / decrease in SynGAP ⁇ 2 protein or mRNA.
  • the drug when the amount of SynGAP ⁇ 2 protein or mRNA in the diseased part is increased before administration or compared to the control group, the drug may treat or alleviate the disease Can be evaluated.
  • the increase or decrease of SynGAP ⁇ 2 can be confirmed by measuring the amount of mRNA encoding SynGAP ⁇ 2 or the amount of SynGAP ⁇ 2 protein by a conventional method.
  • the mRNA measurement method include quantitative RT-PCR and Northern hybridization.
  • protein measurement methods include Western blotting and immunostaining.
  • the evaluation of the effectiveness by the above-mentioned measurement is performed using, for example, a tissue extract of a disease site or a tissue section.
  • a disease accompanied by synaptic abnormality eg, frontotemporal lobar degeneration (FTLD), motor neuron diseases, etc.
  • FTLD frontotemporal lobar degeneration
  • motor neuron diseases etc.
  • Such a screening method is also included in the present invention (hereinafter also referred to as “the screening method of the present invention” including the screening method).
  • Increase / decrease of SynGAP ⁇ 2 can be measured by a conventional method. As a result of application of the target drug, when SynGAP ⁇ 2 increases before application or compared to the control group, it can be evaluated that the drug may treat or alleviate the disease.
  • the increase or decrease of SynGAP ⁇ 2 in the brain of the animal used is usually measured.
  • the increase or decrease of SynGAP ⁇ 2 in cells or the like to be used is usually measured.
  • the animal species that can be used are not particularly limited as long as they are non-human animals that are usually used as experimental animals.
  • non-human animals that are usually used as experimental animals.
  • primates monkeys, marmosets
  • rodents Mouse, rat, guinea pig, etc.
  • rabbit, dog, cat, pig, cow, sheep, horse in the in vitro screening method described above.
  • cultured cells of the brain or nerves of humans and non-human animals used as experimental animals as described above are usually used.
  • Examples of cultured human cells include NSC-34, which is a cultured cell derived from motor nerves.
  • Examples of cultured cells of non-human animals include mouse primary cultured neurons, Neuro2A. It is also possible to use iPS cells prepared from cells of humans or non-human animals with or without the above-mentioned diseases that exhibit synaptic abnormalities.
  • the target drug (therapeutic drug candidate) applicable to the screening method of the present invention is not particularly limited as long as it is usually used as a drug.
  • a drug for example, low molecular organic compounds, inorganic compounds, peptides, proteins, glycoproteins, Mention may be made of lipids, glycolipids, sugars and nucleic acids. In addition, it may be an extract or culture supernatant of plants, microorganisms, cells and the like.
  • the application method (administration method) of the target drug to the model animal of the present invention can include a normal administration method to a laboratory animal.
  • oral administration intravascular Injection, administration using a catheter, application to the epidermis, subcutaneous administration, intraperitoneal administration, intrathecal administration, intraventricular administration, brain parenchymal injection, but since the target site is a diseased part of the brain, oral Administration, intravascular injection, administration using a catheter to a diseased site, intrathecal administration, intraventricular administration, and brain parenchymal injection are preferred.
  • the present invention is characterized by containing as an active ingredient a gene encoding SynGAP ⁇ 2 or a SynGAP ⁇ 2 protein, or a drug that promotes the expression of the SynGAP ⁇ 2 gene in the brain or a drug that can increase the SynGAP ⁇ 2 protein.
  • a therapeutic agent for diseases associated with synaptic abnormalities hereinafter referred to as “the therapeutic agent of the present invention”.
  • “treatment” includes not only directly or indirectly improving, alleviating or curing the target disease, symptoms or associated symptoms, but also, for example, preventing such diseases and the like. It is a term.
  • SynGAP ⁇ 2 in the present invention has an ⁇ 2 domain on the C-terminal side among the Splicing variants of SynGAP, and the domain on the N-terminal side may be any of A, B, C, and the like.
  • the present inventors have confirmed that mature spines in brain neurons are significantly reduced while investigating the involvement of FUS in the pathophysiology using the model animals of the present invention, and at the same time, synGAP2 ⁇ in brain neurons. It has also been confirmed that the expression of this gene is decreased, that the selective phenotype of SynGAP2 ⁇ has the same phenotype as that of the model animal of the present invention, and that mature spine has been restored by supplementation with the SynGAP2 ⁇ gene. Therefore, a drug capable of increasing SynGAP ⁇ 2 in the brain may be effective for treating diseases associated with synaptic abnormalities such as FTLD.
  • Examples of such a drug include a drug containing a gene encoding SynGAP ⁇ 2 or a SynGAP ⁇ 2 protein, a drug that promotes the expression of the SynGAP ⁇ 2 gene in the brain, or a drug that can increase the SynGAP ⁇ 2 protein as an active ingredient.
  • the nucleotide sequence of the human SynGAP ⁇ 2 gene and the amino acid sequence of the protein encoded by the gene are represented by SEQ ID NO: 1 and SEQ ID NO: 2, respectively.
  • the nucleotide sequence of the mouse SynGAP ⁇ 2 gene and the amino acid sequence of the protein encoded by the gene are represented by SEQ ID NO: 3 and SEQ ID NO: 4, respectively.
  • SynGAP ⁇ 2 DNA contained in the therapeutic agent of the present invention hybridizes under stringent conditions with DNA having a base sequence complementary to the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3.
  • DNA to be soybean base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3, BLAST (Basic Local Alignment Search at the National Center for Biological Information) (National Biological Information Center Basic Local Alignment Search Tool), etc. (E.g., using default or default parameters) and at least 85%, preferably 90%, more preferably 95%, especially preferred.
  • DNA having a homology of 97% or more or the amino acid sequence of the protein encoded by the DNA.
  • stringent conditions are, for example, conditions of about “1XSSC, 0.1% SDS, 37 ° C.”, and more severe conditions are “0.5XSSC, 0.1% SDS, 42 ° C.” The condition is about “0.2XSSC, 0.1% SDS, 65 ° C.”.
  • isolation of DNA having high homology with the probe sequence can be expected as the hybridization conditions become more severe.
  • the combination of the above SSC, SDS, and temperature conditions is an example, and the necessary stringency can be realized by appropriately combining the probe concentration, probe length, hybridization reaction time, and the like. is there.
  • the human SynGAP ⁇ 2 gene can be obtained from human cells, human tissues and the like based on the sequence information of SEQ ID NO: 1.
  • the mouse SynGAP ⁇ 2 gene can be obtained from mouse cells, mouse tissues and the like based on the sequence information of SEQ ID NO: 3.
  • the therapeutic agent of the present invention also includes a vector containing the SynGAP ⁇ 2 gene. By introducing the vector into a subject, the SynGAP ⁇ 2 protein is expressed in the subject and can exert an effect of promoting mature spine formation. Such introduction of the target gene into the subject in the administration of the therapeutic agent of the present invention can be performed by a known method.
  • viral vectors used in the therapeutic agent of the present invention include viral vectors such as adenovirus, adeno-associated virus (AAV), retrovirus, detoxified retrovirus, herpes virus, vaccinia virus, poxvirus, poliovirus, syn Examples thereof include DNA viruses or RNA viruses such as bisvirus, Sendai virus, SV40, and immunodeficiency virus (HIV). Of these, adenovirus and adeno-associated virus (AAV) are preferred. It is possible to introduce a gene into a cell by introducing the gene of interest into the above viral vector and infecting the cell with a recombinant virus.
  • AAV adeno-associated virus
  • an adeno-associated virus vector (AAV vector) is preferably used.
  • the AAV vector may contain regulatory elements for efficiently expressing the target DNA, such as a promoter, enhancer, transcription terminator, etc., and insert a translation start codon, a translation stop codon, etc. as necessary. Also good.
  • AAV vectors can be used for gene transfer into both proliferating / non-proliferating cells, and in particular, non-dividing cells can express the target gene for a long period of time. Compared to adenovirus vectors and retrovirus vectors, it is less immunogenic and suitable for gene transfer into animals. In addition, since it is a non-pathogenic virus, it can be handled in P1 level facilities and is widely used as a research virus vector that is safe and easy to handle. In addition, there are more than 100 serotypes in AAV, and it is known that the characteristics of host ranges and viruses differ depending on the serotype. Serotype 2 (AAV2) is one of the serotypes that has been extensively studied since ancient times, and is known to have a very wide host range.
  • Serotype 1 (AAV1), serotype 5 (AAV5) and serotype 6 (AAV6) are serotypes with higher tissue orientation, AAV1 is muscle, liver, airway, central nervous system, etc.
  • AAV5 is AAV6, such as the central nervous system, liver, and retina, is said to have high gene transfer efficiency into the heart, muscle, liver, and the like, and can be used properly according to the target tissue.
  • serotype 9 (AAV9) was used.
  • Non-Patent Document 1 has a track record of using a virus prepared from a plasmid having the same backbone as AAV9 used in this experiment.
  • the AAV vector used for the therapeutic agent of the present invention can be prepared by standard methods well known in the art.
  • US Pat. No. 5,858,351 and references cited therein describe various recombinant AAV suitable for use in gene therapy, as well as methods for making and propagating these vectors ( For example, Kotin (1994) Human Gene Therapy 5: 793 ⁇ 801 or Berns “Parvoviridae and their Replication” Fundamental Virology, 2nd edition, edited by Fields & ipeKnipe).
  • a plasmid is produced by leaving the ITRs at both ends of wild-type AAV and inserting a target gene between them (AAV vector plasmid).
  • AAV vector plasmid that expresses the Rep gene (a gene that encodes a replicative protein) and a Cap gene (a gene that encodes the cranial protein of a virus), and a plasmid that expresses each of the adenovirus genes E2A, E4, and VA
  • These three plasmids are then simultaneously transfected into packaging cells that express the E1 gene, eg, HEK293 cells, and the cells are cultured.
  • E1 gene eg, HEK293 cells
  • the non-viral vector used in the therapeutic agent of the present invention is not particularly limited as long as it is a vector that can express the target gene in vivo.
  • pCAGGS Gene 108, 193-200 (1991)
  • pBK -Expression vectors such as CMV, pcDNA3, 1, pZeoSV (Invitrogen, Stratagene), pVAX1 and the like.
  • pVAX1 pVAX1
  • Examples of such methods include lipofection method, phosphate-calcium coprecipitation method, DEAE-dextran method, direct DNA injection method using micro glass tube, gene transfer method using internal liposome, electrostatic liposome. (Electrostatic type liposome) gene transfer method, HVJ-liposome method, improved HVJ-liposome method (HVJ-AVE liposome method), method using HVJ-E (envelope) vector, receptor-mediated gene transfer method, particle gun And a method of transferring a DNA molecule together with a carrier (metal particles) into a cell, a direct introduction method of naked-DNA, an introduction method using various polymers, and the like.
  • the vector containing the SynGAP ⁇ 2 gene may contain a promoter or enhancer for appropriately transcription of the gene, a poly A signal, a marker gene for labeling and / or selecting a cell into which the gene has been introduced, and the like.
  • a promoter in this case, a known promoter can be used.
  • the protein encoded by the SynGAP ⁇ 2 gene contained in the therapeutic agent of the present invention has an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4, and induces the formation of mature spine A protein having activity can be used.
  • the substantially identical amino acid sequence one or more or several (1 to 10, preferably 1 to 5, more preferably 1 or 2) amino acids are included in the amino acid sequence.
  • Substitution, deletion and / or addition amino acid sequence or the amino acid sequence, and BLAST Basic Local Alignment Search at the National Center for Biological Information
  • BLAST Basic Local Alignment Search at the National Center for Biological Information
  • BLAST Basic Local Alignment Search at the National Center for Biological Information
  • BLAST Basic Local Alignment Search tool of the National Center for Biological Information
  • having a homology of at least 85%, preferably 90%, more preferably 95%, particularly preferably 97% or more is something that can be cited.
  • Incorporation of the SynGAP ⁇ 2 protein into the nerve cell may be performed, for example, by combining the SynGAP ⁇ 2 protein with a peptide capable of passing through the cell membrane and administering it to the brain tissue site.
  • a peptide capable of passing through the cell membrane Various peptides are known as peptides that can pass through the cell membrane, and these known peptides can be used.
  • HIV-1 TAT cell membrane domain Drosophila homeobox protein Antennapedia's transmembrane domain, C-terminal (267-300) peptide of VP22, HIV-1 / Rev (34-50) peptide, FHV / coat (35-49) peptide, N-terminal of K-FGF (7-22 ) Hydrophobic region.
  • it may be administered locally to the brain tissue site, or by oral administration or the like, and the SynGAP ⁇ 2 protein may be delivered to nerve cells.
  • Examples of such a compound capable of specifically binding to a nerve cell include a homing signal peptide that binds to a receptor expressed on the surface of the nerve cell.
  • a DNA encoding the SynGAP ⁇ 2 protein and a DNA encoding the above-mentioned cell membrane-passing peptide or homing signal peptide are linked in-frame, and known genetic engineering is performed. It may be produced as a fusion protein by technology.
  • the SynGAP ⁇ 2 protein or the SynGAP ⁇ 2 gene contained in the therapeutic agent of the present invention is a fragment peptide consisting of a partial amino acid sequence of the amino acid sequence of the protein, a peptide having the activity of promoting the formation of mature spine, and the nucleotide sequence of the DNA
  • a fragment nucleotide consisting of a partial base sequence and a nucleotide encoding a peptide having activity for promoting the formation of mature spine is also included.
  • Such a fragment peptide or fragment nucleotide can be easily obtained by cleaving full-length protein or full-length DNA at an appropriate site and determining whether it has activity to promote formation of mature spine.
  • the therapeutic agent of the present invention is a pharmacologically acceptable carrier in addition to a SynGAP ⁇ 2 protein or a fusion protein of a SynGAP ⁇ 2 protein and a cell membrane-passing peptide or a homing signal peptide, or a SynGAP ⁇ 2 gene DNA or a vector containing the DNA, Diluents or excipients can be included.
  • the therapeutic agent of the present invention can be administered in various forms, orally by tablets, capsules, granules, powders, syrups, etc., or injections, drops, suppositories, sprays, eye drops, nasal Parenteral administration by administration agent, patch, etc. can be mentioned.
  • the therapeutic agent of the present invention includes a carrier, a diluent, and an excipient that are usually used in the pharmaceutical field.
  • lactose and magnesium stearate are used as carriers and excipients for tablets.
  • aqueous solution for injection isotonic solutions containing physiological saline, glucose and other adjuvants are used.
  • Suitable solubilizers such as polyalcohols such as alcohol and propylene glycol, nonionic surfactants and the like You may use together.
  • As the oily liquid, sesame oil, soybean oil or the like is used, and as a solubilizing agent, benzyl benzoate, benzyl alcohol or the like may be used in combination.
  • the therapeutic agent of the present invention is usually administered in an animal (living body).
  • the target animal that can be administered is not particularly limited, and examples thereof include human or non-human animals.
  • Non-human animals are not particularly limited, but mammals other than humans, specifically, primates (monkeys, marmosets), rodents (mouse, rats, guinea pigs, etc.), rabbits, dogs, cats, pigs, cows , Sheep and horses.
  • the method of administering the therapeutic agent of the present invention to an animal (in vivo) is not particularly limited and can be appropriately determined by those skilled in the art depending on the treatment method and the like.
  • the administration method may be systemic administration or local administration.
  • Administration of the therapeutic agent of the present invention can be performed by any of injection (needle-type, needle-free), administration using a catheter, internal use, and external use.
  • As the administration route it is preferable to select an effective route for treatment or the like.
  • parenteral administration such as intravenous administration, intraarterial administration, subcutaneous administration, intramuscular administration, and tissue administration in addition to oral administration.
  • the target site of the therapeutic agent of the present invention is mainly a diseased part of the brain, oral administration, intravascular injection, administration using a catheter to the diseased site, intrathecal administration, intraventricular chamber Administration and brain parenchymal injection are preferred.
  • the dosage of the therapeutic agent of the present invention can be appropriately selected according to the type of active ingredient, the type of disease, the patient's condition, age, weight, sex, type of carrier, additive and the like.
  • the amount of the active ingredient is suitably in the range of 0.1 ng to 1000 mg per day for an adult, preferably in the range of 1 ng to 500 mg, more preferably in the range of 10 ng to 200 mg. There may be cases where more are needed, and there are cases where less than this is sufficient. Further, such a dose can be administered once a day or divided into a plurality of times.
  • the active ingredient is SynGAP ⁇ 2 protein
  • it is preferably about 0.001 mg to 100 mg per day for oral administration, and is preferably administered once or divided into several times.
  • 0.001 mg to 100 mg per administration is preferably administered by subcutaneous injection, intramuscular injection, or intravenous injection.
  • the active ingredient is SynGAP ⁇ 2 gene DNA inserted into an expression vector to be translated in the subject
  • 0.001 mg to 100 mg is subcutaneously or intramuscularly injected once every several days, weeks or months Or by intravenous injection.
  • the therapeutic agent of the present invention may contain a drug that promotes the expression of the SynGAP ⁇ 2 gene in the brain or a drug that can increase the SynGAP ⁇ 2 protein as an active ingredient.
  • the drug include low molecular weight organic compounds, inorganic compounds, peptides, proteins, glycoproteins, lipids, glycolipids, sugars, nucleic acids, plants, and the like, as long as they are found by the screening method of the present invention and have the relevant effects. There are no particular restrictions on the extract of microorganisms, cells, etc., and the culture supernatant.
  • a pharmaceutically acceptable carrier or the like can be included as long as the effects of the present invention are not impaired.
  • the carrier include solid, semi-solid or liquid diluents, fillers, and other formulation aids, such as edible carbohydrates such as starch and mannitol.
  • the amount of these carriers and the like is suitably in the range of 0.5 to 99.999% in the preparation, and more preferably in the range of 10 to 99.99% by weight.
  • the therapeutic agent of the present invention containing the drug as an active ingredient can be blended with pharmaceutically acceptable additives, excipients and the like in addition to the above carriers as long as the effects of the present invention are not impaired.
  • additives or excipients include, for example, emulsification aids (eg, fatty acids having 6 to 22 carbon atoms and pharmaceutically acceptable salts thereof, albumin, dextran), stabilizers (eg, cholesterol, phosphatidic acid).
  • Isotonic agents eg, sodium chloride, glucose, maltose, lactose, sucrose, trehalose
  • pH adjusters eg, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, sodium hydroxide, potassium hydroxide, triethanolamine
  • the content of the additive and the like in the therapeutic agent of the present invention is suitably 90% by weight or less, preferably 70% by weight or less, and more preferably 50% by weight or less.
  • the dosage form of the therapeutic agent of the present invention containing the drug as an active ingredient is not particularly limited and is appropriately selected depending on the administration method and the like.
  • a preparation for parenteral administration for example, an injection, an ointment
  • examples include gels, creams, patches, liniments, suppositories, sprays, inhalants, sprays, eye drops, and nasal drops.
  • an injection is preferable.
  • preparations for oral administration include powders, granules, tablets, capsules, syrups, and liquids.
  • the administration subject, administration subject, dosage and the like are the same as described above.
  • the present invention includes a method for treating a disease accompanied by synaptic abnormality (hereinafter referred to as “the treatment method of the present invention”), which comprises a step of supplementing or increasing SynGAP ⁇ 2 in the brain.
  • the treatment method of the present invention includes frontotemporal lobar degeneration (FTLD) and motor neuron disease.
  • a gene encoding SynGAP ⁇ 2 or a SynGAP ⁇ 2 protein for example, a gene encoding SynGAP ⁇ 2 or a SynGAP ⁇ 2 protein, a drug that promotes the expression of SynGAP ⁇ 2 gene in the brain, or a drug that can increase the SynGAP ⁇ 2 protein Can be achieved directly or indirectly.
  • Examples of the drug that promotes the expression of the SynGAP ⁇ 2 gene in the brain or the drug that can increase the SynGAP ⁇ 2 protein include, for example, low molecular organic compounds, inorganic compounds, peptides, Extracts and culture supernatants of proteins, glycoproteins, lipids, glycolipids, sugars, nucleic acids, plants, microorganisms, cells and the like are not particularly limited.
  • the preparation for administering the active ingredient, the administration subject, the dosage, etc. are the same as described above.
  • Example 1 Preparation of model animal of the present invention (FUS-cKO mouse (Cre +))
  • a model animal of the present invention was prepared using the Cre-loxP system.
  • a vector having a gene sequence in which a 5 ⁇ UTR of the FUS gene and a loxP sequence in the same direction were inserted into intron 3 was designed together with a neomycin cassette having an Frt sequence (see FIG. 1), and a vector having the sequence was prepared.
  • Schematic representation of exon 1-6 region of wild type (WT) gene FIGGS. 4A and 4B, SEQ ID NO: 5
  • vector, and gene into which the vector has been inserted FIGS. 5A and 5B, SEQ ID NO: 6
  • the figure is shown in FIG.
  • the DNA was subjected to restriction enzyme treatment with BamHI or HindIII and subjected to Southern blotting to confirm the introduction of the target gene.
  • iTL BA1 ES cells C57BL / 6J ⁇ 129 / SvEv
  • the ES cell into which the gene was introduced was confirmed by amplifying the target sequence of the DNA by PCR.
  • the produced ES cell having the inserted vector was inserted into a blastocyst of a mouse of C57BL / 6J strain by microinjection.
  • Newborn pups were mated with C57BL / 6J FLP mice to remove the neomycin cassette (the above-mentioned process was commissioned to inGenetic Targeting Laboratories).
  • a schematic diagram of the WT gene, KO gene, and gene from which the neomycin cassette has been removed (Neo deletion) is shown in FIG.
  • the mouse DNA was confirmed by PCR for detection of mice with Neo deletion containing the LoxP sequence. Since the WT is 286 bp and the Neo deletion sequence is 451 bp, homozygous mice in which only 451 bp are confirmed were used in the experiment. Thereafter, the mice were backcrossed to C57BL / 6J (purchased from Chubu Chemical Materials Co., Ltd.) and mated. Then, using the MAX-BAX program (Charles River), a Cre-loxP sequence-introduced mouse having a completely matched genetic background was prepared.
  • Camk2a-Cre mice (Cell 1996; 87: 1917) were mated to the above-mentioned mice whose gene backgrounds were completely matched.
  • FUS fl / fl / Cre + mice were used as FUS-cKO mice (Cre +) (model animal of the present invention), and FUS fl / + , FUS fl / fl / mouse (Cre ⁇ ) were used as control mice. used.
  • males aged 3-4 months were mainly used.
  • brain parenchymal injection of the AAV vector of Test Example 7 was performed, the injection was performed at 6 weeks of age, and the analysis was performed at 3 to 4 months of age.
  • Example 1 Evaluation of FUS-cKO mice (Cre +) of Example 1
  • the FUS-cKO mice (Cre +) prepared in Example 1 were evaluated for the expression level of FUS protein in the hippocampus of the brain by immunostaining.
  • the brains of 3-month-old FUS-cKO mice (Cre +) and control mice (Cre ⁇ ) were fixed with paraformaldehyde to prepare paraffin-embedded samples, and anti-FUS antibody immunostaining was performed with DAB coloring in the hippocampal tissue sections. went. Next, the hippocampal CA1 region was separated from the section, and the protein expression level was confirmed by Western blotting using a sample crushed by ultrasonic waves.
  • the total distance of movement was significantly increased in the FUS-cKO mouse (Cre +) group (see FIG. 9).
  • the FUS-cKO mouse (Cre +) prepared in Example 1 exhibited a “hyperactivity” phenotype.
  • Test Example 4 Behavior test (anxiety behavior) Anxiety behavior was evaluated by the elevated plus maze method. The test mouse used in Test Example 3 was used. As a method, a cross passage with one side set as a “walled road” with fences on both sides and the other opened as a “wallless road” is placed at a height of 50 cm above the floor and tested there. This was done by placing a body mouse and evaluating the behavior pattern for 5 minutes.
  • the FUS-cKO mouse (Cre +) group had a significant increase in residence time of the “wallless road” and significantly decreased in the “walled road” group (FIG. 10). (See (A)). The number of intrusions into the “wallless road” in 5 minutes was also significantly increased in the FUS-cKO mouse (Cre +) group (see FIG. 10B). As described above, the FUS-cKO mouse (Cre +) prepared in Example 1 exhibited a “lack of anxiety” phenotype.
  • Test Example 5 Behavioral test (memory impairment) Memory impairment was assessed with a novel object recognition test and a fear conditioning test.
  • the test mouse used in Test Example 3 was used.
  • the fear conditioning test the subject mouse was placed in a 30 cm square box (context conditioning), allowed to hear 85 dB of sound for 15 seconds (sound conditioning), and subjected to an electric shock of 0.8 mA for the last 5 seconds. Turned and conditioned by context and sound. Then, put it in the same box the next day and observe for 2 minutes whether the subject mouse caused a “shrinking reaction” without giving an electric shock.
  • a 2019 sound conditioning test was performed to observe the “freezing reaction” for 1 minute each before and after sound stimulation.
  • FUS-cKO mice (Cre +) group exhibited behavioral abnormalities such as “hyperactivity” and “lack of anxiety”, but “memory impairment” was not observed. This feature is similar to that of early clinical symptoms in patients with FTLD (Dement Geriatr Cogn Disord 2006; 21: 74). Therefore, it is clear that the FUS-cKO mouse (Cre +) prepared in Example 1 is appropriate as a model animal such as FTLD.
  • SynGAP A ⁇ 2 supplementation experiment A cDNA vector of mouse SynGAP A ⁇ 2 with FLAG attached to the N-terminus was inserted into an AAV vector that was expressed under the CAG promoter, and an AAV equipped with this vector was prepared (FIG. 6A and FIG. 6). FIG. 6B, see SEQ ID NO: 7).
  • a Flag peptide is inserted as a labeling sequence at the N-terminus of SynGAP. It was administered to 6-week-old mice, and SynGAP A ⁇ 2 protein was supplemented by expressing SynGAP A ⁇ 2 to conduct a phenotypic improvement test.
  • the experiment was carried out using the stereotaxic device (Angel Two, Leica) on the bilateral hippocampus of 6-week-old FUS-cKO mice (Cre +) prepared in Example 1, and AAV was 1.5 ⁇ 10 13 on the bilateral hippocampus. This was done by stereotaxic injection of 1 ⁇ L at a concentration of squared VG / mL. Evaluation was performed in the same manner as in Test Example 2, using a brain tissue section of a FUS-cKO mouse, Golgi staining was performed by FD Rapid GolgiStain kit (manufactured by FD Neuro Technologies), and the spine morphology at the post-synaptic part was evaluated, and matured This was done by evaluating the proportion of spine.
  • the experiment was performed using 3 FUS-cKO mice (Cre +).
  • Re + As a negative control group for the experiment, two FUS-cKO mice (Cre +) and three mice in which AAV loaded with an AAV vector incorporating the GFP cDNA sequence was injected into control mice (Cre ⁇ ) were prepared.
  • Test Example 8 Behavior test (action amount, anxiety behavior) For the FUS-cKO mice (Cre +) group supplemented with SynGAP A ⁇ 2 in Test Example 7, recovery of higher brain dysfunction was evaluated by behavioral tests. The amount of behavior was evaluated by the open field test as in Test Example 3, and the anxiety behavior was evaluated by the elevated plus maze method as in Test Example 4. As in Test Example 7, FUS-cKO mice (Cre +) and control mice (Cre ⁇ ) were injected with AAV loaded with an AAV vector incorporating the GFP cDNA sequence, as a negative control group for the experiment. .
  • the model animal of the present invention can be used as an industry for research and development of diseases associated with synaptic abnormalities such as frontotemporal lobar degeneration (FTLD) and motor neuron diseases.
  • FTLD frontotemporal lobar degeneration
  • the screening method of the present invention can be used as an industry in searching for therapeutic agents for diseases associated with synaptic abnormalities.
  • the therapeutic agent of the present invention is effective for the treatment of diseases accompanied by synaptic abnormalities, it can be used for production and sales.
  • SEQ ID NO: 5 is the nucleotide sequence of exon 1 to 6 of mouse FUS gene.
  • SEQ ID NO: 6 nucleotide sequence of exon 1-6 region of mouse FUS gene after insertion of vector.
  • SEQ ID NO: 7 This is the base sequence of an AAV vector incorporating SynGAP A2 ⁇ cDNA.

Abstract

The present invention mainly addresses the problem of providing a novel and specific knockout model animal that presents a symptom of a disease accompanied by a synapse abnormality in the brain, a method for producing same, and a therapeutic agent for said disease. The present invention provides a model animal that presents a symptom of a disease (e.g., frontotemporal lobar degeneration (FTLD)) accompanied by a synapse abnormality, which animal is characterized by being produced by specifically knocking out the FUS gene in the brain, for example, by using the Cre-loxP system and CamK2 promotor, for example and a method for producing same, or a screening method for the therapeutic agent for said disease, in which said model animal is used or the like.

Description

疾患モデル動物および疾患治療剤Disease model animals and disease treatment agents
 本発明は、遺伝子組み換え実験動物、および疾患の治療剤の技術分野に属する。本発明は、シナプス異常を伴う疾患(例えば、前頭側頭葉変性症)の症状を呈する、脳におけるFUS遺伝子特異的ノックアウトモデル動物、その製造方法、もしくは当該モデル動物を使用した当該疾患に有効な治療薬のスクリーニング方法、または当該疾患の治療剤などに関するものである。 The present invention belongs to the technical field of genetically modified experimental animals and therapeutic agents for diseases. INDUSTRIAL APPLICABILITY The present invention is effective for a FUS gene-specific knockout model animal in the brain that exhibits symptoms of a disease accompanied by synaptic abnormalities (for example, frontotemporal lobar degeneration), a method for producing the same, or the disease using the model animal. The present invention relates to a method for screening a therapeutic agent or a therapeutic agent for the disease.
 近年、医療および科学技術の進歩により、特に先進国における平均寿命は大きく延長された。しかし、それに伴い、過去には問題にならなかった脳の老化によって発生する様々な機能低下、疾患、病態が大きな社会問題となってきている。それらの中でも認知症は、患者本人のクオリティ・オブ・ライフを大きく低下させ、また、介護する家族への負担も非常に大きい。認知症による症状としては、記憶障害、視覚障害、言語障害、問題行動、睡眠障害、うつ症状等の多岐にわたる。このような認知症をきたす脳の変性疾患としては、アルツハイマー病、レビー小体型認知症、脳血管性認知症、前頭側頭葉変性症(FTLD:Frontotemporal lobar degeneration)等が知られている。 In recent years, life expectancy has been greatly extended, especially in developed countries, due to advances in medicine and science and technology. However, along with this, various functional declines, diseases and pathologies caused by aging of the brain, which has not been a problem in the past, have become major social problems. Among them, dementia greatly reduces the patient's quality of life, and the burden on the caring family is very large. Symptoms due to dementia range from memory impairment, visual impairment, language impairment, behavioral problems, sleep disorders, and depressive symptoms. Known brain degenerative diseases that cause such dementia include Alzheimer's disease, Lewy body dementia, cerebrovascular dementia, frontotemporal lobar degeneration (FTLD), and the like.
 FTLDによる認知症は、特に欧米では、アルツハイマー病に次いで多い進行性認知症である。FTLDの主な特徴は、前頭葉と側頭葉が変性部位であることであり、その組織病理的所見は、前頭葉変性型、ピック病型、運動ニューロン病型の3つである。症状としては、人格障害および社会的行動の異常といった高次脳機能障害に起因する行動異常が見られる。しかし、FTLDの病態は非常に複雑であり、これまで診断法、治療法に関する研究が十分に進められてこなかったため、根本的な治療法は未だ確立されていない。 認知 Dementia caused by FTLD is progressive dementia, second only to Alzheimer's disease, especially in the West. The main feature of FTLD is that the frontal lobe and temporal lobe are degenerative sites, and histopathological findings are of three types: frontal degeneration, Pick disease, and motor neuron disease. Symptoms include behavioral abnormalities due to higher brain dysfunction such as personality disorder and social behavioral abnormalities. However, the pathological condition of FTLD is very complicated, and research on diagnostic methods and therapeutic methods has not been sufficiently advanced so far, so that a fundamental therapeutic method has not yet been established.
 非常に複雑な病態を呈するFTLDの詳細な研究を更に進めるためには、その病態を示す均一なモデル動物の系の存在が必要不可欠である。そのようなモデル動物の系としては、遺伝子組み換えモデル動物、例えば、ノックアウトマウスであることが好ましい。従来、FTLDは、神経細胞内でFUSやTDP-43タンパク質の異常凝集・蓄積や異常局在により神経変性を引き起こすと言われている。そのため、FTLD等の認知症モデル動物は、認知症関連遺伝子の過剰発現により、例えば、遺伝子のノックインにより作製されてきた。しかし、これらは当該特定の遺伝子が大量に発現することによる毒性が、神経変性を引き起こしている可能性を否定できず、モデルそのものが異常所見によっているものではないかという批判が存在した。 In order to further advance the detailed study of FTLD that exhibits very complicated pathological conditions, it is essential to have a uniform model animal system showing the pathological conditions. Such a model animal system is preferably a genetically modified model animal such as a knockout mouse. Conventionally, FTLD is said to cause neurodegeneration by abnormal aggregation / accumulation and abnormal localization of FUS and TDP-43 proteins in nerve cells. Therefore, a dementia model animal such as FTLD has been produced by overexpression of a dementia-related gene, for example, by knocking in a gene. However, there is a criticism that the model itself may be based on abnormal findings because it is impossible to deny the possibility that the toxicity caused by the large amount of the specific gene causing neurodegeneration.
 特許文献1には、筋萎縮性側索硬化症および/または前頭側頭葉変性症のモデルマウスが開示されている。当該モデルマウスは、内在性のTDP-43の少なくとも一方のアレルに変異型のTDP-43を置き換えたノックインマウスである。当該モデルマウスは、筋萎縮性側索硬化症および前頭側頭葉変性症と同様の病態を呈するが、ノックインマウスであるため、モデルそのものが異常所見によるかものどうかの判断が困難である。 Patent Document 1 discloses a model mouse of amyotrophic lateral sclerosis and / or frontotemporal lobar degeneration. The model mouse is a knock-in mouse in which at least one allele of endogenous TDP-43 is replaced with mutant TDP-43. The model mouse exhibits the same pathological condition as amyotrophic lateral sclerosis and frontotemporal lobar degeneration, but it is a knock-in mouse, so it is difficult to determine whether the model itself is due to abnormal findings.
 本発明者らのグループは、マウスを用いて上述のFTLDの病態の研究を行い、その結果、マウスの脳においてFUS(Fused in sarcoma)遺伝子を、shRNA発現レンチウイルスを用いてノックダウンしたマウスが、FTLD様の病態を示すことを示した(非特許文献1参照。)。さらにFUS遺伝子をノックダウンした培養細胞において、シナプスに存在するグルタミン酸受容体GluA1タンパク質の量が顕著に低下すること、そしてFUSはGluA1のmRNAに特異的に結合し安定化させる働きを有すること、そして上述のFUSをノックダウンしたマウスのFTLD様の病態が、GluA1の遺伝子導入により回復することを示した。 The group of the present inventors conducted research on the above-mentioned pathological condition of FTLD using mice, and as a result, there were mice that knocked down the FUS (Fused in sarcoma) gene in the mouse brain using a shRNA-expressing lentivirus. And FTLD-like disease state (see Non-Patent Document 1). Furthermore, in cultured cells in which the FUS gene is knocked down, the amount of glutamate receptor GluA1 protein present in the synapse is significantly reduced, and FUS has a function of specifically binding to and stabilizing GluA1 mRNA, and It was shown that FTLD-like pathology of mice knocked down by the above-mentioned FUS was recovered by GluA1 gene transfer.
 上述の実験でその発現抑制(機能喪失)がFTLDの原因のひとつとして示唆されたFUS遺伝子について、更に精密に研究を進めるには、FUS遺伝子ノックアウトマウスの作製が必要である。しかしながら、FUS遺伝子ノックアウトマウスは、通常は胎生致死であるため、これまで交雑系のマウスにおける作製報告があるものの(例、非特許文献2、非特許文献3参照。)、それ以外は報告が見当たらない。また、ほぼ同じ遺伝子バックグラウンドを有する近交系のマウスにおけるノックアウトマウスの作製はさらに困難であり、今まで報告がなかった。FTLD型認知症は、非常に複雑な病態を有するため、信頼できる実験結果を得るためには、個体差の大きい交雑系では限界がある。 In order to proceed more precisely with the FUS gene whose expression suppression (loss of function) was suggested as one of the causes of FTLD in the above-mentioned experiment, it is necessary to prepare a FUS gene knockout mouse. However, since FUS gene knockout mice are usually embryonic lethal, although there have been reports on generation of cross-breed mice so far (see, for example, Non-Patent Document 2 and Non-Patent Document 3), other reports are found. Absent. In addition, the creation of a knockout mouse in an inbred mouse having almost the same gene background is even more difficult and has not been reported so far. Since FTLD type dementia has a very complicated pathology, there is a limit in a hybrid system with large individual differences in order to obtain reliable experimental results.
 一方、SynGAP(Synaptic Ras GTPase activating Protein)は、シナプス後厚部(PSD)に存在するタンパク質であり、グルタミン酸受容体の活性化の下流で小分子Gタンパク質シグナリングを負に制御することが知られている。SynGAPタンパク質は、線虫から高等哺乳動物まで存在することがわかってきている。また、SynGAPタンパク質には、現在までに複数の種類のC末端ドメイン(α1、α2、β、γ等)と、複数の種類のN末端ドメイン(A、B、C等)の組み合わせからなる多種スプライシングバリアントの存在が示されており、その多様な機能を示唆している(例、非特許文献4、非特許文献5参照。)。
 
On the other hand, SynGAP (Synthetic Ras GTPase Activating Protein) is a protein present in the postsynaptic thick part (PSD), and is known to negatively regulate small molecule G protein signaling downstream of glutamate receptor activation. Yes. SynGAP protein has been found to exist from nematodes to higher mammals. SynGAP protein has various types of splicing consisting of a combination of multiple types of C-terminal domains (α1, α2, β, γ, etc.) and multiple types of N-terminal domains (A, B, C, etc.). The existence of the variant is shown, suggesting its various functions (for example, see Non-Patent Document 4 and Non-Patent Document 5).
国際公開第2013/180214号International Publication No. 2013/180214
 FUS遺伝子を、例えばアデノ随伴ウイルスで注射しノックダウンするモデルは、海馬のみに効果が限局しており、また手技の習得が容易ではない。報告されているFUS遺伝子ノックアウトマウスは、すべて交雑系であり、特にその行動解析は系統によっても結果が異なる可能性がある。一方、近交系の背景に統一されたFUS遺伝子ノックアウトマウスを用いた解析例は知られていない。
 また、loxP-Creシステムを用いて組織特異的にノックアウトする技術は知られているが、プロモーターの選択やCreの発現方法などにより表現型が異なるため、最適化された病態モデル動物(病態モデルマウス)の作製は必ずしも容易ではない。
A model in which the FUS gene is injected with, for example, an adeno-associated virus and knocked down has a limited effect only on the hippocampus, and it is not easy to learn a technique. All reported FUS gene knockout mice are crossbred, and in particular, the behavioral analysis may have different results depending on the strain. On the other hand, there is no known analysis example using a FUS gene knockout mouse unified in the background of inbred lines.
Although tissue-specific knockout technology using the loxP-Cre system is known, the phenotype differs depending on the choice of promoter and the expression method of Cre. ) Is not always easy to produce.
 本発明は、シナプス異常を伴う疾患(例えば、FTLD)の症状を呈する新規なモデル動物、およびその製造方法を提供することを主な課題とする。また、当該モデル動物を使用した、シナプス異常を伴う疾患に有効な治療薬のスクリーニング方法、当該疾患の治療剤および治療方法を提供することも課題とする。 The main object of the present invention is to provide a novel model animal exhibiting a symptom of a disease accompanied by synaptic abnormality (for example, FTLD) and a method for producing the same. Another object of the present invention is to provide a method for screening a therapeutic agent effective for a disease accompanied by synaptic abnormality using the model animal, and a therapeutic agent and a therapeutic method for the disease.
 本発明者らは、鋭意研究を重ねた結果、脳におけるFUS遺伝子のコンディショナルノックアウトにより上記課題を解決しうることを見出し、本発明を完成するに到った。また、本発明者らは、シナプス後厚部に存在するタンパク質SynGAPα2を増やすことが、シナプス異常を伴う疾患の治療に有効であることも見出した。 As a result of intensive studies, the present inventors have found that the above problem can be solved by conditional knockout of the FUS gene in the brain, and have completed the present invention. The present inventors have also found that increasing the protein SynGAPα2 present in the post-synaptic thick part is effective for the treatment of diseases accompanied by synaptic abnormalities.
 本発明として、例えば、下記を挙げることができる。
[1]脳におけるFUS遺伝子の特異的ノックアウトにより作製されることを特徴とする、シナプス異常を伴う疾患の症状を呈するモデル動物。
[2]ノックアウトが、Cre-loxPシステムとCamK2プロモーターとを用いて行われる、上記[1]に記載のモデル動物。
[3]シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、上記[1]または[2]に記載のモデル動物。
[4]動物がマウスである、上記[1]~[3]のいずれか一項に記載のモデル動物。
[5]動物が近交系である、上記[1]~[4]のいずれか一項に記載のモデル動物。
[6]上記[1]~[5]のいずれか一項に記載のモデル動物から取得されるモデル神経細胞またはモデル神経細胞株。
Examples of the present invention include the following.
[1] A model animal exhibiting a symptom of a disease accompanied by synaptic abnormality, which is produced by specific knockout of the FUS gene in the brain.
[2] The model animal according to [1] above, wherein the knockout is performed using a Cre-loxP system and a CamK2 promoter.
[3] The model animal according to [1] or [2] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
[4] The model animal according to any one of [1] to [3] above, wherein the animal is a mouse.
[5] The model animal according to any one of [1] to [4] above, wherein the animal is an inbred line.
[6] A model neuron or model neuron cell line obtained from the model animal according to any one of [1] to [5] above.
[7]脳におけるFUS遺伝子を特異的にノックアウトする操作工程を有することを特徴とする、シナプス異常を伴う疾患の症状を呈するモデル動物の製造方法。
[8]脳におけるFUS遺伝子を特異的にノックアウトする操作工程が、Cre-loxPシステムとCamK2プロモーターとを用いるものである、上記[7]に記載の製造方法。
[9]シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、上記[7]または[8]に記載の製造方法。
[10]動物がマウスである、上記[7]~[9]のいずれか一項に記載の製造方法。
[11]動物が近交系である、上記[7]~[10]のいずれか一項に記載の製造方法。
[7] A method for producing a model animal exhibiting a symptom of a disease accompanied by a synaptic abnormality, comprising an operation step of specifically knocking out a FUS gene in the brain.
[8] The production method according to [7] above, wherein the operation step of specifically knocking out the FUS gene in the brain uses a Cre-loxP system and a CamK2 promoter.
[9] The production method according to [7] or [8] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
[10] The production method according to any one of [7] to [9] above, wherein the animal is a mouse.
[11] The production method according to any one of [7] to [10] above, wherein the animal is an inbred strain.
[12]上記[1]~[5]のいずれか一項に記載のモデル動物、または上記[6]に記載のモデル神経細胞もしくはモデル神経細胞株を用いる工程を有することを特徴とする、シナプス異常を伴う疾患の治療薬を探索するためのスクリーニング方法。
[13]シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、上記[12]に記載のスクリーニング方法。
[14]対象薬物の適用によるSynGAPα2の増減を測定する工程を有することを特徴とする、シナプス異常を伴う疾患の治療薬を探索するためのスクリーニング方法。
[15]シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、上記[14]に記載のスクリーニング方法。
[12] A synapse comprising a step of using the model animal according to any one of [1] to [5] above, or the model nerve cell or model nerve cell line according to [6] above A screening method for searching for a therapeutic drug for a disease accompanied by an abnormality.
[13] The screening method according to [12] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
[14] A screening method for searching for a therapeutic agent for a disease associated with a synaptic abnormality, comprising a step of measuring an increase or decrease of SynGAPα2 due to application of a target drug.
[15] The screening method according to [14] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
[16]SynGAPα2をコードする遺伝子もしくはSynGAPα2タンパク質、または脳におけるSynGAPα2遺伝子の発現を促進する薬物もしくはSynGAPα2タンパク質を増加しうる薬物を有効成分として含有することを特徴とする、シナプス異常を伴う疾患の治療剤。
[17]シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、上記[16]に記載の治療剤。
[18]SynGAPα2を脳に補充または増加させる工程を有することを特徴とする、シナプス異常を伴う疾患の治療方法。
[19]シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、上記[18]に記載の治療方法。
 
[16] Treatment of a disease accompanied by synaptic abnormalities characterized by containing, as an active ingredient, a gene encoding SynGAPα2 protein or a SynGAPα2 protein, or a drug that promotes the expression of the SynGAPα2 gene in the brain or a drug that can increase the SynGAPα2 protein Agent.
[17] The therapeutic agent according to [16] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
[18] A method for treating a disease accompanied by synaptic abnormalities, comprising a step of supplementing or increasing SynGAPα2 in the brain.
[19] The method according to [18] above, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
 本発明によれば、シナプス異常を伴う疾患、例えば、前頭側頭葉変性症(FTLD)、運動ニューロン疾患の病態や治療法を研究開発することができ、または当該疾患の治療薬をスクリーニングすることができる。また、かかるスクリーニングから見出された治療薬を含む薬剤を当該疾患の治療に用いることができる。
 
According to the present invention, it is possible to research and develop diseases and conditions associated with synaptic abnormalities such as frontotemporal lobar degeneration (FTLD) and motor neuron diseases, or to screen for therapeutic agents for the diseases. Can do. In addition, a drug containing a therapeutic drug found from such screening can be used for the treatment of the disease.
ES細胞に挿入したベクター遺伝子の模式図である。It is a schematic diagram of the vector gene inserted into the ES cell. 上図は遺伝子挿入前の野生型遺伝子(WT)の模式図、中図は挿入したベクター遺伝子の模式図、下図は遺伝子挿入後の組換え遺伝子(KO)の模式図である。The upper diagram is a schematic diagram of a wild type gene (WT) before gene insertion, the middle diagram is a schematic diagram of an inserted vector gene, and the lower diagram is a schematic diagram of a recombinant gene (KO) after gene insertion. 上図は野生型遺伝子(WT)の模式図、中図はベクターが挿入された組換え遺伝子(KO)の模式図、下図はFLPマウスとの掛け合わせでNeoカセットを除去し完成したコンディショナルノックアウトマウスの遺伝子(Neo Deletion)の模式図である。The upper figure is a schematic diagram of a wild type gene (WT), the middle figure is a schematic diagram of a recombinant gene (KO) into which a vector has been inserted, and the lower figure is a conditional knockout completed by removing the Neo cassette by crossing with FLP mice. It is a schematic diagram of a mouse gene (Neo Selection). コンディショナルノックアウトマウスを作成するにあたり、遺伝子操作の標的となるFUS遺伝子の野生型の遺伝子配列のうち、エクソン1から6までを含む領域を表す。In creating a conditional knockout mouse, a region containing exons 1 to 6 in the wild-type gene sequence of the FUS gene targeted for genetic manipulation is represented. 図4Aの遺伝子配列の続き。Continuation of the gene sequence of FIG. 4A. コンディショナルノックアウトマウスに挿入した遺伝子配列のうち、FUS遺伝子のエクソン1から6までを含む領域を表す。Of the gene sequence inserted into the conditional knockout mouse, this represents the region containing exons 1 to 6 of the FUS gene. 図5Aの遺伝子配列の続き。Continuation of the gene sequence of FIG. 5A. SynGAP Aα2の遺伝子配列を挿入したAAVベクターの遺伝子配列を表す。Represents the gene sequence of the AAV vector into which the SynGAP Aα2 gene sequence has been inserted. 図6Aの遺伝子配列の続き。Continuation of the gene sequence of FIG. 6A. 対照マウス(Cre-)とCreを発現したFUS遺伝子コンディショナルノックアウトマウス(FUS-cKOマウス(Cre+))について、図(A)は、海馬CA1領域におけるFUSタンパク質の免疫染色像を、図(B)は、海馬CA1領域サンプルのウエスタンブロットの結果を、それぞれ表す。For the control mouse (Cre−) and the FUS gene conditional knockout mouse expressing Cre (FUS-cKO mouse (Cre +)), FIG. (A) shows the immunostained image of FUS protein in the hippocampal CA1 region. Represents the results of Western blotting of hippocampal CA1 region samples, respectively. 対照マウス(Cre-)とFUS-cKOマウス(Cre+)について、海馬CA1領域における脳組織切片のゴルジ染色像を表す。Fig. 4 shows Golgi-stained images of brain tissue sections in the hippocampal CA1 region for control mice (Cre-) and FUS-cKO mice (Cre +). 上記脳組織切片における総スパイン数を表す。縦軸は神経突起100μmあたりの総スパイン数を示す。It represents the total number of spines in the brain tissue section. The vertical axis represents the total number of spines per 100 μm of neurites. 上記脳組織切片における成熟スパインの割合を表す。縦軸は総スパイン数における成熟スパインの割合(%)を示す。It represents the percentage of mature spine in the brain tissue section. The vertical axis shows the percentage (%) of mature spine in the total number of spines. 対照マウス(Cre-)とFUS-cKOマウス(Cre+)におけるオープンフィールド試験の結果を表す。縦軸はアリーナにおけるマウスの移動距離(mm)を示す。The results of the open field test in control mice (Cre-) and FUS-cKO mice (Cre +) are represented. The vertical axis represents the movement distance (mm) of the mouse in the arena. 対照マウス(Cre-)とFUS-cKOマウス(Cre+)における高架型十字迷路法による試験であって、図(A)は、「壁のある道」または「壁のない道」での結果を表す。縦軸は滞在時間(秒)を示す。図(B)は、「壁のない道」での結果を表す。縦軸は侵入回数(回)を示す。Elevated cruciform maze test in control mice (Cre-) and FUS-cKO mice (Cre +), figure (A) shows results with "walled road" or "wallless road" . The vertical axis represents the stay time (seconds). FIG. (B) shows the result for “road without walls”. The vertical axis represents the number of intrusions (times). 対照マウス(Cre-)とFUS-cKOマウス(Cre+)について、図(A)は、新規物体認知試験の結果を表す。縦軸は探索嗜好性(%)を示す。図(B)は、恐怖条件付け試験の結果を表す。縦軸はすくみ反応の時間(秒)を示す。For control mice (Cre−) and FUS-cKO mice (Cre +), FIG. (A) represents the results of a novel object recognition test. The vertical axis represents search preference (%). Figure (B) represents the results of the fear conditioning test. The vertical axis shows the time (seconds) of the freezing reaction. 対照マウス(Cre-)とFUS-cKOマウス(Cre+)について、図(A)は、海馬CA1領域における蛍光免疫染色像を、図(B)は、海馬CA1領域サンプルのウエスタンブロットの結果を、それぞれ表す。For the control mouse (Cre−) and the FUS-cKO mouse (Cre +), FIG. (A) shows the fluorescence immunostained image in the hippocampal CA1 region, and FIG. (B) shows the Western blot result of the hippocampal CA1 region sample. To express. SynGAP Aα2を補充したFUS-cKOマウス(Cre+)、FUS-cKOマウス(Cre+)、および対照マウス(Cre-)について、脳組織切片のゴルジ染色像を表す。Golgi-stained images of brain tissue sections are shown for FUS-cKO mice (Cre +), FUS-cKO mice (Cre +), and control mice (Cre−) supplemented with SynGAP Aα2. 上記脳組織切片における成熟スパインの割合を表す。縦軸は総スパイン数における成熟スパインの割合(%)を示す。It represents the percentage of mature spine in the brain tissue section. The vertical axis shows the percentage (%) of mature spine in the total number of spines. SynGAP Aα2を補充したFUS-cKOマウス(Cre+)、FUS-cKOマウス(Cre+)、および対照マウス(Cre-)について、オープンフィールド試験の結果を表す。縦軸は移動距離(cm)を示す。The open field test results are shown for FUS-cKO mice (Cre +), FUS-cKO mice (Cre +) and control mice (Cre−) supplemented with SynGAP Aα2. The vertical axis represents the movement distance (cm). SynGAP Aα2を補充したFUS-cKOマウス(Cre+)、FUS-cKOマウス(Cre+)、および対照マウス(Cre-)について、高架型十字迷路法による試験の結果を表す。縦軸は壁のない道への侵入回数(回)を示す。The results of the elevated plus maze test are shown for FUS-cKO mice (Cre +), FUS-cKO mice (Cre +), and control mice (Cre−) supplemented with SynGAP Aα2. The vertical axis shows the number of times of intrusion (times) on a road without a wall.
1 本発明に係るモデル動物
本発明に係るモデル動物(以下、「本発明モデル動物」という。)は、脳におけるFUS遺伝子の特異的ノックアウトにより作製されることを特徴とし、シナプス異常を伴う疾患の症状を呈する。
 ここで本発明における「脳」は、下等生物においても存在するが、特に高等生物においては主に大脳またはそれに相当する部分、特に前頭葉、側頭葉、海馬などを挙げることができる。
1. Model animal according to the present invention A model animal according to the present invention (hereinafter referred to as "model animal of the present invention") is produced by specific knockout of the FUS gene in the brain, and is characterized by diseases associated with synaptic abnormalities. Symptoms are present.
Here, the “brain” in the present invention also exists in lower organisms, but particularly in higher organisms, mainly the cerebrum or a portion corresponding thereto, particularly the frontal lobe, temporal lobe, hippocampus and the like can be mentioned.
1.1 FUS遺伝子
 FUS遺伝子は、線虫、ゼブラフィッシュ等の魚類、カエル等の両生類、マウス、ラット、モルモット等の齧歯類、ウサギ、フェレット、イヌ、ネコ、ブタ、ヒツジ、ヤギ、ウシ、ウマおよびサルやヒト等の高等哺乳動物に至るまで広く存在する遺伝子である。FUS遺伝子がコードするFUSタンパク質の共通の構造としては、N末端側に転写活性化ドメイン、そしてC末端側にRNA結合モチーフとジンクフィンガードメインを有する。各動物におけるFUS遺伝子の塩基配列情報は、例えば遺伝子情報データベースであるGenbankから入手可能である。
 本発明モデル動物の作製においては、対象とする動物のFUS遺伝子が、遺伝子情報データベース等のデータを利用して遺伝子操作され、特異的にノックアウトされる。
1.1 FUS gene FUS gene is used for fish such as nematodes and zebrafish, amphibians such as frogs, rodents such as mice, rats and guinea pigs, rabbits, ferrets, dogs, cats, pigs, sheep, goats, cattle, It is a gene that exists widely in horses and higher mammals such as monkeys and humans. As a common structure of the FUS protein encoded by the FUS gene, it has a transcription activation domain on the N-terminal side and an RNA-binding motif and a zinc finger domain on the C-terminal side. The base sequence information of the FUS gene in each animal can be obtained from, for example, Genbank, which is a gene information database.
In the production of the model animal of the present invention, the FUS gene of the target animal is genetically manipulated using data such as a gene information database and specifically knocked out.
1.2 脳におけるFUS遺伝子の特異的ノックアウト
 本発明モデル動物は、当該動物のFUS遺伝子を脳において特異的にノックアウトすることにより作製される。
 特異的ノックアウトを行う方法としては、通常、時間・空間的に対象モデル動物の目的の遺伝子をノックアウトする方法であるコンディショナルノックアウト法を挙げることができる。かかるコンディショナルノックアウト法で使用されるシステムとしては、例えば、バクテリオファージP1由来の組み換え酵素Cre(Creリコンビナーゼ)とその標的配列であるloxP配列のシステム(Cre-loxPシステム)、出芽酵母(Saccharomyces cerevisiae)由来の組み換え酵素FLPとその標的配列であるFRT配列のシステム、醤油酵母(Zygosaccharomyces rouxii)由来の組み換え酵素Rとその標的配列であるRS配列のシステム、またはバクテリオファージMu由来の組み換え酵素Ginとその標的配列であるGix配列のシステム、テトラサイクリンON-OFFシステムが挙げられる。これらの中でもCre-loxPシステムが好ましい。
1.2 Specific knockout of FUS gene in brain The model animal of the present invention is produced by specifically knocking out the FUS gene of the animal in the brain.
As a method for performing specific knockout, a conditional knockout method, which is a method of knocking out a target gene of a target model animal in terms of time and space, can be mentioned. As a system used in such a conditional knockout method, for example, a recombinant enzyme Cre (Cre recombinase) derived from bacteriophage P1 and its target sequence, a loxP sequence system (Cre-loxP system), budding yeast (Saccharomyces cerevisiae) Recombinant enzyme FLP and its target sequence FRT sequence system, soy sauce yeast (Zygosaccharomyces rouxii) recombinant enzyme R and its target sequence RS sequence system, or bacteriophage Mu-derived recombinant enzyme Gin and its target Examples include Gix array systems and tetracycline ON-OFF systems. Of these, the Cre-loxP system is preferable.
 Cre-loxPシステムは、遺伝子組み換え酵素であるCreリコンビナーゼ、およびその認識配列であるloxP配列を用いるシステムである。当該システムは、通常、遺伝子組み換えモデル動物において、Creリコンビナーゼを、時期特異的および/または部位特異的に機能するプロモーターに連結し、目的遺伝子をloxP配列に挟んだ配列とし、そして、時期、部位特異的に発現させたCreリコンビナーゼにより、loxP配列に挟まれた目的遺伝子の欠失を引き起こす。当該方法を使用した場合、受精卵や初期発生の段階ではFUS遺伝子をノックアウトせず正常に機能させ、成体にまで成長した段階において当該モデル動物の脳において特異的にFUS遺伝子をノックアウトすることができる。通常は、当該モデル動物の受精卵または発生の初期の段階、例えば、2細胞期~胞胚、胚盤胞期(blastocyst)において目的の遺伝子が操作され、本発明モデル動物であるFUS遺伝子コンディショナルノックアウトモデル動物(FUS-cKOモデル動物)が作製される。 The Cre-loxP system is a system using Cre recombinase, which is a gene recombination enzyme, and loxP sequence, which is a recognition sequence thereof. The system is usually a genetically engineered model animal in which Cre recombinase is linked to a promoter that functions in a time-specific and / or site-specific manner, and the target gene is sandwiched between loxP sequences. Cre recombinase expressed in a manner causes deletion of the target gene flanked by loxP sequences. When this method is used, the FUS gene can function normally without being knocked out at the stage of fertilized egg or early development, and the FUS gene can be specifically knocked out in the brain of the model animal at the stage of growth to adulthood. . Usually, the gene of interest is manipulated in the fertilized egg or the early stage of development of the model animal, for example, from the 2 cell stage to the blastocyst, the blastocyst, and the FUS gene conditional knockout which is the model animal of the present invention A model animal (FUS-cKO model animal) is created.
 Creリコンビナーゼ遺伝子が組み込まれるプロモーターとしては、当該モデル動物の成体期の脳において特異的に機能するものであれば特に制限されないが、例えば、CamK2、Arc、Chatが挙げられる。これらの中でもCamK2プロモーターが好ましい。マウスのCamK2プロモーターは、出生後2か月齢以降のマウスの脳において顕著な遺伝子の発現が見られるプロモーターであり、成体期の脳において特異的にFUS遺伝子をノックアウトすることができる。 The promoter into which the Cre recombinase gene is incorporated is not particularly limited as long as it specifically functions in the adult brain of the model animal, and examples thereof include CamK2, Arc, and Chat. Of these, the CamK2 promoter is preferred. The mouse CamK2 promoter is a promoter in which significant gene expression is observed in the mouse brain after 2 months of age, and can specifically knock out the FUS gene in the adult brain.
1.3 シナプス異常を伴う疾患
 本発明モデル動物が呈するシナプス異常を伴う疾患としては、例えば、前頭側頭葉変性症(FTLD)や運動ニューロン疾患が挙げられる。本発明モデル動物は主に前頭葉および側頭葉に変性を生じ、前頭葉変性型、運動ニューロン病型の組織病理的所見を呈する。症状としては、例えば、前頭葉と側頭葉の顕著な萎縮、または高次脳機能障害から引き起こされる行動異常が挙げられる。
1.3 Diseases with Synaptic Abnormalities Examples of the diseases with synaptic abnormalities exhibited by the model animals of the present invention include frontotemporal lobar degeneration (FTLD) and motor neuron diseases. The model animal of the present invention develops degeneration mainly in the frontal and temporal lobes, and exhibits histopathological findings of frontal lobe degeneration and motor neuron disease. Symptoms include, for example, marked atrophy of frontal and temporal lobes or behavioral abnormalities caused by higher brain dysfunction.
 本発明モデル動物が呈するシナプス異常としては、例えば、神経細胞の細胞体に存在する樹状突起のスパインの異常が挙げられる。後シナプスに存在するスパインの形態は、シナプス形成が成熟するとマッシュルーム型に変化し、前シナプスとの接触する表面積が増加することでシナプス増強が生じ、行動生理に影響するといわれている(Hippocampus 2000;10:501, JCB 2010;189:619)。神経変性疾患においては、後シナプスである樹状突起スパインの変化が病態に関与している可能性が示唆されている(Annu Rev Pathol 2016;11:221, Neurosci Biobehav Rev 2015;59:208)。本発明モデル動物が呈するスパインの異常としては、例えば、スパイン数の減少、成熟スパイン数の減少、スパイン形態の異常が挙げられる。本発明モデル動物においては、シナプス異常に伴って、シナプスに存在するタンパク質の異常が引き起こされる。シナプスに存在するタンパク質の異常としては、例えば、PSD-95の局在異常、SynGAPα2の減少が挙げられる。 Examples of the synaptic abnormality exhibited by the model animal of the present invention include an abnormality of spine of dendrites existing in the cell body of nerve cells. The form of spine present in the post-synapse changes to a mushroom type when the synapse formation matures, and it is said that the increase in the surface area in contact with the pre-synapse causes synaptic enhancement, which affects behavioral physiology (Hippocampus 2000; 10: 501, JCB 2010; 189: 619). In neurodegenerative diseases, it is suggested that changes in dendritic spines, which are post-synaptic, may be involved in the pathological condition (Annu Rev Pathol 2016; 11: 221, Neurosci Biobehav Rev 2015; 59: 208). Examples of the spine abnormality exhibited by the model animal of the present invention include a decrease in the number of spines, a decrease in the number of mature spines, and an abnormality in the spine form. In the model animal of the present invention, an abnormality of a protein present in the synapse is caused along with the synapse abnormality. Examples of abnormalities in the protein present at the synapse include abnormal localization of PSD-95 and a decrease in SynGAPα2.
 本発明モデル動物が呈するシナプス異常を伴う疾患は、その結果として高次脳機能障害を示す場合がある。上記高次脳機能障害としては、例えば、多動(行動量の異常)、不安行動、記憶障害、うつ様行動、人格障害、社会的行動の異常、痛覚感受性の異常が挙げられる。これらの高次脳機能障害は、脳科学の分野において用いられている行動試験により評価することができる。行動量の異常の行動試験としては、例えば、オープンフィールド試験(Open filed test)、ホームケージ活動解析試験(Home cage activity test)が挙げられる。不安行動の行動試験としては、例えば、高架式十字迷路法(Elevated plus maze test)、明暗選択箱試験(Light/dark transition test)が挙げられる。記憶障害の行動試験としては、例えば、新規物体認知試験(Novel object recognition test)、および恐怖条件付け試験(Fear conditioning test)、モリス水迷路試験(Morris water maze test)が挙げられる。 The disease accompanied by synaptic abnormality exhibited by the model animal of the present invention may show higher brain dysfunction as a result. Examples of the higher brain dysfunction include hyperactivity (abnormal amount of behavior), anxiety behavior, memory impairment, depression-like behavior, personality disorder, social behavior abnormality, and pain sensitivity abnormality. These higher brain dysfunctions can be evaluated by behavioral tests used in the field of brain science. Examples of behavior tests for abnormal behavioral quantities include an open field test and a home cage activity analysis test. Examples of the anxiety behavior test include an elevated plus maze test (Elevated plus maze test) and a light / dark selection box test (Light / dark transition test). Examples of the memory impairment behavior test include a novel object recognition test, a fear conditioning test, and a Morris water maze test.
 うつ様行動の行動試験としては、例えば、ポーソルト強制水泳試験(Porsolt forced swim test)、尾懸垂試験(Tail suspension test)が挙げられる。社会的行動の異常の行動試験としては、社会的行動試験(Social interaction test)、24時間ホームケージ社会的行動試験(24hr homecage social interaction test)が挙げられる。痛覚感受性の異常の試験としては、例えば、ホットプレート試験(Hot plate test)、ホルマリン試験(formalin test)が挙げられる。これらの行動試験は、症状、および評価する脳高次機能の種類に応じて、単体で、あるいは複数で行われ、高次脳機能障害に関する評価を行うことができる。
 FTLDないし前頭側頭型認知症(FTD)の症状を呈する本発明モデル動物に対して上記のような行動試験を行うと、有意な運動量の上昇、不安の欠如が見られ、一方、記憶障害は見られないという傾向を示す。
Examples of the behavior test for depression-like behavior include a porsol forced swim test and a tail suspension test. Examples of the behavioral test for abnormal social behavior include a social behavior test and a 24-hour home cage social behavior test. Examples of tests for abnormal pain sensitivity include a hot plate test and a formalin test. These behavioral tests can be performed alone or in a plurality depending on the symptoms and the type of higher brain function to be evaluated, and can be evaluated for higher brain dysfunction.
When the above behavioral test is performed on the model animal of the present invention exhibiting symptoms of FTLD or frontotemporal dementia (FTD), a significant increase in momentum and lack of anxiety are observed, while memory impairment is It shows a tendency not to be seen.
1.4 動物種
 本発明モデル動物の作製に使用される動物種としては、通常、実験動物として使用されるものであれば特に制限はなく、例えば、線虫、ゼブラフィッシュ等の魚類、カエル等の両生類、マウス、ラット、モルモット等の齧歯類、サル、マーモセット等の霊長類、ウサギ、フェレット、イヌ、ネコ、ブタ、ヒツジ、ヤギ、ウシ、ウマを挙げることができる。その中でも、好ましくはマウス、ラット、モルモット等の齧歯類、またはサル、マーモセット等の霊長類であり、より好ましくはマウスである。これら動物の系統の多くは実験動物業者から容易に入手することができる。
1.4 Animal species The animal species used for the production of the model animal of the present invention is not particularly limited as long as it is usually used as an experimental animal. For example, nematodes, fish such as zebrafish, frogs, etc. Amphibians, rodents such as mice, rats and guinea pigs, primates such as monkeys and marmosets, rabbits, ferrets, dogs, cats, pigs, sheep, goats, cows and horses. Among them, preferred are rodents such as mice, rats and guinea pigs, or primates such as monkeys and marmosets, and more preferred are mice. Many of these animal strains are readily available from laboratory animal vendors.
 動物の系統は、交雑系でも近交系でもよく特に制限されないが、動物実験における結果の個体差を最小とするためには遺伝子背景が均一化された近交系が好ましい。近交系の実験動物は、マウスの場合、通常、20世代以上の近交交配によって得られ、そのため、0.01%以下のヘテロ接合の遺伝子しか有さないため、それぞれが遺伝的にはほぼ同一の個体と見なすことができる。一般的な近交系の実験動物としては、例えば、ラットではWister系、マウスではDBA/2系、C57BL/6系、BALB/c系を挙げることができる。これら近交系の実験動物は実験動物業者から容易に入手することができる。また、Charles River等の実験動物業者が提供するMAX-BAXプログラム等の近交系動物の作製サービスを用いて確立することもできる。
 本発明の一つの特徴として、実験に適した近交系モデル動物(特にマウス)も提供していることにある。
The strain of the animal may be a hybrid or inbred, and is not particularly limited. However, in order to minimize individual differences in the results of animal experiments, an inbred strain with a uniform genetic background is preferable. Inbred experimental animals are usually obtained by inbred mating of 20 generations or more in the case of mice, and therefore have 0.01% or less heterozygous genes. It can be regarded as the same individual. Examples of general inbred experimental animals include the Wister system in rats and the DBA / 2 system, C57BL / 6 system, and BALB / c system in mice. These inbred experimental animals can be easily obtained from experimental animal manufacturers. It can also be established using an inbred animal production service such as the MAX-BAX program provided by an experimental animal company such as Charles River.
One feature of the present invention is that an inbred model animal (especially a mouse) suitable for experiments is also provided.
1.5 本発明に係るモデル神経細胞、およびモデル神経細胞株
 本発明は、本発明モデル動物から取得されるモデル神経細胞(以下、「本発明モデル神経細胞」という)またはモデル神経細胞株(以下、「本発明モデル神経細胞株」という)を含む。
 本発明モデル神経細胞は、本発明モデル動物から取得される初代培養神経細胞であり、神経細胞の初代培養等に用いられる既知の方法により取得し培養することができる。本発明モデル神経細胞は、通常、本発明モデル動物の脳または神経系の神経細胞が取得される。また、本発明モデル神経細胞株とは、上記本発明モデル神経細胞より、継代培養を繰り返すことにより樹立された細胞株(株化細胞)である。本発明モデル神経細胞および本発明モデル神経細胞株は、本発明モデル動物と比較して容易に扱うことができるという利点を有し、液体窒素中等に凍結保存し、必要に応じて解凍して用いることもできる。本発明モデル神経細胞等の培養、継代培養、凍結保存、解凍等には、細胞培養の技術分野における既知の方法を使用することができる。本発明モデル神経細胞を用いた研究、実験、試験に関しても、細胞培養の技術分野における既知の方法を使用することができる。
 ここで「細胞株」とは、長期間にわたって生体外で継代培養により維持され、一定の安定した性質を有するに至った細胞をいう。本発明モデル神経細胞株を用いることにより、再現性のある安定した実験を行うことができる。
1.5 Model Neuron and Model Neuron Cell Line According to the Present Invention The present invention is a model neuron obtained from the model animal of the present invention (hereinafter referred to as “the model neuron of the present invention”) or a model neuron cell line (hereinafter “model neuron cell”). And “the model neuronal cell line of the present invention”).
The model neuron of the present invention is a primary cultured neuron obtained from the model animal of the present invention, and can be obtained and cultured by a known method used for primary culture of neurons. The model nerve cells of the present invention are usually obtained from the brain of the model animal of the present invention or the nerve cells of the nervous system. The model neuronal cell line of the present invention is a cell line (established cell) established by repeating subculture from the above-described model neuronal cell of the present invention. The model neuron of the present invention and the model neuron cell line of the present invention have the advantage that they can be easily handled as compared with the model animal of the present invention, and are stored frozen in liquid nitrogen or the like, and thawed as necessary. You can also. Known methods in the technical field of cell culture can be used for culturing, subculturing, cryopreserving, thawing and the like of the model neuron of the present invention. Known methods in the technical field of cell culture can also be used for research, experiments, and tests using the model nerve cells of the present invention.
Here, the “cell line” refers to a cell that has been maintained by in vitro subculture for a long period of time and has reached a certain stable property. By using the model neuronal cell line of the present invention, a reproducible and stable experiment can be performed.
1.6 製造方法
 本発明は、脳におけるFUS遺伝子を特異的にノックアウトする操作工程を有することを特徴とする、シナプス異常を伴う疾患の症状を呈するモデル動物の製造方法(以下、「本発明製造方法」という。)を含む。
 「FUS遺伝子」、「シナプス異常を伴う疾患」、「動物種」などは前記と同義である。
1.6 Production Method The present invention comprises a method for producing a model animal exhibiting a symptom of a disease accompanied by a synaptic abnormality characterized by having an operation step of specifically knocking out a FUS gene in the brain (hereinafter referred to as “production of the present invention”). Method ”).
“FUS gene”, “disease with synaptic abnormality”, “animal species” and the like are as defined above.
 本発明製造方法に係る、脳におけるFUS遺伝子を特異的にノックアウトする操作工程としては、前記「1.2 脳におけるFUS遺伝子の特異的ノックアウト」項で掲げたコンディショナルノックアウト法を挙げることができる。かかるコンディショナルノックアウト法で使用されるシステムとしては、例えば、同項で示したものと同じシステムを挙げることができるが、その中でも、Cre-loxPシステムが好ましい。
また、当該ノックアウトする操作においては、Cre-loxPシステムとCamK2プロモーターとを用いることが好ましい。
Examples of the operation step for specifically knocking out the FUS gene in the brain according to the production method of the present invention include the conditional knockout method described in the section “1.2 Specific knockout of FUS gene in the brain”. As a system used in such a conditional knockout method, for example, the same system as that shown in the same section can be cited, among which the Cre-loxP system is preferable.
In the knockout operation, it is preferable to use the Cre-loxP system and the CamK2 promoter.
 本発明製造方法においては、対象とする動物の発生段階で特定の遺伝子が遺伝子操作される。かかる遺伝子操作を行う方法としては、例えば、受精卵の前核に直接DNAの注入を行うマイクロインジェクション法、レトロウイルスベクターを利用する方法、ES細胞を利用する方法、iPS細胞を使用する方法を挙げることができる。受精卵等に注入された遺伝子は、例えば、相同組み換えにより染色体に組み込まれる。本発明製造方法において、Cre-loxPシステムを用いる場合、loxP配列に挟まれたFUS遺伝子と、Creリコンビナーゼ遺伝子の全長をコードする配列(以下、「Cre遺伝子」という。)の2つの遺伝子が遺伝子操作され受精卵等に組み込まれる。本発明製造方法においては、Cre遺伝子の組み込みとloxP配列に挟まれたFUS遺伝子とを一個体に一度に組み込むこともできるが、Cre遺伝子と上記FUS遺伝子を別々の個体に組み込み、その個体同士を交配することによって両遺伝子が組み込まれた個体を得ることもできる。
以下では、本発明製造方法の具体例として、マウスを用いたマイクロインジェクション法による場合について説明する。
In the production method of the present invention, a specific gene is genetically manipulated at the developmental stage of the target animal. Examples of the method for performing such genetic manipulation include a microinjection method in which DNA is directly injected into the pronucleus of a fertilized egg, a method using a retroviral vector, a method using an ES cell, and a method using an iPS cell. be able to. A gene injected into a fertilized egg or the like is integrated into a chromosome by, for example, homologous recombination. When the Cre-loxP system is used in the production method of the present invention, two genes, a FUS gene sandwiched between loxP sequences and a sequence encoding the full length of the Cre recombinase gene (hereinafter referred to as “Cre gene”), are genetically manipulated. And incorporated into fertilized eggs. In the production method of the present invention, the integration of the Cre gene and the FUS gene sandwiched between the loxP sequences can be integrated into one individual at a time, but the Cre gene and the FUS gene are integrated into separate individuals, Individuals in which both genes are integrated can also be obtained by mating.
Below, the case by the microinjection method using a mouse | mouth is demonstrated as a specific example of this invention manufacturing method.
 マイクロインジェクション法では、まず交尾が確認された雌マウスの卵管より受精卵を採取し、そして培養した後にその前核に所望のDNAコンストラクトの注入を行う。DNAコンストラクトとしてはCre遺伝子を含むものが使用される。使用するDNAコンストラクトには導入遺伝子の時期特異的な発現を可能とするプロモーター配列であるCamK2プロモーターを使用することができる。加えて、loxP配列を有するFUS遺伝子が相同組み換えにより染色体に挿入される。注入操作を終了した受精卵を偽妊娠マウスの卵管に移植し、移植後のマウスを所定期間飼育して仔マウス(F0)を得る。 In the microinjection method, a fertilized egg is first collected from the oviduct of a female mouse in which mating has been confirmed, and after culturing, a desired DNA construct is injected into its pronucleus. A DNA construct containing a Cre gene is used. For the DNA construct to be used, the CamK2 promoter, which is a promoter sequence that enables time-specific expression of the transgene, can be used. In addition, a FUS gene having a loxP sequence is inserted into the chromosome by homologous recombination. The fertilized egg that has completed the injection operation is transplanted into the oviduct of a pseudopregnant mouse, and the transplanted mouse is bred for a predetermined period to obtain a pup mouse (F0).
 仔マウスの染色体にCre遺伝子および/またはloxP配列を有するFUS遺伝子が適切に組込まれていることを確認するために、仔マウスの尾などからDNAを抽出し、導入遺伝子に特異的なプライマーを用いたPCR法や導入遺伝子に特異的なプローブを用いたドットハイブリダイゼーション法等が行われ、適切な遺伝子組み換えマウスが選択される。
 本発明モデル動物の成体期において、コンディショナルノックアウトが適切に行われたかどうかの評価は、標的組織、即ち脳組織を試験することにより確認することができる。試験法としては、FUSタンパク質を対象とする試験では、例えば、組織切片の免疫染色、抽出タンパクのウエスタンブロット、FUSのmRNAを対象とする試験としては、例えば、定量的PCR、ノーザンハイブリダイゼーション、in situ ハイブリダイゼーションが挙げられる。
 
In order to confirm that the Cre gene and / or the FUS gene having the loxP sequence are properly integrated into the chromosome of the pup, extract DNA from the tail of the pup and use a primer specific to the transgene. The appropriate recombinant mouse is selected by the conventional PCR method or dot hybridization method using a probe specific to the transgene.
In the adult stage of the model animal of the present invention, the evaluation of whether or not the conditional knockout has been properly performed can be confirmed by examining the target tissue, that is, the brain tissue. As a test method, in a test for FUS protein, for example, immunostaining of a tissue section, Western blot of extracted protein, and for a test for FUS mRNA, for example, quantitative PCR, Northern hybridization, in Situ hybridization is mentioned.
2 本発明に係るスクリーニング方法
 本発明は、本発明モデル動物、または本発明モデル神経細胞もしくは本発明モデル神経細胞株を用いる工程を有することを特徴とする、シナプス異常を伴う疾患の治療薬を探索するためのスクリーニング方法(以下、「本発明スクリーニング方法」という。)を含む。
本発明スクリーニング方法は、本発明モデル動物を用いる場合は、通常、シナプス異常を伴う疾患、例えば、前頭側頭葉変性症(FTLD)、運動ニューロン疾患などの症状を呈する本発明モデル動物に、対象薬物を投与し、その特徴的な症状、病理所見、または高次脳機能障害が緩和、治療されるか否かを評価することによって行われる。本発明モデル動物へ対象薬物を投与した結果、その特徴的な症状、病理所見または高次脳機能障害が緩和、治療された場合、当該薬物は当該疾患を治療または緩和させる可能性があると評価することができる。
2. Screening Method According to the Present Invention The present invention searches for a therapeutic agent for diseases associated with synaptic abnormalities, comprising the step of using the model animal of the present invention, or the model neuronal cell of the present invention or the model neuronal cell line of the present invention. Screening method (hereinafter referred to as “the screening method of the present invention”).
When the model animal of the present invention is used, the screening method of the present invention is usually applied to the model animal of the present invention that exhibits symptoms such as diseases associated with synaptic abnormalities such as frontotemporal lobar degeneration (FTLD) and motor neuron disease. This is done by administering a drug and assessing whether its characteristic symptoms, pathological findings, or higher brain dysfunction is alleviated and treated. As a result of administering the target drug to the model animal of the present invention, when the characteristic symptoms, pathological findings or higher brain dysfunction is alleviated and treated, it is evaluated that the drug may treat or alleviate the disease can do.
 また、本発明モデル動物または本発明モデル神経細胞もしくは本発明モデル神経細胞株を用いる本発明スクリーニング方法においては、対象薬物の有効性を評価する工程として、例えば、本発明モデル動物へ対象薬物を投与した後、その結果として引き起こされる、シナプス異常を伴う疾患と関連する遺伝子の、特に脳におけるタンパク質またはmRNAの量の変動(投与前後の変化)を測定する工程を挙げることができる。かかるシナプス異常を伴う疾患と関連する遺伝子としては、例えば、SynGAPα2、Tau、GluA1が挙げられる。これらの中でも、SynGAPα2タンパク質、またはmRNAの増減を測定することが好ましい。 In the screening method of the present invention using the model animal of the present invention or the model neuronal cell of the present invention or the model neuronal cell line of the present invention, as a step of evaluating the effectiveness of the target drug, for example, the target drug is administered to the model animal of the present invention. Thereafter, a step of measuring a change (a change before and after administration) of a protein or mRNA of a gene associated with a disease accompanied by a synaptic abnormality, particularly a brain, caused as a result thereof can be mentioned. Examples of genes associated with diseases associated with such synaptic abnormalities include SynGAPα2, Tau, and GluA1. Among these, it is preferable to measure increase / decrease in SynGAPα2 protein or mRNA.
 本発明モデル動物へ対象薬物を投与した結果、疾患部におけるSynGAPα2タンパク質、またはmRNAの量が投与前あるいはコントロール群と比べて増加した場合、当該薬物は当該疾患を治療または緩和させる可能性があると評価することができる。SynGAPα2の増減は、常法により、SynGAPα2をコードするmRNA量、またはSynGAPα2タンパク質の量を測定することによって確認することができる。mRNAの測定法としては、例えば、定量的RT-PCR、ノーザンハイブリダイゼーションが挙げられる。タンパク質の測定法としては、例えば、ウエスタンブロットおよび免疫染色法が挙げられる。通常、上述の測定による有効性の評価は、例えば、疾患部位の組織の抽出液、または組織切片を用いて行われる。 As a result of administering the target drug to the model animal of the present invention, when the amount of SynGAPα2 protein or mRNA in the diseased part is increased before administration or compared to the control group, the drug may treat or alleviate the disease Can be evaluated. The increase or decrease of SynGAPα2 can be confirmed by measuring the amount of mRNA encoding SynGAPα2 or the amount of SynGAPα2 protein by a conventional method. Examples of the mRNA measurement method include quantitative RT-PCR and Northern hybridization. Examples of protein measurement methods include Western blotting and immunostaining. Usually, the evaluation of the effectiveness by the above-mentioned measurement is performed using, for example, a tissue extract of a disease site or a tissue section.
 なお、本発明モデル動物等を用いず、in vivoないしin vitroにおいて、対象薬物の適用によるSynGAPα2の増減を測定する工程を有することにより、シナプス異常を伴う疾患(例、前頭側頭葉変性症(FTLD)、運動ニューロン疾患など)の治療薬をスクリーニングすることもできる。このようなスクリーニング方法も本発明に含まれる(以下、当該スクリーニング方法も含めて、「本発明スクリーニング方法」ともいう。)。 In addition, by using a step of measuring the increase or decrease of SynGAPα2 due to application of the target drug in vivo or in vitro without using the model animal of the present invention, a disease accompanied by synaptic abnormality (eg, frontotemporal lobar degeneration ( FTLD), motor neuron diseases, etc.) can also be screened. Such a screening method is also included in the present invention (hereinafter also referred to as “the screening method of the present invention” including the screening method).
 SynGAPα2の増減は、常法により測定することができる。そして、対象薬物の適用の結果、SynGAPα2が適用前あるいはコントロール群と比べて増加した場合、当該薬物は当該疾患を治療または緩和させる可能性があると評価することができる。上記in vivoにおける当該スクリーニング方法においては、通常、使用される動物の脳におけるSynGAPα2の増減が測定される。一方、上記in vitroにおける当該スクリーニング方法においては、通常、使用される細胞等におけるSynGAPα2の増減が測定される。 Increase / decrease of SynGAPα2 can be measured by a conventional method. As a result of application of the target drug, when SynGAPα2 increases before application or compared to the control group, it can be evaluated that the drug may treat or alleviate the disease. In the above in vivo screening method, the increase or decrease of SynGAPα2 in the brain of the animal used is usually measured. On the other hand, in the in vitro screening method, the increase or decrease of SynGAPα2 in cells or the like to be used is usually measured.
 上記in vivoにおける当該スクリーニング方法において、使用しうる動物種としては、通常、実験動物として使用される非ヒト動物であれば特に制限されないが、例えば、霊長類(サル、マーモセット)、齧歯類(マウス、ラット、モルモット等)、ウサギ、イヌ、ネコ、ブタ、ウシ、ヒツジ、ウマが挙げられる。
 上記in vitroにおける当該スクリーニング方法においては、通常、ヒトおよび上述した、実験動物として使用される非ヒト動物の脳または神経の培養細胞等が使用される。ヒト培養細胞としては、例えば、運動神経由来の培養細胞であるNSC-34が挙げられる。非ヒト動物の培養細胞としては、例えば、マウスの初代培養神経細胞、Neuro2Aが挙げられる。また、上記シナプス異常を呈する疾患を有するまたは有さないヒト、または非ヒト動物の細胞から作製されたiPS細胞を使用することもできる。
In the above in vivo screening method, the animal species that can be used are not particularly limited as long as they are non-human animals that are usually used as experimental animals. For example, primates (monkeys, marmosets), rodents ( Mouse, rat, guinea pig, etc.), rabbit, dog, cat, pig, cow, sheep, horse.
In the in vitro screening method described above, cultured cells of the brain or nerves of humans and non-human animals used as experimental animals as described above are usually used. Examples of cultured human cells include NSC-34, which is a cultured cell derived from motor nerves. Examples of cultured cells of non-human animals include mouse primary cultured neurons, Neuro2A. It is also possible to use iPS cells prepared from cells of humans or non-human animals with or without the above-mentioned diseases that exhibit synaptic abnormalities.
 本発明スクリーニング方法に適用しうる対象薬物(治療薬候補)としては、通常、薬物として用いられるものであれば特に制限されないが、例えば、低分子有機化合物、無機化合物、ペプチド、タンパク質、糖タンパク質、脂質、糖脂質、糖、核酸を挙げることができる。その他、植物、微生物、細胞等の抽出液や培養上清であってもよい。
 本発明スクリーニング方法において、本発明モデル動物への対象薬物の適用方法(投与方法)としては、実験動物への通常の投与方法を挙げることができ、具体的には、例えば、経口投与、血管内注射、カテーテルを用いた投与、表皮への塗布、皮下投与、腹腔内投与、髄腔内投与、脳室内投与、脳実質注射が挙げられるが、標的部位が脳の疾患部であることから、経口投与、血管内注射、疾患部位へのカテーテルを用いた投与、髄腔内投与、脳室内投与、脳実質注射が好ましい。
 
The target drug (therapeutic drug candidate) applicable to the screening method of the present invention is not particularly limited as long as it is usually used as a drug. For example, low molecular organic compounds, inorganic compounds, peptides, proteins, glycoproteins, Mention may be made of lipids, glycolipids, sugars and nucleic acids. In addition, it may be an extract or culture supernatant of plants, microorganisms, cells and the like.
In the screening method of the present invention, the application method (administration method) of the target drug to the model animal of the present invention can include a normal administration method to a laboratory animal. Specifically, for example, oral administration, intravascular Injection, administration using a catheter, application to the epidermis, subcutaneous administration, intraperitoneal administration, intrathecal administration, intraventricular administration, brain parenchymal injection, but since the target site is a diseased part of the brain, oral Administration, intravascular injection, administration using a catheter to a diseased site, intrathecal administration, intraventricular administration, and brain parenchymal injection are preferred.
3 本発明に係る治療剤
 本発明は、SynGAPα2をコードする遺伝子もしくはSynGAPα2タンパク質、または脳におけるSynGAPα2遺伝子の発現を促進する薬物もしくはSynGAPα2タンパク質を増加しうる薬物を有効成分として含有することを特徴とする、シナプス異常を伴う疾患の治療剤(以下、「本発明治療剤」という。)を含む。
 ここで「治療」とは、対象疾患、症状ないしその付随する症候に対し、直接的または間接的に改善、緩和、治癒することのみならず、例えば、当該疾患等を予防することなども含まれる用語である。
 ここで本発明におけるSynGAPα2は、SynGAPのスプライシングバリアントの中でC末端側にα2ドメインを有するものであり、N末端側のドメインはA、B、C等のいずれでもよい。
3. Therapeutic Agents According to the Present Invention The present invention is characterized by containing as an active ingredient a gene encoding SynGAPα2 or a SynGAPα2 protein, or a drug that promotes the expression of the SynGAPα2 gene in the brain or a drug that can increase the SynGAPα2 protein. And a therapeutic agent for diseases associated with synaptic abnormalities (hereinafter referred to as “the therapeutic agent of the present invention”).
Here, “treatment” includes not only directly or indirectly improving, alleviating or curing the target disease, symptoms or associated symptoms, but also, for example, preventing such diseases and the like. It is a term.
Here, SynGAPα2 in the present invention has an α2 domain on the C-terminal side among the Splicing variants of SynGAP, and the domain on the N-terminal side may be any of A, B, C, and the like.
 本発明者らは、本発明モデル動物を用いて、FUSの病態生理への関与を検討する中で、脳神経細胞における成熟スパインが有意に減少していることを確認し、それと共に脳神経細胞におけるSynGAP2αの発現が低下していること、SynGAP2αの選択的ノックダウンによっても本発明モデル動物と同様の表現形を有すること、また、SynGAP2α遺伝子の補充により成熟スパインが回復したことなども確認した。
 したがって、脳におけるSynGAPα2を増やすことができる薬剤は、FTLDなどのシナプス異常を伴う疾患を治療するために有効である可能性がある。そのような薬剤として、例えば、SynGAPα2をコードする遺伝子またはSynGAPα2タンパク質、または脳におけるSynGAPα2遺伝子の発現を促進する薬物もしくはSynGAPα2タンパク質を増加しうる薬物を有効成分として含有する薬剤を挙げることができる。
The present inventors have confirmed that mature spines in brain neurons are significantly reduced while investigating the involvement of FUS in the pathophysiology using the model animals of the present invention, and at the same time, synGAP2α in brain neurons. It has also been confirmed that the expression of this gene is decreased, that the selective phenotype of SynGAP2α has the same phenotype as that of the model animal of the present invention, and that mature spine has been restored by supplementation with the SynGAP2α gene.
Therefore, a drug capable of increasing SynGAPα2 in the brain may be effective for treating diseases associated with synaptic abnormalities such as FTLD. Examples of such a drug include a drug containing a gene encoding SynGAPα2 or a SynGAPα2 protein, a drug that promotes the expression of the SynGAPα2 gene in the brain, or a drug that can increase the SynGAPα2 protein as an active ingredient.
 ヒトSynGAPα2遺伝子の塩基配列および該遺伝子のコードするタンパク質のアミノ酸配列は、それぞれ配列番号1および配列番号2に表される。また、マウスのSynGAPα2遺伝子の塩基配列および該遺伝子のコードするタンパク質のアミノ酸配列は、それぞれ配列番号3および配列番号4に表される。 The nucleotide sequence of the human SynGAPα2 gene and the amino acid sequence of the protein encoded by the gene are represented by SEQ ID NO: 1 and SEQ ID NO: 2, respectively. The nucleotide sequence of the mouse SynGAPα2 gene and the amino acid sequence of the protein encoded by the gene are represented by SEQ ID NO: 3 and SEQ ID NO: 4, respectively.
3.1 SynGAPα2をコードする遺伝子
 本発明治療剤に含まれるSynGAPα2のDNAは、配列番号1または配列番号3に表される塩基配列に相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA、配列番号1または配列番号3に表される塩基配列と、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータを用いて)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の相同性を有しているDNA、または前記DNAによりコードされるタンパク質のアミノ酸配列に対して1または複数もしくは数個(1~10個、好ましくは1~5個、さらに好ましくは1個若しくは2個)のアミノ酸が置換、欠失及び/又は付加されたアミノ酸配列からなるタンパク質をコードするDNAなどのうち、成熟スパインの形成促進の活性を有するタンパクをコードするものであれば、本発明治療剤に含まれる。ここで、「ストリンジェントな条件」とは、例えば、「1XSSC、0.1% SDS、37℃」程度の条件であり、より厳しい条件としては「0.5XSSC、0.1% SDS、42℃」程度の条件であり、さらに厳しい条件としては「0.2XSSC、0.1% SDS、65℃」程度の条件である。このようにハイブリダイゼーションの条件が厳しくなるほどプローブ配列と高い相同性を有するDNAの単離を期待しうる。ただし、上記のSSC、SDSおよびに温度の条件の組み合わせは例示であり、プローブ濃度、プローブの長さ、ハイブリダイゼーションの反応時間などを適宜組み合わせることにより、必要なストリンジェンシーを実現することが可能である。
3.1 Gene Encoding SynGAPα2 The SynGAPα2 DNA contained in the therapeutic agent of the present invention hybridizes under stringent conditions with DNA having a base sequence complementary to the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3. DNA to be soybean, base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3, BLAST (Basic Local Alignment Search at the National Center for Biological Information) (National Biological Information Center Basic Local Alignment Search Tool), etc. (E.g., using default or default parameters) and at least 85%, preferably 90%, more preferably 95%, especially preferred. Or one or more or several (1 to 10, preferably 1 to 5, more preferably) DNA having a homology of 97% or more, or the amino acid sequence of the protein encoded by the DNA. Is one that encodes a protein having activity of promoting the formation of mature spine among DNAs encoding a protein comprising an amino acid sequence in which one or two amino acids are substituted, deleted, and / or added. Are included in the therapeutic agent of the present invention. Here, “stringent conditions” are, for example, conditions of about “1XSSC, 0.1% SDS, 37 ° C.”, and more severe conditions are “0.5XSSC, 0.1% SDS, 42 ° C.” The condition is about “0.2XSSC, 0.1% SDS, 65 ° C.”. Thus, isolation of DNA having high homology with the probe sequence can be expected as the hybridization conditions become more severe. However, the combination of the above SSC, SDS, and temperature conditions is an example, and the necessary stringency can be realized by appropriately combining the probe concentration, probe length, hybridization reaction time, and the like. is there.
 ヒトSynGAPα2遺伝子は、配列番号1の配列情報に基づいて、ヒト細胞、ヒト組織等から得ることができる。また、マウスSynGAPα2遺伝子は、配列番号3の配列情報に基づいて、マウス細胞、マウス組織等から得ることができる。
 さらに、本発明治療剤はSynGAPα2遺伝子を含むベクターをも含む。該ベクターを被験体に導入することにより、被験体体内でSynGAPα2タンパク質が発現し、成熟スパイン形成促進効果を発揮し得る。このような、本発明治療剤の投与における目的の遺伝子の被験体への導入は公知の方法により行うことができる。遺伝子を被験体へ導入する方法として、ウイルスベクターを用いる方法および非ウイルスベクターを用いる方法があり、種々の方法が公知である(別冊実験医学、遺伝子治療の基礎技術、羊土社、1996;別冊実験医学、遺伝子導入&発現解析実験法、羊土社、1997;日本遺伝子治療学会編、遺伝子治療開発研究ハンドブック、エヌ・ティー・エス、1999)。
The human SynGAPα2 gene can be obtained from human cells, human tissues and the like based on the sequence information of SEQ ID NO: 1. Further, the mouse SynGAPα2 gene can be obtained from mouse cells, mouse tissues and the like based on the sequence information of SEQ ID NO: 3.
Furthermore, the therapeutic agent of the present invention also includes a vector containing the SynGAPα2 gene. By introducing the vector into a subject, the SynGAPα2 protein is expressed in the subject and can exert an effect of promoting mature spine formation. Such introduction of the target gene into the subject in the administration of the therapeutic agent of the present invention can be performed by a known method. As a method for introducing a gene into a subject, there are a method using a viral vector and a method using a non-viral vector, and various methods are known (separate volume experimental medicine, basic technology of gene therapy, Yodosha, 1996; separate volume). Experimental Medicine, Gene Transfer & Expression Analysis Experimental Method, Yodosha, 1997; edited by Japanese Society of Gene Therapy, Gene Therapy Development Research Handbook, NTS, 1999).
 本発明治療剤に用いられるウイルスベクターとしては、例えば、アデノウイルス、アデノ随伴ウイルス(AAV)、レトロウイルス等のウイルスベクター、無毒化したレトロウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス、センダイウイルス、SV40、免疫不全症ウイルス(HIV)等のDNAウイルスまたはRNAウイルスが挙げられる。その中でもアデノウイルス、アデノ随伴ウイルス(AAV)が好ましい。上記のウイルスベクターに目的とする遺伝子を導入し、細胞に組換えウイルスを感染させることによって、細胞内に遺伝子を導入することが可能である。 Examples of viral vectors used in the therapeutic agent of the present invention include viral vectors such as adenovirus, adeno-associated virus (AAV), retrovirus, detoxified retrovirus, herpes virus, vaccinia virus, poxvirus, poliovirus, syn Examples thereof include DNA viruses or RNA viruses such as bisvirus, Sendai virus, SV40, and immunodeficiency virus (HIV). Of these, adenovirus and adeno-associated virus (AAV) are preferred. It is possible to introduce a gene into a cell by introducing the gene of interest into the above viral vector and infecting the cell with a recombinant virus.
 本発明治療剤には、アデノ随伴ウイルスベクター(AAVベクター)が好ましく用いられる。AAVベクターは、目的のDNAを効率よく発現させるための調節エレメント、例えば、プロモーター、エンハンサー、転写ターミネーターなどを含んでいてもよく、必要に応じて、翻訳開始コドン、翻訳終止コドンなどを挿入してもよい。 For the therapeutic agent of the present invention, an adeno-associated virus vector (AAV vector) is preferably used. The AAV vector may contain regulatory elements for efficiently expressing the target DNA, such as a promoter, enhancer, transcription terminator, etc., and insert a translation start codon, a translation stop codon, etc. as necessary. Also good.
 AAVベクターは増殖/非増殖のいずれの細胞にも遺伝子導入が可能であり、特に非分裂細胞においては長期間の目的遺伝子発現が可能である。アデノウイルスベクターやレトロウイルスベクターと比較して、免疫原性が低く、動物個体への遺伝子導入にも適している。また、非病原性ウイルスであるため、P1レベルの施設でも取扱いが可能であり、安全で取扱いの容易な研究用ウイルスベクターとして広く使用されている。また、AAVには100を超える血清型が存在しており、血清型の違いによって宿主域やウイルスの持つ特徴が異なることが知られている。血清型2(AAV2)は古くから広く研究されてきた血清型の1つであり、宿主域が大変広いことが知られている。血清型1(AAV1)、血清型5(AAV5)と血清型6(AAV6)は、より高い組織指向性を持った血清型であり、AAV1は筋肉、肝臓、気道、中枢神経系等、AAV5は中枢神経系、肝臓、網膜等、AAV6は心臓、筋肉、肝臓等への遺伝子導入効率が高いと言われており、標的とする組織に応じて使い分けることが可能である。後述する試験例においては、血清型9(AAV9)を使用した。非特許文献1において、本実験に使用したAAV9と同じバックボーンのプラスミドから作成されたウイルスを使用した実績がある。 AAV vectors can be used for gene transfer into both proliferating / non-proliferating cells, and in particular, non-dividing cells can express the target gene for a long period of time. Compared to adenovirus vectors and retrovirus vectors, it is less immunogenic and suitable for gene transfer into animals. In addition, since it is a non-pathogenic virus, it can be handled in P1 level facilities and is widely used as a research virus vector that is safe and easy to handle. In addition, there are more than 100 serotypes in AAV, and it is known that the characteristics of host ranges and viruses differ depending on the serotype. Serotype 2 (AAV2) is one of the serotypes that has been extensively studied since ancient times, and is known to have a very wide host range. Serotype 1 (AAV1), serotype 5 (AAV5) and serotype 6 (AAV6) are serotypes with higher tissue orientation, AAV1 is muscle, liver, airway, central nervous system, etc. AAV5 is AAV6, such as the central nervous system, liver, and retina, is said to have high gene transfer efficiency into the heart, muscle, liver, and the like, and can be used properly according to the target tissue. In a test example described later, serotype 9 (AAV9) was used. Non-Patent Document 1 has a track record of using a virus prepared from a plasmid having the same backbone as AAV9 used in this experiment.
 本発明治療剤に用いるAAVベクターは、当技術分野で周知となっている標準的方法により調整することができる。例えば、米国特許第5,858,351号およびそこに引用される参考文献には、遺伝子治療における使用に適切な種々の組み換えAAV、ならびにそれらのベクターの作製方法および増殖方法が記載されている(例えば、Kotin(1994)Human Gene Therapy 5:793 ~ 801、または、Berns「 Parvoviridae and their Replication」 Fundamental Virology、第2版、Fields& Knipe編など)。 The AAV vector used for the therapeutic agent of the present invention can be prepared by standard methods well known in the art. For example, US Pat. No. 5,858,351 and references cited therein describe various recombinant AAV suitable for use in gene therapy, as well as methods for making and propagating these vectors ( For example, Kotin (1994) Human Gene Therapy 5: 793 ~ 801 or Berns “Parvoviridae and their Replication” Fundamental Virology, 2nd edition, edited by Fields & ipeKnipe).
 AAVベクターを作製するための好ましい方法によれば、まず、野生型AAVの両端のITRを残し、その間に目的の遺伝子を挿入することによりプラスミドを作製する(AAVベクタープラスミド)。一方、Rep遺伝子(複製タンパク質をコードする遺伝子)およびCap遺伝子(ウイルスの頭殻タンパク質をコードする遺伝子)を発現するプラスミド、ならびにアデノウイルス遺伝子であるE2A、E4、およびVAの各遺伝子を発現するプラスミドを用意する。次いで、E1遺伝子を発現するパッケージング細胞、例えばHEK293細胞にこれら3種のプラスミドを同時にトランスフェクションし、この細胞を培養する。これにより、哺乳動物細胞に対して高い感染能力を持つAAVベクター粒子を産生することができる。後述する試験例においては、非特許文献1と同様の方法でウイルスの作成を行った。 According to a preferred method for producing an AAV vector, first, a plasmid is produced by leaving the ITRs at both ends of wild-type AAV and inserting a target gene between them (AAV vector plasmid). On the other hand, a plasmid that expresses the Rep gene (a gene that encodes a replicative protein) and a Cap gene (a gene that encodes the cranial protein of a virus), and a plasmid that expresses each of the adenovirus genes E2A, E4, and VA Prepare. These three plasmids are then simultaneously transfected into packaging cells that express the E1 gene, eg, HEK293 cells, and the cells are cultured. As a result, AAV vector particles having a high infectivity for mammalian cells can be produced. In a test example to be described later, a virus was prepared in the same manner as in Non-Patent Document 1.
 本発明治療剤に用いられる非ウイルスベクターとしては、生体内で目的遺伝子を発現させることのできるベクターであれば特に制限されないが、例えば、pCAGGS(Gene 108,193-200(1991))や、pBK-CMV、pcDNA3、1、pZeoSV(インビトロゲン社、ストラタジーン社)、pVAX1などの発現ベクターが挙げられる。非ウイルスベクターを用いる場合は、目的の細胞や組織に遺伝子を効率的に取り込ませるための既知の手法を用いることが好ましい。当該手法としては、例えば、リポフェクション法、リン酸-カルシウム共沈法、DEAE-デキストラン法、微小ガラス管を用いたDNAの直接注入法、内包型リポソーム(internal liposome)による遺伝子導入法、静電気型リポソーム(electorostatic type liposome)による遺伝子導入法、HVJ-リポソーム法、改良型HVJ-リポソーム法(HVJ-AVEリポソーム法)、HVJ-E(エンベロープ)ベクターを用いた方法、レセプター介在性遺伝子導入法、パーティクル銃で担体(金属粒子)とともにDNA分子を細胞に移入する方法、naked-DNAの直接導入法、種々のポリマーによる導入法等が挙げられる。 The non-viral vector used in the therapeutic agent of the present invention is not particularly limited as long as it is a vector that can express the target gene in vivo. For example, pCAGGS (Gene 108, 193-200 (1991)), pBK -Expression vectors such as CMV, pcDNA3, 1, pZeoSV (Invitrogen, Stratagene), pVAX1 and the like. When a non-viral vector is used, it is preferable to use a known technique for efficiently incorporating a gene into a target cell or tissue. Examples of such methods include lipofection method, phosphate-calcium coprecipitation method, DEAE-dextran method, direct DNA injection method using micro glass tube, gene transfer method using internal liposome, electrostatic liposome. (Electrostatic type liposome) gene transfer method, HVJ-liposome method, improved HVJ-liposome method (HVJ-AVE liposome method), method using HVJ-E (envelope) vector, receptor-mediated gene transfer method, particle gun And a method of transferring a DNA molecule together with a carrier (metal particles) into a cell, a direct introduction method of naked-DNA, an introduction method using various polymers, and the like.
 SynGAPα2遺伝子を含むベクターは、適宜遺伝子を転写するためのプロモーターやエンハンサー、ポリAシグナル、遺伝子が導入された細胞の標識および/または選別のためのマーカー遺伝子等を含んでいてもよい。この際のプロモーターとしては、公知のプロモーターを用いることができる。
 SynGAPα2遺伝子を含む本発明治療剤を被験体へ導入するには、本発明治療剤を直接体内に導入するin vivo法、及び、ヒトからある種の細胞を取り出して体外で本発明治療剤を該細胞に導入し、その細胞を体内に戻すex vivo法等のどちらの方法も使用することができる(日経サイエンス、1994年4月号、20-45頁;月刊薬事、36(1),23-48(1994);実験医学増刊、12(15)、(1994);日本遺伝子治療学会編、遺伝子治療開発研究ハンドブック、エヌ・ティー・エス、1999)。
The vector containing the SynGAPα2 gene may contain a promoter or enhancer for appropriately transcription of the gene, a poly A signal, a marker gene for labeling and / or selecting a cell into which the gene has been introduced, and the like. As the promoter in this case, a known promoter can be used.
In order to introduce the therapeutic agent of the present invention containing a SynGAPα2 gene into a subject, an in vivo method in which the therapeutic agent of the present invention is directly introduced into the body, and certain cells from a human are taken out and the therapeutic agent of the present invention is introduced outside the body. Either ex vivo method such as introducing into cells and returning the cells to the body can be used (Nikkei Science, April 1994, pages 20-45; Monthly Pharmaceutical Affairs, 36 (1), 23- 48 (1994); experimental medicine extra number, 12 (15), (1994); edited by Japanese Society of Gene Therapy, Gene Therapy Development Research Handbook, NTS, 1999).
3.2 SynGAPα2タンパク質
 本発明治療剤に含まれるSynGAPα2遺伝子のコードするタンパク質は、配列番号2または配列番号4に表されるアミノ酸配列と実質的に同一のアミノ酸配列を有し、成熟スパインの形成誘導活性を有するタンパク質を用いることができる。ここで、実質的に同一のアミノ酸配列としては、当該アミノ酸配列に対して1または複数もしくは数個(1~10個、好ましくは1~5個、さらに好ましくは1個若しくは2個)のアミノ酸が置換、欠失及び/又は付加されたアミノ酸配列または当該アミノ酸配列と、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータを用いて)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の相同性を有しているものが挙げられる。
3.2 SynGAPα2 protein The protein encoded by the SynGAPα2 gene contained in the therapeutic agent of the present invention has an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4, and induces the formation of mature spine A protein having activity can be used. Here, as the substantially identical amino acid sequence, one or more or several (1 to 10, preferably 1 to 5, more preferably 1 or 2) amino acids are included in the amino acid sequence. Substitution, deletion and / or addition amino acid sequence or the amino acid sequence, and BLAST (Basic Local Alignment Search at the National Center for Biological Information) (for example, a basic local alignment search tool of the National Center for Biological Information) (Using default or default parameters) and having a homology of at least 85%, preferably 90%, more preferably 95%, particularly preferably 97% or more. It is something that can be cited.
 SynGAPα2タンパク質の神経細胞への取込みは、例えばSynGAPα2タンパク質が細胞膜を通過し得るペプチドと結合させて脳組織部位に投与すればよい。細胞膜を通過し得るペプチドとして、種々のペプチドが公知であり、これらの公知のものを用いることができるが、例えば、HIV-1・TATの細胞膜通過ドメイン(protein transduction domain)、ショウジョウバエのホメオボックスタンパク質アンテナペディアの細胞膜通過ドメイン、VP22のC末端(267-300)ペプチド、HIV-1/Rev(34-50)ペプチド、FHV/coat(35-49)ペプチド、K-FGFのN末端(7-22)の疎水性領域が挙げられる。また、神経細胞に特異的に結合し得る化合物と結合させて投与してもよい。この場合は、脳組織部位に局所的に投与してもよいし、経口投与等により投与し、神経細胞にSynGAPα2タンパク質を送達させてもよい。このような、神経細胞に特異的に結合し得る化合物として、神経細胞の表面に発現している受容体と結合するホーミングシグナルペプチドがあげられる。上記の細胞膜通過ペプチドまたはシグナルペプチドをSynGAPα2タンパク質と結合させるには、例えば、SynGAPα2タンパク質をコードするDNAと上記の細胞膜通過ペプチドまたはホーミングシグナルペプチドをコードするDNAをインフレームで連結し、公知の遺伝子工学技術により融合タンパク質として産生させればよい。 Incorporation of the SynGAPα2 protein into the nerve cell may be performed, for example, by combining the SynGAPα2 protein with a peptide capable of passing through the cell membrane and administering it to the brain tissue site. Various peptides are known as peptides that can pass through the cell membrane, and these known peptides can be used. For example, HIV-1 TAT cell membrane domain, Drosophila homeobox protein Antennapedia's transmembrane domain, C-terminal (267-300) peptide of VP22, HIV-1 / Rev (34-50) peptide, FHV / coat (35-49) peptide, N-terminal of K-FGF (7-22 ) Hydrophobic region. Moreover, you may couple | bond and administer with the compound which can couple | bond with a nerve cell specifically. In this case, it may be administered locally to the brain tissue site, or by oral administration or the like, and the SynGAPα2 protein may be delivered to nerve cells. Examples of such a compound capable of specifically binding to a nerve cell include a homing signal peptide that binds to a receptor expressed on the surface of the nerve cell. In order to bind the above-mentioned cell membrane-passing peptide or signal peptide to the SynGAPα2 protein, for example, a DNA encoding the SynGAPα2 protein and a DNA encoding the above-mentioned cell membrane-passing peptide or homing signal peptide are linked in-frame, and known genetic engineering is performed. It may be produced as a fusion protein by technology.
 さらに、本発明治療剤が含有するSynGAPα2タンパク質またはSynGAPα2遺伝子は、該タンパク質のアミノ酸配列の一部アミノ酸配列からなる断片ペプチドであって成熟スパインの形成促進活性を有するペプチド、および該DNAの塩基配列の一部塩基配列からなる断片ヌクレオチドであって、成熟スパインの形成促進活性を有するペプチドをコードするヌクレオチドも含まれる。このような、断片ペプチドまたは断片ヌクレオチドは、全長タンパク質または全長DNAを適当な部位で切断し、成熟スパインの形成促進活性を有するかどうか測定することにより容易に得ることができる。 Furthermore, the SynGAPα2 protein or the SynGAPα2 gene contained in the therapeutic agent of the present invention is a fragment peptide consisting of a partial amino acid sequence of the amino acid sequence of the protein, a peptide having the activity of promoting the formation of mature spine, and the nucleotide sequence of the DNA A fragment nucleotide consisting of a partial base sequence and a nucleotide encoding a peptide having activity for promoting the formation of mature spine is also included. Such a fragment peptide or fragment nucleotide can be easily obtained by cleaving full-length protein or full-length DNA at an appropriate site and determining whether it has activity to promote formation of mature spine.
3.3 製剤
 本発明治療剤は、SynGAPα2タンパク質もしくはSynGAPα2タンパク質と細胞膜通過ペプチドまたはホーミングシグナルペプチドとの融合タンパク質またはSynGAPα2遺伝子DNAもしくは該DNAを含むベクターに加えてに薬理学的に許容され得る担体、希釈剤もしくは賦形剤等を含むことができる。
 本発明治療剤は、種々の形態で投与することができ、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤等による経口投与、あるいは注射剤、点滴剤、座薬、スプレー剤、点眼剤、経鼻投与剤、貼付剤などによる非経口投与を挙げることができる。
3.3 Formulation The therapeutic agent of the present invention is a pharmacologically acceptable carrier in addition to a SynGAPα2 protein or a fusion protein of a SynGAPα2 protein and a cell membrane-passing peptide or a homing signal peptide, or a SynGAPα2 gene DNA or a vector containing the DNA, Diluents or excipients can be included.
The therapeutic agent of the present invention can be administered in various forms, orally by tablets, capsules, granules, powders, syrups, etc., or injections, drops, suppositories, sprays, eye drops, nasal Parenteral administration by administration agent, patch, etc. can be mentioned.
 本発明治療剤は、製剤分野において通常用いられる担体、希釈剤、賦形剤を含む。たとえば、錠剤用の担体、賦形剤としては、乳糖、ステアリン酸マグネシウムなどが使用される。注射用の水性液としては、生理食塩水、ブドウ糖やその他の補助薬を含む等張液などが使用され、適当な溶解補助剤、たとえばアルコール、プロピレングリコールなどのポリアルコール、非イオン界面活性剤などと併用しても良い。油性液としては、ゴマ油、大豆油などが使用され、溶解補助剤としては安息香酸ベンジル、ベンジルアルコールなどを併用しても良い。 The therapeutic agent of the present invention includes a carrier, a diluent, and an excipient that are usually used in the pharmaceutical field. For example, lactose and magnesium stearate are used as carriers and excipients for tablets. As an aqueous solution for injection, isotonic solutions containing physiological saline, glucose and other adjuvants are used. Suitable solubilizers such as polyalcohols such as alcohol and propylene glycol, nonionic surfactants and the like You may use together. As the oily liquid, sesame oil, soybean oil or the like is used, and as a solubilizing agent, benzyl benzoate, benzyl alcohol or the like may be used in combination.
3.4 投与対象、投与方法、投与量
 本発明治療剤は、通常、動物(生体)内に投与される。投与しうる対象動物は特に制限されないが、例えば、ヒトまたは非ヒト動物が挙げられる。非ヒト動物としては特に制限されないが、ヒト以外の哺乳類、具体的には例えば、霊長類(サル、マーモセット)、齧歯類(マウス、ラット、モルモット等)、ウサギ、イヌ、ネコ、ブタ、ウシ、ヒツジ、ウマが挙げられる。
3.4 Administration Subject, Administration Method, Dose The therapeutic agent of the present invention is usually administered in an animal (living body). The target animal that can be administered is not particularly limited, and examples thereof include human or non-human animals. Non-human animals are not particularly limited, but mammals other than humans, specifically, primates (monkeys, marmosets), rodents (mouse, rats, guinea pigs, etc.), rabbits, dogs, cats, pigs, cows , Sheep and horses.
 本発明治療剤の動物(生体内)への投与の方法としては特に制限されず、当業者が治療方法等に応じて適宜決定することができる。投与の方法としては、全身投与又は局所投与のいずれでもよい。本発明治療剤の投与は、注射(針有型、針無型)、カテーテルを用いた投与、内服、外用のいずれの方法によっても行うことができる。投与経路は、治療等に効果的な経路を選択することが好ましい。例えば、全身的に投与する場合は、経口投与の他、静脈内投与、動脈内投与、皮下投与、筋肉内投与、組織内投与等の非経口投与により投与される。局所的に投与する場合は、例えば、脳室、髄腔、脳実質、皮膚、粘膜、肺、気管支、鼻腔、鼻粘膜、眼等に投与される。これらの投与法の中でも、本発明治療剤の標的部位が主に脳の疾患部であることから、経口投与、血管内注射、疾患部位へのカテーテルを用いた投与、髄腔内投与、脳室内投与、脳実質注射が好ましい。 The method of administering the therapeutic agent of the present invention to an animal (in vivo) is not particularly limited and can be appropriately determined by those skilled in the art depending on the treatment method and the like. The administration method may be systemic administration or local administration. Administration of the therapeutic agent of the present invention can be performed by any of injection (needle-type, needle-free), administration using a catheter, internal use, and external use. As the administration route, it is preferable to select an effective route for treatment or the like. For example, in the case of systemic administration, it is administered by parenteral administration such as intravenous administration, intraarterial administration, subcutaneous administration, intramuscular administration, and tissue administration in addition to oral administration. In the case of local administration, for example, it is administered to the ventricle, medullary cavity, brain parenchyma, skin, mucous membrane, lung, bronchi, nasal cavity, nasal mucosa, eye and the like. Among these administration methods, since the target site of the therapeutic agent of the present invention is mainly a diseased part of the brain, oral administration, intravascular injection, administration using a catheter to the diseased site, intrathecal administration, intraventricular chamber Administration and brain parenchymal injection are preferred.
 本発明治療剤の投与量は、有効成分の種類、疾患の種類、患者の状態、年齢、体重、性別、担体や添加剤等の種類などに応じて適宜選択することができる。具体的には、例えば、当該有効成分の量として、成人1日当たり、0.1ng~1000mgの範囲内が適当であり、1ng~500mgの範囲内が好ましく、10ng~200mgの範囲内がより好ましい。これ以上必要とする場合もあれば、これ以下で足りる場合もある。また、かかる投与量を1日1回~複数回に分割して投与することができる。 The dosage of the therapeutic agent of the present invention can be appropriately selected according to the type of active ingredient, the type of disease, the patient's condition, age, weight, sex, type of carrier, additive and the like. Specifically, for example, the amount of the active ingredient is suitably in the range of 0.1 ng to 1000 mg per day for an adult, preferably in the range of 1 ng to 500 mg, more preferably in the range of 10 ng to 200 mg. There may be cases where more are needed, and there are cases where less than this is sufficient. Further, such a dose can be administered once a day or divided into a plurality of times.
 有効成分がSynGAPα2タンパク質の場合、経口投与では、1日約0.001mg~100mgが好ましく、1回または数回に分けて投与することが好ましい。また、非経口投与では、1回あたり、0.001mg~100mgを皮下注射、筋肉注射、または静脈注射によって投与することが好ましい。また、有効成分が被験体内で翻訳させる発現ベクター等に挿入されたSynGAPα2遺伝子DNAである場合は、数日または数週間または数ヶ月おきに1回あたり、0.001mg~100mgを皮下注射、筋肉注射、または静脈注射によって投与することが好ましい。 When the active ingredient is SynGAPα2 protein, it is preferably about 0.001 mg to 100 mg per day for oral administration, and is preferably administered once or divided into several times. For parenteral administration, 0.001 mg to 100 mg per administration is preferably administered by subcutaneous injection, intramuscular injection, or intravenous injection. In addition, when the active ingredient is SynGAPα2 gene DNA inserted into an expression vector to be translated in the subject, 0.001 mg to 100 mg is subcutaneously or intramuscularly injected once every several days, weeks or months Or by intravenous injection.
3.5 薬物
 本発明治療剤は、SynGAPα2をコードする遺伝子やSynGAPα2タンパク質以外に、脳におけるSynGAPα2遺伝子の発現を促進する薬物またはSynGAPα2タンパク質を増加しうる薬物を有効成分として含むことができる。当該薬物としては、例えば、本発明スクリーニング方法により見出される、当該効能を有するものであれば、低分子有機化合物、無機化合物、ペプチド、タンパク質、糖タンパク質、脂質、糖脂質、糖、核酸、植物、微生物、細胞等の抽出液や培養上清など特に制限されない。
3.5 Drug In addition to the gene encoding SynGAPα2 and the SynGAPα2 protein, the therapeutic agent of the present invention may contain a drug that promotes the expression of the SynGAPα2 gene in the brain or a drug that can increase the SynGAPα2 protein as an active ingredient. Examples of the drug include low molecular weight organic compounds, inorganic compounds, peptides, proteins, glycoproteins, lipids, glycolipids, sugars, nucleic acids, plants, and the like, as long as they are found by the screening method of the present invention and have the relevant effects. There are no particular restrictions on the extract of microorganisms, cells, etc., and the culture supernatant.
 また、当該薬物以外に、本発明の効果を損なわない範囲で、医薬上許容される担体等を含みうる。上記担体として、固形、半固形または液状の希釈剤、充填剤、その他の処方用の助剤を挙げることができ、例えば、澱粉、マンニトールのような可食性炭水化物を挙げることができる。これらの担体等の量は製剤中、0.5~99.999%の範囲内が適当であり、好ましくは10~99.99重量%の範囲内がより好ましい。 In addition to the drug, a pharmaceutically acceptable carrier or the like can be included as long as the effects of the present invention are not impaired. Examples of the carrier include solid, semi-solid or liquid diluents, fillers, and other formulation aids, such as edible carbohydrates such as starch and mannitol. The amount of these carriers and the like is suitably in the range of 0.5 to 99.999% in the preparation, and more preferably in the range of 10 to 99.99% by weight.
 また、当該薬物を有効成分として含む本発明治療剤には、上記担体以外に、本発明の効果を損なわない限り、医薬上許容される添加剤、賦形剤などを配合することができる。かかる添加剤ないし賦形剤として、例えば、乳化補助剤(例えば、炭素数6~22の脂肪酸やその医薬的に許容可能な塩、アルブミン、デキストラン)、安定化剤(例えば、コレステロール、ホスファチジン酸)、等張化剤(例えば、塩化ナトリウム、グルコース、マルトース、ラクトース、スクロース、トレハロース)、pH調整剤(例えば、塩酸、硫酸、リン酸、酢酸、水酸化ナトリウム、水酸化カリウム、トリエタノールアミン)を挙げることができる。これらを一種または二種以上使用することができる。本発明治療剤中の当該添加剤等の含有量は、90重量%以下が適当であり、70重量%以下が好ましく、50重量%以下がより好ましい。 In addition, the therapeutic agent of the present invention containing the drug as an active ingredient can be blended with pharmaceutically acceptable additives, excipients and the like in addition to the above carriers as long as the effects of the present invention are not impaired. Examples of such additives or excipients include, for example, emulsification aids (eg, fatty acids having 6 to 22 carbon atoms and pharmaceutically acceptable salts thereof, albumin, dextran), stabilizers (eg, cholesterol, phosphatidic acid). , Isotonic agents (eg, sodium chloride, glucose, maltose, lactose, sucrose, trehalose), pH adjusters (eg, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, sodium hydroxide, potassium hydroxide, triethanolamine) Can be mentioned. One or more of these can be used. The content of the additive and the like in the therapeutic agent of the present invention is suitably 90% by weight or less, preferably 70% by weight or less, and more preferably 50% by weight or less.
 当該薬物を有効成分として含む本発明治療剤の剤型としては、特に制限されず投与方法等に応じて適宜選択されるが、非経口投与のための製剤として、例えば、注射剤、軟膏剤、ゲル剤、クリーム剤、貼付剤、リニメント剤、座薬、噴霧剤、吸入剤、スプレー剤、点眼剤、点鼻剤が挙げられる。この中、注射剤が好ましい。経口投与のための製剤としては、例えば、粉末、顆粒、錠剤、カプセル剤、シロップ剤、液剤を挙げることができる。 当該薬物を有効成分とする本発明治療方法において、投与対象、投与対象、投与量などに関しては、前記と同様である。
 
The dosage form of the therapeutic agent of the present invention containing the drug as an active ingredient is not particularly limited and is appropriately selected depending on the administration method and the like. As a preparation for parenteral administration, for example, an injection, an ointment, Examples include gels, creams, patches, liniments, suppositories, sprays, inhalants, sprays, eye drops, and nasal drops. Among these, an injection is preferable. Examples of preparations for oral administration include powders, granules, tablets, capsules, syrups, and liquids. In the treatment method of the present invention using the drug as an active ingredient, the administration subject, administration subject, dosage and the like are the same as described above.
4 本発明に係る治療方法
 本発明は、SynGAPα2を脳に補充または増加させる工程を有することを特徴とする、シナプス異常を伴う疾患の治療方法(以下、「本発明治療方法」という。)を含む。
 本発明治療方法が対象とするシナプス異常を伴う疾患としては、例えば、前頭側頭葉変性症(FTLD)や運動ニューロン疾患を挙げることができる。本発明治療方法において、SynGAPα2を脳に補充または増加させるには、例えば、SynGAPα2をコードする遺伝子またはSynGAPα2タンパク質を投与すること、脳におけるSynGAPα2遺伝子の発現を促進する薬物またはSynGAPα2タンパク質を増加しうる薬物を投与することにより、直接的ないし間接的に達成しうる。
4. Treatment Method According to the Present Invention The present invention includes a method for treating a disease accompanied by synaptic abnormality (hereinafter referred to as “the treatment method of the present invention”), which comprises a step of supplementing or increasing SynGAPα2 in the brain. .
Examples of the disease accompanied by synaptic abnormality targeted by the treatment method of the present invention include frontotemporal lobar degeneration (FTLD) and motor neuron disease. In the treatment method of the present invention, in order to supplement or increase SynGAPα2 in the brain, for example, a gene encoding SynGAPα2 or a SynGAPα2 protein, a drug that promotes the expression of SynGAPα2 gene in the brain, or a drug that can increase the SynGAPα2 protein Can be achieved directly or indirectly.
 脳におけるSynGAPα2遺伝子の発現を促進する薬物またはSynGAPα2タンパク質を増加しうる薬物としては、例えば、本発明スクリーニング方法により見出される、当該効能を有するものであれば、低分子有機化合物、無機化合物、ペプチド、タンパク質、糖タンパク質、脂質、糖脂質、糖、核酸、植物、微生物、細胞等の抽出液や培養上清など特に制限されない。
 本発明治療方法において、有効成分を投与するための製剤、投与対象、投与量などに関しては、前記と同様である。
 
Examples of the drug that promotes the expression of the SynGAPα2 gene in the brain or the drug that can increase the SynGAPα2 protein include, for example, low molecular organic compounds, inorganic compounds, peptides, Extracts and culture supernatants of proteins, glycoproteins, lipids, glycolipids, sugars, nucleic acids, plants, microorganisms, cells and the like are not particularly limited.
In the treatment method of the present invention, the preparation for administering the active ingredient, the administration subject, the dosage, etc. are the same as described above.
 次に実施例、試験例を掲げて本発明を更に詳しく説明するが、本発明はそれら実施例、試験例に何ら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples and test examples, but the present invention is not limited to these examples and test examples.
[実施例1]本発明モデル動物(FUS-cKOマウス(Cre+))の作製
 Cre-loxPシステムを用いて本発明モデル動物を作製した。Frt配列を有するネオマイシンカセットと共に、FUS遺伝子の5’UTRとイントロン3に同方向のloxP配列を挿入した遺伝子配列を有するベクターを設計し(図1参照)、当該配列を有するベクターを作製した。野生型(WT)遺伝子(図4Aおよび図4B、配列番号5)、ベクター、およびベクターが挿入された遺伝子(KO遺伝子,図5Aおよび図5B、配列番号6)のエクソン1~6の領域の模式図を図2に示す。目的配列の挿入を確認するために、DNAをBamHIやHindIIIで制限酵素処理し、サザンブロッティングを行い、目的の遺伝子導入を確認した。次に当該ベクターを挿入したiTL BA1 ES細胞(C57BL/6J×129/SvEv)を作製した。遺伝子導入したES細胞については、そのDNAをPCR法により目的配列を増幅することにより確認した。作製したベクターの挿入を有するES細胞をC57BL/6J系統のマウスの胚盤胞にマイクロインジェクションにて挿入した。出生した産仔をC57BL/6J FLPマウスと交配してネオマイシンカセットを除去した(上述の工程は、inGenious Targeting laboratory社に委託した。)。WT遺伝子、KO遺伝子、およびネオマイシンカセットが除去された遺伝子(Neo deletion)の模式図を図3に示す。LoxP配列が含まれるNeo deletionを有するマウスの検出のために、マウスのDNAをPCRにて確認した。WTが286bpに対して、Neo deletionの配列は451bpであることから、実験には451bpのみが確認されるホモのマウスを使用した。その後、当該マウスを、C57BL/6J(中部化学資材社より購入)に戻し交配を行った。そして、MAX-BAXプログラム(Charles River)を用いて、遺伝子背景が完全に一致するCre-loxP配列導入マウスを作製した。
[Example 1] Preparation of model animal of the present invention (FUS-cKO mouse (Cre +)) A model animal of the present invention was prepared using the Cre-loxP system. A vector having a gene sequence in which a 5 × UTR of the FUS gene and a loxP sequence in the same direction were inserted into intron 3 was designed together with a neomycin cassette having an Frt sequence (see FIG. 1), and a vector having the sequence was prepared. Schematic representation of exon 1-6 region of wild type (WT) gene (FIGS. 4A and 4B, SEQ ID NO: 5), vector, and gene into which the vector has been inserted (KO gene, FIGS. 5A and 5B, SEQ ID NO: 6) The figure is shown in FIG. In order to confirm the insertion of the target sequence, the DNA was subjected to restriction enzyme treatment with BamHI or HindIII and subjected to Southern blotting to confirm the introduction of the target gene. Next, iTL BA1 ES cells (C57BL / 6J × 129 / SvEv) into which the vector was inserted were prepared. The ES cell into which the gene was introduced was confirmed by amplifying the target sequence of the DNA by PCR. The produced ES cell having the inserted vector was inserted into a blastocyst of a mouse of C57BL / 6J strain by microinjection. Newborn pups were mated with C57BL / 6J FLP mice to remove the neomycin cassette (the above-mentioned process was commissioned to inGenetic Targeting Laboratories). A schematic diagram of the WT gene, KO gene, and gene from which the neomycin cassette has been removed (Neo deletion) is shown in FIG. The mouse DNA was confirmed by PCR for detection of mice with Neo deletion containing the LoxP sequence. Since the WT is 286 bp and the Neo deletion sequence is 451 bp, homozygous mice in which only 451 bp are confirmed were used in the experiment. Thereafter, the mice were backcrossed to C57BL / 6J (purchased from Chubu Chemical Materials Co., Ltd.) and mated. Then, using the MAX-BAX program (Charles River), a Cre-loxP sequence-introduced mouse having a completely matched genetic background was prepared.
 次に、遺伝子背景を完全に一致させた上記マウスにCamk2a-Creマウス(Cell 1996;87:1917)を交配した。出生した産仔のうち、FUSfl/fl/Cre+マウスをFUS-cKOマウス(Cre+)(本発明モデル動物)として、またFUSfl/+、FUSfl/fl/マウス(Cre-)を対照マウスとして使用した。
 
 以下の試験例では、主に3~4月齢の雄を使用した。試験例7のAAVベクターの脳実質注入を行う場合は6週齢で注入を行い、解析は3~4月齢で施行した。
Next, Camk2a-Cre mice (Cell 1996; 87: 1917) were mated to the above-mentioned mice whose gene backgrounds were completely matched. Among the offspring born, FUS fl / fl / Cre + mice were used as FUS-cKO mice (Cre +) (model animal of the present invention), and FUS fl / + , FUS fl / fl / mouse (Cre−) were used as control mice. used.

In the following test examples, males aged 3-4 months were mainly used. When brain parenchymal injection of the AAV vector of Test Example 7 was performed, the injection was performed at 6 weeks of age, and the analysis was performed at 3 to 4 months of age.
[試験例1]実施例1のFUS-cKOマウス(Cre+)の評価
 実施例1で作製したFUS-cKOマウス(Cre+)について、脳の海馬におけるFUSタンパク質の発現量を免疫染色法により評価した。3月齢のFUS-cKOマウス(Cre+)および対照マウス(Cre-)の脳をパラホルムアルデヒドで固定し、パラフィン包埋したサンプルを作製し、その海馬組織切片において抗FUS抗体の免疫染色をDAB発色で行った。次に当該切片より海馬CA1領域を切離し、超音波で破砕したサンプルを用いてウエスタンブロット法によりタンパク発現量を確認した。
[Test Example 1] Evaluation of FUS-cKO mice (Cre +) of Example 1 The FUS-cKO mice (Cre +) prepared in Example 1 were evaluated for the expression level of FUS protein in the hippocampus of the brain by immunostaining. The brains of 3-month-old FUS-cKO mice (Cre +) and control mice (Cre−) were fixed with paraformaldehyde to prepare paraffin-embedded samples, and anti-FUS antibody immunostaining was performed with DAB coloring in the hippocampal tissue sections. went. Next, the hippocampal CA1 region was separated from the section, and the protein expression level was confirmed by Western blotting using a sample crushed by ultrasonic waves.
 Creの発現していない対照マウス(Cre-)と比較して、Creを発現して脳特異的にFUS遺伝子をノックアウトした本発明モデル動物(FUS-cKOマウス(Cre+))では、脳組織において、抗FUS抗体を用いた免疫染色よるとFUSタンパク質の染色性が低下していた(図7(A)参照)。FUSタンパク質の染色性の低下は、特に海馬CA1領域、歯状回の神経細胞において顕著であった。また、抗FUS抗体を用いたウエスタンブロット法による実験の結果、FUS-cKOマウス(Cre+)の海馬CA1領域においてはFUSタンパク質の発現量の低下を認めた(図7(B)参照)。
 以上から、実施例1で作製したFUS-cKOマウス(Cre+)において、FUS遺伝子のノックアウトが成立していることを確認した。
In the model animal of the present invention (FUS-cKO mouse (Cre +)) in which Cre was expressed and the FUS gene was knocked out specifically in the brain, compared with the control mouse (Cre−) in which Cre was not expressed, According to immunostaining using an anti-FUS antibody, the staining ability of the FUS protein was reduced (see FIG. 7A). The decrease in FUS protein staining was particularly remarkable in the hippocampal CA1 region and neurons in the dentate gyrus. In addition, as a result of Western blotting using an anti-FUS antibody, a decrease in the expression level of FUS protein was observed in the hippocampal CA1 region of FUS-cKO mice (Cre +) (see FIG. 7B).
From the above, it was confirmed that the FUS gene knockout was established in the FUS-cKO mouse (Cre +) prepared in Example 1.
[試験例2]FUS-cKOマウス(Cre+)の表現型の解析
 実施例1で作製した、3~4月齢のFUS-cKOマウス(Cre+)の脳組織切片を用いて、FD Rapid GolgiStain kit(FD Neuro Technologies社製)によりゴルジ染色を行い、後シナプス部におけるスパイン形態を評価した。また、当該組織切片における神経突起100μm当たりの総スパイン数、およびマッシュルーム型の成熟スパインの割合を評価した。
[Test Example 2] Phenotypic analysis of FUS-cKO mice (Cre +) Using the brain tissue sections of 3-4 month old FUS-cKO mice (Cre +) prepared in Example 1, FD Rapid GolgiStain kit (FD) Golgi staining was performed by Neuro Technologies), and the spine morphology at the post-synaptic portion was evaluated. In addition, the total number of spines per 100 μm of neurites in the tissue section and the ratio of mushroom-type mature spines were evaluated.
 対照マウスと比較し、FUS-cKOマウス(Cre+)マウスでは矢印で示されるマッシュルーム型の成熟スパインが減少していた(図8A参照)。定量解析では、神経突起100μm当たりの総スパイン数には変化がなかったが(図8B参照)、総スパイン数における成熟スパインの割合はFUS-cKOマウス(Cre+)において有意に低下していた(図8C: N=8 from 4 mice each)。
 以上のことから、実施例1で作製したFUS-cKOマウス(Cre+)では、スパインの成熟障害、すなわち後シナプスの成熟障害のあることが判明し、このことが神経活動の低下に寄与している可能性を示唆した。
Compared to control mice, mushroom-type mature spines indicated by arrows were decreased in FUS-cKO mice (Cre +) mice (see FIG. 8A). In quantitative analysis, there was no change in the total number of spines per 100 μm of neurites (see FIG. 8B), but the proportion of mature spines in the total number of spines was significantly decreased in FUS-cKO mice (Cre +) (FIG. 8). 8C: N = 8 from 4 mice each).
From the above, the FUS-cKO mouse (Cre +) prepared in Example 1 was found to have a spine maturation disorder, that is, a post-synaptic maturation disorder, which contributes to a decrease in nerve activity. Suggested the possibility.
[試験例3]行動試験(行動量)
 実施例1で作製したFUS-cKOマウスにおける高次脳機能異常を、脳科学の研究において用いられる行動試験によって評価した。行動試験に用いるマウスは、C57BL/6Jの系統に戻し交配を行い、遺伝子検査(MAX-BAX,Charles River社)にて99.5%以上の一致率を得たマウスを繁殖し、3~4月齢で評価を行った。実験には、対照マウス(Cre-)群は10匹、FUS-cKOマウス(Cre+)群は11匹を使用した。行動量を評価するオープンフィールド試験を行い、その試験方法として、直径60cmのアリーナに被験体マウスを置き、5分間のマウスの行動量をEthoVision(自動追跡プログラム、Brainscience Idea社製)で計測した。
[Test Example 3] Behavior test (action amount)
Higher-order brain function abnormalities in the FUS-cKO mice prepared in Example 1 were evaluated by behavioral tests used in brain science research. The mice used in the behavioral test were backcrossed to the C57BL / 6J strain, and mice that had a coincidence rate of 99.5% or more by genetic testing (MAX-BAX, Charles River) were bred and 3-4 Evaluation was performed by age. In the experiment, 10 mice were used for the control mouse (Cre−) group, and 11 mice were used for the FUS-cKO mouse (Cre +) group. An open field test for evaluating the amount of behavior was performed, and as a test method, a subject mouse was placed in an arena having a diameter of 60 cm, and the amount of behavior of the mouse for 5 minutes was measured with EthoVision (automatic tracking program, manufactured by Brainscience Idea).
 対照マウス(Cre-)群と比較して、FUS-cKOマウス(Cre+)群では総移動距離が有意に上昇した(図9参照)。アリーナを直径40cmの円で分けて中央部と外周に分けて解析したところ、特に外周の移動距離が上昇した。
 以上の通り、実施例1で作製したFUS-cKOマウス(Cre+)は「多動」の表現型を示した。
Compared with the control mouse (Cre−) group, the total distance of movement was significantly increased in the FUS-cKO mouse (Cre +) group (see FIG. 9). When the arena was divided into a circle having a diameter of 40 cm and divided into a central portion and an outer periphery, the movement distance of the outer periphery increased in particular.
As described above, the FUS-cKO mouse (Cre +) prepared in Example 1 exhibited a “hyperactivity” phenotype.
[試験例4]行動試験(不安行動)
 不安行動は高架式十字迷路法によって評価した。被験体マウスとして、試験例3のものを使用した。方法としては、一方を両側に柵を配置した「壁のある道」とし、他方は開けた状態の「壁のない道」にした十字の通路を床上50cmの高さに配置し、そこに被験体マウスを置き、5分間の行動パターンを評価することで行った。
[Test Example 4] Behavior test (anxiety behavior)
Anxiety behavior was evaluated by the elevated plus maze method. The test mouse used in Test Example 3 was used. As a method, a cross passage with one side set as a “walled road” with fences on both sides and the other opened as a “wallless road” is placed at a height of 50 cm above the floor and tested there. This was done by placing a body mouse and evaluating the behavior pattern for 5 minutes.
 対照マウス(Cre-)群と比較して、FUS-cKOマウス(Cre+)群は「壁のない道」の滞在時間が有意に上昇し、「壁のある道」では有意に低下した(図10(A)参照)。5分間における「壁のない道」への侵入回数もFUS-cKOマウス(Cre+)群で有意に上昇していた(図10(B)参照)。
 以上の通り、実施例1で作製したFUS-cKOマウス(Cre+)は「不安欠如」の表現型を示した。
Compared to the control mouse (Cre−) group, the FUS-cKO mouse (Cre +) group had a significant increase in residence time of the “wallless road” and significantly decreased in the “walled road” group (FIG. 10). (See (A)). The number of intrusions into the “wallless road” in 5 minutes was also significantly increased in the FUS-cKO mouse (Cre +) group (see FIG. 10B).
As described above, the FUS-cKO mouse (Cre +) prepared in Example 1 exhibited a “lack of anxiety” phenotype.
[試験例5]行動試験(記憶障害)
 記憶障害は、新規物体認知試験、および恐怖条件付け試験で評価した。被験体マウスとして、試験例3のものを使用した。
 まず、新規物体認知試験は、30cm四方の箱に2つの物体を置き、そこに被験体マウスに5分間自由に探索させる「訓練試行」のステップ、その後、翌日に一方のみを変更し、新規物体の認知を評価する「保持試行」のステップの手順で行った。
 また、恐怖条件付け試験は、30cm四方の箱に被験体マウスを入れ(文脈条件付け)、15秒間85dBの音を聞かせ(音条件付け)、最後の5秒間に0.8mAの電気ショックを与えることを4回行い文脈と音により条件付けした。そして、翌日に同じ箱に入れ、電気ショックを与えずに被験体マウスが「すくみ反応」を起こすか2分間観察し恐怖文脈条件付け試験を、さらに4時間後に条件付けと同じ音を聞かせて、音刺激前後および音刺激中の1分間ずつの「すくみ反応」を観察する恐怖音条件付け試験を行った。
[Test Example 5] Behavioral test (memory impairment)
Memory impairment was assessed with a novel object recognition test and a fear conditioning test. The test mouse used in Test Example 3 was used.
First, in the new object recognition test, two objects are placed in a 30 cm square box, and a “training trial” step in which the subject mouse freely searches for 5 minutes, and then only one of the next day is changed. The procedure of the “holding trial” step to evaluate cognition was performed.
In the fear conditioning test, the subject mouse was placed in a 30 cm square box (context conditioning), allowed to hear 85 dB of sound for 15 seconds (sound conditioning), and subjected to an electric shock of 0.8 mA for the last 5 seconds. Turned and conditioned by context and sound. Then, put it in the same box the next day and observe for 2 minutes whether the subject mouse caused a “shrinking reaction” without giving an electric shock. A terrifying sound conditioning test was performed to observe the “freezing reaction” for 1 minute each before and after sound stimulation.
 結果、新規物体認知試験の「訓練試行」では2物体への探索時間に有意差がなく、「保持試行」ではなじみのある物体(ファミリア)と比べて新規物体への探索時間が両群とも有意に上昇しており、両群に探索嗜好性の違いは見られなかった (図11(A)参照)。したがって、本試験では、実施例1で作製したFUS-cKOマウス(Cre+)群の「記憶障害」は認められなかった。
 恐怖条件付け試験においては、場所および音刺激のどちらにおいても両群で「すくみ反応」に有意な差は認めなかった(図11(B)参照)。したがって、本試験においても実施例1で作製したFUS-cKOマウス(Cre+)群の「記憶障害」は認められなかった。
As a result, there was no significant difference in the search time for two objects in the “training trial” of the new object recognition test, and the search time for the new object was significant in both groups compared to the familiar object (familiar) in the “hold trial” The difference in search preference was not seen in both groups (see FIG. 11A). Therefore, in this test, no “memory impairment” was observed in the FUS-cKO mouse (Cre +) group prepared in Example 1.
In the fear conditioning test, there was no significant difference in “shrinkage response” between the two groups in both the place and the sound stimulus (see FIG. 11B). Therefore, also in this test, “memory impairment” of the FUS-cKO mouse (Cre +) group prepared in Example 1 was not observed.
 行動試験の総括として、FUS-cKOマウス(Cre+)群では「多動」、「不安欠如」という行動異常を呈したが、「記憶障害」は認められなかった。この特徴はFTLD患者における初期の臨床症状の特徴に類似している(Dement Geriatr Cogn Disord 2006;21:74)。よって、実施例1で作製したFUS-cKOマウス(Cre+)は、FTLD等のモデル動物として妥当であることが明らかである。 As a summary of behavioral tests, FUS-cKO mice (Cre +) group exhibited behavioral abnormalities such as “hyperactivity” and “lack of anxiety”, but “memory impairment” was not observed. This feature is similar to that of early clinical symptoms in patients with FTLD (Dement Geriatr Cogn Disord 2006; 21: 74). Therefore, it is clear that the FUS-cKO mouse (Cre +) prepared in Example 1 is appropriate as a model animal such as FTLD.
[試験例6]FTLD等の治療ターゲットの探索
 マウス初代培養神経細胞におけるFUS発現抑制モデルから抽出したタンパク質のLC/MS解析により、治療ターゲットとしてSynGAPα2が得られた。そのため、FUS-cKOマウスの脳組織におけるSynGAPα2タンパク質の量を、試験例1と同様に作製した脳海馬CA1領域のパラフィン切片に対して抗SynGAPα2抗体を用いた蛍光免疫染色を行った。また、当該組織切片の海馬CA1を超音波破砕して得られたサンプルを用いて、抗SynGAPα2抗体を用いたウエスタンブロットを行った。
[Test Example 6] Search for therapeutic target such as FTLD SynGAPα2 was obtained as a therapeutic target by LC / MS analysis of the protein extracted from the FUS expression suppression model in mouse primary cultured neurons. Therefore, the amount of SynGAPα2 protein in the brain tissue of FUS-cKO mice was subjected to fluorescent immunostaining using an anti-SynGAPα2 antibody on paraffin sections of the brain hippocampal CA1 region prepared in the same manner as in Test Example 1. Further, Western blotting using an anti-SynGAPα2 antibody was performed using a sample obtained by ultrasonically disrupting the hippocampal CA1 of the tissue section.
 海馬CA1領域から抽出した蛋白質のウエスタンブロット(図12(B)参照)、および海馬CA1領域のパラフィン切片の蛍光免疫染色(図12(A)参照)の結果、FUS-cKOマウス(Cre+)においてSynGAPα2のタンパク質の量が顕著に低下していることが確認された。 As a result of Western blotting of proteins extracted from the hippocampal CA1 region (see FIG. 12B) and fluorescent immunostaining of paraffin sections of the hippocampal CA1 region (see FIG. 12A), SynGAPα2 in FUS-cKO mice (Cre +) It was confirmed that the amount of the protein decreased significantly.
[試験例7]SynGAP Aα2の補充実験
 N末端にFLAGを付したマウスSynGAP Aα2のcDNA配列を組み込み、CAGプロモーター下に発現するAAVベクター作成し、このベクターを搭載したAAVを作成した(図6Aおよび図6B、配列番号7参照)。当該ベクターで発現されたタンパク質には、SynGAPのN末端に標識配列としてFlagペプチドが挿入されている。6週齢のマウスに対して投与し、SynGAP Aα2を発現させることによりSynGAP Aα2タンパク質を補充し、表現型の改善試験を行った。
 実験は、実施例1で作製した、6週齢のFUS-cKOマウス(Cre+)の両側海馬にステレオタキシック装置(Angel Two、Leica社)を用いて両側海馬にAAVを1.5×10 13乗 VG/mLの濃度で1μLを定位注入することによって行った。評価は、試験例2と同様に、FUS-cKOマウスの脳組織切片を用いて、FD Rapid GolgiStain kit(FD Neuro Technologies社製)によりゴルジ染色を行い、後シナプス部におけるスパイン形態を評価し、成熟スパインの割合を評価することにより行った。実験は3匹のFUS-cKOマウス(Cre+)を用いて行った。実験の陰性対照群として、FUS-cKOマウス(Cre+)を2匹、および対照マウス(Cre-)にGFPのcDNA配列を組み込んだAAVベクターを搭載したAAVを注入したものを3匹作製した。
[Test Example 7] SynGAP Aα2 supplementation experiment A cDNA vector of mouse SynGAP Aα2 with FLAG attached to the N-terminus was inserted into an AAV vector that was expressed under the CAG promoter, and an AAV equipped with this vector was prepared (FIG. 6A and FIG. 6). FIG. 6B, see SEQ ID NO: 7). In the protein expressed by the vector, a Flag peptide is inserted as a labeling sequence at the N-terminus of SynGAP. It was administered to 6-week-old mice, and SynGAP Aα2 protein was supplemented by expressing SynGAP Aα2 to conduct a phenotypic improvement test.
The experiment was carried out using the stereotaxic device (Angel Two, Leica) on the bilateral hippocampus of 6-week-old FUS-cKO mice (Cre +) prepared in Example 1, and AAV was 1.5 × 10 13 on the bilateral hippocampus. This was done by stereotaxic injection of 1 μL at a concentration of squared VG / mL. Evaluation was performed in the same manner as in Test Example 2, using a brain tissue section of a FUS-cKO mouse, Golgi staining was performed by FD Rapid GolgiStain kit (manufactured by FD Neuro Technologies), and the spine morphology at the post-synaptic part was evaluated, and matured This was done by evaluating the proportion of spine. The experiment was performed using 3 FUS-cKO mice (Cre +). As a negative control group for the experiment, two FUS-cKO mice (Cre +) and three mice in which AAV loaded with an AAV vector incorporating the GFP cDNA sequence was injected into control mice (Cre−) were prepared.
 ゴルジ染色像の観察の結果、SynGAP Aα2の補充を行ったFUS-cKOマウス(Cre+)については、FUS-cKOマウス(Cre+)で見られた総スパイン数におけるマッシュルーム型の成熟スパインの割合の減少が有意に改善した(図13A、図13B参照)。 As a result of observing the Golgi-stained image, for the FUS-cKO mice (Cre +) supplemented with SynGAP Aα2, there was a decrease in the proportion of mushroom-type mature spines in the total number of spines seen in FUS-cKO mice (Cre +) There was a significant improvement (see FIGS. 13A and 13B).
[試験例8]行動試験(行動量、不安行動)
 試験例7でSynGAP Aα2の補充を行ったFUS-cKOマウス(Cre+)群について、高次脳機能障害の回復を、行動試験によって評価した。行動量は試験例3と同様にオープンフィールド試験によって、不安行動は試験例4と同様に高架式十字迷路法によって評価した。試験例7と同様に、実験の陰性対照群として、FUS-cKOマウス(Cre+)、および対照マウス(Cre-)にGFPのcDNA配列を組み込んだAAVベクターを搭載したAAVを注入したものを作製した。
[Test Example 8] Behavior test (action amount, anxiety behavior)
For the FUS-cKO mice (Cre +) group supplemented with SynGAP Aα2 in Test Example 7, recovery of higher brain dysfunction was evaluated by behavioral tests. The amount of behavior was evaluated by the open field test as in Test Example 3, and the anxiety behavior was evaluated by the elevated plus maze method as in Test Example 4. As in Test Example 7, FUS-cKO mice (Cre +) and control mice (Cre−) were injected with AAV loaded with an AAV vector incorporating the GFP cDNA sequence, as a negative control group for the experiment. .
 SynGAP Aα2の補充を行ったFUS-cKOマウスでは、試験例3~4で観察された行動異常である「多動」は、対照であるGFPを補充したFUS-cKOマウスと比較して改善された(図14A参照。左カラムからN=14,11,11)。また、「不安欠如」については、SynGAP Aα2の補充を行ったFUS-cKOマウスでは、対照であるGFPを補充したFUS-cKOマウスと比較して有意に改善された(図14B参照。左カラムからN=8,7,8)。
 これらの結果から、SynGAP Aα2がFTLD等の治療ターゲットとなりうることが明らかである。また、FTLD等の治療薬の探索のために、薬物の適用によるSynGAP Aα2の増減、または本マウスの表現型の改善を指標とすることが効果的であることが明らかである。
 以上示したように、本発明のFUS-cKOマウスはFTLD等の治療の研究のためのモデル動物として有用であることが示された。
 
In FUS-cKO mice supplemented with SynGAP Aα2, the behavioral abnormality “hyperactivity” observed in Test Examples 3 to 4 was improved compared to FUS-cKO mice supplemented with GFP as a control. (See FIG. 14A. N = 14, 11, 11 from the left column). In addition, regarding “lack of anxiety”, FUS-cKO mice supplemented with SynGAP Aα2 were significantly improved compared to FUS-cKO mice supplemented with GFP as a control (see FIG. 14B, from the left column). N = 8, 7, 8).
From these results, it is clear that SynGAP Aα2 can be a therapeutic target such as FTLD. In addition, it is clear that, for searching for therapeutic agents such as FTLD, it is effective to use increase or decrease of SynGAP Aα2 by application of drugs or improvement of phenotype of this mouse as an index.
As described above, it was shown that the FUS-cKO mouse of the present invention is useful as a model animal for research of treatment such as FTLD.
 本発明モデル動物は、シナプス異常を伴う疾患、例えば、前頭側頭葉変性症(FTLD)、運動ニューロン疾患の病態や治療法を研究開発する上で産業として利用することができる。また、本発明スクリーニング方法は、シナプス異常を伴う疾患の治療薬を探索する上で産業として利用することができる。さらに、本発明治療剤は、シナプス異常を伴う疾患の治療に有効であるから、それを製造販売など行う上で利用することができる。
 
The model animal of the present invention can be used as an industry for research and development of diseases associated with synaptic abnormalities such as frontotemporal lobar degeneration (FTLD) and motor neuron diseases. In addition, the screening method of the present invention can be used as an industry in searching for therapeutic agents for diseases associated with synaptic abnormalities. Furthermore, since the therapeutic agent of the present invention is effective for the treatment of diseases accompanied by synaptic abnormalities, it can be used for production and sales.
配列番号5:マウスFUS遺伝子のエクソン1~6の領域の塩基配列である。
配列番号6:ベクターを挿入後のマウスFUS遺伝子のエクソン1~6の領域の塩基配列である。
配列番号7:SynGAP A2αのcDNAを組み込んだAAVベクターの塩基配列である。
SEQ ID NO: 5 is the nucleotide sequence of exon 1 to 6 of mouse FUS gene.
SEQ ID NO: 6: nucleotide sequence of exon 1-6 region of mouse FUS gene after insertion of vector.
SEQ ID NO: 7: This is the base sequence of an AAV vector incorporating SynGAP A2α cDNA.

Claims (19)

  1. 脳におけるFUS遺伝子の特異的ノックアウトにより作製されることを特徴とする、シナプス異常を伴う疾患の症状を呈するモデル動物。 A model animal exhibiting a symptom of a disease accompanied by a synaptic abnormality, which is produced by specific knockout of the FUS gene in the brain.
  2. ノックアウトが、Cre-loxPシステムとCamK2プロモーターとを用いて行われる、請求項1に記載のモデル動物。 The model animal according to claim 1, wherein the knockout is performed using a Cre-loxP system and a CamK2 promoter.
  3. シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、請求項1または2に記載のモデル動物。 The model animal according to claim 1 or 2, wherein the disease accompanied by a synaptic abnormality is frontotemporal lobar degeneration (FTLD) or a motor neuron disease.
  4. 動物がマウスである、請求項1~3のいずれか一項に記載のモデル動物。 The model animal according to any one of claims 1 to 3, wherein the animal is a mouse.
  5. 動物が近交系である、請求項1~4のいずれか一項に記載のモデル動物。 The model animal according to any one of claims 1 to 4, wherein the animal is an inbred strain.
  6. 請求項1~5のいずれか一項に記載のモデル動物から取得されるモデル神経細胞またはモデル神経細胞株。 A model neuron or a model neuron cell line obtained from the model animal according to any one of claims 1 to 5.
  7. 脳におけるFUS遺伝子を特異的にノックアウトする操作工程を有することを特徴とする、シナプス異常を伴う疾患の症状を呈するモデル動物の製造方法。 The manufacturing method of the model animal which exhibits the symptom of the disease accompanying a synaptic abnormality characterized by having the operation process which knocks out the FUS gene specifically in a brain.
  8. 脳におけるFUS遺伝子を特異的にノックアウトする操作工程が、Cre-loxPシステムとCamK2プロモーターとを用いるものである、請求項7に記載の製造方法。 The production method according to claim 7, wherein the operation step of specifically knocking out the FUS gene in the brain uses a Cre-loxP system and a CamK2 promoter.
  9. シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、請求項7または請求項8に記載の製造方法。 The production method according to claim 7 or 8, wherein the disease accompanied by a synaptic abnormality is frontotemporal lobar degeneration (FTLD) or a motor neuron disease.
  10. 動物がマウスである、請求項7~9のいずれか一項に記載の製造方法。 The production method according to any one of claims 7 to 9, wherein the animal is a mouse.
  11. 動物が近交系である、請求項7~10のいずれか一項に記載の製造方法。 The production method according to any one of claims 7 to 10, wherein the animal is an inbred strain.
  12. 請求項1~5のいずれか一項に記載のモデル動物、または請求項6に記載のモデル神経細胞もしくはモデル神経細胞株を用いる工程を有することを特徴とする、シナプス異常を伴う疾患の治療薬を探索するためのスクリーニング方法。 A therapeutic agent for diseases associated with synaptic abnormalities, comprising the step of using the model animal according to any one of claims 1 to 5, or the model nerve cell or model nerve cell line according to claim 6. Screening method to search for.
  13. シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、請求項12に記載のスクリーニング方法。 The screening method according to claim 12, wherein the disease accompanied by a synaptic abnormality is frontotemporal lobar degeneration (FTLD) or a motor neuron disease.
  14. 対象薬物の適用によるSynGAPα2の増減を測定する工程を有することを特徴とする、シナプス異常を伴う疾患の治療薬を探索するためのスクリーニング方法。 A screening method for searching for a therapeutic agent for a disease associated with a synaptic abnormality, comprising a step of measuring increase or decrease of SynGAPα2 due to application of a target drug.
  15. シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、請求項14に記載のスクリーニング方法。 The screening method according to claim 14, wherein the disease accompanied by synaptic abnormality is frontotemporal lobar degeneration (FTLD) or motor neuron disease.
  16. SynGAPα2をコードする遺伝子もしくはSynGAPα2タンパク質、または脳におけるSynGAPα2遺伝子の発現を促進する薬物もしくはSynGAPα2タンパク質を増加しうる薬物を有効成分として含有することを特徴とする、シナプス異常を伴う疾患の治療剤。 A therapeutic agent for diseases accompanied by synaptic abnormalities, comprising as an active ingredient a gene encoding SynGAPα2 protein or a SynGAPα2 protein, or a drug that promotes the expression of the SynGAPα2 gene in the brain or a drug that can increase the SynGAPα2 protein.
  17. シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、請求項16に記載の治療剤。 The therapeutic agent according to claim 16, wherein the disease accompanied by a synaptic abnormality is frontotemporal lobar degeneration (FTLD) or a motor neuron disease.
  18. SynGAPα2を脳に補充または増加させる工程を有することを特徴とする、シナプス異常を伴う疾患の治療方法。 A method for treating a disease accompanied by synaptic abnormality, comprising a step of supplementing or increasing SynGAPα2 in the brain.
  19. シナプス異常を伴う疾患が、前頭側頭葉変性症(FTLD)または運動ニューロン疾患である、請求項18に記載の治療方法。 The treatment method according to claim 18, wherein the disease accompanied by a synaptic abnormality is frontotemporal lobar degeneration (FTLD) or a motor neuron disease.
PCT/JP2017/025273 2016-07-14 2017-07-11 Disease model animal and disease therapeutic agent WO2018012497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527612A JPWO2018012497A1 (en) 2016-07-14 2017-07-11 Disease model animal and disease treatment agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016139308 2016-07-14
JP2016-139308 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018012497A1 true WO2018012497A1 (en) 2018-01-18

Family

ID=60952085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025273 WO2018012497A1 (en) 2016-07-14 2017-07-11 Disease model animal and disease therapeutic agent

Country Status (2)

Country Link
JP (1) JPWO2018012497A1 (en)
WO (1) WO2018012497A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058866A2 (en) * 2012-10-11 2014-04-17 Brandeis University Treatment of amyotrophic lateral sclerosis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058866A2 (en) * 2012-10-11 2014-04-17 Brandeis University Treatment of amyotrophic lateral sclerosis

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BERRYER M. H. ET AL.: "Mutations in SYNGAP1 Cause Intellectual Disability, Autism, and a Specific Form of Epilepsy by Inducing Haploinsufficiency", HUMAN MUTATION, vol. 34, no. 2, 15 November 2012 (2012-11-15), pages 385 - 394, XP055459182 *
KINO Y ET AL.: "FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis", ACTA NEUROPATHOLOGICA COMMUNICATIONS, vol. 3, no. 24, 25 April 2015 (2015-04-25), pages 1 - 11, XP021216050 *
MCMAHON A. C. ET AL.: "SynGAP isoforms exert opposing effects on synaptic strength", NATURE COMMUNICATIONS, vol. 3, no. 900, 12 June 2012 (2012-06-12), pages 1 - 9, XP055459179 *
MINICHIELLO L. ET AL.: "Essential Role for TrkB Receptors in Hippocampus-Mediated Learning", NEURON, vol. 24, 1999, pages 401 - 414, XP055459175 *
SHARMA A. ET AL.: "ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function", NATURE COMMUNICATIONS, vol. 7, no. 10465, 4 February 2016 (2016-02-04), pages 1 - 14, XP055459165 *
TSUYOSHI UDAGAWA ET AL.: "FUS regulates AMPA receptor function and FTLD/ALS-associated behavior via GluA1 mRNA stabilization", BMB2015 (JOINT MEETING OF THE 38TH ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN AND THE 88TH ANNUAL MEETING OF THE JAPANESE BIOCHEMICAL SOCIETY) WEB YOSHISHU, vol. 4W27, 16 November 2015 (2015-11-16), pages 7 *
UDAGAWA T. ET AL.: "FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization", NATURE COMMUNICATIONS, vol. 6, no. 7098, 13 May 2015 (2015-05-13), pages 1 - 13, XP055459166 *
YANG Y. ET AL.: "Camkii-Mediated Phosphorylation Regulates Distributions of Syngap-alphal and -alpha2 at the Postsynaptic Density", PLOS ONE, vol. 8, no. 8, August 2013 (2013-08-01), pages e71795, XP055459180 *

Also Published As

Publication number Publication date
JPWO2018012497A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US9161520B2 (en) Transgenic animal expressing Alzheimer's tau protein
EP0742831B1 (en) Transgenic non-human mammals with progressive neurologic disease
JP7423206B2 (en) New Alzheimer's disease animal model
JP2000513929A (en) Transgenic non-human mammal with progressive neurological disease
US7745688B2 (en) Model mouse of Alzheimer's disease expressing FAD APP 716 and use thereof
US6452065B2 (en) Transgenic mouse expressing non-native wild-type and familial Alzheimer's Disease mutant presenilin 1 protein on native presenilin 1 null background
JP2000512141A (en) Perlecan transgenic animals and methods for identifying compounds for treating amyloidosis
JP4613824B2 (en) Transgenic non-human mammal
JP5250810B2 (en) Screening for substances that enhance utrophin gene expression
WO2018012497A1 (en) Disease model animal and disease therapeutic agent
US20070044162A1 (en) Transgenic rat as animal model for human huntingdon's disease
US20040093623A1 (en) Non-human animal disease models
JP5605718B2 (en) Alzheimer's disease model animals and uses thereof
Tsuiji et al. Animal models for neurodegenerative disorders
EP1116790A1 (en) Murine models characterized by conditional mutation of SMN gene - use for study of spinal muscular atrophy and other neurodegenerative diseases and muscular myopathies
Yamanaka Animal models for neurodegenerative disorders
KR101917346B1 (en) A transgenic animal model overexpressing Thrsp gene and a use thereof
JP5150876B2 (en) Mutant β-synuclein transgenic non-human animal
JPWO2005090561A1 (en) Screening method for macrophage cell activation regulator
JP2007159473A (en) Transgenic nonhuman animal usable for visibilitization of endogenous opioid peptide producing neuron
JP2000166575A (en) Reporter gene-expressing transgenic animal and its use
WO2013016826A1 (en) Transgenic non-human animal model of neurodegenerative disease

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527612

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827624

Country of ref document: EP

Kind code of ref document: A1