JP2006066824A - Plasma etching equipment and base, and its driving method - Google Patents

Plasma etching equipment and base, and its driving method Download PDF

Info

Publication number
JP2006066824A
JP2006066824A JP2004250647A JP2004250647A JP2006066824A JP 2006066824 A JP2006066824 A JP 2006066824A JP 2004250647 A JP2004250647 A JP 2004250647A JP 2004250647 A JP2004250647 A JP 2004250647A JP 2006066824 A JP2006066824 A JP 2006066824A
Authority
JP
Japan
Prior art keywords
cooling gas
base
wafer
plasma etching
introduction space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004250647A
Other languages
Japanese (ja)
Other versions
JP4519576B2 (en
Inventor
Shoichi Murakami
彰一 村上
Tetsuya Mori
哲也 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2004250647A priority Critical patent/JP4519576B2/en
Publication of JP2006066824A publication Critical patent/JP2006066824A/en
Application granted granted Critical
Publication of JP4519576B2 publication Critical patent/JP4519576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an equipment and a base which are composed of a structure capable of resolving a problem that the deflection of a wafer to the reaction chamber side of a vacuum atmosphere increases because of the thin thickness of wafer, and the surface temperature of the wafer exhibits uniformity when using a mechanical cramp and wafer-cooling helium gas on the base in a plasma etching equipment. <P>SOLUTION: A fine convex step is located near the outside circumference of the base, a space where a good heat transfer can be carried out between a platen and a substrate to some extent is held, and many gas vent holes of a small diameter are located near the outside circumference of the base when introducing a helium gas as a heating medium. The helium gas flows uniformly through the gas vent holes in a rated flow, and the gas pressure of back of the wafer is inclined to required extent between the center portion and the out side circumference to adapt to the deflection of the wafer. Consequently, the distribution of the temperature on the wafer surface can be uniformly kept, and the excessive deflection of the wafer and the non-uniformity of temperature on the wafer surface can be prevented by controlling the incline of gas pressure of the back of the wafer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、メカニカルクランプを使用する基台を備えたプラズマエッチング装置の改良に関し、ウェーハと基台との間に導入した熱媒体のヘリウムガスを積極的に流動させて、基板剛性の低下したウェーハが反応室側へ膨出するのを防止するとともに冷却能を向上させて、ウェーハの面内温度の均一化を図ったプラズマエッチング装置と基台並びにその駆動方法に関する。   The present invention relates to an improvement of a plasma etching apparatus provided with a base using a mechanical clamp, and a wafer whose rigidity is lowered by actively flowing a helium gas of a heat medium introduced between the wafer and the base. The present invention relates to a plasma etching apparatus, a base, and a driving method thereof for preventing the wafer from bulging out to the reaction chamber side and improving the cooling ability to make the in-plane temperature of the wafer uniform.

シリコンやガラス、GaAsなどのウェーハを用いて、半導体デバイスの作製や、マイクロ−エレクトロ−メカニカルシステム(micro−electro−mechanical system、以下MEMSという)による各種デバイスの製造には、ウェーハ材料自体あるいはその材料表面に設けた酸化膜をエッチングして所要形状に加工するため、エッチング加工が不可欠であり、プラズマを用いたドライエッチング処理が広く利用されている。   For manufacturing semiconductor devices using wafers such as silicon, glass and GaAs, and for manufacturing various devices using a micro-electro-mechanical system (hereinafter referred to as MEMS), the wafer material itself or the material thereof is used. Etching is indispensable for etching the oxide film provided on the surface into a required shape, and dry etching using plasma is widely used.

プラズマエッチング方法は、減圧雰囲気中で低圧プロセスガスのプラズマを発生させ、発生したプラズマにより例えばシリコンをエッチング加工する。その装置構成例として、プラズマ発生とプラズマ引き込みを個別に制御できる誘導結合型プラズマ装置(Inductively Coupled Plasma ,ICPという)が知られている。   In the plasma etching method, low-pressure process gas plasma is generated in a reduced-pressure atmosphere, and, for example, silicon is etched by the generated plasma. As an example of the apparatus configuration, an inductively coupled plasma apparatus (referred to as Inductively Coupled Plasma, ICP) that can individually control plasma generation and plasma attraction is known.

このICP装置では、コイルに交流電圧を印加してプラズマを発生させ、ウェーハを載置した基板電極に交流電圧を印加して、反応室外で発生させたプラズマを反応室内に引き込み、引き込んだプラズマによってウェーハにエッチングを行う。   In this ICP apparatus, an alternating voltage is applied to the coil to generate plasma, an alternating voltage is applied to the substrate electrode on which the wafer is placed, and the plasma generated outside the reaction chamber is drawn into the reaction chamber, Etch the wafer.

反応室内のウェーハを載置するための基台は、ウェーハを静電吸着やメカニカルクランプ等の手段で載置固定し、基台自体を冷却したり、基台とウエーハの間に熱伝達の媒体としたヘリウムガスを充填するようにしてウエーハの面内温度を均一に保持するよう構成されている。   The base for placing the wafer in the reaction chamber is a place where the wafer is placed and fixed by means such as electrostatic adsorption or mechanical clamp, and the base itself is cooled or a heat transfer medium between the base and the wafer. The in-plane temperature of the wafer is uniformly maintained by filling the helium gas.

従来のメカニカルクランプを採用したプラズマエッチング装置は、電極となる基台アタッチメント表面には放射状と円周状の各冷却ガス分散用溝が複数条形成されており、冷却用のHeガスが基台プラテンを貫通して配置する冷却ガス供給管を介して前記溝に供給される構成からなる。しかし、かかる装置において、GaAs等の化合物半導体基板の場合に、エッチング深さにばらつきが生じる問題が有り、これは溝が基台アタッチメント上の電界分布を不均一することに起因していた。   In a conventional plasma etching apparatus employing a mechanical clamp, a plurality of radial and circumferential cooling gas dispersion grooves are formed on the surface of the base attachment serving as an electrode, and the cooling He gas is supplied to the base platen. It is configured to be supplied to the groove through a cooling gas supply pipe disposed so as to pass through. However, in such an apparatus, in the case of a compound semiconductor substrate such as GaAs, there is a problem that the etching depth varies, and this is because the electric field distribution on the base attachment is uneven due to the groove.

そこで、特許文献2に開示されるように、処理載置するウェーハ化合物半導体ウェーハ上の誘電体膜のエッチング深さの面内均一性を向上させる目的で、図6に示すように、基台アタッチメント13b表面を溝をなくして平坦にして、ウェーハ17と基台アタッチメント13bとの間に空間部16を設けてあり、同空間内に熱媒体のヘリウムガスが導入され、ヘリウムガスは基台アタッチメント13bのクランプ部材18直下位置に周配置されるOリング19により、真空雰囲気の反応室12内へ漏洩しないようシールされている。
特開2003−77892 特開2003−133286 特開2004−119448
Therefore, as disclosed in Patent Document 2, for the purpose of improving the in-plane uniformity of the etching depth of the dielectric film on the wafer compound semiconductor wafer to be processed and mounted, as shown in FIG. The surface of 13b is made flat without a groove, and a space portion 16 is provided between the wafer 17 and the base attachment 13b. A heat medium helium gas is introduced into the space, and the helium gas is supplied to the base attachment 13b. The sealing member 18 is sealed so as not to leak into the reaction chamber 12 in a vacuum atmosphere by an O-ring 19 which is arranged around the clamp member 18.
JP 2003-77892 A JP 2003-133286 A JP 2004-119448 A

図6に示す特許文献2の基台では、その基台アタッチメント13bに載置されたウェーハ17表面に温度差が生じると、エッチング加工量にばらつきを生じることがあった。特に、半導体基板に形成したSiN膜、SiO2膜等の誘電体膜をエッチング加工する場合は、前記ばらつきが顕著であった。 In the base of Patent Document 2 shown in FIG. 6, if the temperature difference occurs on the surface of the wafer 17 placed on the base attachment 13b, the etching processing amount may vary. In particular, when the dielectric film such as SiN film or SiO 2 film formed on the semiconductor substrate is etched, the above-mentioned variation is remarkable.

一方、ガラスウェーハや厚みが薄く補強のための裏打ち材が設けられたシリコンウェーハなどは、基台への載置に際して静電吸着ができない。また、エッチング加工量が多く加工後に厚みが著しく薄くなるシリコンウェーハなどは、静電吸着では加工後の離脱時に割れる恐れがあるため、ウェーハの外周部をメカニカルクランプされる。   On the other hand, a glass wafer or a silicon wafer having a thin thickness and a reinforcing backing material cannot be electrostatically attracted when placed on a base. In addition, since a silicon wafer or the like that has a large amount of etching processing and has a thickness that becomes extremely thin after processing may be broken at the time of separation after processing by electrostatic attraction, the outer peripheral portion of the wafer is mechanically clamped.

図5に示す上記構成の基台13を有するエッチング装置は、前述のごとく、ウェーハ種や加工パターンによっては、エッチングプロセスの進行に伴って基板の剛性が低くなり、相対的に真空雰囲気の反応室側へヘリウムガス圧力によるウェーハ17の凸撓み量が増え、ウェーハ17中央部と基台アタッチメント13bとの間隔が大きくなり過ぎることがある。   As described above, the etching apparatus having the base 13 having the above-described configuration shown in FIG. 5 has a relatively low vacuum atmosphere in a reaction chamber in which the rigidity of the substrate decreases with the progress of the etching process depending on the wafer type and processing pattern. The convex deflection amount of the wafer 17 due to the helium gas pressure increases to the side, and the distance between the central portion of the wafer 17 and the base attachment 13b may become too large.

この場合、ウェーハ17中央部と基台アタッチメント13bとの間で熱伝達が十分できなくなり、ウェーハの温度分布が悪化し、例えばウェーハの中央部と外周側と40℃以上の温度差を生じてエッチングプロセス性能に悪影響を及ぼすことになる。   In this case, heat transfer between the central portion of the wafer 17 and the base attachment 13b is not sufficient, and the temperature distribution of the wafer deteriorates. For example, a temperature difference of 40 ° C. or more is generated between the central portion and the outer peripheral side of the wafer. It will adversely affect process performance.

この発明は、プラズマエッチング装置において、基台にメカニカルクランプとウェーハ冷却用ヘリウムガスを使用するに際し、ウェーハの厚みが薄くまたプロセスの進行に伴い相対的に基板剛性が低下するなど、真空雰囲気の反応室側へのウェーハの撓みが増大し、ウェーハの面内温度の不均一が発生する問題を解消できる構成からなる当該装置と基台ならびにこれらの駆動方法の提供を目的としている。   In the plasma etching apparatus, when a mechanical clamp and a wafer cooling helium gas are used as a base, the wafer is thin and the substrate rigidity is relatively lowered as the process proceeds. An object of the present invention is to provide an apparatus, a base and a driving method for the apparatus and the base, which can solve the problem that the deflection of the wafer to the chamber side increases and the in-plane temperature of the wafer is not uniform.

発明者らは、メカニカルクランプを使用する基台において、載置するウェーハの面内温度の均一化を図ることを目的に、例えば基台外周付近に微小な凸段差を設け、プラテンと基板との間に良好な熱伝達ができる範囲の隙間を確保して、熱媒体のヘリウムガスの導入方法について種々検討した結果、基台外周付近に小径のガス抜き孔を多数設け、ガス抜き孔を通してヘリウムガスを一定流量で均一に流すことにより、ウェーハ背面のヘリウムガス圧力に中心部と外周側との間に所要の傾斜を持たせてウェーハの撓みに合わせることで、ウェーハ面内の温度分布を均一に維持できることを知見した。   In order to achieve uniform temperature in the surface of a wafer to be placed on a base using a mechanical clamp, the inventors provide, for example, a minute convex step near the base outer periphery, As a result of various studies on the method of introducing the helium gas as the heat medium while ensuring a gap in the range where good heat transfer is possible, a number of small-diameter vent holes are provided near the outer periphery of the base, and helium gas is passed through the vent holes. Is uniformly flown at a constant flow rate, so that the helium gas pressure on the backside of the wafer has a required slope between the center and the outer periphery to match the deflection of the wafer, thereby making the temperature distribution in the wafer surface uniform. It was found that it can be maintained.

また、発明者らは、ウェーハのメカニカルクランプが接触する基台外周付近に金属などの多孔質材のリングを配置して排気系を構成してガス導入空間内のガス圧力を所定範囲に制御するとともに、前記ウェーハ背面のヘリウムガス圧力の傾斜を制御することにより、ウェーハの過大な撓みと面内の温度不均一を防止できることを知見し、この発明を完成した。   Further, the inventors arrange a ring of a porous material such as a metal near the outer periphery of the base with which the mechanical clamp of the wafer contacts to constitute an exhaust system to control the gas pressure in the gas introduction space within a predetermined range. At the same time, the inventors have found that controlling the inclination of the helium gas pressure on the backside of the wafer can prevent excessive deflection of the wafer and in-plane temperature non-uniformity, thereby completing the present invention.

すなわち、この発明は、電圧を印加可能な基台であり、ウェーハを載置してその外周部を機械的に固定するクランプ手段を有し、基台上面にウェーハと相似形の1つの凹部あるいは1つのリング状凸部を設けて載置したウェーハの裏面側に1つの冷却ガス導入空間を形成するか、あるいは、基台上面にウェーハと相似形の凹部とリング状凹部あるいは複数のリング状凸部を設けて載置したウェーハの裏面側に2つあるいは複数の冷却ガス導入空間を形成し、ウェーハの裏面に冷却ガスが接触しながら冷却ガス導入空間を移動するように冷却ガス供給孔路と冷却ガス排気孔路を設けたことを特徴とするプラズマエッチング装置用基台である。   That is, the present invention is a base to which a voltage can be applied, has a clamping means for placing a wafer and mechanically fixing the outer periphery thereof, and has a concave portion or a similar shape to the wafer on the upper surface of the base. One cooling gas introduction space is formed on the back side of the wafer mounted with one ring-shaped convex portion, or a concave portion and a ring-shaped concave portion similar to the wafer or a plurality of ring-shaped convex portions on the upper surface of the base. Two or more cooling gas introduction spaces are formed on the back surface side of the wafer placed and placed, and the cooling gas supply passage is arranged to move through the cooling gas introduction space while the cooling gas is in contact with the back surface of the wafer. A plasma etching apparatus base comprising a cooling gas exhaust hole path.

また、この発明は、被処理基板の載置用基台と、該基台に高周波電力を印加する電力供給手段と、室内に処理ガスを流量及び圧力調節して供給する処理ガス供給手段並びにその排気手段を備えた処理室と、前記基台とは独立して高周波電力を印加し、処理ガスをプラズマ化するプラズマ発生手段とを有し、前記基台は、上述の構成を有することを特徴とするプラズマエッチング装置である。   The present invention also provides a mounting base for a substrate to be processed, a power supply means for applying high-frequency power to the base, a processing gas supply means for supplying a processing gas in a room with a flow rate and a pressure adjusted, and its It has a processing chamber provided with an evacuation means, and a plasma generating means for applying a high frequency power independently of the base and converting the processing gas into plasma, and the base has the above-described configuration. Is a plasma etching apparatus.

さらに、この発明は、上記構成のプラズマエッチング装置において、冷却ガス導入空間への冷却ガスを所定流量で導入し、該導入空間内圧力が一定になるよう冷却ガスの制御を行うことを特徴とするプラズマエッチング装置の駆動方法である。   Furthermore, the present invention is characterized in that, in the plasma etching apparatus having the above configuration, the cooling gas is introduced into the cooling gas introduction space at a predetermined flow rate, and the cooling gas is controlled so that the pressure in the introduction space becomes constant. This is a method for driving a plasma etching apparatus.

この発明によると、プラズマエッチング装置の基台上面に、ウェーハの裏面側に冷却ガス導入空間を形成して、ヘリウムガスを一定流量で均一に流すことにより、該ガス圧力に例えばウェーハの中心が高くなるように傾斜を持たせて、ウェーハの撓みが大きくなる中心部でより多くの熱伝達が行われるように調整することで、ウェーハの温度分布が良好になりエッチングプロセス性能が向上する効果が得られる。   According to the present invention, the cooling gas introduction space is formed on the back surface side of the wafer on the upper surface of the base of the plasma etching apparatus, and the helium gas is allowed to flow uniformly at a constant flow rate. By adjusting so that more heat transfer is performed in the central part where the deflection of the wafer increases, the temperature distribution of the wafer is improved and the etching process performance is improved. It is done.

この発明によると、基台への載置に際して静電吸着ができない材質のウェーハや、加工後に厚みが著しく薄くなるシリコンウェーハなど、メカニカルクランプが必要なウェーハに対して、ウェーハ面内の温度分布のばらつきを発生させることなく、プラズマエッチング加工することが可能であり、ウェーハ面内のいずれの箇所の加工量も同等となり、高品質の加工を提供できる。   According to the present invention, the temperature distribution in the wafer surface is reduced with respect to wafers that require mechanical clamping, such as wafers that cannot be electrostatically attracted when placed on a base, or silicon wafers that become extremely thin after processing. Plasma etching can be performed without causing variations, and the amount of processing in any part of the wafer surface is equal, and high-quality processing can be provided.

この発明によるプラズマエッチング装置用基台1は、図1に示すように基台1上面に載置したウェーハ17の裏面との間に冷却ガス導入空間3を形成し、ウェーハの裏面に冷却ガスが接触しながら冷却ガス導入空間を移動するように冷却ガスの供給系路4と排気系路5を設けたことを特徴とする。なお、図6の例に示す基台アタッチメントとそれを保持する基台プラテンとで基台を構成する場合、両者に前記冷却ガスの供給系路4と排気系路5を設けるが、アタッチメントとプラテンが一体に構成される基台であっても同様であり、図1から図4ではアタッチメントを例示し単に基台1という。   The plasma etching apparatus base 1 according to the present invention forms a cooling gas introduction space 3 between the back surface of the wafer 17 placed on the upper surface of the base 1 as shown in FIG. A cooling gas supply path 4 and an exhaust path 5 are provided so as to move in the cooling gas introduction space while being in contact with each other. In the case where the base is composed of the base attachment shown in the example of FIG. 6 and the base platen that holds the base attachment, the cooling gas supply system path 4 and the exhaust system path 5 are provided on both, but the attachment and the platen The same applies to a base constructed integrally with each other, and FIGS. 1 to 4 exemplify attachments and are simply referred to as a base 1.

冷却ガス導入空間3は、基台1上面にウェーハ17と相似形の凹部あるいはリング状凸部を設けて形成するが、図1に示す例は、ウェーハ17と相似形で熱伝達が実行的になる数十μm深さの凹部を形成したものである。なお、基台1上面の端円周部1aには、リップシール2が配置されて、クランプ部材18で押圧するウェーハ17外周部と冷却ガス導入空間3との間を密封する機能を有している。   The cooling gas introduction space 3 is formed by providing a concave portion or a ring-shaped convex portion similar to the wafer 17 on the upper surface of the base 1, but the example shown in FIG. A recess having a depth of several tens of μm is formed. A lip seal 2 is arranged on the end circumferential portion 1 a on the upper surface of the base 1 and has a function of sealing between the outer peripheral portion of the wafer 17 pressed by the clamp member 18 and the cooling gas introduction space 3. Yes.

ここでは、基台1上面の中心部に1つの冷却ガス供給孔路4と、基台1上面のクランプ部材18近傍に複数の冷却ガス排気孔路5を設けてある。冷却ガス排気孔路5には、冷却ガス導入空間3内の圧力を制御するためのバルブ6が配置されている。従って、導入された冷却ガスは、基台1中心から基台1外周側へと均等に流れる。なお、冷却ガス供給孔路4は、基台1上面の中央部に複数個配置することもできる。   Here, one cooling gas supply hole 4 is provided in the center of the upper surface of the base 1, and a plurality of cooling gas exhaust holes 5 are provided in the vicinity of the clamp member 18 on the upper surface of the base 1. A valve 6 for controlling the pressure in the cooling gas introduction space 3 is arranged in the cooling gas exhaust passage 5. Accordingly, the introduced cooling gas flows evenly from the center of the base 1 toward the outer periphery of the base 1. Note that a plurality of cooling gas supply holes 4 may be arranged at the center of the upper surface of the base 1.

かかる冷却ガス導入空間3は、基台1上面にウェーハ17と外周形状が相似形に配置されるOリングのようなリング状凸部を設けて形成することも可能であり、また、直径の異なるリング状凸部を同心円状に2〜3個配置することも可能であり、冷却ガス導入空間3が2〜3室形成されることになる。   The cooling gas introduction space 3 can also be formed by providing a ring-shaped convex portion such as an O-ring having an outer peripheral shape similar to that of the wafer 17 on the upper surface of the base 1 and having different diameters. It is possible to arrange two or three ring-shaped convex portions concentrically, and two to three cooling gas introduction spaces 3 are formed.

図2に示す冷却ガス導入空間3は、ウェーハ17と相似形の凹部を形成した基台1上面の端円周部1aでクランプ部材18近傍に多孔質材7を配置して冷却ガス導入空間3の最外周部を形成してあり、多孔質材7に冷却ガス排気孔路5が接続されている。図示しない基台1上面の中心部の冷却ガス供給孔路4から導入された冷却ガスは基台1外周側に配置されるリング状の多孔質材7方向へ均等に流れていく。かかる多孔質材7を用いた場合は、冷却ガス排気孔路5のみに比較して冷却ガスはより均等に流れる効果がある。   The cooling gas introduction space 3 shown in FIG. 2 is a cooling gas introduction space 3 in which a porous material 7 is disposed in the vicinity of the clamp member 18 at an end circumferential portion 1a on the upper surface of the base 1 in which a concave portion similar to the wafer 17 is formed. The cooling gas exhaust passage 5 is connected to the porous material 7. The cooling gas introduced from the cooling gas supply hole 4 at the center of the upper surface of the base 1 (not shown) flows evenly toward the ring-shaped porous material 7 arranged on the outer peripheral side of the base 1. When such a porous material 7 is used, there is an effect that the cooling gas flows more evenly than the cooling gas exhaust passage 5 alone.

なお、リング状多孔質材7の全部を多孔質材料で構成して冷却ガス排気孔路としているが、多孔質材7の所要箇所の一部分を多孔質材料とすることができ、排気口も所要間隔で複数箇所に配置することができる。   The entire ring-shaped porous material 7 is made of a porous material to form a cooling gas exhaust passage. However, a part of a required portion of the porous material 7 can be made of a porous material, and an exhaust port is also required. It can be arranged at multiple locations at intervals.

図3に示す冷却ガス導入空間3は、図1の構成と同様であり、基台1上面の中心部に1つの冷却ガス供給孔路4と、基台1上面のクランプ部材18近傍に複数の冷却ガス排気孔路5aを設けてあるが、さらに冷却ガス供給孔路4と冷却ガス排気孔路5aの中間位置で周方向に所定間隔で複数個の多孔質材からなる排気孔8と冷却ガス排気孔路9を設けてある。従って、基台1上面の中心部から導入された冷却ガスを多孔質材からなる排気孔8からも吸引排気することができる。   The cooling gas introduction space 3 shown in FIG. 3 is the same as the configuration of FIG. 1, and a plurality of cooling gas supply holes 4 in the center of the upper surface of the base 1 and a plurality of clamp members 18 in the vicinity of the upper surface of the base 1. Although the cooling gas exhaust passage 5a is provided, the exhaust gas 8 and the cooling gas made of a plurality of porous materials are provided at predetermined intervals in the circumferential direction at an intermediate position between the cooling gas supply passage 4 and the cooling gas exhaust passage 5a. An exhaust hole 9 is provided. Therefore, the cooling gas introduced from the center of the upper surface of the base 1 can be sucked and exhausted from the exhaust hole 8 made of a porous material.

図3の構成において、外周側の冷却ガス排気孔路5aをガス供給孔路に変更することにより、冷却ガス導入空間3の中心部の冷却ガス供給孔路4並びに外周側の複数箇所の転用冷却ガス供給孔路から導入された冷却ガスは、多孔質材からなる排気孔8から吸引排気して流量、圧力を制御する構成を採用することも可能である。   In the configuration of FIG. 3, the cooling gas exhaust hole 5a on the outer peripheral side is changed to a gas supply hole, so that the cooling gas supply hole 4 in the center of the cooling gas introduction space 3 and diverted cooling at a plurality of positions on the outer peripheral side are performed. It is also possible to adopt a configuration in which the cooling gas introduced from the gas supply hole passage is sucked and exhausted from the exhaust hole 8 made of a porous material to control the flow rate and pressure.

さらに、図1の構成においても、導入系と排気系を入れ替えて、基台上面の中心を冷却ガス排気孔路として、基台上面の外周側のリング状多孔質シール材を冷却ガス導入孔路として、冷却ガスを基台1の外周から導入し基台1中心へと流すことができる。   Further, in the configuration of FIG. 1, the introduction system and the exhaust system are interchanged, and the center of the upper surface of the base is used as the cooling gas exhaust hole, and the ring-shaped porous sealing material on the outer peripheral side of the upper surface of the base is used as the cooling gas introduction hole. As described above, the cooling gas can be introduced from the outer periphery of the base 1 and can flow to the center of the base 1.

図4の構成は、基本的に図1の構成と同様であるが、基台1上面の中心部の冷却ガス供給孔路4と端円周部1aの間にリング状凸条1bを設けて円形の冷却ガス導入空間3aとリング状の冷却ガス導入空間3bの2室を設けた構成である。リング状凸条1bの内周側に所定間隔で冷却ガス排気孔路5bを配置し、中心部の冷却ガス供給孔路4からガスが冷却ガス導入空間3aの外周部で複数の冷却ガス排気孔路5bから流量、圧力を制御して排気される。また、リング状の冷却ガス導入空間3bの場合も、リング状凸条1bの外周側に所定間隔で冷却ガス供給孔路4bを配置し、基台1外周側の冷却ガス排気孔路5から吸引排気して流量、圧力を制御するすることで、所定量の冷却ガスを導入流下させることができる。   The configuration of FIG. 4 is basically the same as the configuration of FIG. 1, but a ring-shaped ridge 1b is provided between the cooling gas supply passage 4 at the center of the upper surface of the base 1 and the end circumferential portion 1a. This is a configuration in which two chambers, a circular cooling gas introduction space 3a and a ring-shaped cooling gas introduction space 3b, are provided. Cooling gas exhaust holes 5b are arranged at predetermined intervals on the inner peripheral side of the ring-shaped ridge 1b, and a plurality of cooling gas exhaust holes are provided at the outer periphery of the cooling gas introduction space 3a from the cooling gas supply hole 4 at the center. The air is exhausted from the passage 5b by controlling the flow rate and pressure. Also in the case of the ring-shaped cooling gas introduction space 3b, the cooling gas supply holes 4b are arranged at predetermined intervals on the outer peripheral side of the ring-shaped protrusion 1b, and are sucked from the cooling gas exhaust hole 5 on the outer peripheral side of the base 1. By exhausting and controlling the flow rate and pressure, a predetermined amount of cooling gas can be introduced and flowed down.

なお、リング状凸条1bは、凸条幅は適宜選定でき、特に狭幅でウェーハ17裏面との接触が不足して円形とリング状の冷却ガス導入空間3a,3bの2室間でリークが生じてもウェーハ17への冷却ガス機能が損なわれることはない。   The ring-shaped ridge 1b can be selected as appropriate for the width of the ridge, and is particularly narrow and lacks contact with the back surface of the wafer 17, causing leakage between the two chambers of the circular and ring-shaped cooling gas introduction spaces 3a and 3b. However, the function of the cooling gas to the wafer 17 is not impaired.

この発明において、多孔質材料としては、公知の金属、合金、セラミックス、樹脂のいずれをも利用でき、具体的には、アルミニウム、ステンレス鋼、チタン、ジルコニア及び各種セラミックなど、各材質の焼結体、ポリテトラフルオロエチレンの多孔質体等を挙げることができる。また、アルミニウムなどの溶射による多孔質体を利用することができる。   In this invention, as the porous material, any of known metals, alloys, ceramics, and resins can be used. Specifically, sintered bodies of various materials such as aluminum, stainless steel, titanium, zirconia, and various ceramics. And a porous body of polytetrafluoroethylene. Moreover, a porous body by thermal spraying such as aluminum can be used.

この発明において、Oリングやリップシールには、フッ素ゴム、パーフロロエラストマー、シリコーンゴム、フロロシリコーンゴムなど公知の多くの材料より適宜選定できる。   In the present invention, the O-ring and the lip seal can be appropriately selected from many known materials such as fluorine rubber, perfluoroelastomer, silicone rubber, and fluorosilicone rubber.

図5は、この発明の一実施形態に係るウェーハのエッチング方法を実施するための誘導結合型プラズマ(ICP)装置の構成説明図である。図5に示すエッチング装置は、処理室10として、プラズマを発生させる上方側のプラズマ発生室11と、発生されたプラズマを引き込んで被エッチング対象であるウェーハ17をプラズマ処理するための基台13を備えた下方側の反応室12とから構成される。   FIG. 5 is an explanatory diagram of a configuration of an inductively coupled plasma (ICP) apparatus for carrying out a wafer etching method according to an embodiment of the present invention. The etching apparatus shown in FIG. 5 includes, as a processing chamber 10, an upper plasma generation chamber 11 that generates plasma, and a base 13 for plasma processing the wafer 17 to be etched by drawing the generated plasma. The lower reaction chamber 12 is provided.

処理室内の排気手段としての排気系路14は、ここでは反応室12に接続する通路部材及びこの通路部材に接続する真空ポンプを備えている。この真空ポンプと反応室12と通路部材間に介在する制御機構を備えた開閉バルブ(図示せず)により、処理室10内の圧力は所要範囲に減圧、制御される。   The exhaust system path 14 as the exhaust means in the processing chamber includes a passage member connected to the reaction chamber 12 and a vacuum pump connected to the passage member. The pressure in the processing chamber 10 is reduced to a required range and controlled by an open / close valve (not shown) having a control mechanism interposed between the vacuum pump, the reaction chamber 12 and the passage member.

例えば、エッチング用のSF6ガスと、酸素を含む酸化性ガスと、保護膜形成用C4F8ガスとを供給するガス供給系路15は、プラズマ発生室11上部に接続される通路部材と、図示しない各ガスに対応した流量制御装置及びガスボンベとからなる。各種ガスは、ガスボンベから流量制御装置により流量を調整された上で、プラズマ発生室11内に送給される。 For example, the gas supply system path 15 for supplying the etching SF 6 gas, the oxidizing gas containing oxygen, and the protective film forming C 4 F 8 gas includes a path member connected to the upper part of the plasma generation chamber 11, and not shown. It consists of a flow control device and a gas cylinder corresponding to each gas. Various gases are fed into the plasma generation chamber 11 after the flow rate is adjusted by a flow rate control device from a gas cylinder.

プラズマ発生手段は、セラミック製の円筒形状を有するプラズマ発生室11の外周に配設されたコイル20と、コイル20にマッチングユニット21を介して接続される高周波電源22とからなる。プラズマエッチング装置の稼動時には、周波数13.56MHzの交流電力がコイル20に印加され、処理室に供給されるガスがプラズマ化される。   The plasma generating means includes a coil 20 disposed on the outer periphery of a plasma generating chamber 11 having a cylindrical shape made of ceramic, and a high-frequency power source 22 connected to the coil 20 via a matching unit 21. When the plasma etching apparatus is in operation, AC power having a frequency of 13.56 MHz is applied to the coil 20, and the gas supplied to the processing chamber is turned into plasma.

ウェーハ17を載置する基台13は、前記反応室12内に収容されており、コイル20への高周波電力の印加により発生したプラズマを積極的にウェーハ17に引き込むために、基台13に対して、前記コイル20とは別個にマッチングユニット23を介して周波数13.56MHzの高周波電源24が接続されている。   A base 13 on which the wafer 17 is placed is accommodated in the reaction chamber 12. In order to actively draw the plasma generated by applying high-frequency power to the coil 20 to the wafer 17, A high frequency power supply 24 having a frequency of 13.56 MHz is connected to the coil 20 via a matching unit 23 separately from the coil 20.

図示しない制御装置は、反応ガス流量制御、基台電力制御、コイル電力制御の各機能を有し、前述のガス流量調整装置を制御してガスボンベからエッチングガス、酸化性ガス、保護膜形成ガスをプラズマ発生室11内に送給し、また、前述の基台13に対し高周波電源22とマッチングユニット21を制御して高周波電力を印加し、さらに、コイル20に対し高周波電源24とマッチングユニット23を制御して高周波電力を印加する。   A control device (not shown) has functions of reactive gas flow rate control, base power control, and coil power control, and controls the gas flow rate control device described above to supply etching gas, oxidizing gas, and protective film forming gas from the gas cylinder. The high frequency power supply 22 and the matching unit 21 are applied to the above-described base 13 by controlling the high frequency power supply 22 and the matching unit 21, and the high frequency power supply 24 and the matching unit 23 are applied to the coil 20. Control and apply high frequency power.

特に反応ガス流量制御は、エッチングガスのみを所定時間供給してエッチングを行うエッチング工程、酸化性ガスのみを所定時間供給して作用させる工程、保護膜形成ガスのみを所定時間供給して保護膜を形成する保護膜を堆積させる工程とを順次繰り返して実行することができる。   In particular, the reactive gas flow rate control includes an etching process in which etching is performed by supplying only an etching gas for a predetermined time, a process in which only an oxidizing gas is supplied for a predetermined time, and a protective film is formed by supplying only a protective film forming gas for a predetermined time. The step of depositing the protective film to be formed can be sequentially repeated.

この発明のエッチング装置において、アタッチメントとプラテンとからなる基台には、前述した図1〜図4に示す構成と同様構成のアタッチメントを採用し、冷却ガス供給孔路又は冷却ガス排気孔路あるいはその両方に、冷却ガス導入空間内の圧力、流量を一定に制御するためのガス圧力又はガス流量あるいはその両方の調整手段を備える。   In the etching apparatus of the present invention, an attachment having the same structure as the structure shown in FIGS. 1 to 4 described above is adopted for the base composed of the attachment and the platen, and the cooling gas supply passage or the cooling gas exhaust passage or the same is adopted. Both are provided with a means for adjusting the gas pressure and / or gas flow rate for controlling the pressure and flow rate in the cooling gas introduction space to be constant.

ここで、冷却ガス導入空間への冷却ガスを所定流量で導入し、該導入空間内圧力が一定になるよう冷却ガスの制御を行うには、冷却ガス導入空間にキャパシタンス真空計とマスフローコントローラを設置して、圧力が一定になるようにマスフローコントローラにより冷却ガス導入流量を制御すると良い。   Here, in order to introduce the cooling gas into the cooling gas introduction space at a predetermined flow rate and control the cooling gas so that the pressure in the introduction space becomes constant, a capacitance vacuum gauge and a mass flow controller are installed in the cooling gas introduction space. Then, the cooling gas introduction flow rate may be controlled by a mass flow controller so that the pressure becomes constant.

また、冷却ガス導入空間の中央部における圧力を基準に制御するが、基本的に中央部における圧力は導入圧力により制御され、外周部圧力は、排気孔形状や寸法及び多孔質材料のガス透過性により決まり、吸引排気を用いる場合は、導入部と同様に圧力制御される。   The pressure in the central part of the cooling gas introduction space is controlled based on the pressure. Basically, the pressure in the central part is controlled by the introduction pressure, and the outer peripheral part pressure is determined by the shape and size of the exhaust hole and the gas permeability of the porous material. When suction exhaust is used, the pressure is controlled in the same manner as the introduction unit.

比較例
図6に示す従来構成のプラズマエッチング装置用基台を備えたエッチング装置において、8インチ外径のシリコンウェーハを用いて、これにサーモラベルを貼りつけ、エッチング工程中の基台上面に載置したウェーハの中心部と、外周部のクランプ部材の内側の温度を測定した。その結果、中心部88〜92℃、外周部49〜53℃、温度差は35〜43℃であった。
Comparative Example In an etching apparatus provided with a base for a plasma etching apparatus having a conventional configuration shown in FIG. 6, an 8 inch outer diameter silicon wafer was used, a thermo label was attached thereto, and the wafer was mounted on the upper surface of the base during the etching process. The center part of the placed wafer and the temperature inside the clamp member at the outer peripheral part were measured. As a result, the central portion was 88 to 92 ° C, the outer peripheral portion was 49 to 53 ° C, and the temperature difference was 35 to 43 ° C.

ウェーハ表面温度測定用プラズマ条件は以下のとおりであった。
ガス種: SF6
コイルパワー(プラズマ励起用電力): 2000W
プラテンパワー(基板電力←プラズマ引き込み用): 15W
ガスフロー: 300sccm
チャンバー圧力: 5Pa
The plasma conditions for measuring the wafer surface temperature were as follows.
Gas type: SF 6
Coil power (plasma excitation power): 2000W
Platen power (substrate power ← for plasma pulling): 15W
Gas flow: 300sccm
Chamber pressure: 5Pa

実施例
図1の基台アタッチメントを備えた図5に示すこの発明のプラズマエッチング装置において、8インチ外径のシリコンウェーハを用いて、比較例と同様にエッチング工程中の基台アタッチメント上面に載置したウェーハの中心部と、外周部のクランプ部材の内側の温度を測定した。その結果、中心部88〜92℃、外周部82〜87℃、温度差は1〜10℃であった。
EXAMPLE In the plasma etching apparatus of the present invention shown in FIG. 5 equipped with the base attachment of FIG. 1, an 8-inch outer diameter silicon wafer was placed on the upper surface of the base attachment during the etching process as in the comparative example. The temperature inside the center portion of the wafer and the inside of the outer peripheral clamp member were measured. As a result, the central portion was 88 to 92 ° C, the outer peripheral portion was 82 to 87 ° C, and the temperature difference was 1 to 10 ° C.

比較例のエッチング装置では、ウェーハの温度分布差が、35〜43℃であったものが、この発明の実施例では、1〜10℃と大幅に低減されることが明らかで、ウェーハ面内の均一性が良好なエッチングプロセス性能が得られることが分かる。   In the etching apparatus of the comparative example, the difference in the temperature distribution of the wafer was 35 to 43 ° C., but in the embodiment of the present invention, it is clear that it is greatly reduced to 1 to 10 ° C. It can be seen that etching process performance with good uniformity can be obtained.

この発明は、静電吸着ができない材質のウェーハ、加工後に厚みが著しく薄くなるシリコンウェーハなど、メカニカルクランプが必要なウェーハに対して、ウェーハ面内の温度分布のばらつきを発生させることなく、プラズマエッチング加工することが可能であり、ウェーハ面内のいずれの箇所の加工量も同等となり、高品質の加工を提供でき、MEMSによる各種デバイスの製造に最適である。   This invention enables plasma etching without causing variations in the temperature distribution in the wafer surface for wafers that require mechanical clamping, such as wafers made of materials that cannot be electrostatically attracted, and silicon wafers that become extremely thin after processing. It can be processed, and the processing amount at any point in the wafer surface is equivalent, can provide high-quality processing, and is optimal for manufacturing various devices by MEMS.

この発明によるプラズマエッチング装置用基台の主要部の構成を示す縦断説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal explanatory view showing a configuration of a main part of a base for a plasma etching apparatus according to the present invention. この発明によるプラズマエッチング装置用基台の主要部の構成を示す縦断説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal explanatory view showing a configuration of a main part of a base for a plasma etching apparatus according to the present invention. この発明によるプラズマエッチング装置用基台の主要部の構成を示す縦断説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal explanatory view showing a configuration of a main part of a base for a plasma etching apparatus according to the present invention. この発明によるプラズマエッチング装置用基台の主要部の構成を示す縦断説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal explanatory view showing a configuration of a main part of a base for a plasma etching apparatus according to the present invention. この発明によるプラズマエッチング装置の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the plasma etching apparatus by this invention. 従来のプラズマエッチング装置の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the conventional plasma etching apparatus.

符号の説明Explanation of symbols

1 基台
2 リップシール
3,3a,3b 冷却ガス導入空間
4,4a,4b 冷却ガス供給孔路
5,5a,5b,9 冷却ガス排気孔路
6 バルブ
7 多孔質材
8 排気孔
10 処理室
11 プラズマ発生室
12 反応室
13 基台
14 排気系路
15 反応ガス供給系路
16 空間部
17 ウェーハ
18 クランプ部材
19 Oリング
20 コイル
21,23 マッチングユニット
22,24 高周波電源
DESCRIPTION OF SYMBOLS 1 Base 2 Lip seal 3, 3a, 3b Cooling gas introduction space 4, 4a, 4b Cooling gas supply passage 5, 5a, 5b, 9 Cooling gas exhaust passage 6 Valve 7 Porous material 8 Exhaust hole 10 Processing chamber 11 Plasma generation chamber 12 Reaction chamber 13 Base 14 Exhaust system path 15 Reaction gas supply system path 16 Space part 17 Wafer 18 Clamp member 19 O-ring 20 Coil 21, 23 Matching unit 22, 24 High frequency power supply

Claims (12)

電圧を印加可能な基台であり、ウェーハを載置してその外周部を機械的に固定するクランプ手段を有し、基台上面にウェーハと相似形の1つの凹部あるいは1つのリング状凸部を設けて載置したウェーハの裏面側に1つの冷却ガス導入空間を形成し、ウェーハの裏面に冷却ガスが接触しながら冷却ガス導入空間を移動するように冷却ガス供給孔路と冷却ガス排気孔路を設けたプラズマエッチング装置用基台。 A base to which a voltage can be applied, has a clamping means for placing the wafer and mechanically fixing the outer periphery thereof, and has one concave portion or one ring-shaped convex portion similar to the wafer on the upper surface of the base A cooling gas inlet space and a cooling gas exhaust hole are formed so that one cooling gas introduction space is formed on the back surface side of the wafer placed and mounted, and the cooling gas introduction space is moved while the cooling gas is in contact with the back surface of the wafer. A base for plasma etching equipment with a path. 電圧を印加可能な基台であり、ウェーハを載置してその外周部を機械的に固定するクランプ手段を有し、基台上面にウェーハと相似形の凹部とリング状凹部あるいは複数のリング状凸部を設けて載置したウェーハの裏面側に複数の冷却ガス導入空間を形成し、ウェーハの裏面に冷却ガスが接触しながら冷却ガス導入空間を移動するように冷却ガス供給孔路と冷却ガス排気孔路を設けたプラズマエッチング装置用基台。 It is a base to which voltage can be applied and has clamping means for placing the wafer and mechanically fixing the outer periphery of the wafer. On the upper surface of the base, a concave part and ring-shaped concave part or multiple ring-like parts similar to the wafer A plurality of cooling gas introduction spaces are formed on the back surface side of the wafer placed with the convex portions, and the cooling gas supply passage and the cooling gas are moved so that the cooling gas introduction space moves while contacting the cooling gas on the back surface of the wafer. A base for a plasma etching apparatus provided with an exhaust hole path. 冷却ガス導入空間の中心部又は内周側の基台上面に少なくとも1つの冷却ガス供給孔路と、該導入空間の外周側又はクランプ手段の近傍の基台上面に複数の冷却ガス排気孔路を設けた請求項1又は請求項2に記載のプラズマエッチング装置用基台。 At least one cooling gas supply hole is formed in the center or inner peripheral surface of the cooling gas introduction space, and a plurality of cooling gas exhaust holes are formed on the outer surface of the introduction space or in the vicinity of the clamping means. The base for a plasma etching apparatus according to claim 1 or 2 provided. 冷却ガス導入空間の中心部又は内周側の基台上面に複数の冷却ガス排気孔路と、該導入空間の外周側又はクランプ手段の近傍の基台上面に複数の冷却ガス供給孔路を設けた請求項1又は請求項2に記載のプラズマエッチング装置用基台。 A plurality of cooling gas exhaust holes are provided in the center or inner peripheral surface of the cooling gas introduction space, and a plurality of cooling gas supply holes are provided on the outer peripheral side of the introduction space or in the vicinity of the clamping means. The base for a plasma etching apparatus according to claim 1 or claim 2. 冷却ガス導入孔、冷却ガス排気孔あるいはその両方が多孔質材料で構成されている請求項1又は請求項2に記載のプラズマエッチング装置用基台。 The base for a plasma etching apparatus according to claim 1 or 2, wherein the cooling gas introduction hole, the cooling gas exhaust hole, or both are made of a porous material. リング状凸部の一部又は全部を多孔質材料で構成して冷却ガス排気孔路とした請求項1又は請求項2に記載のプラズマエッチング装置用基台。 The base for a plasma etching apparatus according to claim 1 or 2, wherein a part or all of the ring-shaped convex portion is made of a porous material to form a cooling gas exhaust passage. 多孔質材料が金属、合金、セラミックス、樹脂のいずれかである請求項6に記載のプラズマエッチング装置用基台。 The base for a plasma etching apparatus according to claim 6, wherein the porous material is any one of a metal, an alloy, a ceramic, and a resin. 被処理基板の載置用基台と、該基台に高周波電力を印加する電力供給手段と、室内に処理ガスを流量及び圧力調節して供給する処理ガス供給手段並びにその排気手段を備えた処理室と、前記基台とは独立して高周波電力を印加し、処理ガスをプラズマ化するプラズマ発生手段とを有し、前記基台は、ウェーハを載置してその外周部を機械的に固定するクランプ手段を有し、基台上面にウェーハと相似形の1つの凹部あるいは1つのリング状凸部を設けて載置したウェーハの裏面側に1つの冷却ガス導入空間を形成し、ウェーハの裏面に冷却ガスが接触しながら冷却ガス導入空間を移動するように冷却ガス供給孔路と冷却ガス排気孔路を設けた構成を有するプラズマエッチング装置。 A processing base comprising: a mounting base for a substrate to be processed; power supply means for applying high-frequency power to the base; processing gas supply means for supplying a processing gas by adjusting the flow rate and pressure; A chamber and plasma generating means for applying a high-frequency power independently of the base and converting the processing gas into plasma. The base mounts a wafer and mechanically fixes the outer periphery thereof. And a cooling gas introduction space is formed on the rear surface side of the wafer placed by providing one concave portion or one ring-shaped convex portion similar to the wafer on the upper surface of the base. A plasma etching apparatus having a configuration in which a cooling gas supply hole path and a cooling gas exhaust hole path are provided so as to move in the cooling gas introduction space while contacting the cooling gas. 被処理基板の載置用基台と、該基台に高周波電力を印加する電力供給手段と、室内に処理ガスを流量及び圧力調節して供給する処理ガス供給手段並びにその排気手段を備えた処理室と、前記基台とは独立して高周波電力を印加し、処理ガスをプラズマ化するプラズマ発生手段とを有し、基台上面にウェーハと相似形の凹部とリング状凹部あるいは複数のリング状凸部を設けて載置したウェーハの裏面側に複数の冷却ガス導入空間を形成し、ウェーハの裏面に冷却ガスが接触しながら冷却ガス導入空間を移動するように冷却ガス供給孔路と冷却ガス排気孔路を設けた構成を有するプラズマエッチング装置。 A processing base comprising: a mounting base for a substrate to be processed; power supply means for applying high-frequency power to the base; processing gas supply means for supplying a processing gas by adjusting the flow rate and pressure; A chamber and plasma generating means for applying a high-frequency power independently to the base and converting the processing gas into a plasma, and a recess similar to the wafer and a ring-shaped recess or a plurality of ring-shaped recesses on the upper surface of the base A plurality of cooling gas introduction spaces are formed on the back surface side of the wafer placed with the convex portions, and the cooling gas supply passage and the cooling gas are moved so that the cooling gas introduction space moves while contacting the cooling gas on the back surface of the wafer. A plasma etching apparatus having a configuration in which an exhaust hole path is provided. 請求項8又は請求項9に記載のプラズマエッチング装置において、冷却ガス供給孔路又は冷却ガス排気孔路あるいはその両方に、冷却ガス導入空間内の圧力を一定に制御するためのガス圧力又はガス流量あるいはその両方の調整手段を備えたプラズマエッチング装置。 10. The plasma etching apparatus according to claim 8 or 9, wherein a gas pressure or a gas flow rate for controlling the pressure in the cooling gas introduction space to be constant in the cooling gas supply hole path and / or the cooling gas exhaust hole path. Or the plasma etching apparatus provided with the adjustment means of both of them. 請求項8又は請求項9に記載のプラズマエッチング装置において、冷却ガス導入空間への冷却ガスを所定流量で導入し、該導入空間内圧力が一定になるよう冷却ガスの制御を行うプラズマエッチング装置の駆動方法。 The plasma etching apparatus according to claim 8 or 9, wherein a cooling gas is introduced into the cooling gas introduction space at a predetermined flow rate, and the cooling gas is controlled so that the pressure in the introduction space becomes constant. Driving method. 冷却ガス導入空間の中央部における圧力を基準に制御する請求項11に記載のプラズマエッチング装置の駆動方法。 The method for driving a plasma etching apparatus according to claim 11, wherein the control is performed based on a pressure in a central portion of the cooling gas introduction space.
JP2004250647A 2004-08-30 2004-08-30 Base for plasma etching apparatus and plasma etching apparatus provided with the same Active JP4519576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250647A JP4519576B2 (en) 2004-08-30 2004-08-30 Base for plasma etching apparatus and plasma etching apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250647A JP4519576B2 (en) 2004-08-30 2004-08-30 Base for plasma etching apparatus and plasma etching apparatus provided with the same

Publications (2)

Publication Number Publication Date
JP2006066824A true JP2006066824A (en) 2006-03-09
JP4519576B2 JP4519576B2 (en) 2010-08-04

Family

ID=36112995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250647A Active JP4519576B2 (en) 2004-08-30 2004-08-30 Base for plasma etching apparatus and plasma etching apparatus provided with the same

Country Status (1)

Country Link
JP (1) JP4519576B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288193A (en) * 2022-09-09 2023-06-23 无锡尚积半导体科技有限公司 Bias slide device with back gas cooling function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500502A (en) * 1989-05-08 1992-01-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for processing flat substrates
JPH05140771A (en) * 1991-11-15 1993-06-08 Nissin Electric Co Ltd Etching apparatus
JPH11154669A (en) * 1997-09-15 1999-06-08 Siemens Ag Method and device for measuring and controlling semiconductor-wafer temperature based on gas-temperature measurement
JPH11238596A (en) * 1998-02-23 1999-08-31 Matsushita Electron Corp Plasma processing device
JP2000208494A (en) * 1999-01-18 2000-07-28 Seiko Epson Corp Etching system and production of pattern forming substrate
JP2004014752A (en) * 2002-06-06 2004-01-15 Tokyo Electron Ltd Electrostatic chuck, work piece placement table, and plasma treating apparatus
JP2004119987A (en) * 2003-10-22 2004-04-15 Hitachi Ltd Semiconductor manufacturing equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500502A (en) * 1989-05-08 1992-01-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for processing flat substrates
JPH05140771A (en) * 1991-11-15 1993-06-08 Nissin Electric Co Ltd Etching apparatus
JPH11154669A (en) * 1997-09-15 1999-06-08 Siemens Ag Method and device for measuring and controlling semiconductor-wafer temperature based on gas-temperature measurement
JPH11238596A (en) * 1998-02-23 1999-08-31 Matsushita Electron Corp Plasma processing device
JP2000208494A (en) * 1999-01-18 2000-07-28 Seiko Epson Corp Etching system and production of pattern forming substrate
JP2004014752A (en) * 2002-06-06 2004-01-15 Tokyo Electron Ltd Electrostatic chuck, work piece placement table, and plasma treating apparatus
JP2004119987A (en) * 2003-10-22 2004-04-15 Hitachi Ltd Semiconductor manufacturing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288193A (en) * 2022-09-09 2023-06-23 无锡尚积半导体科技有限公司 Bias slide device with back gas cooling function

Also Published As

Publication number Publication date
JP4519576B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
KR102549546B1 (en) Edge ring dimensioned to extend lifetime of elastomer seal in a plasma processing chamber
KR20240031982A (en) Substrate pedestal module including backside gas delivery tube and method of making
USRE40046E1 (en) Processing system
JP4397271B2 (en) Processing equipment
JP6335538B2 (en) Method of manufacturing a gas distribution member for a plasma processing chamber
TWI666679B (en) The plasma processing apparatus and plasma processing method
US20050042881A1 (en) Processing apparatus
JP4815298B2 (en) Plasma processing method
JP2007317772A (en) Electrostatic chuck device
KR20090106631A (en) Bevel etcher with vacuum chuck
KR20100103611A (en) Film adhesive for semiconductor vacuum processing apparatus
KR101898079B1 (en) Plasma processing apparatus
KR20210126131A (en) Electrostatic Chuck for High Bias Radio Frequency (RF) Power Application in Plasma Processing Chambers
JP6052184B2 (en) Electrostatic clamp and ion implantation system
JP6469985B2 (en) Plasma processing equipment
TW201921555A (en) Soft chucking and dechucking for electrostatic chucking substrate supports
JP2007507104A (en) Method and apparatus for efficient temperature control using communication space
WO2013022066A1 (en) Plasma processing device
JP2010010231A (en) Plasma treatment device
JP6085106B2 (en) Plasma processing apparatus and plasma processing method
JP4519576B2 (en) Base for plasma etching apparatus and plasma etching apparatus provided with the same
JP4128469B2 (en) Plasma processing equipment
JP2006278631A (en) Apparatus for manufacturing semiconductor device
US11705346B2 (en) Substrate processing apparatus
JPH03266428A (en) Plasma etching process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250