JP2006066071A - Information recording medium - Google Patents

Information recording medium Download PDF

Info

Publication number
JP2006066071A
JP2006066071A JP2005304651A JP2005304651A JP2006066071A JP 2006066071 A JP2006066071 A JP 2006066071A JP 2005304651 A JP2005304651 A JP 2005304651A JP 2005304651 A JP2005304651 A JP 2005304651A JP 2006066071 A JP2006066071 A JP 2006066071A
Authority
JP
Japan
Prior art keywords
information
film
thickness
information surface
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005304651A
Other languages
Japanese (ja)
Inventor
Akemi Hirotsune
朱美 廣常
Toshimichi Shintani
俊通 新谷
Keikichi Ando
圭吉 安藤
Yumiko Anzai
由美子 安齋
Motoyasu Terao
元康 寺尾
Norihito Tamura
礼仁 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2005304651A priority Critical patent/JP2006066071A/en
Publication of JP2006066071A publication Critical patent/JP2006066071A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayered information recording medium wherein contrast when recording/reproduction is performed by using a blue laser is improved and which has satisfactory reproducing characteristics. <P>SOLUTION: The information recording medium has a substrate 1, information surfaces of N layers of recording films 3 and 9 wherein information is recorded by change of atomic arrangement generated by irradiation with light (N is an integer of 2 or more) and (N-1) pieces of spacer layers 7. Transmittance of each information surface is so set as to have a relation of information surface 1>information surface 2 ... information surface N-1>information surface N when the information surfaces are counted from a light incident side information surface and the thickness of the substrate is specified to be 0.578 to 0.592 mm and/or the thickness of the spacer layers are specified to be 13 to 27 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光ディスクに用いられる情報記録媒体に関する。   The present invention relates to an information recording medium used for an optical disc.

レーザ光を照射して薄膜(記録膜)に情報を記録する原理は種々知られているが、そのうちで膜材料の相変化(相転移とも呼ばれる)やフォトダークニングなど、レーザ光の照射による原子配列変化を利用するものは、薄膜の変形をほとんど伴わないため、2枚のディスク部材を直接貼り合わせて両面ディスク構造情報記録媒体、または複数の情報面を有する多層構造情報記録媒体が得られるという長所を持つ。  There are various known principles for recording information on a thin film (recording film) by irradiating laser light. Among them, atoms such as phase changes (also called phase transitions) and photodarkening of film materials are caused by laser light irradiation. Those using an array change are hardly accompanied by deformation of the thin film, so that a double-sided disk structure information recording medium or a multilayer structure information recording medium having a plurality of information surfaces can be obtained by directly bonding two disk members together. Has advantages.

通常の光ディスクでは、波長が660nm付近の一般に赤色レーザと言われている光源を用いている。これら情報記録媒体は基板上に下部保護層、GeSbTe系等の記録膜、ZnS−SiO2系上部保護層、Alなど反射率の大きい反射層を順に積層した構造を有している。記録容量を上げる方法はいくつかあるが、660nm付近の波長より短波長の光源を使用する方法や多層構造にする方法などが提案されている。ODS/ISOM‘99予稿集第110頁(文献1)に波長400nm付近用の2層情報記録媒体が示されている。この媒体では光入射側に反射層を持たない第1の情報面と光から遠い側にAl合金反射層を持つ第2の情報面を有する。しかし、このデータは計算結果のみで記録・再生した場合に生じるコントラストが小さい点の改良については示されていない。また、同様な波長400nm付近用の2層情報記録媒体がPCOS’99講演予稿集22頁(文献2)に開示されているが、この媒体も同様に光入射側に反射層を持たない第1の情報面をもつ。  In an ordinary optical disk, a light source generally called a red laser having a wavelength of around 660 nm is used. These information recording media have a structure in which a lower protective layer, a GeSbTe-based recording film, a ZnS-SiO2 upper protective layer, and a reflective layer having a high reflectance such as Al are sequentially laminated on a substrate. There are several methods for increasing the recording capacity, and a method using a light source having a wavelength shorter than the wavelength near 660 nm, a method using a multilayer structure, and the like have been proposed. ODS / ISOM '99 Proceedings, page 110 (Reference 1) shows a two-layer information recording medium for wavelengths near 400 nm. This medium has a first information surface having no reflection layer on the light incident side and a second information surface having an Al alloy reflection layer on the side far from the light. However, this data does not show improvement in the point that the contrast generated when recording / reproducing is performed only by the calculation result. A similar two-layer information recording medium for a wavelength of around 400 nm is disclosed in PCOS '99 Lecture Proceedings, page 22 (Reference 2), but this medium also has a reflective layer on the light incident side. It has the information side.

また、特開平10−293942号には、透明下部保護膜、相変化記録膜、透明上部保護膜、透明型反射膜または透明干渉膜からなる相変化型記録媒体を複数層設けることが記載されている。   Japanese Patent Laid-Open No. 10-293942 describes that a plurality of phase change recording media comprising a transparent lower protective film, a phase change recording film, a transparent upper protective film, a transparent reflective film, or a transparent interference film are provided. Yes.

なお、波長400nm付近の短波長のレーザは一般に、長波長の赤色レーザと対比させて青色、青緑色、青紫色、緑色レーザなどと呼ばれているが本明細書中では、まとめて青色レーザと呼ぶ。   Note that a short-wavelength laser near a wavelength of 400 nm is generally called a blue, blue-green, blue-violet, or green laser in contrast to a long-wavelength red laser. Call.

本明細書では、結晶−非晶質間の相変化ばかりでなく、融解(液相への変化)と再結晶化、結晶状態−結晶状態間の相変化も含むものとして「相変化」及び「原子配列変化」という用語を使用する。また、マークエッジ記録とは、記録マークのエッジ部分を信号の“1”に、マーク間およびマーク内を信号の“0”に対応させた記録方式のことをいう。本明細書において光ディスクとは、光の照射によって再生できる情報が記載された円板(ディスク)、及び/または光の照射によって情報の再生を行う装置をいう。
ODS/ISOM‘99予稿集第110頁 PCOS’99講演予稿集22頁 特開平10−293942号公報
In this specification, “phase change” and “phase change” include not only the phase change between crystal and amorphous, but also melting (change to liquid phase) and recrystallization, and phase change between crystal state and crystal state. The term “atomic arrangement change” is used. Mark edge recording refers to a recording method in which the edge portion of a recording mark corresponds to a signal “1”, and between the marks and within the mark corresponds to a signal “0”. In this specification, an optical disk refers to a disk (disc) on which information that can be reproduced by light irradiation is written and / or an apparatus that reproduces information by light irradiation.
ODS / ISOM'99 Proceedings, page 110 PCOS '99 Lecture Proceedings 22 Japanese Patent Laid-Open No. 10-293942

従来の多層情報記録媒体はいずれも、青色レーザを用いた高密度の書き換え可能な相変化型の多層情報記録媒体として用いる場合、コントラストが小さいという問題を有している。   Any of the conventional multilayer information recording media has a problem of low contrast when used as a high-density rewritable phase change type multilayer information recording medium using a blue laser.

また、特開平10−293942号では、透明反射層の透過率について思想がない。   Japanese Patent Laid-Open No. 10-293942 has no idea about the transmittance of the transparent reflective layer.

そこで、この発明の目的は、青色レーザで記録・再生を行った場合のコントラストを改善し、良好な再生特性を持つ多層情報記録用媒体を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a multilayer information recording medium that improves contrast when recording / reproducing is performed with a blue laser and has good reproduction characteristics.

本発明は、前記課題を解決するため、第1に、情報記録媒体を、基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記基板の厚さが0.578mm以上0.592mm以下であるという構成にした。   In order to solve the above-mentioned problems, the present invention firstly includes an information recording medium, a substrate, and an information surface of an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is 2 N−1 spacer layers, and when the information surface is counted from the information surface on the light incident side, the transmittance of the information surface is information surface 1> information surface 2... Information surface N -1> information plane N, and the thickness of the substrate is 0.578 mm or more and 0.592 mm or less.

第2に、情報記録媒体を、基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記スペーサ層の厚さが13μm以上27μm以下であるという構成にした。   Second, an information recording medium includes a substrate, an information surface of an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is an integer of 2 or more), and N-1 spacers. When the information plane is counted from the information plane on the light incident side, the transmittance of the information plane is in the relationship of information plane 1> information plane 2 ... information plane N-1> information plane N, In addition, the spacer layer has a thickness of 13 μm or more and 27 μm or less.

第3に、情報記録媒体を、基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記基板の厚さが0.578mm以上0.592mm以下で、前記スペーサ層の厚さが13μm以上27μm以下であるという構成にした。   Third, an information recording medium includes a substrate, an information surface of an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is an integer of 2 or more), and N−1 spacers. When the information plane is counted from the information plane on the light incident side, the transmittance of the information plane is in the relationship of information plane 1> information plane 2 ... information plane N-1> information plane N, And the thickness of the said board | substrate was 0.578 mm or more and 0.592 mm or less, and it was set as the structure that the thickness of the said spacer layer was 13 micrometers or more and 27 micrometers or less.

第4に、情報記録媒体を、NA0.65の光学系で記録・再生される情報記録媒体であって、基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記基板の厚さが0.578mm以上0.592mm以下であるという構成にした。   Fourth, the information recording medium is an information recording medium that is recorded / reproduced by an optical system with NA of 0.65, and includes a substrate and an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is an integer greater than or equal to 2) and N-1 spacer layers, and when the information surface is counted from the information surface on the light incident side, the transmittance of the information surface is information surface 1> Information surface 2... Information surface N-1> Information surface N, and the thickness of the substrate is 0.578 mm or more and 0.592 mm or less.

第5に、情報記録媒体を、NA0.65の光学系で記録・再生される情報記録媒体であって、基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記スペーサ層の厚さが13μm以上27μm以下であるという構成にした。   Fifth, the information recording medium is an information recording medium that is recorded / reproduced by an optical system with NA of 0.65, and includes a substrate and an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is an integer greater than or equal to 2) and N-1 spacer layers, and when the information surface is counted from the information surface on the light incident side, the transmittance of the information surface is information surface 1> Information surface 2... Information surface N-1> Information surface N, and the spacer layer has a thickness of 13 μm to 27 μm.

第6に、情報記録媒体を、NA0.65の光学系で記録・再生される情報記録媒体であって、基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記基板の厚さが0.578mm以上0.592mm以下で、前記スペーサ層の厚さが13μm以上27μm以下であるという構成にした。   Sixth, the information recording medium is an information recording medium that is recorded / reproduced by an optical system with NA of 0.65, and includes a substrate and an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is an integer greater than or equal to 2) and N-1 spacer layers, and when the information surface is counted from the information surface on the light incident side, the transmittance of the information surface is information surface 1> Information surface 2... Information surface N-1> Information surface N, the thickness of the substrate is 0.578 mm or more and 0.592 mm or less, and the thickness of the spacer layer is 13 μm or more and 27 μm or less. Made the configuration.

第7に、前記第1乃至第6のいずれかの構成を有する情報記録媒体において、前記記録膜の膜厚が4nm以上25nm以下であるという構成にした。   Seventh, in the information recording medium having any one of the first to sixth configurations, the recording film has a thickness of 4 nm to 25 nm.

本発明によると良好な記録・再生特性を有する情報記録媒体が得られる。   According to the present invention, an information recording medium having good recording / reproducing characteristics can be obtained.

以下、本発明を実施例によって詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

(本発明の情報記録媒体の構成、製法)
図1は、本発明の第1実施例のディスク状情報記録媒体の断面構造を示す模式図である。この媒体は次のようにして製作した。まず、直径12cm、厚さ0.6mmで表面にトラッキング用の溝を有するポリカーボネイト基板1上に、膜厚約30nmの(ZnS)80(SiO20膜と膜厚約4nmのAl4057膜と膜厚約1nmのCr4057膜を積層してなるL0下部保護層2、膜厚約6nmのGeSbTeL0記録膜3、膜厚約1nmのCr膜と膜厚約4nmのAl膜と膜厚約125nmの(ZnS)80(SiO20膜を積層してなるL0上部保護層4、膜厚約35nmの(Al)膜よりなるL0透明反射層5、膜厚約50nmの(ZnS)80(SiO20膜からなるL0最上部保護層6を順次形成した。上記のような層4,5,6多層積層によって生じる光学干渉を用いて透明な反射層を得る。積層膜の形成はマグネトロン・スパッタリング装置により行った。こうして第1のディスク部材を得た。
(Configuration and production method of information recording medium of the present invention)
FIG. 1 is a schematic diagram showing a cross-sectional structure of a disc-shaped information recording medium according to a first embodiment of the present invention. This medium was manufactured as follows. First, on a polycarbonate substrate 1 having a diameter of 12 cm and a thickness of 0.6 mm and having a tracking groove on the surface, a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 30 nm and an Al 40 O 57 film having a thickness of about 4 nm. N 3 film and the film thickness of about 1nm of Cr 40 O 57 N 3 film was laminated comprising L0 lower protective layer 2, a film thickness of about 6nm of Ge 5 Sb 2 Te 8 L0 recording film 3, the film thickness of about 1nm Cr 2 O 3 film and the film thickness of about 4 nm Al 2 O 3 film and the film thickness of about 125nm (ZnS) 80 (SiO 2 ) formed by laminating a 20 film L0 upper protective layer 4, the thickness of about 35 nm (Al 2 O 3 ) The L0 transparent reflecting layer 5 made of a film and the L0 uppermost protective layer 6 made of a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 50 nm were sequentially formed. A transparent reflective layer is obtained by using the optical interference generated by the multilayer lamination of the layers 4, 5, and 6 as described above. The laminated film was formed by a magnetron sputtering apparatus. A first disk member was thus obtained.

他方、同様のスパッタリング方法により、第1のディスク部材と異なる構成を持つ第2のディスク部材を得た。第2のディスク部材は、ポリカーボネイト保護基板12上に、膜厚約80nmのAg98PdCu膜からなるL1反射層11上に膜厚約80nmの(ZnS)80(SiO20膜と膜厚約5nmのCrを積層してなるL1上部保護層10、膜厚約18nmのGeSbTeL1記録膜9、膜厚約5nmのCr4057膜と膜厚約80nmの(ZnS)80(SiO20膜を積層してなるL1下部保護層8を順次形成したものである。 On the other hand, a second disk member having a configuration different from that of the first disk member was obtained by the same sputtering method. The second disk member has a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 80 nm on the L1 reflective layer 11 made of an Ag 98 Pd 1 Cu 1 film having a thickness of about 80 nm on the polycarbonate protective substrate 12. L1 upper protective layer 10 formed by stacking about 5 nm thick Cr 2 O 3 , about 18 nm thick Ge 5 Sb 2 Te 8 L1 recording film 9, about 5 nm thick Cr 40 O 57 N 3 film and film The L1 lower protective layer 8 formed by laminating (ZnS) 80 (SiO 2 ) 20 films having a thickness of about 80 nm is sequentially formed.

その後、前記第1のディスク部材と第2のディスク部材をそれぞれのL0最上部保護層6とL1下部保護層8をスペーサ層7を介して貼り合わせ、図1に示す2層情報記録媒体(ディスクA)を得た。   Thereafter, the first disk member and the second disk member are bonded to the L0 uppermost protective layer 6 and the L1 lower protective layer 8 via the spacer layer 7, respectively, and the two-layer information recording medium (disk) shown in FIG. A) was obtained.

各情報面は光入射側の構成膜(L0下部保護層2からL0最上部保護層6まで)をL0、光から遠い方の構成膜(L1下部保護層8からL1反射層11まで)をL1とした。   For each information surface, L0 is a constituent film on the light incident side (from the L0 lower protective layer 2 to the L0 uppermost protective layer 6), and L1 is a constituent film far from the light (from the L1 lower protective layer 8 to the L1 reflective layer 11). It was.

(従来型の情報記録媒体の構成、製法)
透明反射層の効果を明らかにするため、透明反射層を持たないディスク状情報記録媒体を作製した。図2は、この媒体の断面構造を示す模式図である。
(Construction and manufacturing method of conventional information recording medium)
In order to clarify the effect of the transparent reflective layer, a disc-shaped information recording medium having no transparent reflective layer was produced. FIG. 2 is a schematic diagram showing the cross-sectional structure of this medium.

この媒体は次のようにして製作した。まず、直径12cm、厚さ0.585mmで表面にトラッキング用の溝を有するポリカーボネイト基板1上に、膜厚約30nmの(ZnS)80(SiO20膜と膜厚約4nmのAl4057膜と膜厚約1nmのCr4057膜からなるL0下部保護層2、膜厚約6nmのGeSbTeからなるL0記録膜3、膜厚約1nmのCr膜と膜厚約4nmのAl膜と膜厚約125nmの(ZnS)80(SiO20膜からなるL0上部保護層4を順次形成した。積層膜の形成はマグネトロン・スパッタリング装置により行った。こうして第1のディスク部材を得た。 This medium was manufactured as follows. First, on a polycarbonate substrate 1 having a diameter of 12 cm and a thickness of 0.585 mm and having a tracking groove on the surface, a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 30 nm and an Al 40 O 57 film having a thickness of about 4 nm. L0 lower protective layer 2 made of N 3 film and Cr 40 O 57 N 3 film having a thickness of about 1 nm, L0 recording film 3 made of Ge 5 Sb 2 Te 8 having a thickness of about 6 nm, Cr 2 O having a thickness of about 1 nm The L0 upper protective layer 4 composed of three films, an Al 2 O 3 film with a thickness of about 4 nm, and a (ZnS) 80 (SiO 2 ) 20 film with a thickness of about 125 nm was sequentially formed. The laminated film was formed by a magnetron sputtering apparatus. A first disk member was thus obtained.

他方、同様のスパッタリング方法により、第1のディスク部材と異なる構成を持つ第2のディスク部材を得た。第2のディスク部材は、ポリカーボネイト保護基板12上に、膜厚約80nmのAg98PdCu膜からなるL1反射層11上に膜厚約80nmの(ZnS)80(SiO20膜と膜厚約5nmのCrからなるL1上部保護層10、膜厚約18nmのGeSbTeからなるL1記録膜9、膜厚約5nmのCr4057膜と膜厚約80nmの(ZnS)80(SiO20膜からなるL1下部保護層8を順次形成したものである。 On the other hand, a second disk member having a configuration different from that of the first disk member was obtained by the same sputtering method. The second disk member has a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 80 nm on the L1 reflective layer 11 made of an Ag 98 Pd 1 Cu 1 film having a thickness of about 80 nm on the polycarbonate protective substrate 12. L1 upper protective layer 10 made of Cr 2 O 3 with a film thickness of about 5 nm, L1 recording film 9 made of Ge 5 Sb 2 Te 8 with a film thickness of about 18 nm, Cr 40 O 57 N 3 film with a film thickness of about 5 nm The L1 lower protective layer 8 made of (ZnS) 80 (SiO 2 ) 20 film of about 80 nm is sequentially formed.

その後、前記第1のディスク部材と第2のディスク部材をそれぞれのL0上部保護層4とL1下部保護層8をスペーサー層7を介して貼り合わせ、図2に示す情報記録媒体(ディスクB)を得た。   Thereafter, the first disk member and the second disk member are bonded to each other via the spacer layer 7 and the L0 upper protective layer 4 and the L1 lower protective layer 8 are bonded to each other, and the information recording medium (disc B) shown in FIG. Obtained.

(初期結晶化)
前記のようにして製作したディスクAとディスクBのL0記録膜3に、次のようにして初期結晶化を行った。なお、以下ではL0記録膜3、L1記録膜9についてのみ説明するが、この他の多層媒体の記録膜についても全く同様である。
(Initial crystallization)
Initial crystallization was performed on the L0 recording films 3 of the disc A and the disc B manufactured as described above as follows. Although only the L0 recording film 3 and the L1 recording film 9 will be described below, the same applies to recording films of other multilayer media.

媒体(ディスクA,ディスクB)を記録トラック上の点の線速度が5m/sであるように回転させ、波長約810nmの半導体レーザのレーザパワーを300mWにしてL1の記録膜にフォーカスした後、レーザパワーを700mWにして、基板1およびL0膜、スペーサー層を通して記録膜9に媒体の半径方向に長い長円形のスポット形状で照射した。スポットの移動は、媒体の1回転につき媒体の半径方向のスポット長の1/24ずつずらした。こうして、初期結晶化を行った。この初期結晶化は1回でもよいが3回繰り返すと初期結晶化によるノイズ上昇を少し低減できた。この初期結晶化は高速で行える利点がある。   The medium (disk A, disk B) is rotated so that the linear velocity at the point on the recording track is 5 m / s, and the laser power of the semiconductor laser having a wavelength of about 810 nm is set to 300 mW to focus on the recording film of L1. The laser power was set to 700 mW, and the recording film 9 was irradiated in the shape of an ellipse that was long in the radial direction of the medium through the substrate 1, the L0 film, and the spacer layer. The movement of the spot was shifted by 1/24 of the spot length in the radial direction of the medium per one rotation of the medium. Thus, initial crystallization was performed. This initial crystallization may be performed once, but when it was repeated three times, the noise increase due to the initial crystallization could be reduced a little. This initial crystallization is advantageous in that it can be performed at high speed.

次ぎに波長約810nmの半導体レーザのレーザパワーを300mWにしてレーザのフォーカス位置を変えてL0の記録膜にフォーカスした後、レーザパワーを700mWにして、基板1を通して記録膜3に媒体の半径方向に長い長円形のスポット形状で照射した。スポットの移動は、媒体の1回転につき媒体の半径方向のスポット長の1/24ずつずらした。こうして、初期結晶化を行った。この初期結晶化は1回でもよいが3回繰り返すと初期結晶化によるノイズ上昇を少し低減できた。この初期結晶化は高速で行える利点がある。   Next, the laser power of a semiconductor laser having a wavelength of about 810 nm is set to 300 mW, the focus position of the laser is changed to focus on the L0 recording film, and then the laser power is set to 700 mW to pass through the substrate 1 to the recording film 3 in the radial direction of the medium. Irradiation was in the form of a long oval spot. The movement of the spot was shifted by 1/24 of the spot length in the radial direction of the medium per one rotation of the medium. Thus, initial crystallization was performed. This initial crystallization may be performed once, but when it was repeated three times, the noise increase due to the initial crystallization could be reduced a little. This initial crystallization is advantageous in that it can be performed at high speed.

初期化の順序はL1記録膜から行ってもL0記録膜から行っても、また3層以上の多層情報記録媒体においてはランダムに行っても良い。   The initialization sequence may be performed from the L1 recording film or the L0 recording film, or may be performed randomly in a multilayer information recording medium having three or more layers.

(記録・消去・再生)
前記のようにして製作し、初期結晶化を行った媒体について、次ぎのように記録・消去・再生特定の評価を行った。なお、以下ではL1の記録膜9についてのみ説明するが、L0の記録膜3についても全く同様であり、また3層以上の多層情報記録媒体においてのそれぞれの情報面の記録膜についても同様である。
(Record / Erase / Play)
The recording / erasing / reproduction specific evaluation was performed on the medium manufactured as described above and subjected to initial crystallization as follows. Hereinafter, only the recording film 9 of L1 will be described, but the same applies to the recording film 3 of L0, and the same applies to the recording films on the respective information surfaces in a multilayer information recording medium having three or more layers. .

初期結晶化が完了した記録膜9の記録領域にトラッキングと自動焦点合わせを行いながら、記録用レーザ光のパワーを中間パワーレベルPe(3mW)と高パワーレベルPh(7mW)との間で変化させて情報の記録を行った。記録トラックの線速度は9m/s、半導体レーザ波長は405nm、レンズの開口数(NA)は0.65である。記録用レーザ光により記録領域に形成される非晶質またはそれに近い部分が記録点となる。この媒体の反射率は結晶状態の方が高く、記録され非晶質状態になった領域の反射率が低くなっている。   While performing tracking and automatic focusing on the recording area of the recording film 9 where the initial crystallization has been completed, the power of the recording laser beam is changed between the intermediate power level Pe (3 mW) and the high power level Ph (7 mW). Recorded information. The linear velocity of the recording track is 9 m / s, the semiconductor laser wavelength is 405 nm, and the numerical aperture (NA) of the lens is 0.65. The amorphous or near portion formed in the recording area by the recording laser beam is a recording point. The reflectivity of this medium is higher in the crystalline state, and the reflectivity of the recorded region in the amorphous state is lower.

記録用レーザ光の高レベルと中間レベルのパワー比は1:0.3〜1:0.7の範囲が好ましい。また、この他に短時間ずつ他のパワーレベルにしてもよい。図3に示したように、1つの記録マークの形成中にウインドウ幅の半分(Tw/2)ずつ中間パワーレベルPeより低いボトムパワーレベルPbまでパワーを繰り返し下げ、かつクーリングパワーレベルPcを記録パルスの最後に持つ波形を生成する手段を持った装置で記録・再生を行うと、再生信号波形のジッター値およびエラーレートが低減した。クーリングパワーレベルPcは中間パワーレベルPeより低く、ボトムパワーレベルPbより高いか同じレベルである。この波形は、第1パルス幅Tpが記録マークとそのマークの直前に設けられたスペースの長さの組み合わせによって変化する特徴とクーリングパルス幅Tc(記録パルスの最後にPcレベルまで下げる時間幅)が記録マークとそのマークの後続スペース長の組み合わせにより決まる特徴を持つ。マーク直前のスペース長が短く、マークが長いほどTpは短くなり、マーク直前のスペース長が長く、マークが短いほどTpは長くなる。ただし、媒体の構造によっては6Twマークの記録用記録波形のTpを特に長くした場合、ジッター低減効果が大きかった。また、後続のスペース長が長く、マークが長いほど、Tcは短くなり、後続のスペース長が短く、マークが短いほど、Tcは長くなる。   The power ratio between the high level and the intermediate level of the recording laser beam is preferably in the range of 1: 0.3 to 1: 0.7. In addition, other power levels may be set for a short time. As shown in FIG. 3, during the formation of one recording mark, the power is repeatedly reduced to the bottom power level Pb lower than the intermediate power level Pe by half the window width (Tw / 2), and the cooling power level Pc is set to the recording pulse. When recording / reproduction was performed with an apparatus having means for generating a waveform at the end of the waveform, the jitter value and error rate of the reproduced signal waveform were reduced. The cooling power level Pc is lower than the intermediate power level Pe and higher than or equal to the bottom power level Pb. This waveform is characterized in that the first pulse width Tp varies depending on the combination of the recording mark and the length of the space provided immediately before the mark, and the cooling pulse width Tc (the time width to decrease to the Pc level at the end of the recording pulse). It has characteristics determined by the combination of the recording mark and the subsequent space length of the mark. The shorter the space length immediately before the mark and the longer the mark, the shorter the Tp, the longer the space length immediately before the mark, and the shorter the mark, the longer the Tp. However, depending on the structure of the medium, when the Tp of the recording waveform for recording of the 6 Tw mark is particularly long, the effect of reducing the jitter is large. Further, the longer the subsequent space length and the longer the mark, the shorter the Tc, and the shorter the subsequent space length and the shorter the mark, the longer the Tc.

図3には3Tw,4Tw,6Tw,11Twの記録波形しか示していないが、5Twは6Twの記録波形の一連の高いパワーレベルのパルス列のうち、Tw/2の高いパワーレベルPhと直後のTw/2のボトムパワーレベルPbをそれぞれ一つずつ削減したものである。また、7Tw〜10Tw用記録波形は6Tw用記録波形の最後尾の高いパワーレベルのパルスの直前に、Tw/2の高いパワーレベルPhとTw/2のボトムパワーレベルPbを、それぞれ1組ずつ追加したものである。したがって、5組追加したものが11Twである。   FIG. 3 shows only recording waveforms of 3Tw, 4Tw, 6Tw, and 11Tw, but 5Tw is a series of high power level pulse trains of 6Tw recording waveform, and a power level Ph of Tw / 2 and Tw / The bottom power level Pb of 2 is reduced by one each. In addition, in the recording waveform for 7 Tw to 10 Tw, a pair of Tw / 2 high power level Ph and Tw / 2 bottom power level Pb are added one by one immediately before the last high power level pulse of the 6 Tw recording waveform. It is a thing. Accordingly, 11 Tw is obtained by adding 5 sets.

ここでは、3Twに対応する最短記録マーク長を0.26μmとした。記録すべき部分を通り過ぎると、レーザ光パワーを再生(読み出し)用レーザ光の低パワーレベルPr(1mW)に下げるようにした。   Here, the shortest recording mark length corresponding to 3 Tw was set to 0.26 μm. After passing the portion to be recorded, the laser beam power is lowered to the low power level Pr (1 mW) of the reproducing (reading) laser beam.

このような記録方法では、既に情報が記録されている部分に対して消去することなく、重ね書きによって新たな情報を記録すれば、新たな情報に書き換えられる。すなわち、単一のほぼ円形の光スポットによるオーバーライトが可能である。 In such a recording method, if new information is recorded by overwriting without erasing a portion where information is already recorded, the information is rewritten to new information. In other words, overwriting with a single substantially circular light spot is possible.

しかし、書き換え時の最初のディスク1回転または複数回転で、前記のパワー変調した記録用レーザ光の中間パワーレベル(3mW)またはそれに近いパワーの連続光を照射して、記録されている情報を一たん消去し、その後、次の1回転でボトムパワーレベル(0.5mW)と高パワーレベル(7mW)の間で、または中間パワーレベル(3mW)と高パワーレベル(7mW)との間で、情報信号に従ってパワー変調したレーザ光を照射して記録するようにしてもよい。このように、情報を消去してから記録するようにすれば、前に書かれていた情報の消え残りが少ない。従って、線速度を2倍に上げた場合の書き換えも、容易になる。   However, the recorded information is made uniform by irradiating the continuous power of the power-modulated recording laser beam with an intermediate power level (3 mW) or a power close thereto at one or more rotations of the first disk at the time of rewriting. Erasing and then information between the bottom power level (0.5 mW) and the high power level (7 mW) or between the intermediate power level (3 mW) and the high power level (7 mW) in the next rotation. You may make it record by irradiating the laser beam power-modulated according to the signal. In this way, if the information is erased and then recorded, the remaining information that has been written before is reduced. Therefore, rewriting when the linear velocity is doubled becomes easy.

(透明反射層の効果)
本実施例記載の透明反射層を持つ図1に記載の情報記録媒体(ディスクA)および透明反射層を持たない図2に記載の従来の情報記録媒体(ディスクB)のL0について比較した。初回記録時の最短記録信号(3Tw)のC/N(搬送波対雑音比)について比べたところ、ディスクAでは50dBのC/Nがあったが、ディスクBではC/Nが小さく46dBであった。ディスクAでC/Nが大きくなったのは、透明反射層を設けることにより記録膜と透明反射層との間での干渉を利用することが出来、信号振幅が大きくなったためである。
(Effect of transparent reflective layer)
Comparison was made for L0 of the information recording medium (disc A) shown in FIG. 1 having the transparent reflective layer described in the present example and the conventional information recording medium (disc B) shown in FIG. 2 having no transparent reflective layer. When comparing the C / N (carrier-to-noise ratio) of the shortest recording signal (3 Tw) at the time of the first recording, the C / N was 50 dB in the disk A, but the C / N was small in the B and was 46 dB. . The reason why the C / N was increased in the disk A is that the interference between the recording film and the transparent reflection layer can be used by providing the transparent reflection layer, and the signal amplitude has increased.

(透明反射層の光学特性)
透明反射層5の光学特性依存性を測定した。光学特性を変化させた複数の媒体を作成した。最短記録マーク3Twと3Tスペースの繰り返し信号を記録した際のC/Nを測定した。結果を表1に示す。透明反射層の組成が変わると透明反射層の消衰係数が変化し、反射層での吸収量が多くなるため、透過率一定とした時の反射率差が小さくなり、C/N(dB)が低下した。った。これより、透明反射層の消衰係数は、小さいことが好ましいことがわかる。実用レベルでC/Nを確保するには48dB以上必要であるため、透明反射層の消衰係数0.5以下であることが好ましい。また、レーザの環境温度変動による劣化を考慮した場合には、C/Nが49dB以上必要であるため、透明反射層の消衰係数は0.3 以下であることがより好ましい。また、透明反射層の反射率は5%以上50%以下であることが望ましい。

Figure 2006066071
(Optical characteristics of transparent reflective layer)
The optical property dependency of the transparent reflective layer 5 was measured. A plurality of media with varying optical properties were created. C / N at the time of recording a repetitive signal of the shortest recording mark 3Tw and 3T space was measured. The results are shown in Table 1. When the composition of the transparent reflective layer changes, the extinction coefficient of the transparent reflective layer changes, and the amount of absorption in the reflective layer increases. Therefore, the difference in reflectance when the transmittance is constant is reduced, and C / N (dB) Decreased. It was. This shows that the extinction coefficient of the transparent reflective layer is preferably small. In order to secure C / N at a practical level, 48 dB or more is required, and therefore, the extinction coefficient of the transparent reflective layer is preferably 0.5 or less. In consideration of degradation due to environmental temperature fluctuations of the laser, since C / N is required to be 49 dB or more, the extinction coefficient of the transparent reflective layer is more preferably 0.3 or less. The reflectance of the transparent reflective layer is desirably 5% or more and 50% or less.
Figure 2006066071

次に透明反射層5の屈折率依存性を測定した。これを、表2に示す。透明反射層の屈折率nが変わると上部保護層と透明反射層の光干渉量が変わるため、透過率一定とした時の反射率差がかわる。ここで、反射率差とは、媒体における、記録膜の結晶状態と非結晶状態、つまり未記録状態と記録状態との反射率の差をいう。

Figure 2006066071
Next, the refractive index dependency of the transparent reflective layer 5 was measured. This is shown in Table 2. When the refractive index n of the transparent reflective layer changes, the amount of light interference between the upper protective layer and the transparent reflective layer changes, and therefore the difference in reflectance when the transmittance is constant is changed. Here, the reflectance difference means a difference in reflectance between the crystalline state and the amorphous state of the recording film, that is, the unrecorded state and the recorded state, in the medium.
Figure 2006066071

これより、透明反射層の屈折率は、実用レベルの反射率差を確保するには4%以上必要であるため、透明反射層の屈折率2.2以下または2.5以上であることが好ましい。また、レーザの環境温度変動による劣化を考慮した場合には、反射率差が5%以上必要であるため、透明反射層の屈折率は2.0 以下または2.6以上であることがより好ましい。   Accordingly, the refractive index of the transparent reflective layer needs to be 4% or more in order to ensure a practical level of the difference in reflectance, so that the refractive index of the transparent reflective layer is preferably 2.2 or less or 2.5 or more. . Further, in consideration of degradation due to environmental temperature fluctuations of the laser, a difference in reflectance of 5% or more is necessary, and therefore, the refractive index of the transparent reflective layer is more preferably 2.0 or less or 2.6 or more. .

さらに上部保護層の屈折率(2.35)との差が大きい方が好ましいことがわかる。上部保護層の屈折率と透明反射層の屈折率の差が0.15以上であることが好ましい。また、レーザの環境温度変動による劣化を考慮した場合には、上部保護層の屈折率と透明反射層の屈折率の差が0.25以上であることがより好ましい。   Furthermore, it can be seen that a larger difference from the refractive index (2.35) of the upper protective layer is preferable. The difference between the refractive index of the upper protective layer and the refractive index of the transparent reflective layer is preferably 0.15 or more. In consideration of deterioration due to environmental temperature fluctuations of the laser, the difference between the refractive index of the upper protective layer and the refractive index of the transparent reflective layer is more preferably 0.25 or more.

透明反射層膜厚及び上部保護層膜厚及び最上部保護層膜厚は、反射率差が大きくとれるように決定することがC/Nが大きくなり好ましい。この膜厚は上部保護層が80〜160nmが好ましく、100〜140nmがより好ましい。透明反射層と最上部保護層膜厚は、透明反射層と最上部保護層膜厚の合計が50〜130nmが好ましく、70〜110nmがより好ましい。   It is preferable that the thickness of the transparent reflective layer, the thickness of the upper protective layer, and the thickness of the uppermost protective layer are determined so as to obtain a large difference in reflectance because C / N becomes large. The thickness of the upper protective layer is preferably 80 to 160 nm, and more preferably 100 to 140 nm. The total thickness of the transparent reflective layer and the uppermost protective layer is preferably 50 to 130 nm, and more preferably 70 to 110 nm.

干渉を利用するためには、透明反射層膜厚の最低膜厚は5nm以上にすることが好ましく、10nm以上だとより好ましい。   In order to use interference, the minimum thickness of the transparent reflective layer is preferably 5 nm or more, and more preferably 10 nm or more.

透明反射層材料は、SiO,SiO,TiO,Al,Y,CeO,La,In,GeO,GeO,PbO,SnO,SnO,BeO,Bi,TeO,WO,WO,Sc,Ta,ZrO,CuO,MgOなどの酸化物、TaN,AlN,BN,CrN,Si,GeN,Al−Si−N系材料(例えばAlSiN)などの窒化物が好ましい。これら化合物における元素比は、例えば酸化物や硫化物における金属元素と酸素元素あるいは硫黄元素の比は、Al,Y,Laは2:3、SiO,ZrO,GeOは1:2、Taは2:5、ZnSは1:1という比をとるかその比に近いことが好ましいが、その比から外れていても同様の効果は得られる。しかし、上記整数比から外れている場合、例えばAl−OはAlとOの比率がAlからAl量で±10原子%以下、Si−OはSiとOの比率がSiOからSi量で±10原子%以下等、金属元素量のずれが10原子%以下が好ましい。10原子%以上ずれると、光学特性が変化するため、変調度が10%以上低下した。 Transparent reflective layer materials are SiO 2 , SiO, TiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 , La 2 O 3 , In 2 O 3 , GeO, GeO 2 , PbO, SnO, SnO 2 , BeO. , Bi 2 O 3 , TeO 2 , WO 2 , WO 3 , Sc 2 O 3 , Ta 2 O 5 , ZrO 2 , Cu 2 O, MgO and other oxides, TaN, AlN, BN, CrN, Si 3 N 4 , GeN, and nitrides such as Al—Si—N based materials (for example, AlSiN 2 ) are preferable. These elemental ratio in the compound, for example the ratio of the metal element and oxygen element and sulfur element in the oxide or sulfide, Al 2 O 3, Y 2 O 3, La 2 O 3 is 2: 3, SiO 2, ZrO 2 , GeO 2 is preferably 1: 2, Ta 2 O 5 is 2: 5, and ZnS is 1: 1 or close to the ratio, but the same effect can be obtained even if the ratio is out of the ratio. However, when deviating from the above integer ratio, for example, Al—O has a ratio of Al to O of Al 2 O 3 to Al amount of ± 10 atomic% or less, and Si—O has a ratio of Si to O of SiO 2 to Si. The deviation of the amount of metal elements, such as ± 10 atomic% or less, is preferably 10 atomic% or less. When the deviation was 10 atomic% or more, the optical characteristics were changed, so that the degree of modulation decreased by 10% or more.

この他上記光学特性を持つ材料も使用可能である。透明反射層材料中の不純物元素が5原子%を超えると1万回以上の多数回オーバーライト時のジッター上昇が5%以上になることがわかった。したがって、透明反射層材料中の不純物元素が透明反射層成分の5原子%以下が書き換え特性の劣化を少なく出来、好ましい。2原子%以下であるとさらに好ましい。   In addition, materials having the above optical characteristics can also be used. It has been found that when the impurity element in the transparent reflective layer material exceeds 5 atomic%, the increase in jitter at the time of overwriting 10,000 times or more becomes 5% or more. Therefore, it is preferable that the impurity element in the transparent reflective layer material is 5 atomic% or less of the transparent reflective layer component because deterioration of the rewriting characteristics can be reduced. More preferably, it is 2 atomic% or less.

(下部保護層)
本実施例では、L1下部保護層8を(ZnS)80(SiO20とCr4057層の2層構造としている。また、L0下部保護層2を(ZnS)80(SiO20膜と膜厚約4nmのAl4057膜と膜厚約1nmのCr4057膜を積層した3層構造としている。2層構造をとる下部保護層2、8の(ZnS)80(SiO20に代わる材料としては、ZnSとSiOの混合比を変えたものが好ましい。また、ZnS,Si−N系材料、Si−O−N系材料、SiO,SiO,TiO,Al,Y,CeO,La,In,GeO,GeO,PbO,SnO,SnO,BeO,Bi,TeO,WO,WO,Sc,Ta,ZrO,CuO,MgOなどの酸化物、TaN,AlN,BN,Si,GeN,Al−Si−N系材料(例えばAlSiN)などの窒化物、ZnS,Sb,CdS,In,Ga,GeS,SnS,PbS,Biなどの硫化物、SnSe,SbSe,CdSe,ZnSe,InSe,GaSe,GeSe,GeSe,SnSe,PbSe,BiSeなどのセレン化物、CeF,MgF,CaFなどの弗化物、あるいはSi,Ge,TiB,BC,B,C,または、上記の材料に近い組成のものを用いてもよい。また、ZnS−SiO,ZnS−Alなど、これらの混合材料の層やこれらの多重層でもよい。この中で、ZnSはスパッタレートが大きく、ZnSが60mol%以上を占めると成膜時間を短くできるため、これを60mol%以上含む混合物の場合、ZnSのスパッタレートが大きい点と酸化物や窒化物等の化学安定性の良い点が組み合わされる。この他の硫化物、セレン化物でもZnSに近い特性が得られた。
(Lower protective layer)
In this embodiment, the L1 lower protective layer 8 has a two-layer structure of (ZnS) 80 (SiO 2 ) 20 and Cr 40 O 57 N 3 layers. The L0 lower protective layer 2 has a three-layer structure in which a (ZnS) 80 (SiO 2 ) 20 film, an Al 40 O 57 N 3 film having a thickness of about 4 nm, and a Cr 40 O 57 N 3 film having a thickness of about 1 nm are stacked. It is said. As a material replacing the (ZnS) 80 (SiO 2 ) 20 of the lower protective layers 2 and 8 having a two-layer structure, a material in which the mixing ratio of ZnS and SiO 2 is changed is preferable. Also, ZnS, Si—N-based material, Si—O—N-based material, SiO 2 , SiO, TiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 , La 2 O 3 , In 2 O 3 , GeO , GeO 2, PbO, SnO, SnO 2, BeO, Bi 2 O 3, TeO 2, WO 2, WO 3, Sc 2 O 3, Ta 2 O 5, ZrO 2, Cu 2 O, oxides such as MgO, TaN, AlN, BN, Si 3 N 4, GeN, Al-Si-N material (e.g., AlSiN 2) nitride such as, ZnS, Sb 2 S 3, CdS, in 2 S 3, Ga 2 S 3, GeS , SnS 2 , PbS, Bi 2 S 3 , sulfides, SnSe 2 , Sb 2 Se 3 , CdSe, ZnSe, In 2 Se 3 , Ga 2 Se 3 , GeSe, GeSe 2 , SnSe, PbSe, Bi Using selenides such as 2 Se 3 , fluorides such as CeF 3 , MgF 2 , and CaF 2 , Si, Ge, TiB 2 , B 4 C, B, C, or those having a composition close to the above materials Also good. Further, a layer of a mixed material such as ZnS—SiO 2 or ZnS—Al 2 O 3 or a multilayer thereof may be used. Among them, ZnS has a high sputter rate, and if ZnS occupies 60 mol% or more, the film formation time can be shortened. Therefore, in the case of a mixture containing 60 mol% or more, the point that the sputtering rate of ZnS is large and oxides and nitrides These are combined with good chemical stability. Other sulfides and selenides obtained characteristics similar to ZnS.

これら化合物における元素比は、例えば酸化物や硫化物における金属元素と酸素元素あるいは硫黄元素の比は、Al,Y,Laは2:3、SiO,ZrO,GeOは1:2、Taは2:5、ZnSは1:1という比をとるかその比に近いことが好ましいが、その比から外れていても同様の効果は得られる。しかし、上記整数比から外れている場合、例えばAl−OはAlとOの比率がAlからAl量で±10原子%以下、Si−OはSiとOの比率がSiOからSi量で±10原子%以下等、金属元素量のずれが10原子%以下が好ましい。10原子%以上ずれると、光学特性が変化するため、変調度が10%以上低下した。 These elemental ratio in the compound, for example the ratio of the metal element and oxygen element and sulfur element in the oxide or sulfide, Al 2 O 3, Y 2 O 3, La 2 O 3 is 2: 3, SiO 2, ZrO 2 , GeO 2 is preferably 1: 2, Ta 2 O 5 is 2: 5, and ZnS is 1: 1 or close to the ratio, but the same effect can be obtained even if the ratio is out of the ratio. However, when deviating from the above integer ratio, for example, Al—O has a ratio of Al to O of Al 2 O 3 to Al amount of ± 10 atomic% or less, and Si—O has a ratio of Si to O of SiO 2 to Si. The deviation of the amount of metal elements, such as ± 10 atomic% or less, is preferably 10 atomic% or less. When the deviation was 10 atomic% or more, the optical characteristics were changed, so that the degree of modulation decreased by 10% or more.

上記材料は、下部保護層全原子数の90%以上であることが好ましい。上記材料以外の不純物が10原子%以上になると、書き換え可能回数が1/2以下になる等、書き換え特性の劣化が見られた。   The material is preferably 90% or more of the total number of atoms of the lower protective layer. When impurities other than the above materials were 10 atomic% or more, the rewriting characteristics were deteriorated such that the number of possible rewritings was ½ or less.

本実施例で用いた下部保護層の消衰係数kについては0または0に近いことが好ましい。さらに、下部保護層材料の80%以上の膜厚において消衰係数kがk≦0.01であれば、コントラストの低下が2%以下に抑制でき好ましい。   The extinction coefficient k of the lower protective layer used in this example is preferably 0 or close to 0. Furthermore, if the extinction coefficient k is k ≦ 0.01 at a film thickness of 80% or more of the lower protective layer material, it is preferable that the decrease in contrast can be suppressed to 2% or less.

下部保護層を2層以上にし、記録膜側の下部保護層材料をCrまたはCr4057すると、多数回書き換え時に記録膜へZn,Sの拡散を抑制でき、書き換え特性が良好であることがわかった。記録膜側の下部保護層材料のCrに代わる材料としては、CrにSiO,Ta,Al,ZrO−Yを混合した混合物が好ましい。次いで、CoOまたはGeO,NiO、これらとCrの混合物が好ましい。これら酸化物は消衰係数kが小さく、下部界面層における吸収が非常に小さい。そのため、変調度が大きく保てるという利点がある。 If the lower protective layer is made of two or more layers and the lower protective layer material on the recording film side is Cr 2 O 3 or Cr 40 O 57 N 3 , the diffusion of Zn and S to the recording film can be suppressed at the time of rewriting many times, and the rewriting characteristics are improved. It was found to be good. As a material replacing Cr 2 O 3 of the lower protective layer material on the recording film side, a mixture of Cr 2 O 3 and SiO 2 , Ta 2 O 5 , Al 2 O 3 , ZrO 2 —Y 2 O 3 is preferable. . Next, CoO or GeO 2 , NiO, and a mixture of these and Cr 2 O 3 are preferable. These oxides have a small extinction coefficient k and very low absorption in the lower interface layer. Therefore, there is an advantage that the modulation degree can be kept large.

また、CrまたはCr4057の一部をAlまたはAl4057に変えると、記録膜以外での吸収が減り透過率が大きくできるため、L0層でC/Nが大きく出来てこのましい。AlまたはAl4057の代りにSiOまたはSi3363など、またこれらの窒素と酸素量の比が異なるものを用いても同様な特性が得られた。 In addition, if a part of Cr 2 O 3 or Cr 40 O 57 N 3 is changed to Al 2 O 3 or Al 40 O 57 N 3 , the absorption other than the recording film is reduced and the transmittance can be increased. C / N is great and this is good. Similar characteristics were obtained even when SiO 2 or Si 33 O 63 N 4 was used instead of Al 2 O 3 or Al 40 O 57 N 3 , or those having different ratios of nitrogen and oxygen.

また、AlN,BN,CrN,Cr2N,GeN,HfN,Si,Al−Si−N系材料(例えばAlSiN)、Si−N系材料、Si−O−N系材料、TaN,TiN,ZrN,などの窒化物は保存寿命が大きくなり、外界温度変化に強く、より好ましい。窒素が含まれた記録膜組成またはそれに近い組成の材料でも接着力が向上する。 Further, AlN, BN, CrN, Cr2N , GeN, HfN, Si 3 N 4, Al-Si-N material (e.g., AlSiN 2), Si-N-based material, Si-O-N-based material, TaN, TiN, Nitrides such as ZrN have a longer shelf life and are more resistant to changes in ambient temperature, which is more preferable. Adhesive strength is improved even with a recording film composition containing nitrogen or a material having a composition close thereto.

その他、BeO,Bi,CeO,CuO,CuO,CdO,Dy,FeO,Fe,Fe,GeO,GeO,HfO,In,La,MgO,MnO,MoO,MoO,NbO,NbO,PbO,PdO,SnO,SnO,Sc,SrO,ThO,TiO,Ti,TiO,TeO,VO,V,VO,WO,WOなどの酸化物、C,Cr,Cr23,Cr,FeC,MoC,WC,WC,HfC,TaC,CaCなどの炭化物または、上記の材料に近い組成のものを用いてもよいし、これらの混合材料でもよい。 Other, BeO, Bi 2 O 3, CeO 2, Cu 2 O, CuO, CdO, Dy 2 O 3, FeO, Fe 2 O 3, Fe 3 O 4, GeO, GeO 2, HfO 2, In 2 O 3, La 2 O 3 , MgO, MnO, MoO 2 , MoO 3 , NbO, NbO 2 , PbO, PdO, SnO, SnO 2 , Sc 2 O 3 , SrO, ThO 2 , TiO 2 , Ti 2 O 3 , TiO, TeO 2 , VO, V 2 O 3 , VO 2 , WO 2 , WO 3 and other oxides, C, Cr 3 C 2 , Cr 23 C 6 , Cr 7 C 3 , Fe 3 C, Mo 2 C, WC, W A carbide such as 2 C, HfC, TaC, CaC 2 , a composition close to the above material, or a mixed material thereof may be used.

下部保護層の記録膜側に酸化物または窒化物の層を設けた場合は、Zn,S等の記録膜中への拡散が防止でき、消え残りが増加するのを抑制できる。さらに、記録感度を低下させないためには、25nm以下とすることが好ましく、10nm以下ではより好ましかった。均一な膜形成ができるのは約2nm以上であり、5nm以上がさらに良好であった。これより、記録膜側の下部保護層膜厚を2〜25nmとすると記録・再生特性がより良くなり、好ましい。未満の場合、再結晶化のためにC/Nが低下した。また、下部保護層膜厚が10nm未満の場合、記録膜の保護効果がなくなるため、書き換え可能回数が1桁以上低下した。下部保護層と記載したものは、L0下部保護層、L1下部保護層、さらに多層情報記録媒体の下部保護層を意味する。   When an oxide or nitride layer is provided on the recording film side of the lower protective layer, diffusion of Zn, S, etc. into the recording film can be prevented, and increase in disappearance can be suppressed. Further, in order not to lower the recording sensitivity, it is preferably 25 nm or less, and more preferably 10 nm or less. A uniform film can be formed at about 2 nm or more, and 5 nm or more is even better. Accordingly, it is preferable that the thickness of the lower protective layer on the recording film side is 2 to 25 nm because the recording / reproducing characteristics are improved. In the case of less than C, the C / N decreased due to recrystallization. Further, when the thickness of the lower protective layer was less than 10 nm, the protective effect of the recording film was lost, so the number of rewritable times decreased by one digit or more. What is described as the lower protective layer means the L0 lower protective layer, the L1 lower protective layer, and the lower protective layer of the multilayer information recording medium.

(記録膜)
本実施例では、記録膜3、記録膜9をGeSbTeにより形成している。本記録膜の再生波長における屈折率は、結晶状態が2.0、非晶質状態が2.6と、結晶状態の方が小さい。
(Recording film)
In this embodiment, the recording film 3 and the recording film 9 are made of Ge 5 Sb 2 Te 8 . The refractive index at the reproduction wavelength of the recording film is 2.0 in the crystalline state and 2.6 in the amorphous state, which is smaller in the crystalline state.

GeSbTeに代わる記録膜3,9の材料としては、AgGe30Sb14Te53,CrGe32Sb13Te52等、Ag−Ge−Sb−Te系、Cr−Ge−Sb−Te系材料で組成比の異なるものが変調度が大きくなり好ましい。記録膜3および/または記録膜9中のAg量やCr量が多いと短波長での反射率変化が大きくなるが、結晶化速度は遅くなる。従って、添加されるAg量またはCr量が2原子%以上、10原子%以下が好ましい。しかし、Agの添加されていないGe−Sb−Te系材料でもオーバーライトは可能である。Agの代わりに記録膜3,9へ添加する元素としては、Cr,W,Mo,Pt,Co,Ni,Pd,Si,Au,Cu,V,Mn,Fe,Ti,Biのいずれかのうちの少なくとも一つで置き換えても、オーバーライト特性が良好であることがわかった。これらの記録膜3,9材料は全て、再生波長における屈折率は結晶状態の方が非晶質状態より小さい。 As materials for the recording films 3 and 9 instead of Ge 5 Sb 2 Te 8 , Ag 3 Ge 30 Sb 14 Te 53 , Cr 3 Ge 32 Sb 13 Te 52 , Ag-Ge-Sb-Te system, Cr-Ge-, etc. Sb—Te materials having different composition ratios are preferable because the degree of modulation increases. If the amount of Ag or Cr in the recording film 3 and / or recording film 9 is large, the change in reflectance at a short wavelength increases, but the crystallization speed decreases. Therefore, the amount of Ag or Cr added is preferably 2 atomic% or more and 10 atomic% or less. However, overwriting is possible even with a Ge—Sb—Te-based material to which no Ag is added. As an element added to the recording films 3 and 9 instead of Ag, any of Cr, W, Mo, Pt, Co, Ni, Pd, Si, Au, Cu, V, Mn, Fe, Ti, and Bi Even when replaced with at least one of the above, it was found that the overwrite characteristics were good. All of these recording film 3 and 9 materials have a refractive index at the reproduction wavelength that is smaller in the crystalline state than in the amorphous state.

本実施例で記録膜9の膜厚を変化させ、10回書き換え後および10万回書き換え後のジッター(σ/Tw)を測定したところ、表3のようになった。記録膜9の膜厚(nm)に対し、10回書き換え後については前エッジまたは後エッジのジッターの悪い方の値(%)を、1万回書き換え後については前エッジのジッター値(%)を示した。

Figure 2006066071
In this example, the thickness of the recording film 9 was changed, and the jitter (σ / Tw) after 10 times of rewriting and 100,000 times of rewriting was measured. With respect to the film thickness (nm) of the recording film 9, the value of the worse edge edge or rear edge jitter (%) after 10 rewrites, and the front edge jitter value (%) after 10,000 rewrites. showed that.
Figure 2006066071

これより、記録膜9の膜厚を薄くすると記録膜流動や偏析による、10回書き換え後のジッターが増加し、また厚くすると、1万回書き換え後のジッターが増加することがわかった。これより、記録膜9の膜厚は4nm以上、25nm以下がジッターを20%以下にでき好ましく、5nm以上、20nm以下であればジッターを15%以下に出来より好ましい。   From this, it was found that when the film thickness of the recording film 9 is reduced, the jitter after 10 times of rewriting increases due to the flow and segregation of the recording film, and when it is increased, the jitter after 10,000 times of rewriting increases. Accordingly, the film thickness of the recording film 9 is 4 nm or more and 25 nm or less, and the jitter can be 20% or less, and if it is 5 nm or more and 20 nm or less, the jitter can be 15% or less, which is more preferable.

記録膜3の膜厚および、1〜N−1情報面(レイヤー)における記録膜膜厚については、前記情報面の記録膜膜厚が情報面1≦情報面2≦…≦情報面N−1≦情報面Nの関係にあると各情報面において記録・再生可能となるため好ましい。さらに、光入射側の基板より1からN−1番めの情報面用記録膜の合計膜厚が10nm以下であると、N番めの情報面のC/Nが48dB以上と大きくでき好ましい。上記合計膜厚が8nm以下になるとN番めの情報面のC/Nが49dB以上と大きくできより好ましい。   Regarding the film thickness of the recording film 3 and the recording film thickness on the 1-N-1 information surface (layer), the recording film thickness on the information surface is information surface 1 ≦ information surface 2 ≦. ≦ Information plane N is preferable because recording / reproduction can be performed on each information plane. Further, it is preferable that the total film thickness of the first to N-1th information surface recording films from the light incident side substrate is 10 nm or less because the C / N of the Nth information surface can be increased to 48 dB or more. The total film thickness of 8 nm or less is more preferable because the C / N of the Nth information surface can be as large as 49 dB or more.

(上部保護層)
本実施例では、上部保護層10をZnS−SiOとCr4060により形成した。また、L0上部保護層4を(ZnS)80(SiO20膜と膜厚約4nmのAl4060膜と膜厚約1nmのCr4060膜を積層した3層構造としている。
(Upper protective layer)
In this example, the upper protective layer 10 was formed of ZnS—SiO 2 and Cr 40 O 60 . The L0 upper protective layer 4 has a three-layer structure in which a (ZnS) 80 (SiO 2 ) 20 film, an Al 40 O 60 film with a thickness of about 4 nm, and a Cr 40 O 60 film with a thickness of about 1 nm are stacked.

ZnS−SiOに代わる上部保護層の材料としては、Si−N系材料、Si−O−N系材料、ZnS,SiO,SiO,TiO,Al,Y,CeO,La,In,GeO,GeO,PbO,SnO,SnO,BeO,Bi,TeO,WO,WO,Sc,Ta,ZrO,CuO,MgOなどの酸化物、TaN,AlN,BN,Si,GeN,Al−Si−N系材料(例えばAlSiN)などの窒化物、ZnS,Sb,CdS,In,Ga,GeS,SnS,PbS,Biなどの硫化物、SnSe,SbSe,CdSe,ZnSe,InSe,GaSe,GeSe,GeSe,SnSe,PbSe,BiSeなどのセレン化物、CeF,MgF,CaFなどの弗化物、あるいはSi,Ge,TiB,BC,B,Cまたは、上記の材料に近い組成のものを用いてもよい。また、ZnS−SiO,ZnS−Alなどこれらの混合材料の層やこれらの多重層でもよい。消衰係数は0または0に近いことが好ましい。 As the material of the upper protective layer in place of ZnS—SiO 2 , Si—N materials, Si—O—N materials, ZnS, SiO 2 , SiO, TiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 are used. , La 2 O 3 , In 2 O 3 , GeO, GeO 2 , PbO, SnO, SnO 2 , BeO, Bi 2 O 3 , TeO 2 , WO 2 , WO 3 , Sc 2 O 3 , Ta 2 O 5 , ZrO 2 , oxides such as Cu 2 O, MgO, nitrides such as TaN, AlN, BN, Si 3 N 4 , GeN, and Al—Si—N-based materials (eg, AlSiN 2 ), ZnS, Sb 2 S 3 , CdS , in 2 S 3, Ga 2 S 3, GeS, SnS 2, PbS, sulfides such as Bi 2 S 3, SnSe 2, Sb 2 Se 3, CdSe, ZnSe, in 2 Se 3, Ga 2 Se 3, G Se, GeSe 2, SnSe, PbSe, selenides, such as Bi 2 Se 3, CeF 3, MgF 2, fluorides such as CaF 2, or Si, Ge, TiB 2, B 4 C, B, C or above, A composition close to the material may be used. Further, a layer of a mixed material such as ZnS—SiO 2 or ZnS—Al 2 O 3 or a multilayer thereof may be used. The extinction coefficient is preferably 0 or close to 0.

これら化合物における元素比は、例えば酸化物あるいは硫化物における金属元素と酸素元素あるいは硫黄元素の比は、Al,Y,Laは2:3、SiO,ZrO,GeOは1:2、Taは2:5、ZnSは1:1という比をとるかその比に近いことが好ましいが、その比から外れていても同様の効果は得られる。上記整数比から外れている場合、例えばAl−OはAlとOの比率がAlからAl量で±10原子%以下、Si−OはSiとOの比率がSiOからSi量で±10原子%以下等、金属元素量のずれが10原子%以下が好ましい。10原子%以上ずれると、光学特性が変化するため、変調度が10%以上低下した。 These elemental ratio in the compound, for example the ratio of the metal element and oxygen element and sulfur element in oxide or sulfide, Al 2 O 3, Y 2 O 3, La 2 O 3 is 2: 3, SiO 2, ZrO 2 , GeO 2 is preferably 1: 2, Ta 2 O 5 is 2: 5, and ZnS is 1: 1 or close to the ratio, but the same effect can be obtained even if the ratio is out of the ratio. In the case of deviation from the above integer ratio, for example, Al—O has a ratio of Al to O of Al 2 O 3 to Al amount of ± 10 atomic% or less, and Si—O has a ratio of Si to O of SiO 2 to Si amount. The deviation of the amount of metal elements such as ± 10 atomic% or less is preferably 10 atomic% or less. When the deviation was 10 atomic% or more, the optical characteristics were changed, so that the degree of modulation decreased by 10% or more.

上記材料は、上部保護層全原子数の90%以上であることが好ましい。上記材料以外の不純物が10原子%以上になると、書き換え可能回数が1/2以下になる等、書き換え特性の劣化が見られた。   The material is preferably 90% or more of the total number of atoms in the upper protective layer. When impurities other than the above materials were 10 atomic% or more, the rewriting characteristics were deteriorated such that the number of possible rewritings was ½ or less.

上部保護層を2層以上にし、記録膜側の上部保護層材料をCrにすると、多数回書き換え時に記録膜へZn,Sの拡散を抑制でき、書き換え特性が良好になることがわかった。 It can be seen that if the upper protective layer is made of two or more layers and the upper protective layer material on the recording film side is Cr 2 O 3 , the diffusion of Zn and S to the recording film can be suppressed at the time of rewriting many times, and the rewriting characteristics are improved. It was.

さらにその一部をAl,またはSiOに変えるとコントラストが大きく出来て好ましいことがわかった。 Furthermore, it was found that it is preferable to change a part of the material to Al 2 O 3 or SiO 2 because the contrast can be increased.

上部保護層と記載したものは、L0上部保護層、L1上部保護層、さらに多層情報記録媒体の上部保護層を意味する。   The term “upper protective layer” means the L0 upper protective layer, the L1 upper protective layer, and the upper protective layer of the multilayer information recording medium.

(反射層)
本実施例では反射層11にAg98PdCu膜を用いた。他の反射層の材料としては、Ag−Pt,Ag−Au等、Ag合金を主成分とするものが好ましい。Agも使用可能である。Ag合金中のAg以外の元素の含有量を0.5原子%以上4原子%以下の範囲にすると、多数回書き換え時の特性およびビットエラーレートが良好になり、1原子%以上2原子%以下の範囲ではより良好になることがわかった。
(Reflective layer)
In this example, an Ag 98 Pd 1 Cu 1 film was used for the reflective layer 11. As the material of the other reflective layer, a material mainly composed of an Ag alloy such as Ag—Pt, Ag—Au or the like is preferable. Ag can also be used. When the content of elements other than Ag in the Ag alloy is in the range of 0.5 atomic% to 4 atomic%, the characteristics and bit error rate at the time of rewriting many times are improved, and 1 atomic% to 2 atomic%. It was found that the range was better.

また、Zn98Pd膜、Zn98Pt膜、Zn98Cu膜、Zn98Ni膜、Zn−Pd膜、Zn−Pt膜、Zn−Cu膜、Zn−Ni膜は、Ag系材料に比べコストが安いという利点がある。Znも使用可能である。Zn合金中のZn以外の元素の含有量は0.5原子%以上4原子%以下の範囲にすると、多数回書き換え時の特性およびビットエラーレートが良好になり、1原子%以上2原子%以下の範囲ではより良好になることがわかった。 In addition, a Zn 98 Pd 2 film, a Zn 98 Pt 2 film, a Zn 98 Cu 2 film, a Zn 98 Ni 2 film, a Zn—Pd film, a Zn—Pt film, a Zn—Cu film, and a Zn—Ni film are made of an Ag-based material. There is an advantage that the cost is lower than that. Zn can also be used. When the content of elements other than Zn in the Zn alloy is in the range of 0.5 atomic% to 4 atomic%, the characteristics and bit error rate at the time of rewriting many times are improved, and 1 atomic% to 2 atomic%. It was found that the range was better.

次いで、Au,Al,Cu,Ni,Fe,Co,Cr,Ti,Pd,Pt,W,Ta,Mo,Sb,Bi,Dy,Cd,Mn,Mg,Vの元素単体、またはAu合金、上記以外のAg合金、Cu合金、Pd合金、Pt合金などこれらを主成分とする合金、あるいはこれら同志の合金よりなる層を用いてもよい。このように、反射層は、金属元素、半金属元素、これらの合金、混合物からなる。   Then, Au, Al, Cu, Ni, Fe, Co, Cr, Ti, Pd, Pt, W, Ta, Mo, Sb, Bi, Dy, Cd, Mn, Mg, V element simple substance, or Au alloy, Other than these alloys, such as an Ag alloy, a Cu alloy, a Pd alloy, a Pt alloy, or the like, or a layer made of these alloys may be used. As described above, the reflective layer is made of a metal element, a metalloid element, an alloy thereof, or a mixture thereof.

この中で、Ag,Al,Al合金、Ag合金、等のように、反射率が大きいものは、コントラスト比が大きくなり書き換え特性が良好である。単体より合金の方が接着力が大きくなる。この場合の主成分となるAl,Ag等以外の元素の含有量はAg合金同様に、0.5原子%以上5原子%以下の範囲にすると、コントラスト比が大きく、また接着力も大きくでき良好であった。1原子%以上2原子%以下の範囲ではより良くなった。波長400nm付近における反射率を比較するとAgまたはAg合金は約95%、Al,Al合金は約92%と、Ag系の方が大きいが、材料コストも大きい。これらに次ぐ材料としては、Zn,Zn合金が約89%、Pt,Pt合金が約65%と短波長における反射率が大きく、コントラストを大きく出来た。   Among these, those having a high reflectance such as Ag, Al, Al alloy, Ag alloy, etc. have a high contrast ratio and good rewriting characteristics. The adhesive strength of the alloy is greater than that of the simple substance. In this case, if the content of elements other than Al, Ag, etc. as the main component is in the range of 0.5 atomic% or more and 5 atomic% or less, as in the case of the Ag alloy, the contrast ratio is large and the adhesive force can be increased. there were. It became better in the range of 1 atomic% to 2 atomic%. When the reflectance near a wavelength of 400 nm is compared, Ag or Ag alloy is about 95% and Al and Al alloy are about 92%, which is larger in the Ag system, but the material cost is also high. As materials next to these, Zn and Zn alloys were about 89%, and Pt and Pt alloys were about 65%, showing high reflectivity at short wavelengths and high contrast.

上記材料は、反射層全原子数の95%以上であることが好ましい。上記材料以外の不純物が5原子%以上になると、書き換え可能回数が1/2以下になる等、書き換え特性の劣化が見られた。   The material is preferably 95% or more of the total number of atoms in the reflective layer. When impurities other than the above materials were 5 atomic% or more, the rewriting characteristics were deteriorated such that the number of rewritable times was ½ or less.

反射層膜厚が20nmより薄い場合、強度が弱く、熱拡散が小さく記録膜流動が起きやすいため、1万回書き換え後のジッターが15%より大きくなる。30nmでは15%まで低下できる。また、反射層膜厚が200nmより厚い場合、それぞれの反射層を作製する時間が長くなり、2工程以上に分ける、またはスパッタリング用の真空室を2室以上設ける等、形成時間が倍増した。また、反射層の膜厚が5nm以下だと島状に成膜され、ノイズが大きくなった。これより、反射層の膜厚はノイズ及びジッター、形成時間より、5nm以上、200nm以下が好ましい。   When the thickness of the reflective layer is less than 20 nm, the strength is weak, the thermal diffusion is small, and the recording film flows easily, so that the jitter after 10,000 rewrites is greater than 15%. It can be reduced to 15% at 30 nm. Further, when the thickness of the reflective layer was greater than 200 nm, the time for producing each reflective layer was increased, and the formation time was doubled by dividing the process into two or more steps or providing two or more vacuum chambers for sputtering. Further, when the thickness of the reflective layer was 5 nm or less, the film was formed in an island shape, and noise increased. Accordingly, the thickness of the reflective layer is preferably 5 nm or more and 200 nm or less from the viewpoint of noise, jitter, and formation time.

(基板)
本実施例では、表面に直接、トラッキング用の溝を有するポリカーボネート基板1を用いているが、それに代えてポリオレフィン、エポキシ、アクリル樹脂、紫外線硬化樹脂層を表面に形成した化学強化ガラスなどを用いてもよい。強化ガラスの代わりに石英やCaFを用いてもよい。
(substrate)
In this embodiment, the polycarbonate substrate 1 having a tracking groove directly on the surface is used. Instead, a polyolefin, epoxy, acrylic resin, chemically tempered glass having an ultraviolet curable resin layer formed on the surface, or the like is used. Also good. Quartz or CaF may be used instead of tempered glass.

また、トラッキング用の溝を有する基板とは、基板表面全てまたは一部に、記録・再生波長をλとしたとき、λ/12n′(n′は基板材料の屈折率)以上の深さの溝を持つ基板である。溝は一周で連続的に形成されていても、途中分割されていてもよい。溝深さが約λ/6n′の時、クロストークが小さくなり好ましいことが分かった。さらに溝深さが約λ/3n′より深い時、基板形成時の歩留まりは悪くなるが、クロスイレースが小さくなり好ましいことが分かった。   A substrate having a tracking groove is a groove having a depth greater than or equal to λ / 12n ′ (n ′ is the refractive index of the substrate material) when the recording / reproducing wavelength is λ on all or part of the substrate surface. It is a substrate with The groove may be formed continuously in one round or may be divided in the middle. It has been found that when the groove depth is about λ / 6n ′, the crosstalk becomes small. Further, it has been found that when the groove depth is deeper than about λ / 3n ′, the yield at the time of forming the substrate is deteriorated, but the cross erase becomes small, which is preferable.

また、その溝幅は場所により異なっていてもよい。溝部の存在しない、サンプルサーボフォーマットの基板、他のトラッキング方式、その他のフォーマットによる基板等でも良い。溝部とランド部の両方に記録・再生が行えるフォーマットを有する基板でも、どちらか一方に記録を行うフォーマットの基板でも良い。トラックピッチの大きさが小さいと隣のトラックからの信号の漏れが検出されノイズとなるため、トラックピッチはスポット径(光強度が1/e2となる領域)の1/2以上であることが好ましい。   Further, the groove width may vary depending on the location. A substrate with a sample servo format without any groove, another tracking method, a substrate with another format, or the like may be used. A substrate having a format capable of recording / reproducing in both the groove portion and the land portion may be used, or a substrate having a format in which recording is performed on one of them may be used. If the track pitch is small, signal leakage from the adjacent track is detected and becomes noise. Therefore, the track pitch is preferably at least 1/2 of the spot diameter (region where the light intensity is 1 / e 2). .

ディスクサイズも直径12cmに限らず、13cm、8cm、3.5インチ、2.5インチ等、他のサイズでも良い。ディスク厚さも0.6mmに限らず、1.2mm、0.8mm、0.4mm、0.1mm等、他の厚さでも良い。   The disk size is not limited to a diameter of 12 cm, but may be other sizes such as 13 cm, 8 cm, 3.5 inches, 2.5 inches, and the like. The disc thickness is not limited to 0.6 mm, but may be other thicknesses such as 1.2 mm, 0.8 mm, 0.4 mm, and 0.1 mm.

本実施例では、スペーサ層を介して貼り合わせているが、第2のディスク部材の代わりに別の構成のディスク部材、または保護用の基板などを用いてもよい。貼り合わせに用いるディスク部材または保護用の基板の図5のように保護基板側から形成して、最後に光入射側の基板1を形成するか、貼り合わせしてもよい。またこうして作製した2まいのディスクを貼り合わせて両面ディスクとしてもよい。紫外線波長領域における透過率が大きい場合、紫外線硬化樹脂によって貼り合わせを行うこともできる。その他の方法で貼り合わせを行ってもよい。また、第1および第2のディスク部材を貼り合わせる前に第1および第2のディスク部材の最上層上に紫外線硬化樹脂を厚さ約10μm塗布し、硬化後に貼り合わせを行うと、エラーレートをより低減できる。   In this embodiment, the spacer layers are used for bonding, but a disk member having a different configuration or a protective substrate may be used instead of the second disk member. The disk member or the protective substrate used for bonding may be formed from the protective substrate side as shown in FIG. 5 and finally the light incident side substrate 1 may be formed or bonded. Alternatively, the two disks produced in this way may be bonded to form a double-sided disk. When the transmittance in the ultraviolet wavelength region is large, the bonding can also be performed with an ultraviolet curable resin. Bonding may be performed by other methods. In addition, when an ultraviolet curable resin is applied to the uppermost layer of the first and second disk members to a thickness of about 10 μm before the first and second disk members are bonded together, It can be reduced more.

(各層の膜厚、材料)
各層の膜厚、材料についてはそれぞれ単独の好ましい範囲をとるだけでも記録・再生特性等が向上するが、それぞれの好ましい範囲を組み合わせることにより、さらに効果が上がる。
(Film thickness and material of each layer)
The recording / reproduction characteristics and the like of the thickness and material of each layer can be improved only by taking a single preferred range, but the effect is further enhanced by combining the preferred ranges.

(情報記録媒体の構成、製法)
図1の模式図に示した断面構造を有し、膜厚のみを相違させ、他は全て同じ条件とした情報記録媒体を製作した。この媒体は次のようにして製作した。まず、直径12cm、厚さ0.6mmで表面にトラッキング用の溝を有するポリカーボネイト基板1上に、膜厚約30nmの(ZnS)80(SiO20膜と膜厚約4nmのAl4057膜と膜厚約1nmのCr4057膜からなるL0下部保護層2、膜厚約6nmのGeSbTeからなるL0記録膜3、膜厚約1nmのCr膜と膜厚約4nmのAl膜と膜厚約125nmの(ZnS)80(SiO20膜からなるL0上部保護層4、膜厚約35nmの(Al)膜よりなるL0透明反射層5、膜厚約50nmの(ZnS)80(SiO20膜からなるL0最上部保護層6を順次形成した。積層膜の形成はマグネトロン・スパッタリング装置により行った。こうして第1のディスク部材を得た。
(Configuration and production method of information recording medium)
An information recording medium having the cross-sectional structure shown in the schematic diagram of FIG. This medium was manufactured as follows. First, on a polycarbonate substrate 1 having a diameter of 12 cm and a thickness of 0.6 mm and having a tracking groove on the surface, a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 30 nm and an Al 40 O 57 film having a thickness of about 4 nm. L0 lower protective layer 2 made of N 3 film and Cr 40 O 57 N 3 film having a thickness of about 1 nm, L0 recording film 3 made of Ge 5 Sb 2 Te 8 having a thickness of about 6 nm, Cr 2 O having a thickness of about 1 nm From the L0 upper protective layer 4 composed of three films, an Al 2 O 3 film with a film thickness of about 4 nm and a (ZnS) 80 (SiO 2 ) 20 film with a film thickness of about 125 nm, from an (Al 2 O 3 ) film with a film thickness of about 35 nm The L0 transparent reflective layer 5 and the L0 uppermost protective layer 6 made of (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 50 nm were sequentially formed. The laminated film was formed by a magnetron sputtering apparatus. A first disk member was thus obtained.

他方、同様のスパッタリング方法により、第1のディスク部材と異なる構成を持つ第2のディスク部材を得た。第2のディスク部材は、ポリカーボネイト保護基板12上に、膜厚約80nmのAg98PdCu膜からなるL1反射層11上に膜厚約120nmの(ZnS)80(SiO20膜と膜厚約5nmのCrからなるL1上部保護層10、膜厚約10nmのGeSbTeからなるL1記録膜9、膜厚約5nmのCr4057膜と膜厚約95nmの(ZnS)80(SiO20膜からなるL1下部保護層8を順次形成したものである。 On the other hand, a second disk member having a configuration different from that of the first disk member was obtained by the same sputtering method. The second disk member has a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 120 nm on the L1 reflective layer 11 made of an Ag 98 Pd 1 Cu 1 film having a thickness of about 80 nm on the polycarbonate protective substrate 12. L1 upper protective layer 10 made of Cr 2 O 3 with a thickness of about 5 nm, L1 recording film 9 made of Ge 5 Sb 2 Te 8 with a thickness of about 10 nm, Cr 40 O 57 N 3 film with a thickness of about 5 nm and a thickness The L1 lower protective layer 8 made of (ZnS) 80 (SiO 2 ) 20 film of about 95 nm is sequentially formed.

その後、前記第1のディスク部材と第2のディスク部材をそれぞれのL0最上部保護層6とL1下部保護層8をスペーサ層7を介して貼り合わせ、図1に示す2層情報記録媒体(ディスクA)を得た。   Thereafter, the first disk member and the second disk member are bonded to the L0 uppermost protective layer 6 and the L1 lower protective layer 8 via the spacer layer 7, respectively, and the two-layer information recording medium (disk) shown in FIG. A) was obtained.

各情報面は光入射側の構成膜(L0下部保護層2からL0最上部保護層6まで)をL0、光から遠い方の構成膜(L1下部保護層8からL1反射層11まで)をL1とした。   For each information surface, L0 is a constituent film on the light incident side (from the L0 lower protective layer 2 to the L0 uppermost protective layer 6), and L1 is a constituent film far from the light (from the L1 lower protective layer 8 to the L1 reflective layer 11). It was.

これより、L1ディスクの反射率は、結晶状態の反射率が非晶質状態の反射率より低くなった。また下部保護層、記録膜、上部保護層の膜厚を変えると記録膜の吸収率比Ac/Aa(Acは結晶状態の記録膜における吸収、Aaは非晶質状態の記録膜における吸収)を1.3倍に大きく出来実施例1に記載の多層情報記録媒体のL1に比べ、本実施例のL1はオーバーライト時のジッターを5%以上小さくできることがわかった。   As a result, the reflectivity of the L1 disk was lower in the crystal state than in the amorphous state. Further, when the film thickness of the lower protective layer, the recording film, and the upper protective layer is changed, the absorption ratio of the recording film Ac / Aa (Ac is absorption in the recording film in the crystalline state, and Aa is absorption in the recording film in the amorphous state). Compared with L1 of the multilayer information recording medium described in Example 1, it was found that L1 of this example can reduce the jitter at the time of overwriting by 5% or more.

L1下部保護層8膜厚の好ましい範囲は70nm〜140nm,より好ましい範囲は80nm〜130nmである。L1上部保護層10膜厚の好ましい範囲は95nm〜155nm,より好ましい範囲は105nm〜145nmである。L1記録膜9膜厚の好ましい範囲は実施例1に記載の通りである。   A preferable range of the L1 lower protective layer 8 film thickness is 70 nm to 140 nm, and a more preferable range is 80 nm to 130 nm. A preferable range of the L1 upper protective layer 10 film thickness is 95 nm to 155 nm, and a more preferable range is 105 nm to 145 nm. The preferred range of the L1 recording film 9 film thickness is as described in Example 1.

(本発明の情報記録媒体の構成、製法)
図4は、本発明の多層ディスク状情報記録媒体の断面構造を示す模式図である。2層以上の媒体はこのようにして製作した。一例として3層媒体を示す。
(Configuration and production method of information recording medium of the present invention)
FIG. 4 is a schematic diagram showing a cross-sectional structure of the multilayer disc-shaped information recording medium of the present invention. Two or more layers of media were produced in this way. A three-layer medium is shown as an example.

まず、直径12cm、厚さ0.6mmで表面にトラッキング用の溝を有するポリカーボネイト保護基板30上に、膜厚約80nmのAg98PdCu膜からなるL2反射層29上に膜厚約80nmの(ZnS)80(SiO20膜と膜厚約5nmのCrからなるL2上部保護層28、膜厚約18nmのGeSbTeからなるL2記録膜27、膜厚約5nmのCr4057膜と膜厚約80nmの(ZnS)80(SiO20膜からなるL2下部保護層26を順次形成したものである。 First, on a polycarbonate protective substrate 30 having a diameter of 12 cm and a thickness of 0.6 mm and having a tracking groove on the surface, a film thickness of about 80 nm is formed on an L2 reflective layer 29 made of an Ag 98 Pd 1 Cu 1 film having a film thickness of about 80 nm. (ZnS) 80 (SiO 2 ) 20 film, an L2 upper protective layer 28 made of Cr 2 O 3 with a film thickness of about 5 nm, an L2 recording film 27 made of Ge 5 Sb 2 Te 8 with a film thickness of about 18 nm, and a film thickness of about The L2 lower protective layer 26 composed of a 5 nm Cr 40 O 57 N 3 film and an approximately 80 nm thick (ZnS) 80 (SiO 2 ) 20 film is sequentially formed.

その後、紫外線硬化樹脂を用いてトラッキング用の溝をスタンパから転写するフォトポリメリゼーション法(2P法)によって表面にトラッキング用の溝を有するL1−L2間スペーサ層25を形成した。 この上に、L1を形成した。L1−L2間スペーサ層25上に、膜厚約50nmの(ZnS)80(SiO20膜からなるL1最上部保護層24、膜厚約35nmの(Al)膜よりなるL1透明反射層23、膜厚約120nmの(ZnS)80(SiO20膜と膜厚約4nmのAl膜と膜厚約1nmのCr膜からなるL1上部保護層22、膜厚約5nmのGeSbTeからなるL1記録膜21、膜厚約1nmのCr4057膜と膜厚約4nmのAl4057膜と膜厚約125nmの(ZnS)80(SiO20膜からなるL1下部保護層20、を順次形成した。 Thereafter, an L1-L2 spacer layer 25 having a tracking groove on the surface was formed by a photopolymerization method (2P method) in which the tracking groove was transferred from a stamper using an ultraviolet curable resin. On top of this, L1 was formed. On the L1-L2 spacer layer 25, the L1 uppermost protective layer 24 made of a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 50 nm, and the L1 transparent made of an (Al 2 O 3 ) film having a thickness of about 35 nm. Reflective layer 23, L1 upper protective layer 22 made of (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 120 nm, Al 2 O 3 film having a thickness of about 4 nm, and Cr 2 O 3 film having a thickness of about 1 nm, film An L1 recording film 21 made of Ge 5 Sb 2 Te 8 having a thickness of about 5 nm, a Cr 40 O 57 N 3 film having a thickness of about 1 nm, an Al 40 O 57 N 3 film having a thickness of about 4 nm, and a (ZnS) film having a thickness of about 125 nm. ) L1 lower protective layer 20 made of 80 (SiO 2 ) 20 film was sequentially formed.

次に先ほどと同様の2P法によりL0−L1間スペーサ層19を形成した。   Next, an L0-L1 spacer layer 19 was formed by the same 2P method as before.

L0−L1間スペーサ層19上に膜厚約50nmの(ZnS)80(SiO20膜からなるL0最上部保護層18、膜厚約35nmの(Al)膜よりなるL0透明反射層17、膜厚約120nmの(ZnS)80(SiO20膜と膜厚約4nmのAl膜と膜厚約1nmのCr膜からなるL0上部保護層16、膜厚約4nmのGeSbTeからなるL0記録膜3、膜厚約1nmのCr4057膜と膜厚約4nmのAl4057膜と膜厚約125nmの(ZnS)80(SiO20膜からなるL0下部保護層15、膜厚約25nmの(ZnS)80(SiO20膜からなるL0最上部保護層14を順次形成した。最後に基板13を貼り併せた。積層膜の形成はマグネトロン・スパッタリング装置により行った。こうして多層ディスク部材を得た。初期化及び、記録・再生方法は実施例1と同様である。このように、片側3層以上にして記録・再生することが可能である。 On the L0-L1 spacer layer 19, the L0 uppermost protective layer 18 made of (ZnS) 80 (SiO 2 ) 20 film having a film thickness of about 50 nm, and the L0 transparent reflection made of (Al 2 O 3 ) film having a film thickness of about 35 nm. Layer 17, L0 upper protective layer 16 composed of (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 120 nm, Al 2 O 3 film having a thickness of about 4 nm, and Cr 2 O 3 film having a thickness of about 1 nm, film thickness An L0 recording film 3 made of Ge 5 Sb 2 Te 8 having a thickness of about 4 nm, a Cr 40 O 57 N 3 film having a thickness of about 1 nm, an Al 40 O 57 N 3 film having a thickness of about 4 nm, and a (ZnS) film having a thickness of about 125 nm. 80 (SiO 2) 20 composed of a film L0 lower protective layer 15, the film thickness of about 25nm (ZnS) 80 (SiO 2 ) were sequentially formed L0 uppermost protective layer 14 made of 20 film. Finally, the substrate 13 was attached. The laminated film was formed by a magnetron sputtering apparatus. A multilayer disk member was thus obtained. Initialization and recording / reproducing methods are the same as those in the first embodiment. In this way, recording / reproduction can be performed with three or more layers on one side.

(情報記録媒体の構成、製法)
実施例1の情報記録媒体の基板1の板厚0.575〜0.596mmの範囲で板厚のみ変えた多層情報記録媒体を作製した。(ディスクE1〜E8)
(基板板厚依存性)
本実施例の情報記録媒体(ディスクE1〜E8)の各レイヤーに3Twの記録信号を記録し、S/N比(シグナル対ノイズ比)を測定した。この結果を表4に示す。

Figure 2006066071
(Configuration and production method of information recording medium)
A multilayer information recording medium was produced in which only the thickness of the substrate 1 of the information recording medium of Example 1 was changed in the range of 0.575 to 0.596 mm. (Disc E1-E8)
(Substrate thickness dependency)
A recording signal of 3 Tw was recorded on each layer of the information recording media (discs E1 to E8) of this example, and the S / N ratio (signal to noise ratio) was measured. The results are shown in Table 4.
Figure 2006066071

このように、基板の板厚が厚すぎるとフォーカスがずれるためL1のS/Nが下がり、板厚が薄すぎるとフォーカスがずれL0のS/Nが下がる。したがって、NA0.65の光学系で記録・再生した場合、エラーせずに信号が再生できるため多層情報記録媒体の基板厚は0.578mm以上0.592以下が好ましいことがわかった。さらに環境温度の変動にも適用できるレベルで再生できることから、基板厚さが0.58mm以上0.59mm以下がより好ましい。また、レーザ波長が660nmより短いため、板厚許容量が小さくなっている。従って、最大厚さと最小厚さの差が0.014mm以下であることが好ましく、0.01mm以下であることがより好ましい。   As described above, when the substrate thickness is too thick, the focus is shifted, so the S / N of L1 is lowered, and when the plate thickness is too thin, the focus is shifted and the S / N of L0 is lowered. Therefore, it was found that the substrate thickness of the multilayer information recording medium is preferably 0.578 mm or more and 0.592 or less because a signal can be reproduced without error when recording / reproducing with an optical system of NA 0.65. Furthermore, since it can reproduce | regenerate at the level applicable also to the fluctuation | variation of environmental temperature, the board | substrate thickness is 0.58 mm or more and 0.59 mm or less more preferable. Moreover, since the laser wavelength is shorter than 660 nm, the plate thickness tolerance is small. Accordingly, the difference between the maximum thickness and the minimum thickness is preferably 0.014 mm or less, and more preferably 0.01 mm or less.

本実施例に記載されていない事項については、実施例1〜3、実施例5と同様である。   Matters not described in the present embodiment are the same as those in the first to third embodiments and the fifth embodiment.

(情報記録媒体の構成、製法)
実施例1の情報記録媒体のスペーサ層7の厚さを10〜31μmの範囲でスペーサ層厚のみ変えた多層情報記録媒体を作製した。(ディスクF1〜F8)
(基板板厚依存性)
本実施例の情報記録媒体(ディスクF1〜F8)の各レイヤーに3Twの記録信号を記録し、S/N比(シグナル対ノイズ比)を測定した。この結果を表5に示す。

Figure 2006066071
(Configuration and production method of information recording medium)
A multilayer information recording medium in which the thickness of the spacer layer 7 of the information recording medium of Example 1 was changed in the range of 10 to 31 μm was produced. (Disc F1-F8)
(Substrate thickness dependency)
A recording signal of 3 Tw was recorded on each layer of the information recording media (discs F1 to F8) of this example, and the S / N ratio (signal to noise ratio) was measured. The results are shown in Table 5.
Figure 2006066071

このように、スペーサ層厚が厚すぎるとフォーカスがずれるためL1のS/Nが下がり、スペーサ層厚が薄すぎるとフォーカスがずれL0のS/Nが下がる。したがって、NA0.65の光学系で記録・再生した場合、エラーせずに信号が再生できるため多層情報記録媒体のスペーサ層厚は13μm以上27μm以下が好ましいことがわかった。さらに環境温度の変動にも適用できるレベルで再生できることから、スペーサ層厚は15μm以上25μm以下がより好ましい。また、レーザ波長が660nmより短いため、スペーサ層厚許容量が小さくなっている。従って、最大厚さと最小厚さの差が14μm以下であることが好ましく、10μm以下であることがより好ましい。   As described above, when the spacer layer thickness is too thick, the focus is shifted, so that the S / N ratio of L1 is lowered. When the spacer layer thickness is too thin, the focus is shifted and the S / N ratio of L0 is lowered. Therefore, it was found that the spacer layer thickness of the multilayer information recording medium is preferably 13 μm or more and 27 μm or less because a signal can be reproduced without error when recording / reproducing with an optical system of NA 0.65. Furthermore, the spacer layer thickness is more preferably 15 μm or more and 25 μm or less because it can be regenerated at a level applicable to fluctuations in environmental temperature. Also, since the laser wavelength is shorter than 660 nm, the allowable spacer layer thickness is small. Therefore, the difference between the maximum thickness and the minimum thickness is preferably 14 μm or less, and more preferably 10 μm or less.

本実施例に記載されていない事項については、実施例1〜4と同様である。   Matters not described in the present embodiment are the same as those in the first to fourth embodiments.

(情報記録媒体の構成、製法)
実施例1の情報記録媒体の基板1の板厚を0.094mm、スペーサ層7の厚さを9μmに変えた多層情報記録媒体を作製した。本媒体の作製方法は、実施例3に記載したように保護基板側からL1膜を積層し、次にスペーサ層を2P法にて作製した後、L0膜を積層、基板1を形成した。基板1の形成方法は、スピンコート、2P法のいずれか1つ、これらの組み合わせ、また別の方法でもよい。板厚が実施例7の範囲にあることと好ましい。板厚がずれた場合はS/Nが悪くなるが、記録・再生は可能であった。
(Configuration and production method of information recording medium)
A multilayer information recording medium in which the thickness of the substrate 1 of the information recording medium of Example 1 was changed to 0.094 mm and the thickness of the spacer layer 7 was changed to 9 μm was produced. In this method of manufacturing the medium, as described in Example 3, the L1 film was stacked from the protective substrate side, the spacer layer was then formed by the 2P method, and then the L0 film was stacked to form the substrate 1. The substrate 1 may be formed by any one of spin coating and 2P methods, a combination thereof, or another method. The plate thickness is preferably in the range of Example 7. When the plate thickness is shifted, the S / N is deteriorated, but recording / reproducing is possible.

本実施例に記載されていない事項については、実施例1〜3、7〜8と同様である。   About the matter which is not described in a present Example, it is the same as that of Examples 1-3, 7-8.

(情報記録媒体の構成、製法)
実施例1の情報記録媒体の基板1の板厚を0.091〜0.097mmの範囲で板厚のみ変えた多層情報記録媒体を作製した。(ディスクH1〜H8)
(基板板厚依存性)
本実施例の情報記録媒体(ディスクH1〜H8)の各レイヤーに3Twの記録信号を記録し、S/N比(シグナル対ノイズ比)を測定した。この結果を表6に示す。

Figure 2006066071
(Configuration and production method of information recording medium)
A multilayer information recording medium was produced in which only the thickness of the substrate 1 of the information recording medium of Example 1 was changed in the range of 0.091 to 0.097 mm. (Disks H1-H8)
(Substrate thickness dependency)
A recording signal of 3 Tw was recorded on each layer of the information recording medium (discs H1 to H8) of this example, and the S / N ratio (signal to noise ratio) was measured. The results are shown in Table 6.
Figure 2006066071

このように、基板の板厚が厚すぎるとフォーカスがずれるためL1のS/Nが下がり、板厚が薄すぎるとフォーカスがずれL0のS/Nが下がる。したがって、NA0.85の光学系で記録・再生した場合、エラーせずに信号が再生できるため多層情報記録媒体の基板厚は0.091mm以上0.097mm以下が好ましいことがわかった。さらに環境温度の変動にも適用できるレベルで再生できることから、基板厚さが0.092mm以上0.096mm以下がより好ましい。また、レーザ波長が660nmより短いため、板厚許容量が小さくなっている。従って、最大厚さと最小厚さの差が0.006mm以下であることが好ましく、0.004mm以下であることがより好ましい。   As described above, when the substrate thickness is too thick, the focus is shifted, so the S / N of L1 is lowered, and when the plate thickness is too thin, the focus is shifted and the S / N of L0 is lowered. Therefore, it was found that the substrate thickness of the multilayer information recording medium is preferably 0.091 mm or more and 0.097 mm or less because a signal can be reproduced without error when recording / reproducing with an optical system of NA 0.85. Furthermore, since it can reproduce | regenerate at the level applicable also to the fluctuation | variation of environmental temperature, 0.092 mm or more and 0.096 mm or less are more preferable. Moreover, since the laser wavelength is shorter than 660 nm, the plate thickness tolerance is small. Therefore, the difference between the maximum thickness and the minimum thickness is preferably 0.006 mm or less, and more preferably 0.004 mm or less.

本実施例に記載されていない事項については、実施例1〜3、実施例6、8と同様である。   Matters not described in the present embodiment are the same as those in the first to third embodiments and the sixth and eighth embodiments.

(情報記録媒体の構成、製法)
実施例6の情報記録媒体のスペーサ層7の厚さを7〜13μmの範囲でスペーサ層厚のみ変えた多層情報記録媒体を作製した。(ディスクJ1〜J8)
(基板板厚依存性)本実施例の情報記録媒体(ディスクJ1〜J8)の各レイヤーに3Twの記録信号を記録し、S/N比(シグナル対ノイズ比)を測定した。この結果を表7に示す。

Figure 2006066071
(Configuration and production method of information recording medium)
A multilayer information recording medium in which the thickness of the spacer layer 7 of the information recording medium of Example 6 was changed in the range of 7 to 13 μm was produced. (Disks J1-J8)
(Substrate plate thickness dependency) A recording signal of 3 Tw was recorded on each layer of the information recording medium (discs J1 to J8) of this example, and the S / N ratio (signal to noise ratio) was measured. The results are shown in Table 7.
Figure 2006066071

このように、スペーサ層厚が厚すぎるとフォーカスがずれるためL1のS/Nが下がり、スペーサ層厚が薄すぎるとフォーカスがずれL0のS/Nが下がる。したがって、NA0.85の光学系で記録・再生した場合、エラーせずに信号が再生できるため多層情報記録媒体のスペーサ層厚は7μm以上13μm以下が好ましいことがわかった。さらに環境温度の変動にも適用できるレベルで再生できることから、スペーサ層厚は8μm以上12μm以下がより好ましい。また、レーザ波長が660nmより短いため、スペーサ層厚許容量が小さくなっている。従って、最大厚さと最小厚さの差が6μm以下であることが好ましく、4μm以下であることがより好ましい。   As described above, when the spacer layer thickness is too thick, the focus is shifted, so that the S / N ratio of L1 is lowered. When the spacer layer thickness is too thin, the focus is shifted and the S / N ratio of L0 is lowered. Therefore, it was found that the spacer layer thickness of the multilayer information recording medium is preferably 7 μm or more and 13 μm or less because signals can be reproduced without error when recording / reproducing with an optical system of NA 0.85. Furthermore, the spacer layer thickness is more preferably 8 μm or more and 12 μm or less because it can be reproduced at a level applicable to fluctuations in environmental temperature. Also, since the laser wavelength is shorter than 660 nm, the allowable spacer layer thickness is small. Therefore, the difference between the maximum thickness and the minimum thickness is preferably 6 μm or less, and more preferably 4 μm or less.

本実施例に記載されていない事項については、実施例1〜3、6〜7と同様である。   About the matter which is not described in a present Example, it is the same as that of Examples 1-3 and 6-7.

本発明による情報記録媒体の一例の断面模式図。The cross-sectional schematic diagram of an example of the information recording medium by this invention. 従来構造の情報記録媒体の断面模式図。The cross-sectional schematic diagram of the information recording medium of conventional structure. 本発明の情報記録媒体の記録・再生特性評価に用いた記録波形を示す図。The figure which shows the recording waveform used for the recording and reproducing characteristic evaluation of the information recording medium of this invention. 本発明による情報記録媒体の他の例を示す断面模式図。The cross-sectional schematic diagram which shows the other example of the information recording medium by this invention. 本発明による情報記録媒体の他の例を示す断面模式図。The cross-sectional schematic diagram which shows the other example of the information recording medium by this invention.

符号の説明Explanation of symbols

1,1′ 基板
2,2′ 下部保護層
3,3′ 記録膜
4,4′ 上部保護層
5,5′ 冷却制御層
6,6′ 反射層
7 貼り合わせ樹脂
8,8′ コントラスト拡大層
14 基板
T ウインド幅(Tw)
Pc クーリングパルスパワーレベル
Pe 中間パワーレベル
Ph 高パワーレベル
Pp プリヒートパワーレベル
P1 パワーが0のレベル
Tc クーリングパルス幅
Tp 第1パルス幅
DESCRIPTION OF SYMBOLS 1,1 'board | substrate 2,2' lower protective layer 3,3 'recording film 4,4' upper protective layer 5,5 'cooling control layer 6,6' reflective layer 7 bonding resin 8,8 'contrast expansion layer 14 Substrate T Wind width (Tw)
Pc Cooling pulse power level Pe Intermediate power level Ph High power level Pp Preheat power level P1 Power level 0 Tc Cooling pulse width Tp First pulse width

Claims (7)

基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記基板の厚さが0.578mm以上0.592mm以下であることを特徴とする情報記録媒体。   A light incident side having a substrate, an information surface of an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is an integer of 2 or more), and N-1 spacer layers When the information surface is counted from the information surface, the transmittance of the information surface is in the relationship of information surface 1> information surface 2 ... information surface N-1> information surface N, and the thickness of the substrate is 0. An information recording medium characterized by being 578 mm or more and 0.592 mm or less. 基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記スペーサ層の厚さが13μm以上27μm以下であることを特徴とする情報記録媒体。   A light incident side having a substrate, an information surface of an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is an integer of 2 or more), and N-1 spacer layers When the information surface is counted from the information surface, the transmittance of the information surface is in the relationship of information surface 1> information surface 2... Information surface N-1> information surface N, and the thickness of the spacer layer is 13 μm. An information recording medium having a thickness of 27 μm or less. 基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記基板の厚さが0.578mm以上0.592mm以下で、前記スペーサ層の厚さが13μm以上27μm以下であることを特徴とする情報記録媒体。   A light incident side having a substrate, an information surface of an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is an integer of 2 or more), and N-1 spacer layers When the information surface is counted from the information surface, the transmittance of the information surface is in the relationship of information surface 1> information surface 2 ... information surface N-1> information surface N, and the thickness of the substrate is 0. An information recording medium characterized in that it is 578 mm or more and 0.592 mm or less, and the spacer layer has a thickness of 13 μm or more and 27 μm or less. NA0.65の光学系で記録・再生される情報記録媒体であって、基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記基板の厚さが0.578mm以上0.592mm以下であることを特徴とする情報記録媒体。   An information recording medium that is recorded / reproduced by an optical system with NA of 0.65, and includes an information surface of a substrate and an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is 2 or more) N−1 spacer layers, and when the information surface is counted from the information surface on the light incident side, the transmittance of the information surface is information surface 1> information surface 2... Information surface N− 1> An information recording medium having an information plane N relationship, and the thickness of the substrate being 0.578 mm or more and 0.592 mm or less. NA0.65の光学系で記録・再生される情報記録媒体であって、基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記スペーサ層の厚さが13μm以上27μm以下であることを特徴とする情報記録媒体。   An information recording medium that is recorded / reproduced by an optical system with NA of 0.65, and includes an information surface of a substrate and an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is 2 or more) N−1 spacer layers, and when the information surface is counted from the information surface on the light incident side, the transmittance of the information surface is information surface 1> information surface 2... Information surface N− 1> An information recording medium which has an information plane N relationship, and the spacer layer has a thickness of 13 μm to 27 μm. NA0.65の光学系で記録・再生される情報記録媒体であって、基板と、光の照射によって生じる原子配列変化により情報が記録されるN層の記録膜の情報面と(Nは2以上の整数)、N−1個のスペーサ層とを有し、光入射側の情報面から情報面を数えたとき、前記情報面の透過率が情報面1>情報面2……情報面N−1>情報面Nの関係にあり、かつ前記基板の厚さが0.578mm以上0.592mm以下で、前記スペーサ層の厚さが13μm以上27μm以下であることを特徴とする情報記録媒体。   An information recording medium that is recorded / reproduced by an optical system with NA of 0.65, and includes an information surface of a substrate and an N-layer recording film on which information is recorded by an atomic arrangement change caused by light irradiation (N is 2 or more) N−1 spacer layers, and when the information surface is counted from the information surface on the light incident side, the transmittance of the information surface is information surface 1> information surface 2... Information surface N− 1> An information recording medium having an information plane N relationship, wherein the substrate has a thickness of 0.578 mm to 0.592 mm, and the spacer layer has a thickness of 13 μm to 27 μm. 請求項1から6のいずれか1つに記載の情報記録媒体において、前記記録膜の膜厚が4nm以上25nm以下であることを特徴とする情報記録媒体。   7. The information recording medium according to claim 1, wherein the recording film has a thickness of 4 nm to 25 nm.
JP2005304651A 2005-10-19 2005-10-19 Information recording medium Pending JP2006066071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304651A JP2006066071A (en) 2005-10-19 2005-10-19 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304651A JP2006066071A (en) 2005-10-19 2005-10-19 Information recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000260860A Division JP2002074742A (en) 2000-08-25 2000-08-25 Information recording medium

Publications (1)

Publication Number Publication Date
JP2006066071A true JP2006066071A (en) 2006-03-09

Family

ID=36112400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304651A Pending JP2006066071A (en) 2005-10-19 2005-10-19 Information recording medium

Country Status (1)

Country Link
JP (1) JP2006066071A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052801A (en) * 2006-08-23 2008-03-06 Tdk Corp Multilayer optical recording medium
JP2009020919A (en) * 2006-08-01 2009-01-29 Ricoh Co Ltd Write-once type optical recording medium and recording method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020919A (en) * 2006-08-01 2009-01-29 Ricoh Co Ltd Write-once type optical recording medium and recording method therefor
JP4667427B2 (en) * 2006-08-01 2011-04-13 株式会社リコー Write-once optical recording medium
JP2008052801A (en) * 2006-08-23 2008-03-06 Tdk Corp Multilayer optical recording medium
JP4525647B2 (en) * 2006-08-23 2010-08-18 Tdk株式会社 Multilayer optical recording medium
US8144561B2 (en) 2006-08-23 2012-03-27 Tdk Corporation Multilayer optical recording medium

Similar Documents

Publication Publication Date Title
US7570575B2 (en) Information recording media, a method for recording/reproducing information, an apparatus for recording/reproducing information
US6841217B2 (en) Optical information recording medium and method for manufacturing the same
JP2001209974A (en) Information recording medium
JP4065032B2 (en) Information recording medium
JP2004158145A (en) Optical recording medium
JP2000132864A (en) Information recording medium and information recording device
KR100731472B1 (en) Optical recording and playback method, and optical recording media
KR20030094048A (en) Optical recording and playback method, and optical recording media
JP2002074742A (en) Information recording medium
KR100578008B1 (en) Optical information recording medium and manufacturing method thereof, information recording method using the same, and recording apparatus
JP4251142B2 (en) Write-once optical recording medium
JP4793313B2 (en) Optical information recording medium and recording and / or reproducing method thereof
JP2006066071A (en) Information recording medium
JP2005339761A (en) Optical recording medium
JP2004296056A (en) Optical recording and reproducing method and optical recording medium
WO2016129020A1 (en) Optical recording medium
KR100678300B1 (en) Optical recording and playback method, and optical recording media
JP4542922B2 (en) Optical information recording medium and manufacturing method thereof
JP2002367222A (en) Multilayered information recording medium
JPWO2008129826A1 (en) Information recording medium and manufacturing method thereof
WO2006025162A1 (en) Optical information recording medium and its manufacturing method
JP3912954B2 (en) Information recording medium
JP2004311011A (en) Optical information recording medium, its manufacturing method, and recording method and recording device of information using the medium
JP2003338083A (en) Optical information recording medium and method for manufacturing the same, and method for recording and reproducing the same
JP2004241103A (en) Optical recording medium and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912