JP2002367222A - Multilayered information recording medium - Google Patents

Multilayered information recording medium

Info

Publication number
JP2002367222A
JP2002367222A JP2001173412A JP2001173412A JP2002367222A JP 2002367222 A JP2002367222 A JP 2002367222A JP 2001173412 A JP2001173412 A JP 2001173412A JP 2001173412 A JP2001173412 A JP 2001173412A JP 2002367222 A JP2002367222 A JP 2002367222A
Authority
JP
Japan
Prior art keywords
recording
film
recording film
atomic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001173412A
Other languages
Japanese (ja)
Inventor
Akemi Hirotsune
朱美 廣常
Motoyasu Terao
元康 寺尾
Keikichi Ando
圭吉 安藤
Yumiko Anzai
由美子 安齋
Toshimichi Shintani
俊通 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001173412A priority Critical patent/JP2002367222A/en
Publication of JP2002367222A publication Critical patent/JP2002367222A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Abstract

PROBLEM TO BE SOLVED: To provide a multilayered information recording medium which has good recording and reproducing characteristics when the recording and reproducing are performed by a blue laser. SOLUTION: This multilayered information recording medium has, successively from a light incident side, a substrate 1, first recording film 3, first reflecting layer 5, spacer layer 7, second recording film 9 and second reflecting layer 11. The first recording film 3 and the second recording film 9 contain Sb and the difference in the Sb contents is regulated to >=30 atm.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ディスクに用い
られる情報記録媒体に関し、特に、記録膜を多層有する
多層情報記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an information recording medium used for an optical disk, and more particularly, to a multilayer information recording medium having a plurality of recording films.

【0002】[0002]

【従来の技術】レーザ光を照射して薄膜(記録膜)に情
報を記録する原理は種々知られているが、そのうちで膜
材料の相変化(相転移とも呼ばれる)やフォトダークニ
ングなど、レーザ光の照射による原子配列変化を利用す
るものは、薄膜の変形をほとんど伴わないため、2枚の
ディスク部材を直接貼り合わせて両面ディスク構造情報
記録媒体、または複数の情報面を有する多層構造情報記
録媒体が得られるという長所を持つ。
2. Description of the Related Art There are various known principles for recording information on a thin film (recording film) by irradiating a laser beam. Among them, a laser, such as a phase change (also called phase transition) of a film material and a photodarkening, is used. Since the method using the atomic arrangement change by light irradiation hardly involves deformation of a thin film, two disk members are directly bonded to each other to record information on a double-sided disk structure information recording medium or a multilayer structure information recording having a plurality of information surfaces. It has the advantage of being able to obtain media.

【0003】通常の光ディスクでは、波長が660nm
付近の一般に赤色レーザと言われている光源を用いてい
る。これら情報記録媒体は基板上に下部保護層、GeS
bTe系等の記録膜、ZnS−SiO系上部保護層、
Alなど反射率の大きい反射層を順に積層した構造を有
している。記録容量を上げる方法はいくつかあるが、6
60nm付近の波長より短波長の光源を使用する方法や
多層構造にする方法などが提案されている。ODS/I
SOM‘99予稿集第110頁(文献1)に波長400
nm付近用の2層情報記録媒体が示されている。この媒
体では光入射側に反射層を持たない第1の情報面と光か
ら遠い側にAl合金反射層を持つ第2の情報面を有す
る。しかし、このデータは計算結果のみで記録・再生時
の課題については示されていない。また、同様な波長4
00nm付近用の2層情報記録媒体がPCOS’99講
演予稿集22頁(文献2)に開示されているが、この媒
体も同様に各層の記録・再生時の課題については示され
ていない。なお、波長400nm付近の短波長のレーザ
は一般に、長波長の赤色レーザと対比させて青色、青緑
色、青紫色、緑色レーザなどと呼ばれているが本明細書
中では、まとめて青色レーザと呼ぶ。
In a normal optical disk, the wavelength is 660 nm.
A light source generally called a red laser in the vicinity is used. These information recording media include a lower protective layer, GeS on a substrate.
bTe recording film, ZnS-SiO 2 based upper protective layer, such as a system,
It has a structure in which reflective layers of high reflectivity such as Al are sequentially laminated. There are several ways to increase the recording capacity.
A method using a light source having a shorter wavelength than the wavelength around 60 nm and a method of forming a multilayer structure have been proposed. ODS / I
Wavelength 400 in SOM'99 Proceedings, p. 110 (Reference 1)
A two-layer information recording medium for the vicinity of nm is shown. This medium has a first information surface having no reflective layer on the light incident side and a second information surface having an Al alloy reflective layer on the side far from the light. However, this data is only a calculation result and does not indicate a problem at the time of recording / reproduction. In addition, a similar wavelength 4
A two-layer information recording medium for the vicinity of 00 nm is disclosed in PCOS '99 Lecture Proceedings, p. 22 (Reference 2), but this medium also does not show any problem in recording / reproducing each layer. Note that a short-wavelength laser having a wavelength of about 400 nm is generally called a blue laser, a blue-green laser, a blue-violet laser, a green laser, or the like in comparison with a long-wavelength red laser. Call.

【0004】本明細書では、結晶−非晶質間の相変化ば
かりでなく、融解(液相への変化)と再結晶化、結晶状
態−結晶状態間の相変化も含むものとして「相変化」及
び「原子配列変化」という用語を使用する。また、マー
クエッジ記録とは、記録マークのエッジ部分を信号の
“1”に、マーク間およびマーク内を信号の“0”に対
応させた記録方式のことをいう。本明細書において光デ
ィスクとは、光の照射によって再生できる情報が記載さ
れた円板(ディスク)、及び/または光の照射によって
情報の再生を行う装置をいう。
[0004] In this specification, the term "phase change" includes not only a phase change between a crystal and an amorphous phase, but also melting (change to a liquid phase) and recrystallization, and a phase change between a crystalline state and a crystalline state. And "atomic arrangement changes." Mark edge recording refers to a recording method in which an edge portion of a recording mark is made to correspond to a signal "1", and between and within a mark are made to correspond to a signal "0". In this specification, an optical disk refers to a disk (disk) on which information that can be reproduced by light irradiation is written, and / or an apparatus that reproduces information by light irradiation.

【0005】[0005]

【発明が解決しようとする課題】従来の多層情報記録媒
体はいずれも、青色レーザを用いた高密度の書き換え可
能な相変化型の多層情報記録媒体として用いる場合、記
録・再生時に各層における特性差が大きく、記録時の制
御が困難という問題を有している。
When any of the conventional multilayer information recording media is used as a high-density rewritable phase-change multilayer information recording medium using a blue laser, the characteristic difference in each layer during recording / reproducing. And control during recording is difficult.

【0006】そこで、本発明の目的は、各層における特
性差に合うように、青色レーザで記録・再生を行った場
合のコントラストを改善し、良好な再生特性を持つ多層
情報記録用媒体を提供することにある。
Accordingly, an object of the present invention is to provide a multi-layer information recording medium having improved reproduction characteristics when recording / reproducing with a blue laser so as to match the characteristic difference between the respective layers, and having good reproduction characteristics. It is in.

【0007】[0007]

【課題を解決するための手段】上記目的は、多層記録層
の記録膜にSbを含有させ、それぞれの記録膜のSb含
有率を、30原子%以上異ならせるようにすることによ
って、達成される。特に、光入射側の記録膜のSb含有
率を少なくし、反対側の記録膜のSb含有率を大きくす
ると良い。
The above object can be attained by making the recording films of the multilayer recording layers contain Sb and varying the Sb content of each recording film by 30 atomic% or more. . In particular, it is preferable to reduce the Sb content of the recording film on the light incident side and increase the Sb content of the recording film on the opposite side.

【0008】また、上記目的は、基板側の記録膜のSb
の含有率を、15原子%以上35原子%以下とし、スペ
ース層を挟んで基板とは反対側の記録膜のSbの含有率
を、60原子%以上80原子%以下とすることによって
達成される。なお、基板側の記録膜のSbの含有率を、
好ましくは20原子%以上30%以下とすると良い。更
に、スペース層を挟んで基板とは反対側の記録膜のSb
の含有率を、好ましくは65原子%以上75原子%以下
とすると良い。
Another object of the present invention is to provide the recording film on the substrate side with Sb.
Is achieved by setting the content of Sb to 15 at% or more and 35 at% or less, and setting the Sb content of the recording film opposite to the substrate across the space layer to 60 at% or more and 80 at% or less. . The Sb content of the recording film on the substrate side was
Preferably, the content is 20 atom% or more and 30% or less. Further, Sb of the recording film on the opposite side of the substrate with respect to the space layer
Is preferably set to 65 atomic% or more and 75 atomic% or less.

【0009】高密度化の為に多層記録膜とすると、各膜
の熱特性の違いが生じてしまう。即ち、光入射側の記録
膜側では、反射層が有る程度光を透過させなければなら
ないため、反射層の性質が限定されてしまう。この反射
層は、冷却効果が小さく徐冷してくものである。一方、
スペーサ層を挟んで基板とは反対側の記録膜側では、反
射層(冷却層)は、上記の光入射側の記録膜側の反射層
と異なり、光を透過させる必要はない。そこで、スペー
サ層を挟んで基板とは反対側の記録膜側の反射層では、
冷却効果が優れ、急冷する。そこで、これらの記録膜の
オーバーライト特性が良好な領域を1種類の記録膜で満
たそうとすると、非常にマージンが狭くなってしまう。
しかし、本発明のように、記録膜のSb含有率を異なら
せることで、それぞれの記録膜のオーバーライト特性が
良好な領域を、それぞれ用いることができ、結果とし
て、オーバーライト特性が向上する。
If a multi-layer recording film is used to increase the recording density, the thermal characteristics of each film will differ. That is, on the recording film side on the light incident side, light must be transmitted to some extent by the reflective layer, and the properties of the reflective layer are limited. This reflection layer has a small cooling effect and is gradually cooled. on the other hand,
On the recording film side opposite to the substrate with the spacer layer interposed therebetween, the reflection layer (cooling layer) does not need to transmit light, unlike the reflection layer on the recording film side on the light incident side. Therefore, in the reflective layer on the recording film side opposite to the substrate with the spacer layer interposed,
Excellent cooling effect, rapid cooling. Therefore, if an attempt is made to fill a region of these recording films having good overwrite characteristics with one type of recording film, the margin becomes extremely narrow.
However, by making the Sb content of the recording films different as in the present invention, regions with good overwrite characteristics of each recording film can be used, and as a result, the overwrite characteristics are improved.

【0010】また、Sb含有量が少ない記録膜は、一般
的に化合物系であり、透過率はやや大きい。この記録膜
は、再結晶化は比較的小さく、コントラストがやや小さ
い。そのため、光入射側の記録膜に最適である。一方、
Sb含有量が大きい記録膜は、一般的に共晶系であり、
再結晶化が大きく、かつコントラストが大きい。そのた
め、スペース層に対し基板とは反対側に設けられる記録
膜に最適である。
A recording film having a low Sb content is generally of a compound type and has a somewhat high transmittance. This recording film has a relatively small recrystallization and a relatively small contrast. Therefore, it is optimal for the recording film on the light incident side. on the other hand,
Recording films having a high Sb content are generally eutectic,
High recrystallization and high contrast. Therefore, it is optimal for a recording film provided on the side opposite to the substrate with respect to the space layer.

【0011】[0011]

〔実施例1〕[Example 1]

(本発明の情報記録媒体の構成、製法)図1は、本発明
の第1実施例のディスク状情報記録媒体の断面構造を示
す模式図である。この媒体は次のようにして製作した。
まず、直径12cm、厚さ0.6mmで表面にトラッキ
ング用の溝を有するポリカーボネイト基板1上に、膜厚
約30nmの(ZnS)80(SiO20膜と膜厚
約4nmのAl40 膜と膜厚約1nmのCr
4057膜を積層してなるL0下部保護層2、膜厚
約6nmのGeSbTeL0記録膜3、膜厚約1n
mのCr膜と膜厚約4nmのAl膜と膜厚
約125nmの(ZnS)80(SiO20膜を積
層してなるL0上部保護層4、膜厚約35nmの(Al
)膜よりなるL0透明反射層5、膜厚約50nmの
(ZnS)80(SiO20膜からなるL0最上部保
護層6を順次形成した。積層膜の形成はマグネトロン・
スパッタリング装置により行った。こうして第1のディ
スク部材を得た。
(Configuration and Manufacturing Method of Information Recording Medium of the Present Invention) FIG. 1 is a schematic view showing a cross-sectional structure of a disc-shaped information recording medium according to a first embodiment of the present invention. This medium was manufactured as follows.
First, a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 30 nm and Al 40 O 5 having a thickness of about 4 nm are formed on a polycarbonate substrate 1 having a diameter of 12 cm, a thickness of 0.6 mm and a groove for tracking on the surface. 7 N 3 film and the film thickness of about 1nm of Cr
L0 lower protective layer 2 formed by laminating 40 O 57 N 3 films, Ge 5 Sb 2 Te 8 L0 recording film 3 having a thickness of about 6 nm, and film thickness of about 1 n
The L0 upper protective layer 4 is formed by laminating a Cr 2 O 3 film having a thickness of about m, an Al 2 O 3 film having a thickness of about 4 nm, and a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 125 nm. (Al 2
An L0 transparent reflection layer 5 made of an O 3 ) film and an L0 uppermost protection layer 6 made of a (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 50 nm were sequentially formed. The lamination film is formed by magnetron
This was performed by a sputtering device. Thus, a first disk member was obtained.

【0012】他方、同様のスパッタリング方法により、
第1のディスク部材と異なる構成を持つ第2のディスク
部材を得た。第2のディスク部材は、ポリカーボネイト
保護基板12上に、膜厚約80nmのAg98Pd
膜からなるL1反射層11上に膜厚約80nmの
(ZnS)80(SiO20膜と膜厚約5nmのC
を積層してなるL1上部保護層10、膜厚約1
8nmのGeSbTeL1記録膜9、膜厚約5n
mのCr4057膜と膜厚約80nmの(Zn
S)80(SiO20膜を積層してなるL1下部保
護層8を順次形成したものである。
On the other hand, by the same sputtering method,
A second disk member having a configuration different from that of the first disk member was obtained. The second disk member is made of Ag 98 Pd 1 C having a thickness of about 80 nm on the polycarbonate protective substrate 12.
A (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 80 nm and a C film having a thickness of about 5 nm are formed on the L1 reflection layer 11 made of a u 1 film.
L1 upper protective layer 10 formed by laminating r 2 O 3 , thickness about 1
8 nm Ge 1 Sb 7 Te 2 L1 recording film 9, thickness about 5 n
m Cr 40 O 57 N 3 film and about 80 nm thick (Zn
S) An L1 lower protective layer 8 formed by laminating 80 (SiO 2 ) 20 films in order.

【0013】その後、前記第1のディスク部材と第2の
ディスク部材をそれぞれのL0最上部保護層6とL1下
部保護層8をスペーサ層7を介して貼り合わせ、図1に
示す2層情報記録媒体(ディスクA)を得た。各情報面
は光入射側の構成膜(L0下部保護層2からL0最上部
保護層6まで)をL0、光から遠い方の構成膜(L1下
部保護層8からL1反射層11まで)をL1とした。 (従来型の情報記録媒体の構成、製法)従来型の情報記
録媒体も図1に示されるように基本構成は同様である
が、記録膜組成が異なる。この媒体は次のようにして製
作した。まず、直径12cm、厚さ0.6mmで表面に
トラッキング用の溝を有するポリカーボネイト基板1上
に、膜厚約30nmの(ZnS)80(SiO20
膜と膜厚約4nmのAl 4057膜と膜厚約1n
mのCr4057膜を積層してなるL0下部保護層
2、膜厚約6nmのGeSbTeL0記録膜3、膜
厚約1nmのCr 膜と膜厚約4nmのAl
膜と膜厚約125nmの(ZnS)80(SiO
20膜を積層してなるL0上部保護層4、膜厚約35nm
の(Al )膜よりなるL0透明反射層5、膜厚約5
0nmの(ZnS)80(SiO 20膜からなるL0
最上部保護層6を順次形成した。積層膜の形成はマグネ
トロン・スパッタリング装置により行った。こうして第
1のディスク部材を得た。
Then, the first disk member and the second disk member
Place the disk members under their respective L0 top protective layers 6 and L1
The protective layer 8 is bonded through the spacer layer 7 and is shown in FIG.
The indicated two-layer information recording medium (disc A) was obtained. Each information side
Are the constituent films on the light incident side (from the L0 lower protective layer 2 to the L0 top
L0 for the protective layer 6 and the constituent film farther from the light (below L1).
The portion from the protective layer 8 to the L1 reflection layer 11) was designated as L1. (Configuration and manufacturing method of conventional information recording medium) Conventional information recording
The recording medium has the same basic configuration as shown in FIG.
However, the recording film composition is different. This medium is manufactured as follows.
Made. First, on the surface with a diameter of 12 cm and a thickness of 0.6 mm
On a polycarbonate substrate 1 having a groove for tracking
About 30 nm thick (ZnS)80(SiO2)20
Al with a thickness of about 4 nm 40O57N3Film and film thickness about 1n
m Cr40O57N3L0 lower protective layer made by laminating films
2. Ge with a thickness of about 6 nm5Sb2Te8L0 recording film 3, film
Cr about 1 nm thick 2O3Al with a thickness of about 4 nm2O3
Film and thickness of about 125 nm (ZnS)80(SiO2)
20L0 upper protective layer 4 having a thickness of about 35 nm
(Al2O 3) L0 transparent reflection layer 5 made of film, film thickness about 5
0 nm (ZnS)80(SiO2) 20L0 consisting of membrane
An uppermost protective layer 6 was sequentially formed. The formation of the laminated film is magnetic
This was performed using a tron sputtering apparatus. Thus the
Thus, one disk member was obtained.

【0014】他方、同様のスパッタリング方法により、
第1のディスク部材と異なる構成を持つ第2のディスク
部材を得た。第2のディスク部材は、ポリカーボネイト
保護基板12上に、膜厚約80nmのAg98Pd
膜からなるL1反射層11上に膜厚約80nmの
(ZnS)80(SiO20膜と膜厚約5nmのC
を積層してなるL1上部保護層10、膜厚約1
8nmのGeSbTeL1記録膜9、膜厚約5n
mのCr4057膜と膜厚約80nmの(Zn
S)80(SiO20膜を積層してなるL1下部保
護層8を順次形成したものである。
On the other hand, by the same sputtering method,
A second disk member having a configuration different from that of the first disk member was obtained. The second disk member is made of Ag 98 Pd 1 C having a thickness of about 80 nm on the polycarbonate protective substrate 12.
A (ZnS) 80 (SiO 2 ) 20 film having a thickness of about 80 nm and a C film having a thickness of about 5 nm are formed on the L1 reflection layer 11 made of a u 1 film.
L1 upper protective layer 10 formed by laminating r 2 O 3 , thickness about 1
8 nm Ge 5 Sb 2 Te 8 L1 recording film 9, thickness about 5 n
m Cr 40 O 57 N 3 film and about 80 nm thick (Zn
S) An L1 lower protective layer 8 formed by laminating 80 (SiO 2 ) 20 films in order.

【0015】その後、前記第1のディスク部材と第2の
ディスク部材をそれぞれのL0最上部保護層6とL1下
部保護層8をスペーサ層7を介して貼り合わせ、図1に
示す2層情報記録媒体(ディスクA)を得た。各情報面
は光入射側の構成膜(L0下部保護層2からL0最上部
保護層6まで)をL0、光から遠い方の構成膜(L1下
部保護層8からL1反射層11まで)をL1とした。情
報記録媒体(ディスクB)を得た。 (初期結晶化)前記のようにして製作したディスクAと
ディスクBのL0記録膜3に、次のようにして初期結晶
化を行った。なお、以下ではL0記録膜3、L1記録膜
9についてのみ説明するが、この他の多層媒体の記録膜
についても全く同様である。
Thereafter, the first disk member and the second disk member are bonded to each other via the L0 uppermost protective layer 6 and the L1 lower protective layer 8 via the spacer layer 7, and the two-layer information recording shown in FIG. A medium (disk A) was obtained. In each information surface, the component film on the light incident side (from the L0 lower protective layer 2 to the L0 uppermost protective layer 6) is L0, and the component film farther from the light (from the L1 lower protective layer 8 to the L1 reflective layer 11) is L1. And An information recording medium (disk B) was obtained. (Initial crystallization) Initial crystallization was performed on the L0 recording film 3 of the disks A and B manufactured as described above as follows. Although only the L0 recording film 3 and the L1 recording film 9 will be described below, the same applies to the recording films of other multilayer media.

【0016】媒体(ディスクA,ディスクB)を記録ト
ラック上の点の線速度が5m/sであるように回転さ
せ、波長約810nmの半導体レーザのレーザパワーを
300mWにしてL1の記録膜にフォーカスした後、レ
ーザパワーを700mWにして、基板1およびL0膜、
スペーサー層を通して記録膜9に媒体の半径方向に長い
長円形のスポット形状で照射した。スポットの移動は、
媒体の1回転につき媒体の半径方向のスポット長の1/
24ずつずらした。こうして、初期結晶化を行った。こ
の初期結晶化は1回でもよいが3回繰り返すと初期結晶
化によるノイズ上昇を少し低減できた。この初期結晶化
は高速で行える利点がある。次ぎに波長約810nmの
半導体レーザのレーザパワーを300mWにしてレーザ
のフォーカス位置を変えてL0の記録膜にフォーカスし
た後、レーザパワーを700mWにして、基板1を通し
て記録膜3に媒体の半径方向に長い長円形のスポット形
状で照射した。スポットの移動は、媒体の1回転につき
媒体の半径方向のスポット長の1/24ずつずらした。
こうして、初期結晶化を行った。この初期結晶化は1回
でもよいが3回繰り返すと初期結晶化によるノイズ上昇
を少し低減できた。この初期結晶化は高速で行える利点
がある。初期化の順序はL1記録膜から行ってもL0記
録膜から行っても、また3層以上の多層情報記録媒体に
おいてはランダムに行っても良い。 (記録・消去・再生)前記のようにして製作し、初期結
晶化を行った媒体について、次ぎのように記録・消去・
再生特定の評価を行った。なお、以下ではL1の記録膜
9についてのみ説明するが、L0の記録膜3についても
全く同様であり、また3層以上の多層情報記録媒体にお
いてのそれぞれの情報面の記録膜についても同様であ
る。
The medium (disk A, disk B) is rotated such that the linear velocity at a point on the recording track is 5 m / s, and the laser power of a semiconductor laser having a wavelength of about 810 nm is set to 300 mW to focus on the L1 recording film. After that, the laser power was set to 700 mW, and the substrate 1 and the L0 film were
The recording film 9 was irradiated to the recording film 9 through the spacer layer in the form of an elliptical spot long in the radial direction of the medium. The movement of the spot
1 / one of the radial spot length of the medium per rotation of the medium
It shifted by 24. Thus, initial crystallization was performed. This initial crystallization may be performed once, but when it is repeated three times, a rise in noise due to the initial crystallization can be slightly reduced. This initial crystallization has the advantage that it can be performed at high speed. Next, the laser power of the semiconductor laser having a wavelength of about 810 nm is set to 300 mW, the focus position of the laser is changed to focus on the L0 recording film, and then the laser power is set to 700 mW. Irradiation was performed in the form of a long oblong spot. The movement of the spot was shifted by 1/24 of the spot length in the radial direction of the medium per rotation of the medium.
Thus, initial crystallization was performed. This initial crystallization may be performed once, but when it is repeated three times, a rise in noise due to the initial crystallization can be slightly reduced. This initial crystallization has the advantage that it can be performed at high speed. The initialization may be performed from the L1 recording film, from the L0 recording film, or randomly in a multilayer information recording medium having three or more layers. (Recording / Erasing / Reproducing) With respect to the medium manufactured as described above and subjected to the initial crystallization, recording / erasing / reproduction is performed as follows.
Playback specific evaluation was performed. In the following, only the recording film 9 of L1 will be described, but the same applies to the recording film 3 of L0, and the same applies to the recording film of each information surface in a multilayer information recording medium having three or more layers. .

【0017】初期結晶化が完了した記録膜9の記録領域
にトラッキングと自動焦点合わせを行いながら、記録用
レーザ光のパワーを中間パワーレベルPe(3mW)と
高パワーレベルPh(7mW)との間で変化させて情報
の記録を行った。記録トラックの線速度は9m/s、半
導体レーザ波長は405nm、レンズの開口数(NA)
は0.65である。記録用レーザ光により記録領域に形
成される非晶質またはそれに近い部分が記録点となる。
この媒体の反射率は結晶状態の方が高く、記録され非晶
質状態になった領域の反射率が低くなっている。
The power of the recording laser beam is changed between the intermediate power level Pe (3 mW) and the high power level Ph (7 mW) while performing tracking and automatic focusing on the recording area of the recording film 9 on which the initial crystallization is completed. The information was recorded by changing the above. The linear velocity of the recording track is 9 m / s, the wavelength of the semiconductor laser is 405 nm, and the numerical aperture (NA) of the lens
Is 0.65. An amorphous portion or a portion close to the amorphous portion formed in the recording area by the recording laser beam is a recording point.
The reflectivity of this medium is higher in the crystalline state, and the reflectivity of the recorded and amorphous region is lower.

【0018】記録用レーザ光の高レベルと中間レベルの
パワー比は1:0.3〜1:0.7の範囲が好ましい。
また、この他に短時間ずつ他のパワーレベルにしてもよ
い。図3に示したように、1つの記録マークの形成中に
ウインドウ幅の半分(Tw/2)ずつ中間パワーレベル
Peより低いボトムパワーレベルPbまでパワーを繰り
返し下げ、かつクーリングパワーレベルPcを記録パル
スの最後に持つ波形を生成する手段を持った装置で記録
・再生を行うと、再生信号波形のジッター値およびエラ
ーレートが低減した。クーリングパワーレベルPcは中
間パワーレベルPeより低く、ボトムパワーレベルPb
より高いか同じレベルである。この波形は、第1パルス
幅Tpが記録マークとそのマークの直前に設けられたス
ペースの長さの組み合わせによって変化する特徴とクー
リングパルス幅Tc(記録パルスの最後にPcレベルま
で下げる時間幅)が記録マークとそのマークの後続スペ
ース長の組み合わせにより決まる特徴を持つ。マーク直
前のスペース長が短く、マークが長いほどTpは短くな
り、マーク直前のスペース長が長く、マークが短いほど
Tpは長くなる。ただし、媒体の構造によっては6Tw
マークの記録用記録波形のTpを特に長くした場合、ジ
ッター低減効果が大きかった。また、後続のスペース長
が長く、マークが長いほど、Tcは短くなり、後続のス
ペース長が短く、マークが短いほど、Tcは長くなる。
The power ratio between the high level and the intermediate level of the recording laser beam is preferably in the range of 1: 0.3 to 1: 0.7.
In addition, other power levels may be set for each short time. As shown in FIG. 3, during formation of one recording mark, the power is repeatedly reduced by half (Tw / 2) of the window width to a bottom power level Pb lower than the intermediate power level Pe, and the cooling power level Pc is changed to a recording pulse. When recording / reproducing was performed by an apparatus having a means for generating a last waveform, the jitter value and error rate of the reproduced signal waveform were reduced. The cooling power level Pc is lower than the intermediate power level Pe, and the bottom power level Pb
Higher or the same level. This waveform has a characteristic that the first pulse width Tp changes according to the combination of the recording mark and the length of the space provided immediately before the mark, and the cooling pulse width Tc (the time width at which the recording pulse is lowered to the Pc level at the end of the recording pulse). It has a feature that is determined by a combination of a recording mark and a subsequent space length of the mark. The space length immediately before the mark is short, and the longer the mark, the shorter the Tp, the longer the space immediately before the mark, and the shorter the mark, the longer the Tp. However, depending on the structure of the medium, 6 Tw
When the recording waveform for mark recording had a particularly long Tp, the effect of reducing jitter was large. Also, the longer the subsequent space length and the longer the mark, the shorter the Tc, and the shorter the subsequent space length and the shorter the mark, the longer the Tc.

【0019】図3には3Tw,4Tw,6Tw,11T
wの記録波形しか示していないが、5Twは6Twの記
録波形の一連の高いパワーレベルのパルス列のうち、T
w/2の高いパワーレベルPhと直後のTw/2のボト
ムパワーレベルPbをそれぞれ一つずつ削減したもので
ある。また、7Tw〜10Tw用記録波形は6Tw用記
録波形の最後尾の高いパワーレベルのパルスの直前に、
Tw/2の高いパワーレベルPhとTw/2のボトムパ
ワーレベルPbを、それぞれ1組ずつ追加したものであ
る。したがって、5組追加したものが11Twである。
FIG. 3 shows 3Tw, 4Tw, 6Tw, and 11T.
Although only the recording waveform of w is shown, 5Tw is TW out of a series of high power level pulse trains of 6Tw recording waveform.
In this example, the w / 2 high power level Ph and the immediately subsequent Tw / 2 bottom power level Pb are respectively reduced by one. Also, the recording waveform for 7Tw to 10Tw is obtained immediately before the high power level pulse at the end of the recording waveform for 6Tw.
This is obtained by adding a pair of a high power level Ph of Tw / 2 and a bottom power level Pb of Tw / 2. Therefore, 11 Tw is obtained by adding five sets.

【0020】ここでは、3Twに対応する最短記録マー
ク長を0.26μmとした。記録すべき部分を通り過ぎ
ると、レーザ光パワーを再生(読み出し)用レーザ光の
低パワーレベルPr(1mW)に下げるようにした。
Here, the shortest recording mark length corresponding to 3 Tw was set to 0.26 μm. After passing through the portion to be recorded, the laser light power is reduced to the low power level Pr (1 mW) of the reproducing (reading) laser light.

【0021】このような記録方法では、既に情報が記録
されている部分に対して消去することなく、重ね書きに
よって新たな情報を記録すれば、新たな情報に書き換え
られる。すなわち、単一のほぼ円形の光スポットによる
オーバーライトが可能である。
In such a recording method, if new information is recorded by overwriting without erasing a portion in which information has already been recorded, the information is rewritten with new information. That is, overwriting with a single substantially circular light spot is possible.

【0022】しかし、書き換え時の最初のディスク1回
転または複数回転で、前記のパワー変調した記録用レー
ザ光の中間パワーレベル(3mW)またはそれに近いパ
ワーの連続光を照射して、記録されている情報を一たん
消去し、その後、次の1回転でボトムパワーレベル
(0.5mW)と高パワーレベル(7mW)の間で、ま
たは中間パワーレベル(3mW)と高パワーレベル(7
mW)との間で、情報信号に従ってパワー変調したレー
ザ光を照射して記録するようにしてもよい。このよう
に、情報を消去してから記録するようにすれば、前に書
かれていた情報の消え残りが少ない。従って、線速度を
2倍に上げた場合の書き換えも、容易になる。 (本発明の効果)両情報記録媒体の構成最短記録マーク
3Twと3Tスペースの繰り返し信号を記録した際のC
/Nを測定したところ、従来媒体ではL0が50dB,
L1が45dBに留まるが、本発明の情報記録媒体では
L0が50dB,L1が50dBと両層にて実用レベル
のC/Nが確保出来た。 (下部保護層)本実施例では、L1下部保護層8を(Z
nS)80(SiO20とCr 57層の
2層構造としている。また、L0下部保護層2を(Zn
S) (SiO20膜と膜厚約4nmのAl40
57膜と膜厚約1nmのCr4057膜を
積層した3層構造としている。2層構造をとる下部保護
層2、8の(ZnS)80(SiO20に代わる材
料としては、ZnSとSiOの混合比を変えたものが
好ましい。また、ZnS,Si−N系材料、Si−O−
N系材料、SiO,SiO,TiO,Al
,CeO ,La,In,Ge
O,GeO,PbO,SnO,SnO,BeO,B
,TeO,WO,WO,Sc,T
,ZrO,CuO,MgOなどの酸化物、
TaN,AlN,BN,Si,GeN,Al−S
i−N系材料(例えばAlSiN)などの窒化物、Z
nS,Sb,CdS,In,Ga
GeS,SnS,PbS,Biなどの硫化物、
SnSe,SbSe,CdSe,ZnSe,In
Se,GaSe,GeSe,GeSe,Sn
Se,PbSe,BiSeなどのセレン化物、Ce
,MgF,CaFなどの弗化物、あるいはS
i,Ge,TiB,BC,B,C,または、上記の
材料に近い組成のものを用いてもよい。また、ZnS−
SiO,ZnS−Alなど、これらの混合材料
の層やこれらの多重層でもよい。この中で、ZnSはス
パッタレートが大きく、ZnSが60mol%以上を占
めると成膜時間を短くできるため、これを60mol%
以上含む混合物の場合、ZnSのスパッタレートが大き
い点と酸化物や窒化物等の化学安定性の良い点が組み合
わされる。この他の硫化物、セレン化物でもZnSに近
い特性が得られた。
However, the first disc at the time of rewriting
The above-mentioned power-modulated recording
The intermediate power level of the light (3 mW) or near
Irradiate the continuous light of the
Erase, then bottom power level in next one revolution
(0.5 mW) and high power level (7 mW)
Or medium power level (3 mW) and high power level (7
mW), a power modulated according to the information signal.
The recording may be performed by irradiating the light. like this
If you try to erase information before recording it,
There is little leftover information that has been lost. Therefore, the linear velocity
Rewriting when the value is doubled becomes easy. (Effect of the present invention) The shortest recording mark of both information recording media
C when recording a repetition signal of 3Tw and 3T space
/ N was measured, the L0 was 50 dB in the conventional medium,
L1 remains at 45 dB, but in the information recording medium of the present invention,
L0 is 50dB and L1 is 50dB, practical level for both layers
C / N was secured. (Lower Protective Layer) In this embodiment, the L1 lower protective layer 8 is
nS)80(SiO2)20And Cr4 0O57N3Layer of
It has a two-layer structure. Further, the L0 lower protective layer 2 is made of (Zn
S)8 0(SiO2)20Al with a thickness of about 4 nm40
O57N3Film and Cr about 1 nm thick40O57N3Membrane
It has a laminated three-layer structure. Lower protection with a two-layer structure
Layers 2 and 8 (ZnS)80(SiO2)20Alternative to wood
As materials, ZnS and SiO2With different mixing ratio of
preferable. Also, ZnS, Si-N-based materials, Si-O-
N-based material, SiO2, SiO, TiO2, Al2O3,
Y2O3, CeO 2, La2O3, In2O3, Ge
O, GeO2, PbO, SnO, SnO2, BeO, B
i2O3, TeO2, WO2, WO3, Sc2O3, T
a2O5, ZrO2, Cu2Oxides such as O and MgO,
TaN, AlN, BN, Si3N4, GeN, Al-S
i-N-based material (for example, AlSiN2), Etc., Z
nS, Sb2S3, CdS, In2S3, Ga2S3,
GeS, SnS2, PbS, Bi2S3Sulfides, such as
SnSe2, Sb2Se3, CdSe, ZnSe, In
2Se3, Ga2Se3, GeSe, GeSe2, Sn
Se, PbSe, Bi2Se3Such as selenide, Ce
F3, MgF2, CaF2Such as fluoride, or S
i, Ge, TiB2, B4C, B, C, or above
A material having a composition close to the material may be used. Also, ZnS-
SiO2, ZnS-Al2O3Such as these mixed materials
Or multiple layers thereof. Among them, ZnS is
Large putter rate, ZnS occupies 60 mol% or more
In this case, the film formation time can be shortened.
In the case of a mixture containing the above, the sputtering rate of ZnS is large.
Combined with good chemical stability of oxides and nitrides
Be forgotten. Other sulfides and selenides are similar to ZnS.
Characteristic was obtained.

【0023】これら化合物における元素比は、例えば酸
化物や硫化物における金属元素と酸素元素あるいは硫黄
元素の比は、Al,Y,Laは2:
3、SiO,ZrO,GeOは1:2、Ta
は2:5、ZnSは1:1という比をとるかその比に
近いことが好ましいが、その比から外れていても同様の
効果は得られる。しかし、上記整数比から外れている場
合、例えばAl−OはAlとOの比率がAlから
Al量で±10原子%以下、Si−OはSiとOの比率
がSiOからSi量で±10原子%以下等、金属元素
量のずれが10原子%以下が好ましい。10原子%以上
ずれると、光学特性が変化するため、変調度が10%以
上低下した。
The element ratio in these compounds is, for example, the ratio of the metal element to the oxygen element or the sulfur element in oxides and sulfides is as follows: Al 2 O 3 , Y 2 O 3 , La 2 O 3 is 2:
3, SiO 2, ZrO 2, GeO 2 is 1: 2, Ta 2 O
5 is preferably 2: 5 and ZnS is preferably 1: 1 or close to that ratio, but the same effect can be obtained even if the ratio is out of the ratio. However, when the ratio is out of the above integer ratio, for example, Al—O has a ratio of Al and O of ± 10 atomic% or less from Al 2 O 3 to Al, and Si—O has a ratio of Si and O of SiO 2 to Si. It is preferable that the deviation of the amount of the metal element be 10 atomic% or less, such as ± 10 atomic% or less. When the amount is shifted by 10 atomic% or more, the optical characteristics are changed, so that the degree of modulation is reduced by 10% or more.

【0024】上記材料は、下部保護層全原子数の90%
以上であることが好ましい。上記材料以外の不純物が1
0原子%以上になると、書き換え可能回数が1/2以下
になる等、書き換え特性の劣化が見られた。
The above material is 90% of the total number of atoms of the lower protective layer.
It is preferable that it is above. 1 impurities other than the above materials
At 0 atomic% or more, the number of rewritable times becomes 以下 or less, and the rewriting characteristics deteriorated.

【0025】本実施例で用いた下部保護層の消衰係数k
については0または0に近いことが好ましい。さらに、
下部保護層材料の80%以上の膜厚において消衰係数k
がk≦0.01であれば、コントラストの低下が2%以
下に抑制でき好ましい。
The extinction coefficient k of the lower protective layer used in this embodiment
Is preferably 0 or close to 0. further,
Extinction coefficient k at a film thickness of 80% or more of lower protective layer material
Is preferably k ≦ 0.01, since the decrease in contrast can be suppressed to 2% or less.

【0026】下部保護層を2層以上にし、記録膜側の下
部保護層材料をCrまたはCr4057
ると、多数回書き換え時に記録膜へZn,Sの拡散を抑
制でき、書き換え特性が良好であることがわかった。記
録膜側の下部保護層材料のCrに代わる材料とし
ては、CrにSiO,Ta,Al
,ZrO−Yを混合した混合物が好まし
い。次いで、CoOまたはGeO,NiO、これらと
Crの混合物が好ましい。これら酸化物は消衰係
数kが小さく、下部界面層における吸収が非常に小さ
い。そのため、変調度が大きく保てるという利点があ
る。また、CrまたはCr4057の一部
をAlまたはAl4057に変えると、記
録膜以外での吸収が減り透過率が大きくできるため、L
0層でC/Nが大きく出来てこのましい。Al
たはAl4057 の代りにSiO2またはSi33
634など、またこれらの窒素と酸素量の比が異なる
ものを用いても同様な特性が得られた。
The lower protective layer is composed of two or more layers,
Cr for the protective layer material2O3Or Cr40O57N3You
This suppresses the diffusion of Zn and S into the recording film during rewriting many times.
And the rewriting characteristics were good. Record
Cr of lower protective layer material on the recording film side2O3As an alternative material
The Cr2O3SiO2, Ta2O5, Al
2O 3, ZrO2-Y2O3A mixed mixture is preferred
No. Then, CoO or GeO2, NiO, and these
Cr2O3Are preferred. These oxides are decay agents
Small number k, very low absorption in lower interface layer
No. This has the advantage that the modulation depth can be kept large.
You. In addition, Cr2O3Or Cr40O57N3Part of
To Al2O3Or Al40O57N3Is changed to
Since absorption outside the recording film is reduced and transmittance can be increased, L
C / N can be increased in the 0th layer, which is preferable. Al2O3Ma
Or Al40O57N 3Instead of SiOTwoOr Si33
O63NFourEtc. and the ratio of these nitrogen and oxygen amount is different
Similar characteristics were obtained by using the same.

【0027】また、AlN,BN,CrN,CrN,
GeN,HfN,Si,Al−Si−N系材料
(例えばAlSiN)、Si−N系材料、Si−O−
N系材料、TaN,TiN,ZrN,などの窒化物は保
存寿命が大きくなり、外界温度変化に強く、より好まし
い。窒素が含まれた記録膜組成またはそれに近い組成の
材料でも接着力が向上する。
Further, AlN, BN, CrN, Cr 2 N,
GeN, HfN, Si 3 N 4 , Al-Si-N material (e.g., AlSiN 2), Si-N-based material, Si-O-
N-based materials, nitrides such as TaN, TiN, ZrN, and the like have a longer storage life and are more resistant to changes in external temperature, and are more preferable. Even with a recording film composition containing nitrogen or a material having a composition close thereto, the adhesive strength is improved.

【0028】その他、BeO,Bi,CeO
CuO,CuO,CdO,Dy,FeO,Fe
,Fe,GeO,GeO,HfO,I
,La,MgO,MnO,MoO,M
oO,NbO,NbO,PbO,PdO,SnO,
SnO,Sc,SrO,ThO,TiO
Ti,TiO,TeO,VO,V,VO
,WO,WOなどの酸化物、C,Cr,C
23,Cr,FeC,MoC,WC,
C,HfC,TaC,CaCなどの炭化物また
は、上記の材料に近い組成のものを用いてもよいし、こ
れらの混合材料でもよい。
In addition, BeO, Bi 2 O 3 , CeO 2 ,
Cu 2 O, CuO, CdO, Dy 2 O 3 , FeO, Fe
2 O 3 , Fe 3 O 4 , GeO, GeO 2 , HfO 2 , I
n 2 O 3 , La 2 O 3 , MgO, MnO, MoO 2 , M
oO 3 , NbO, NbO 2 , PbO, PdO, SnO,
SnO 2 , Sc 2 O 3 , SrO, ThO 2 , TiO 2 ,
Ti 2 O 3 , TiO, TeO 2 , VO, V 2 O 3 , VO
2 , WO 2 , WO 3 and other oxides, C, Cr 3 C 2 , C
r 23 C 6 , Cr 7 C 3 , Fe 3 C, Mo 2 C, WC,
A carbide such as W 2 C, HfC, TaC, CaC 2 , or a material having a composition close to the above materials, or a mixed material thereof may be used.

【0029】下部保護層の記録膜側に酸化物または窒化
物の層を設けた場合は、Zn,S等の記録膜中への拡散
が防止でき、消え残りが増加するのを抑制できる。さら
に、記録感度を低下させないためには、25nm以下と
することが好ましく、10nm以下ではより好ましかっ
た。均一な膜形成ができるのは約2nm以上であり、5
nm以上がさらに良好であった。これより、記録膜側の
下部保護層膜厚を2〜25nmとすると記録・再生特性
がより良くなり、好ましい。未満の場合、再結晶化のた
めにC/Nが低下した。また、下部保護層膜厚が10n
m未満の場合、記録膜の保護効果がなくなるため、書き
換え可能回数が1桁以上低下した。下部保護層と記載し
たものは、L0下部保護層、L1下部保護層、さらに多
層情報記録媒体の下部保護層を意味する。 (記録膜)本実施例では、記録膜3、記録膜9をGe
SbTeにより形成している。本記録膜の再生波長
における屈折率は、結晶状態が2.0、非晶質状態が
2.6と、結晶状態の方が小さい。
When an oxide or nitride layer is provided on the recording film side of the lower protective layer, diffusion of Zn, S, etc. into the recording film can be prevented, and an increase in unerased residue can be suppressed. Further, in order not to lower the recording sensitivity, the thickness is preferably 25 nm or less, and more preferably 10 nm or less. A uniform film can be formed at about 2 nm or more.
nm or more was even better. Accordingly, it is preferable that the thickness of the lower protective layer on the recording film side be 2 to 25 nm because the recording / reproducing characteristics are further improved. If less, the C / N was reduced due to recrystallization. The lower protective layer has a thickness of 10 n.
When it is less than m, the protection effect of the recording film is lost, and the number of rewritable times is reduced by one digit or more. What is described as the lower protective layer means the L0 lower protective layer, the L1 lower protective layer, and the lower protective layer of the multilayer information recording medium. (Recording Film) In this embodiment, the recording film 3 and the recording film 9 are made of Ge 5.
It is formed of Sb 2 Te 8 . The refractive index at the reproduction wavelength of the present recording film is 2.0 in the crystalline state and 2.6 in the amorphous state, which is smaller in the crystalline state.

【0030】GeSbTeに代わる記録膜3,9
の材料としては、AgGe30Sb14Te53,C
Ge32Sb13Te52等、Ag−Ge−Sb−
Te系、Cr−Ge−Sb−Te系材料で組成比の異な
るものが変調度が大きくなり好ましい。記録膜3および
/または記録膜9中のAg量やCr量が多いと短波長で
の反射率変化が大きくなるが、結晶化速度は遅くなる。
従って、添加されるAg量またはCr量が2原子%以
上、10原子%以下が好ましい。しかし、Agの添加さ
れていないGe−Sb−Te系材料でもオーバーライト
は可能である。Agの代わりに記録膜3,9へ添加する
元素としては、Cr,W,Mo,Pt,Co,Ni,P
d,Si,Au,Cu,V,Mn,Fe,Ti,Biの
いずれかのうちの少なくとも一つで置き換えても、オー
バーライト特性が良好であることがわかった。これらの
記録膜3,9材料は全て、再生波長における屈折率は結
晶状態の方が非晶質状態より小さい。
Recording films 3, 9 instead of Ge 5 Sb 2 Te 8
Ag 3 Ge 30 Sb 14 Te 53 , C
Ag-Ge-Sb-, such as r 3 Ge 32 Sb 13 Te 52
Te-based and Cr-Ge-Sb-Te-based materials having different composition ratios are preferable because the degree of modulation is increased. If the amount of Ag or Cr in the recording film 3 and / or the recording film 9 is large, the change in reflectance at short wavelengths increases, but the crystallization speed decreases.
Therefore, it is preferable that the amount of Ag or Cr added is 2 atomic% or more and 10 atomic% or less. However, overwriting is possible even with a Ge-Sb-Te-based material to which Ag is not added. Elements to be added to the recording films 3 and 9 instead of Ag include Cr, W, Mo, Pt, Co, Ni, P
It was found that the overwrite characteristics were good even when replaced with at least one of d, Si, Au, Cu, V, Mn, Fe, Ti, and Bi. In all of these recording films 3 and 9, the refractive index at the reproduction wavelength is lower in the crystalline state than in the amorphous state.

【0031】本実施例で記録膜9の膜厚を変化させ、1
0回書き換え後および10万回書き換え後のジッター
(σ/Tw)を測定したところ、表1のようになった。
記録膜9の膜厚(nm)に対し、10回書き換え後につ
いては前エッジまたは後エッジのジッターの悪い方の値
(%)を、1万回書き換え後については前エッジのジッ
ター値(%)を示した。
In this embodiment, the thickness of the recording film 9 is changed to
The jitter (σ / Tw) after 0 rewriting and 100,000 rewriting was measured, and the results are as shown in Table 1.
With respect to the thickness (nm) of the recording film 9, the value (%) of the lower jitter of the leading edge or the trailing edge after rewriting 10 times is the jitter value (%) of the leading edge after rewriting 10,000 times. showed that.

【0032】[0032]

【表1】 これより、記録膜9の膜厚を薄くすると記録膜流動や偏
析による、10回書き換え後のジッターが増加し、また
厚くすると、1万回書き換え後のジッターが増加するこ
とがわかった。これより、記録膜9の膜厚は4nm以
上、25nm以下がジッターを20%以下にでき好まし
く、5nm以上、20nm以下であればジッターを15
%以下に出来より好ましい。記録膜3の膜厚および、1
〜N−1情報面(レイヤー)における記録膜膜厚につい
ては、前記情報面の記録膜膜厚が 情報面1≦情報面2≦…≦情報面N−1≦情報面N の関係にあると各情報面において記録・再生可能となる
ため好ましい。さらに、光入射側の基板より1からN−
1番めの情報面用記録膜の合計膜厚が10nm以下であ
ると、N番めの情報面のC/Nが48dB以上と大きく
でき好ましい。上記合計膜厚が8nm以下になるとN番
めの情報面のC/Nが49dB以上と大きくできより好
ましい。 (上部保護層)本実施例では、上部保護層10をZnS
−SiOとCr4060により形成した。また、L0
上部保護層4を(ZnS)80(SiO20膜と膜
厚約4nmのAl4060膜と膜厚約1nmのCr40
60膜を積層した3層構造としている。ZnS−SiO
に代わる上部保護層の材料としては、Si−N系材
料、Si−O−N系材料、ZnS,SiO,SiO,
TiO,Al,Y,CeO,La
,In,GeO,GeO,PbO,SnO,
SnO,BeO,Bi,TeO,WO,W
,Sc,Ta ,ZrO,CuO,
MgOなどの酸化物、TaN,AlN,BN,Si
,GeN,Al−Si−N系材料(例えばAlSiN
)などの窒化物、ZnS,Sb,CdS,In
,Ga,GeS,SnS,PbS,Bi
などの硫化物、SnSe,SbSe,Cd
Se,ZnSe,InSe,GaSe,GeS
e,GeSe,SnSe,PbSe,BiSe
どのセレン化物、CeF,MgF,CaFなどの
弗化物、あるいはSi,Ge,TiB,BC,B,
Cまたは、上記の材料に近い組成のものを用いてもよ
い。また、ZnS−SiO,ZnS−Alなど
これらの混合材料の層やこれらの多重層でもよい。消衰
係数は0または0に近いことが好ましい。
[Table 1]Thus, when the thickness of the recording film 9 is reduced, the flow of the recording film and the unevenness
Analysis, the jitter after 10 rewrites increased,
When the thickness is increased, the jitter after rewriting 10,000 times increases.
I understood. Thus, the thickness of the recording film 9 is 4 nm or less.
Above, 25nm or less is preferable because jitter can be reduced to 20% or less.
If it is 5 nm or more and 20 nm or less, the jitter is 15
% Or less. The thickness of the recording film 3 and 1
To the N-1 information layer (layer)
If the thickness of the recording film on the information surface satisfies the relationship of information surface 1 ≦ information surface 2 ≦.
Therefore, it is preferable. In addition, 1-N-
The total thickness of the first information surface recording film is 10 nm or less.
Then, the C / N of the Nth information surface is as large as 48 dB or more.
It is preferable. When the total film thickness becomes 8 nm or less,
The C / N of the information surface can be as large as 49 dB or more
Good. (Upper Protective Layer) In this embodiment, the upper protective layer 10 is made of ZnS
-SiO2And Cr40O60Formed. Also, L0
The upper protective layer 4 is made of (ZnS)80(SiO2)20Membrane and membrane
Al about 4nm thick40O60Film and Cr about 1 nm thick40
O60It has a three-layer structure in which films are stacked. ZnS-SiO
2As the material of the upper protective layer in place of
Material, Si-ON-based material, ZnS, SiO2, SiO,
TiO2, Al2O3, Y2O3, CeO2, La2O
3, In2O3, GeO, GeO2, PbO, SnO,
SnO2, BeO, Bi2O3, TeO2, WO2, W
O3, Sc2O3, Ta2O 5, ZrO2, Cu2O,
Oxides such as MgO, TaN, AlN, BN, Si3N
4, GeN, Al-Si-N-based materials (eg, AlSiN
2), Etc., ZnS, Sb2S3, CdS, In
2S3, Ga2S3, GeS, SnS2, PbS, Bi
2S3Such as sulfide, SnSe2, Sb2Se3, Cd
Se, ZnSe, In2Se3, Ga2Se3, GeS
e, GeSe2, SnSe, PbSe, Bi2Se3What
Which selenide, CeF3, MgF2, CaF2Such as
Fluoride or Si, Ge, TiB2, B4C, B,
C or a composition close to the above materials may be used.
No. Also, ZnS-SiO2, ZnS-Al2O3Such
It may be a layer of these mixed materials or a multi-layer thereof. Extinction
Preferably, the coefficient is zero or close to zero.

【0033】これら化合物における元素比は、例えば酸
化物あるいは硫化物における金属元素と酸素元素あるい
は硫黄元素の比は、Al,Y,La
は2:3、SiO,ZrO,GeOは1:2、T
は2:5、ZnSは1:1という比をとるかそ
の比に近いことが好ましいが、その比から外れていても
同様の効果は得られる。上記整数比から外れている場
合、例えばAl−OはAlとOの比率がAlから
Al量で±10原子%以下、Si−OはSiとOの比率
がSiOからSi量で±10原子%以下等、金属元素
量のずれが10原子%以下が好ましい。10原子%以上
ずれると、光学特性が変化するため、変調度が10%以
上低下した。
The element ratio in these compounds is, for example, the ratio of the metal element to the oxygen element or the sulfur element in the oxide or sulfide is Al 2 O 3 , Y 2 O 3 , La 2 O 3
The 2: 3, SiO 2, ZrO 2, GeO 2 is 1: 2, T
It is preferable that a 2 O 5 has a ratio of 2: 5 and ZnS has a ratio of 1: 1 or close to the ratio, but the same effect can be obtained even if the ratio is out of the ratio. In the case where the ratio is out of the above integer ratio, for example, Al—O has a ratio of Al and O of ± 10 atomic% or less in Al amount from Al 2 O 3 , and Si—O has a ratio of Si and O in SiO 2 to Si amount. It is preferable that the deviation of the amount of the metal element be 10 atomic% or less, such as ± 10 atomic% or less. When the amount is shifted by 10 atomic% or more, the optical characteristics are changed, so that the degree of modulation is reduced by 10% or more.

【0034】上記材料は、上部保護層全原子数の90%
以上であることが好ましい。上記材料以外の不純物が1
0原子%以上になると、書き換え可能回数が1/2以下
になる等、書き換え特性の劣化が見られた。
The above material is 90% of the total number of atoms of the upper protective layer.
It is preferable that it is above. 1 impurities other than the above materials
At 0 atomic% or more, the number of rewritable times becomes 以下 or less, and the rewriting characteristics deteriorated.

【0035】上部保護層を2層以上にし、記録膜側の上
部保護層材料をCrにすると、多数回書き換え時
に記録膜へZn,Sの拡散を抑制でき、書き換え特性が
良好になることがわかった。さらにその一部をAl
,またはSiOに変えるとコントラストが大きく出
来て好ましいことがわかった。上部保護層と記載したも
のは、L0上部保護層、L1上部保護層、さらに多層情
報記録媒体の上部保護層を意味する。 (反射層)本実施例では反射層11にAg98Pd
膜を用いた。他の反射層の材料としては、Ag−P
t,Ag−Au等、Ag合金を主成分とするものが好ま
しい。Agも使用可能である。Ag合金中のAg以外の
元素の含有量を0.5原子%以上4原子%以下の範囲に
すると、多数回書き換え時の特性およびビットエラーレ
ートが良好になり、1原子%以上2原子%以下の範囲で
はより良好になることがわかった。
When the upper protective layer is composed of two or more layers and the material of the upper protective layer on the recording film side is Cr 2 O 3 , diffusion of Zn and S into the recording film at the time of rewriting many times can be suppressed, and the rewriting characteristics are improved. I understand. Further, part of the Al 2 O
3, or when changing the SiO 2 proved preferable contrast can be increased. What is described as the upper protective layer means the L0 upper protective layer, the L1 upper protective layer, and the upper protective layer of the multilayer information recording medium. (Reflective Layer) In this embodiment, the reflective layer 11 is made of Ag 98 Pd 1 C.
using u 1 film. Other reflective layer materials include Ag-P
Those having an Ag alloy as a main component, such as t and Ag-Au, are preferable. Ag can also be used. When the content of elements other than Ag in the Ag alloy is in the range of 0.5 atomic% or more and 4 atomic% or less, the characteristics and the bit error rate after many rewrites are improved, and 1 atomic% or more and 2 atomic% or less. It was found that the range was better.

【0036】また、Zn98Pd膜、Zn98Pt
膜、Zn98Cu膜、Zn98Ni膜、Zn−Pd
膜、Zn−Pt膜、Zn−Cu膜、Zn−Ni膜は、A
g系材料に比べコストが安いという利点がある。Znも
使用可能である。Zn合金中のZn以外の元素の含有量
は0.5原子%以上4原子%以下の範囲にすると、多数
回書き換え時の特性およびビットエラーレートが良好に
なり、1原子%以上2原子%以下の範囲ではより良好に
なることがわかった。
Also, a Zn 98 Pd 2 film, a Zn 98 Pt 2
Film, Zn 98 Cu 2 film, Zn 98 Ni 2 film, Zn-Pd
The film, the Zn—Pt film, the Zn—Cu film, and the Zn—Ni film
There is an advantage that the cost is lower than that of the g-based material. Zn can also be used. When the content of elements other than Zn in the Zn alloy is in the range of 0.5 atomic% or more and 4 atomic% or less, the characteristics and bit error rate at the time of rewriting many times are improved, and 1 atomic% or more and 2 atomic% or less It was found that the range was better.

【0037】次いで、Au,Al,Cu,Ni,Fe,
Co,Cr,Ti,Pd,Pt,W,Ta,Mo,S
b,Bi,Dy,Cd,Mn,Mg,Vの元素単体、ま
たはAu合金、上記以外のAg合金、Cu合金、Pd合
金、Pt合金などこれらを主成分とする合金、あるいは
これら同志の合金よりなる層を用いてもよい。このよう
に、反射層は、金属元素、半金属元素、これらの合金、
混合物からなる。
Next, Au, Al, Cu, Ni, Fe,
Co, Cr, Ti, Pd, Pt, W, Ta, Mo, S
b, Bi, Dy, Cd, Mn, Mg, V, a single element, or an alloy containing these as a main component such as an Au alloy, an Ag alloy, a Cu alloy, a Pd alloy, a Pt alloy, or an alloy thereof May be used. Thus, the reflective layer is composed of metal elements, metalloid elements, their alloys,
Consists of a mixture.

【0038】この中で、Ag,Al,Al合金、Ag合
金、等のように、反射率が大きいものは、コントラスト
比が大きくなり書き換え特性が良好である。単体より合
金の方が接着力が大きくなる。この場合の主成分となる
Al,Ag等以外の元素の含有量はAg合金同様に、
0.5原子%以上5原子%以下の範囲にすると、コント
ラスト比が大きく、また接着力も大きくでき良好であっ
た。1原子%以上2原子%以下の範囲ではより良くなっ
た。波長400nm付近における反射率を比較するとA
gまたはAg合金は約95%、Al,Al合金は約92
%と、Ag系の方が大きいが、材料コストも大きい。こ
れらに次ぐ材料としては、Zn,Zn合金が約89%、
Pt,Pt合金が約65%と短波長における反射率が大
きく、コントラストを大きく出来た。
Among them, those having a large reflectance, such as Ag, Al, Al alloy, Ag alloy, etc., have a large contrast ratio and good rewriting characteristics. An alloy has a higher adhesive strength than a simple substance. In this case, the content of elements other than Al and Ag, which are the main components, is the same as that of the Ag alloy.
When the content is in the range of 0.5 atomic% or more and 5 atomic% or less, the contrast ratio is large and the adhesive strength is large, which is good. In the range of 1 atomic% or more and 2 atomic% or less, the result is further improved. Comparing the reflectance around the wavelength of 400 nm,
g or Ag alloy is about 95%, Al, Al alloy is about 92%
%, And the Ag type is larger, but the material cost is higher. Next to these materials, Zn and Zn alloy are about 89%,
The reflectivity of Pt and Pt alloy at a short wavelength of about 65% was large, and the contrast was increased.

【0039】上記材料は、反射層全原子数の95%以上
であることが好ましい。上記材料以外の不純物が5原子
%以上になると、書き換え可能回数が1/2以下になる
等、書き換え特性の劣化が見られた。
The material is preferably 95% or more of the total number of atoms in the reflective layer. When the amount of impurities other than the above-mentioned materials becomes 5 atomic% or more, the number of rewritable times becomes 以下 or less, and the rewriting characteristics are deteriorated.

【0040】反射層膜厚が20nmより薄い場合、強度
が弱く、熱拡散が小さく記録膜流動が起きやすいため、
1万回書き換え後のジッターが15%より大きくなる。
30nmでは15%まで低下できる。また、反射層膜厚
が200nmより厚い場合、それぞれの反射層を作製す
る時間が長くなり、2工程以上に分ける、またはスパッ
タリング用の真空室を2室以上設ける等、形成時間が倍
増した。また、反射層の膜厚が5nm以下だと島状に成
膜され、ノイズが大きくなった。これより、反射層の膜
厚はノイズ及びジッター、形成時間より、5nm以上、
200nm以下が好ましい。 (基板)本実施例では、表面に直接、トラッキング用の
溝を有するポリカーボネート基板1を用いているが、そ
れに代えてポリオレフィン、エポキシ、アクリル樹脂、
紫外線硬化樹脂層を表面に形成した化学強化ガラスなど
を用いてもよい。強化ガラスの代わりに石英やCaFを
用いてもよい。
When the thickness of the reflective layer is less than 20 nm, the strength is low, the heat diffusion is small, and the recording film is likely to flow.
Jitter after rewriting 10,000 times becomes larger than 15%.
At 30 nm, it can be reduced to 15%. When the thickness of the reflective layer was greater than 200 nm, the time required to form each reflective layer was increased, and the formation time was doubled, such as by dividing the process into two or more steps or providing two or more vacuum chambers for sputtering. When the thickness of the reflection layer was 5 nm or less, the film was formed in an island shape, and noise increased. From this, the thickness of the reflective layer is 5 nm or more from the noise and jitter and the formation time.
200 nm or less is preferable. (Substrate) In the present embodiment, the polycarbonate substrate 1 having a tracking groove directly on the surface is used, but instead, a polyolefin, epoxy, acrylic resin,
Chemically strengthened glass having an ultraviolet curable resin layer formed on the surface may be used. Quartz or CaF may be used instead of tempered glass.

【0041】また、トラッキング用の溝を有する基板と
は、基板表面全てまたは一部に、記録・再生波長をλと
したとき、λ/12n′(n′は基板材料の屈折率)以
上の深さの溝を持つ基板である。溝は一周で連続的に形
成されていても、途中分割されていてもよい。溝深さが
約λ/6n′の時、クロストークが小さくなり好ましい
ことが分かった。さらに溝深さが約λ/3n′より深い
時、基板形成時の歩留まりは悪くなるが、クロスイレー
スが小さくなり好ましいことが分かった。
Further, a substrate having a groove for tracking is defined as having a depth of λ / 12n ′ (n ′ is the refractive index of the substrate material) or more when the recording / reproducing wavelength is λ on all or a part of the substrate surface. This is a substrate having a groove. The groove may be formed continuously in one round, or may be divided in the middle. It was found that when the groove depth was about λ / 6n ′, the crosstalk was small, which was preferable. Further, when the groove depth is deeper than about λ / 3n ', the yield during the formation of the substrate is deteriorated, but the cross erase is reduced, which is preferable.

【0042】また、その溝幅は場所により異なっていて
もよい。溝部の存在しない、サンプルサーボフォーマッ
トの基板、他のトラッキング方式、その他のフォーマッ
トによる基板等でも良い。溝部とランド部の両方に記録
・再生が行えるフォーマットを有する基板でも、どちら
か一方に記録を行うフォーマットの基板でも良い。トラ
ックピッチの大きさが小さいと隣のトラックからの信号
の漏れが検出されノイズとなるため、トラックピッチは
スポット径(光強度が1/eとなる領域)の1/2以
上であることが好ましい。
The groove width may vary depending on the location. A substrate having no groove, a substrate of a sample servo format, a substrate of another tracking method, a substrate of another format, or the like may be used. A substrate having a format in which recording and reproduction can be performed on both the groove portion and the land portion, or a substrate having a format in which recording is performed on either one may be used. If the track pitch is small, signal leakage from an adjacent track is detected and becomes noise, so that the track pitch may be equal to or more than の of the spot diameter (the area where the light intensity is 1 / e 2 ). preferable.

【0043】ディスクサイズも直径12cmに限らず、
13cm、8cm、3.5インチ、2.5インチ等、他
のサイズでも良い。ディスク厚さも0.6mmに限ら
ず、1.2mm、0.8mm、0.4mm、0.1mm
等、他の厚さでも良い。
The disk size is not limited to 12 cm in diameter,
Other sizes such as 13 cm, 8 cm, 3.5 inches, 2.5 inches, etc. may be used. The disc thickness is not limited to 0.6 mm, but 1.2 mm, 0.8 mm, 0.4 mm, 0.1 mm
Other thicknesses may be used.

【0044】本実施例では、スペーサ層を介して貼り合
わせているが、第2のディスク部材の代わりに別の構成
のディスク部材、または保護用の基板などを用いてもよ
い。貼り合わせに用いるディスク部材または保護用の基
板の図5のように保護基板側から形成して、最後に光入
射側の基板1を形成するか、貼り合わせしてもよい。ま
たこうして作製した2まいのディスクを貼り合わせて両
面ディスクとしてもよい。紫外線波長領域における透過
率が大きい場合、紫外線硬化樹脂によって貼り合わせを
行うこともできる。その他の方法で貼り合わせを行って
もよい。また、また、第1および第2のディスク部材を
貼り合わせる前に第1および第2のディスク部材の最上
層上に紫外線硬化樹脂を厚さ約10μm塗布し、硬化後
に貼り合わせを行うと、エラーレートをより低減でき
る。 (各層の膜厚、材料)各層の膜厚、材料についてはそれ
ぞれ単独の好ましい範囲をとるだけでも記録・再生特性
等が向上するが、それぞれの好ましい範囲を組み合わせ
ることにより、さらに効果が上がる。
In this embodiment, the bonding is performed with the spacer layer interposed therebetween. However, a disk member having another configuration or a protection substrate may be used instead of the second disk member. As shown in FIG. 5, a disk member or a protective substrate used for bonding may be formed from the protective substrate side, and finally the substrate 1 on the light incident side may be formed or bonded. Alternatively, the two discs thus produced may be bonded together to form a double-sided disc. When the transmittance in the ultraviolet wavelength region is large, bonding can be performed using an ultraviolet curable resin. The bonding may be performed by another method. Further, if an ultraviolet curable resin is applied to a thickness of about 10 μm on the uppermost layers of the first and second disk members before the first and second disk members are bonded, and bonding is performed after curing, an error may occur. The rate can be further reduced. (Thickness and material of each layer) The recording / reproducing characteristics and the like can be improved by simply setting each of the preferred thicknesses and materials for each layer. However, the effect is further enhanced by combining the respective preferred ranges.

【0045】本実施例に記載されていない事項について
は、実施例1〜3、6〜7と同様である。
Items not described in this embodiment are the same as those in Embodiments 1 to 3 and 6 to 7.

【0046】[0046]

【発明の効果】以上説明したように、本発明によると良
好な記録・再生特性を有する情報記録媒体が得られる。
As described above, according to the present invention, an information recording medium having good recording / reproducing characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による情報記録媒体の一例の断面模式
図。
FIG. 1 is a schematic sectional view of an example of an information recording medium according to the present invention.

【符号の説明】[Explanation of symbols]

1,1′…基板、2,2′…下部保護層、3,3′…記
録膜、4,4′…上部保護層、5,5′…冷却制御層、
6,6′…反射層、7…貼り合わせ樹脂、8,8′…コ
ントラスト拡大層、14…基板。
1, 1 ': substrate, 2, 2': lower protective layer, 3, 3 ': recording film, 4, 4': upper protective layer, 5, 5 ': cooling control layer,
6, 6 ': reflection layer, 7: bonding resin, 8, 8': contrast enhancement layer, 14: substrate.

フロントページの続き (72)発明者 安藤 圭吉 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 安齋 由美子 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 新谷 俊通 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 2H111 EA04 EA12 EA23 EA32 FA02 FA11 FA12 FB09 FB30 5D029 JA01 JB13 JC20 Continued on the front page (72) Inventor Keikichi Ando 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory of Hitachi, Ltd. In-house (72) Inventor Toshimichi Shintani 1-280 Higashi-Koigabo, Kokubunji-shi, Tokyo F-term (reference) 2H111 EA04 EA12 EA23 EA32 FA02 FA11 FA12 FB09 FB30 5D029 JA01 JB13 JC20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光入射側から、基板と、光の照射によって
生じる原子配列変化により情報が記録される第1の記録
膜と、第1の反射層と、スペーサ層と、光の照射によっ
て生じる原子配列変化により情報が記録される第2の記
録膜と、第2の反射層とを有し、 前記第1の記録膜及び前記第2の記録膜はSbを有し、
前記第1の記録膜と前記第2の記録膜のSb含有率は、
30原子%以上異なることを特徴とする多層記録媒体。
1. A light-incident side, comprising: a substrate; a first recording film on which information is recorded by an atomic arrangement change caused by light irradiation; a first reflective layer; a spacer layer; A second recording film on which information is recorded by an atomic arrangement change, and a second reflective layer, wherein the first recording film and the second recording film have Sb,
The Sb content of the first recording film and the second recording film is:
A multilayer recording medium which differs by 30 atomic% or more.
【請求項2】前記第1の記録膜のSb含有量は、前記第
2の記録膜のSb含有量よりも少ないことを特徴とする
請求項1記載の多層情報記録媒体。
2. The multi-layer information recording medium according to claim 1, wherein the Sb content of said first recording film is smaller than the Sb content of said second recording film.
【請求項3】前記第1の記録膜は化合物系であり、前記
第2の記録膜は共晶系であることを特徴とする請求項1
または2記載の多層情報記録媒体。
3. The method according to claim 1, wherein the first recording film is a compound type, and the second recording film is a eutectic type.
Or the multilayer information recording medium according to 2.
【請求項4】基板と、 光の照射によって生じる原子配列変化により情報が記録
されるN個の記録膜(Nは2以上の整数)と、 前記N個の記録膜の間に形成された、N−1個のスペー
サ層と、 前記N個の記録膜の、前記基板とは反対側に形成され
た、N個の反射層とを有し、 前記N個の記録膜はそれぞれSbを含有し、Sb含有率
が30原子%以上異なることを特徴とする多層情報記録
媒体。
4. A substrate, N recording films (N is an integer of 2 or more) on which information is recorded by an atomic arrangement change caused by light irradiation, and N recording films formed between the N recording films. It has N-1 spacer layers, and N reflective layers formed on the opposite side of the N recording films from the substrate, and each of the N recording films contains Sb. Wherein the Sb content differs by 30 atomic% or more.
【請求項5】光入射側から、基板と、光の照射によって
生じる原子配列変化により情報が記録される第1の記録
膜と、第1の反射層と、スペーサ層と、光の照射によっ
て生じる原子配列変化により情報が記録される第2の記
録膜と、第2の反射層とを有し、 前記第1の記録膜はSbを含有し、前記Sbの含有率
は、15原子%以上35原子%以下であり、 前記第2の記録膜はSbを含有し、前記Sbの含有率
は、60原子%以上80原子%以下であることを特徴と
する多層記録媒体。
5. A light-incident side, a substrate, a first recording film on which information is recorded by an atomic arrangement change caused by light irradiation, a first reflective layer, a spacer layer, and light-irradiated light. A second recording film on which information is recorded by an atomic arrangement change, and a second reflective layer, wherein the first recording film contains Sb, and the content of Sb is 15 atomic% or more and 35 atomic% or more. The second recording film contains Sb, and the content of Sb is 60 atomic% or more and 80 atomic% or less.
【請求項6】前記第1の記録膜と前記第2の記録膜のS
b含有率の差は、30原子%以上であることを特徴とす
る請求項5記載の多層記録媒体。
6. The S of the first recording film and the second recording film.
6. The multilayer recording medium according to claim 5, wherein the difference in the b content is 30 atomic% or more.
JP2001173412A 2001-06-08 2001-06-08 Multilayered information recording medium Pending JP2002367222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001173412A JP2002367222A (en) 2001-06-08 2001-06-08 Multilayered information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001173412A JP2002367222A (en) 2001-06-08 2001-06-08 Multilayered information recording medium

Publications (1)

Publication Number Publication Date
JP2002367222A true JP2002367222A (en) 2002-12-20

Family

ID=19014871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001173412A Pending JP2002367222A (en) 2001-06-08 2001-06-08 Multilayered information recording medium

Country Status (1)

Country Link
JP (1) JP2002367222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057116A1 (en) * 2004-11-29 2006-06-01 Matsushita Electric Industrial Co. Ltd. Information recording medium and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057116A1 (en) * 2004-11-29 2006-06-01 Matsushita Electric Industrial Co. Ltd. Information recording medium and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6841217B2 (en) Optical information recording medium and method for manufacturing the same
JP2001209974A (en) Information recording medium
JP4065032B2 (en) Information recording medium
JP4834666B2 (en) Information recording medium and manufacturing method thereof
JP2004158145A (en) Optical recording medium
JP2000132864A (en) Information recording medium and information recording device
KR100731472B1 (en) Optical recording and playback method, and optical recording media
KR20030094048A (en) Optical recording and playback method, and optical recording media
JP2005025910A (en) Optical information recording medium and method for manufacturing same
JP2002074742A (en) Information recording medium
KR100578008B1 (en) Optical information recording medium and manufacturing method thereof, information recording method using the same, and recording apparatus
KR100678301B1 (en) Optical recording and playback method, and optical recording media
JP2006066071A (en) Information recording medium
KR20090125232A (en) Optical information recording medium and method of recording and/or reproducing therein
KR100678300B1 (en) Optical recording and playback method, and optical recording media
JP5437793B2 (en) Information recording medium and manufacturing method thereof
EP1922728B1 (en) Multilayer optical recording medium and optical recording method
JP2002367222A (en) Multilayered information recording medium
JP3653390B2 (en) Information recording medium
JP4542922B2 (en) Optical information recording medium and manufacturing method thereof
JP2006095821A (en) Photorecording medium
JP3912954B2 (en) Information recording medium
JP2004311011A (en) Optical information recording medium, its manufacturing method, and recording method and recording device of information using the medium
JP2003338083A (en) Optical information recording medium and method for manufacturing the same, and method for recording and reproducing the same
JP2001014723A (en) Information recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304