JP2006063126A - Injection molded product - Google Patents

Injection molded product Download PDF

Info

Publication number
JP2006063126A
JP2006063126A JP2004244917A JP2004244917A JP2006063126A JP 2006063126 A JP2006063126 A JP 2006063126A JP 2004244917 A JP2004244917 A JP 2004244917A JP 2004244917 A JP2004244917 A JP 2004244917A JP 2006063126 A JP2006063126 A JP 2006063126A
Authority
JP
Japan
Prior art keywords
resin
meth
monomer
injection
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004244917A
Other languages
Japanese (ja)
Inventor
Nobuya Saegusa
暢也 三枝
Shojiro Kuwabara
章二郎 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004244917A priority Critical patent/JP2006063126A/en
Publication of JP2006063126A publication Critical patent/JP2006063126A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection molded product using a resin excellent in precision moldability and heat decomposition resistance. <P>SOLUTION: The injection molded product is produced by using a resin obtained by hydrogenating aromatic rings of a copolymer having 0.25-4.0 molar ratio (A/B) of a structural unit (A mole) originating from a (meth)acrylic ester monomer over a structural unit (B mole) originating from an aromatic vinyl monomer in the structural units obtained by polymerizing a monomer composition containing the (meth)acrylic ester monomer and the aromatic vinyl monomer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は樹脂の射出成形体に関する。   The present invention relates to a resin injection molded body.

射出成形は熱可塑性樹脂の最も重要な成形法であり、我々の身の回りの樹脂製品の大量生産、低コスト化に大いに貢献してきた。近年ではより精密な射出成形が可能となり、それまで切削加工や注型法で作製されていたレンズやプリズムのような高精度を要求される物品においても射出成形による成形が可能になっている。一方で精密な射出成形が可能になるにしたがって、材料である樹脂自身にも高い流動性が要求されてきている。樹脂自身の溶融時の流動性を高めることによって金型細部にまで樹脂が到達し、精密転写が可能となるためである。   Injection molding is the most important molding method for thermoplastic resins, and has greatly contributed to mass production and cost reduction of resin products around us. In recent years, more precise injection molding has become possible, and even moldings such as lenses and prisms that have been manufactured by cutting or casting methods and require high precision can be molded by injection molding. On the other hand, as fluid injection molding becomes possible, high fluidity is required for the resin itself as a material. This is because by increasing the fluidity of the resin itself when it melts, the resin reaches the details of the mold and enables precise transfer.

溶融樹脂の流動性は樹脂の構造、分子量、成型時の温度によってある程度コントロールすることができる。樹脂の構造を変え、ガラス転移温度を低下させると溶融樹脂の流動性も低下するが、成形体実用時の耐熱性が得られない。分子量を小さくすることによっても溶融樹脂の流動性を低下させることができるが、機械物性が低下してしまう。成形温度は高いほど溶融樹脂の流動性が低下するが、熱劣化により機械物性が低下したり、着色したり、発生した揮発性のガスによって成形体の外観が不良となったりするいわゆるシルバーの発生のため、限定された範囲の中で選択する必要が生じている。   The fluidity of the molten resin can be controlled to some extent by the resin structure, molecular weight, and molding temperature. When the resin structure is changed and the glass transition temperature is lowered, the fluidity of the molten resin is also lowered, but the heat resistance during the practical use of the molded article cannot be obtained. Although the fluidity of the molten resin can also be lowered by reducing the molecular weight, the mechanical properties are lowered. The higher the molding temperature, the lower the fluidity of the molten resin, but the generation of so-called silver, which deteriorates the mechanical properties due to thermal deterioration, is colored, or the appearance of the molded product becomes poor due to the generated volatile gas. Therefore, it is necessary to select within a limited range.

実際に成形可能な温度領域であっても、特に光学用途においては着色による色調の悪化が最も重大な問題であり、わずかな着色でも色むらや輝度むら等の著しい性能低下を引き起こすため、注意が必要である。したがって、樹脂の耐熱分解性の向上が強く望まれている。また排出されるスプルー部分やランナー部分といった端材を回収、破砕し、再成形する等して再利用する試みが進んでいること点からも、高度な耐熱分解性が要求されている。   Even in the temperature range where molding is possible, especially in optical applications, deterioration of color tone due to coloring is the most serious problem, and even slight coloring may cause significant performance degradation such as color unevenness and brightness unevenness. is necessary. Therefore, it is strongly desired to improve the thermal decomposition resistance of the resin. In addition, advanced heat decomposability is required from the point that attempts are being made to recycle scrap materials such as sprue portions and runner portions that are discharged, crushed, and reshaped.

スチレン系樹脂の芳香環を水素化(核水添ともいう。)する技術は以前から知られており、ポリスチレンから得られるポリビニルシクロヘキサンは、機械強度に劣るという欠点はあるものの、透明性と耐熱変形性に優れた樹脂である。その優れた透明性と耐熱変形性から、光ディスク基盤への応用が検討されてきた(特許文献1参照。)。メタクリル酸メチルとスチレンの共重合体であるMS樹脂を核水添した樹脂も、この光ディスク用途に応用した例として一部の組成で開示されている(特許文献2参照。)が、金属との密着性が不足すること、耐熱変形性が必ずしも十分でないことから、光ディスクの基盤としては十分にその性能を発揮することができないことがあった。またプラスチックレンズに適用された例も一部の組成で開示されている(特許文献3参照。)。
特開昭63−43910号公報 特開平6−25326号公報 特開平4−75001号公報
The technology of hydrogenating aromatic rings of styrene resins (also called nuclear hydrogenation) has been known for a long time. Polyvinylcyclohexane obtained from polystyrene has the disadvantage of being inferior in mechanical strength, but it has transparency and heat distortion. It is an excellent resin. Due to its excellent transparency and heat distortion resistance, application to an optical disk substrate has been studied (see Patent Document 1). A resin obtained by nuclear hydrogenation of MS resin, which is a copolymer of methyl methacrylate and styrene, is also disclosed in some compositions as an example of application to this optical disc application (see Patent Document 2). Since the adhesiveness is insufficient and the heat distortion resistance is not always sufficient, the performance of the optical disk substrate may not be sufficiently exhibited. An example applied to a plastic lens is also disclosed with some compositions (see Patent Document 3).
Japanese Patent Laid-Open No. 63-43910 JP-A-6-25326 JP-A-4-75001

本発明は上で述べた、溶融時の流動性と耐熱分解性に優れた樹脂を用いてなる射出成形体を提供することを課題とする。   An object of the present invention is to provide an injection molded article using the above-described resin excellent in fluidity and heat decomposability at the time of melting.

本発明は上記事情に鑑み鋭意検討した結果、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーから選択したモノマー組成物を重合して得られる、特定の構成単位の組成からなる共重合体の芳香環を水素化反応することによって得られる樹脂を射出成形することで、微細なパターンが精密転写された射出成型品が歩留まりよく得られることを見出し、本発明に到った。すなわち本発明は、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを含むモノマー組成物を重合して得られる共重合体の構成単位において芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリル酸エステルモノマー由来の構成単位(Aモル)のモル比(A/B)が0.25〜4.0である共重合体の芳香環を水素化反応することによって得られる樹脂を用いてなる射出成形体に関するものである。なお、本発明における(メタ)アクリル酸とはメタクリル酸とアクリル酸とを指す表記である。 The present invention has been intensively studied in view of the above circumstances, and as a result, the fragrance of a copolymer comprising a composition of a specific structural unit obtained by polymerizing a monomer composition selected from a (meth) acrylic acid ester monomer and an aromatic vinyl monomer. It has been found that by injection molding a resin obtained by hydrogenating a ring, an injection molded product in which a fine pattern is precisely transferred can be obtained with good yield, and the present invention has been achieved. That is, the present invention relates to a structural unit (B mole) derived from an aromatic vinyl monomer in a structural unit of a copolymer obtained by polymerizing a monomer composition containing a (meth) acrylic acid ester monomer and an aromatic vinyl monomer. A resin obtained by hydrogenating an aromatic ring of a copolymer having a molar ratio (A / B) of a structural unit (A mole) derived from a (meth) acrylate monomer of 0.25 to 4.0 is used. The present invention relates to an injection molded body. In the present invention, (meth) acrylic acid is a notation indicating methacrylic acid and acrylic acid.

本発明により得られる射出成形体は、耐熱分解性が高く、溶融時の流動性に優れる樹脂を用いるため、金型の微細なパターンも精密に転写することができる。また、原料樹脂の耐熱分解性が優れているので、排出される端材を回収し、再利用して成形しても、物性の劣化が少ない。   Since the injection-molded article obtained by the present invention uses a resin having high thermal decomposition resistance and excellent fluidity at the time of melting, a fine pattern of a mold can be accurately transferred. Moreover, since the heat-resistant decomposition property of the raw material resin is excellent, even if the discharged end material is collected and reused and molded, there is little deterioration in physical properties.

本発明で用いる(メタ)アクリル酸エステルモノマーは、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニルなどの(メタ)アクリル酸アルキル類;(メタ)アクリル酸(2−ヒドロキシエチル)や(メタ)アクリル酸(2−ヒドロキシプロピル)、(メタ)アクリル酸(2−ヒドロキシ−2−メチルプロピル)などの(メタ)アクリル酸ヒドロキシアルキル類;(メタ)アクリル酸(2−メトキシエチル)、(メタ)アクリル酸(2−エトキシエチル)などの(メタ)アクリル酸アルコキシアルキル類;(メタ)アクリル酸ベンジルや(メタ)アクリル酸フェニルなどの芳香環を有する(メタ)アクリル酸エステル類;および2−(メタ)アクロイルオキシエチルホスホリルコリンなどのリン脂質類似官能基を有する(メタ)アクリル酸エステル類などをあげることができるが、物性面のバランスから、メタクリル酸アルキルを単独で用いるか、あるいはメタクリル酸アルキルとアクリル酸アルキルを併用することが好ましい。さらに、メタクリル酸メチル80〜100モル%およびアクリル酸アルキル0〜20モル%を用いることが好ましい。用いるアクリル酸アルキルのうち、特に好ましいものはアクリル酸メチルまたはアクリル酸エチルである。   Specific examples of the (meth) acrylic acid ester monomer used in the present invention include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, and (meth) acrylic acid. (Meth) acrylic acid alkyls such as stearyl, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate; (meth) acrylic acid (2-hydroxyethyl), (meth) acrylic acid (2-hydroxypropyl), ( (Meth) acrylic acid (2-hydroxy-2-methylpropyl) and other (meth) acrylic acid hydroxyalkyls; (meth) acrylic acid (2-methoxyethyl), (meth) acrylic acid (2-ethoxyethyl) and the like Alkoxyalkyl (meth) acrylates; benzyl (meth) acrylate and (meth) acrylic acid (Meth) acrylic acid esters having an aromatic ring such as nyl; and (meth) acrylic acid esters having a phospholipid-like functional group such as 2- (meth) acryloyloxyethyl phosphorylcholine, etc. From the viewpoint of physical properties, it is preferable to use alkyl methacrylate alone or to use alkyl methacrylate and alkyl acrylate together. Furthermore, it is preferable to use methyl methacrylate 80-100 mol% and alkyl acrylate 0-20 mol%. Of the alkyl acrylates used, particularly preferred are methyl acrylate or ethyl acrylate.

本発明において用いる芳香族ビニルモノマーとは、具体的にスチレン、α―メチルスチレン、p−ヒドロキシスチレン、アルコキシスチレン、およびクロロスチレンなどの芳香族ビニル化合物があげられるが、スチレンが好適に用いられる。   Specific examples of the aromatic vinyl monomer used in the present invention include aromatic vinyl compounds such as styrene, α-methylstyrene, p-hydroxystyrene, alkoxystyrene, and chlorostyrene, and styrene is preferably used.

これらモノマーを重合する方法は、公知の方法を用いることができるが、工業的にはラジカル重合による方法が簡便でよい。ラジカル重合は塊状重合法、溶液重合法、乳化重合法、懸濁重合法など公知の方法を適宜選択することができる。例えば、塊状重合法や溶液重合法の例としてはモノマーと連鎖移動剤、重合開始剤とを配合したモノマー組成物を完全混合槽に連続的にフィードし、100〜180℃で重合する連続重合法などがある。溶液重合法ではトルエンやキシレン、シクロヘキサンやメチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチルなどのエステル系溶媒やアセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフランやジオキサンなどのエーテル系溶媒、メタノールやイソプロパノールなどのアルコール系溶媒などの溶媒を、モノマー組成物と共にフィードする。重合後の反応液は重合槽から抜き出して脱揮押出機や減圧脱揮槽に導入することで揮発分を脱揮して樹脂を得ることができる。   A known method can be used as a method for polymerizing these monomers, but a method based on radical polymerization may be simple industrially. For the radical polymerization, a known method such as a bulk polymerization method, a solution polymerization method, an emulsion polymerization method or a suspension polymerization method can be appropriately selected. For example, as an example of a bulk polymerization method or a solution polymerization method, a continuous polymerization method in which a monomer composition containing a monomer, a chain transfer agent, and a polymerization initiator is continuously fed to a complete mixing tank and polymerized at 100 to 180 ° C. and so on. In solution polymerization methods, hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, methanol and isopropanol, etc. A solvent, such as an alcohol solvent, is fed with the monomer composition. The reaction liquid after the polymerization can be extracted from the polymerization tank and introduced into a devolatilizing extruder or a vacuum devolatilization tank to devolatilize the volatile matter and obtain a resin.

メタクリル酸エステル類の共重合体(メタクリル系樹脂ともいう。)のようなビニル重合体の場合、共重合体の構成単位の組成は仕込んだモノマーの組成とは必ずしも一致せず、重合反応によって実際にポリマーに取り込まれたモノマーの量によって決定される。共重合体の構成単位の比は、重合率が100%であれば仕込みモノマー組成比と一致するが、実際には50〜80%の重合率で製造する場合が多く、反応性の高いモノマーほどポリマーに取り込まれ易いため、モノマーの仕込み組成と共重合体の構成単位の組成にズレが生じるので、仕込みモノマーの組成比を適宜調整する必要がある。本発明で水素化反応に用いる、芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリル酸エステルモノマー由来の構成単位(Aモル)のモル比(A/B)としては、0.25以上4.0以下である。0.25未満になると機械強度が劣り実用性に耐えない場合がある。4.0を超えると、水素化される芳香環が少ないため、水素化反応によるガラス転移温度の向上などの性能向上効果が不足する場合がある。物性バランスの面からさらに好ましい範囲を例示するならば、1.0以上4.0.以下、特に好ましい範囲は1.0以上2.5以下である。   In the case of a vinyl polymer such as a copolymer of methacrylic acid esters (also referred to as a methacrylic resin), the composition of the constituent unit of the copolymer is not necessarily the same as the composition of the charged monomer, and is actually determined by the polymerization reaction. Determined by the amount of monomer incorporated into the polymer. The ratio of the constituent units of the copolymer is the same as the charged monomer composition ratio when the polymerization rate is 100%, but in practice, it is often produced at a polymerization rate of 50 to 80%. Since it is easily incorporated into the polymer, there is a difference between the charged composition of the monomer and the composition of the constituent unit of the copolymer, so the composition ratio of the charged monomer needs to be adjusted appropriately. The molar ratio (A / B) of the structural unit (A mole) derived from the (meth) acrylic acid ester monomer to the structural unit (B mole) derived from the aromatic vinyl monomer used in the hydrogenation reaction in the present invention is 0. 25 or more and 4.0 or less. If it is less than 0.25, the mechanical strength may be inferior and the practicality may not endure. When it exceeds 4.0, since there are few aromatic rings hydrogenated, performance improvement effects, such as a glass transition temperature improvement by hydrogenation reaction, may be insufficient. If a more preferable range is illustrated from the standpoint of balance of physical properties, 1.0 to 4.0. Hereinafter, a particularly preferable range is 1.0 or more and 2.5 or less.

上記手法などで得られた共重合体は、適当な溶媒にて溶解して水素化反応を行うが、重合の際と同じ溶媒を用いても良いし、異なる溶媒を用いても良い。水素化反応で用いる溶媒は、水素化反応前後の共重合体の溶解性や水素の溶解性が良好なもののうち、水素化される部位を持たないものが好ましい。例えば、シクロヘキサンやメチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチルなどのエステル系溶媒やアセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフランやジオキサンなどのエーテル系溶媒、メタノールやイソプロパノールなどのアルコール系溶媒が用いられる。   The copolymer obtained by the above method or the like is dissolved in an appropriate solvent and subjected to a hydrogenation reaction. The same solvent as that used in the polymerization may be used, or a different solvent may be used. The solvent used in the hydrogenation reaction is preferably a solvent that does not have a hydrogenated site among those having good copolymer solubility and hydrogen solubility before and after the hydrogenation reaction. For example, hydrocarbon solvents such as cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, and alcohol solvents such as methanol and isopropanol are used. .

水素化反応は、触媒存在下、バッチ式反応や連続流通式反応など、公知の手法を用いることができるが、好ましい条件として、水素圧は3から30MPa、反応温度は60から250℃の範囲内で行われる。反応温度が低すぎると反応が進行しにくく、反応温度が高すぎると分子鎖の切断による分子量の低下が起こったり、エステル部位の水素化反応までもが進行しやすくなる。分子鎖の切断による分子量低下を防ぎかつ円滑に反応を進行させるには、用いる触媒の種類および濃度、共重合体の溶液濃度、分子量などにより適宜決定される適切な温度、水素圧により水素化反応を行うことが好ましい。   For the hydrogenation reaction, a known method such as a batch reaction or a continuous flow reaction can be used in the presence of a catalyst. Preferred conditions include a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. Done in If the reaction temperature is too low, the reaction is difficult to proceed. If the reaction temperature is too high, the molecular weight is reduced due to the cleavage of the molecular chain, and the hydrogenation reaction at the ester site is likely to proceed. In order to prevent molecular weight drop due to molecular chain scission and allow the reaction to proceed smoothly, the hydrogenation reaction is performed at an appropriate temperature and hydrogen pressure appropriately determined by the type and concentration of the catalyst used, the solution concentration of the copolymer, the molecular weight, etc. It is preferable to carry out.

触媒には公知の触媒を使用することができる。具体的にはニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属、または該金属の酸化物、塩、錯体などの化合物をカーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土等の多孔性担体に担持した固体触媒が挙げられる。これらのなかでもニッケル、パラジウム、白金などの金属をカーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土に担持したものが好ましく用いられる。担持量としては0.1〜30wt%が好ましい。   A known catalyst can be used as the catalyst. Specifically, metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium, or compounds such as oxides, salts, and complexes of the metals are used as porous carriers such as carbon, alumina, silica, silica / alumina, and diatomaceous earth. Examples include a supported solid catalyst. Among these, those in which a metal such as nickel, palladium, or platinum is supported on carbon, alumina, silica, silica / alumina, or diatomaceous earth are preferably used. The supported amount is preferably 0.1 to 30 wt%.

また水素化反応率は芳香環に対して70%以上であることが好ましく、さらに好ましくは80%以上、特に好ましくは90%以上である。70%未満の場合には樹脂が白濁して透明性が低下する場合があり、好ましくない。   The hydrogenation reaction rate is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more with respect to the aromatic ring. If it is less than 70%, the resin may become cloudy and the transparency may decrease, which is not preferable.

本発明では射出圧縮成形や、超高速射出成形や共射出成形、ガスアシスト射出成形など様々な射出成形が可能である。金型構造も公知のものを用いることができる。射出成形時の温度条件は、幅広く設定することができるが、通常200℃以上300℃未満の範囲が好ましい。200℃未満では十分に可塑化が行われず、精密に金型のパターンを転写できないおそれがあり、好ましくない。また300℃を超えると、主鎖のランダム分解が進行して揮発性の成分を発生し、成形体の外観が損なわれ、好ましくない。さらに好ましい範囲は210℃から280℃、特に好ましい範囲は220℃から270℃の範囲である。   In the present invention, various injection moldings such as injection compression molding, ultra-high speed injection molding, co-injection molding, and gas assist injection molding are possible. A known mold structure can also be used. The temperature conditions at the time of injection molding can be set widely, but usually a range of 200 ° C. or more and less than 300 ° C. is preferable. If it is less than 200 ° C., the plasticization is not sufficiently performed, and there is a possibility that the mold pattern cannot be accurately transferred, which is not preferable. On the other hand, if it exceeds 300 ° C., random decomposition of the main chain proceeds to generate a volatile component, and the appearance of the molded article is impaired, which is not preferable. A more preferred range is 210 ° C. to 280 ° C., and a particularly preferred range is 220 ° C. to 270 ° C.

本発明の射出成形体は耐熱分解性に優れていることから、射出成形時に排出されるスプルー部分および/またはランナー部分といった端材を破砕し、原料の樹脂に混合して用いることができるため、製品の歩留まりが大きく向上する。通常、熱可塑性樹脂は熱成形を繰り返すと熱履歴により劣化して着色したりするが、本発明の射出成形体ではそれを最小限度にとどめることができる。もちろん端材のみから成形体を製造することも可能ではあるが、製品の品質を安定させるため、原料の樹脂に混合して用いると良い。端材を配合する割合は、前記樹脂ならびに該スプルー部分および/またはランナー部分の合計に対し該スプルー部分および/またはランナー部分を20重量%以下混合することが好ましく、さらに好ましくは10重量%以下、特に好ましくは5重量%以下である。   Since the injection-molded article of the present invention is excellent in thermal decomposition resistance, it can be used by crushing end materials such as sprue parts and / or runner parts discharged during injection molding, and mixing them with the raw resin. Product yield is greatly improved. Usually, when a thermoplastic resin is repeatedly thermoformed, the thermoplastic resin deteriorates due to the heat history and becomes colored, but the injection molded article of the present invention can minimize it. Of course, it is possible to manufacture a molded body from only the end material, but in order to stabilize the quality of the product, it is preferable to use it mixed with the raw material resin. The ratio of blending the mill ends is preferably 20% by weight or less, more preferably 10% by weight or less of the sprue part and / or the runner part with respect to the total of the resin and the sprue part and / or the runner part. Especially preferably, it is 5 weight% or less.

本発明の射出成形体を得る上で、樹脂に酸化防止剤などを配合しない状態であっても、良好な成形体を得ることができるが、適当な酸化防止剤を配合することにより、その効果を高めることができる。酸化防止剤としては公知のものを使用することができるが、具体的にはヒンダードフェノール系酸化防止剤、リン酸系酸化防止剤などが挙げられ、これを単独または併用して用いると良い。添加量は樹脂に対して50〜10000ppm程度が好ましい。   In obtaining the injection molded article of the present invention, a good molded article can be obtained even in a state where no antioxidant or the like is added to the resin, but the effect can be obtained by adding an appropriate antioxidant. Can be increased. Known antioxidants can be used, and specific examples include hindered phenolic antioxidants and phosphoric acid antioxidants, which may be used alone or in combination. The addition amount is preferably about 50 to 10,000 ppm with respect to the resin.

また、必要に応じて本発明の射出成形体のバランスを損なわない程度に他の添加剤たとえば離型剤、帯電防止剤、顔料や染料などの着色剤、UV吸収剤、可塑剤、滑剤、難燃剤、防菌剤、光拡散剤などを配合しても良い。離型性を向上させるために金型に離型剤を吹き付けておくことも有効であるが、量が多いと成形体表面の外観が損なわれるので、最小量にとどめるようにするか、あらかじめ内添しておくことが好ましい。   Further, if necessary, other additives such as mold release agents, antistatic agents, colorants such as pigments and dyes, UV absorbers, plasticizers, lubricants, difficult to the extent that the balance of the injection molded article of the present invention is not impaired. You may mix | blend a flame retardant, antibacterial agent, a light-diffusion agent, etc. It is also effective to spray a mold release agent on the mold to improve the releasability, but if the amount is large, the appearance of the surface of the molded body will be damaged. It is preferable to attach.

本発明の射出成形体は熱劣化などによる成形不良の少ない、色調に優れた物品である。具体的な用途としては、雑貨や日用品、電子電気製品部品、医療器具部品、自動車部品、航空機部品などを挙げることができるが、各種導光板や導光体、光ファイバー用接続カプラ、光導波路、ディスプレイ前面パネル、プラスチックレンズ、プリズム、プラスチックレンズ基板、光学フィルター、光学フィルム、光記録媒体基盤などの精密転写性を要求される光学物品に最も好適である。   The injection-molded article of the present invention is an article excellent in color tone with few molding defects due to thermal deterioration or the like. Specific applications include miscellaneous goods, daily necessities, electronic and electrical product parts, medical instrument parts, automobile parts, aircraft parts, etc., but various light guide plates and light guides, optical fiber connection couplers, optical waveguides, displays It is most suitable for optical articles that require precision transfer properties such as front panels, plastic lenses, prisms, plastic lens substrates, optical filters, optical films, and optical recording medium substrates.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの例によりその範囲を限定されるものではない。なお、射出成形体およびその原料となる樹脂の評価方法は次の通りである。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by these examples. In addition, the evaluation method of injection molding and resin used as the raw material is as follows.

(1)共重合体中の構成単位のモル比の算出はH―NMR測定(400MHz)により行った。
(2)樹脂の水素化反応率は水素化反応前後のUVスペクトル測定における260nmの吸収の減少率で評価した。
(3)樹脂のガラス転移温度(Tg)の評価はセイコー電子工業(株)製DSC220型示差走査熱量測定(DSC)装置を用いた。樹脂10mgを10℃/min.で測定し、中点法で算出した。
(4)成形体の転写性は、計量条件、保圧条件を種々変更し、安定した成形体が得られるようになった後に、20個の成形体を作製して評価し、全ての成形体にシボパターンが隅々まできちんと賦形されているものは○、シボパターンに1カ所でも転写ムラがあるものは△、成形体の全てに転写ムラが認められるものを×とした。
(5)成形体の外観は、計量条件、保圧条件を種々変更し、安定した成形体が得られるようになった後に、20個の成形体を作製して評価し、シルバーの発生が全くないものを○、シルバーが発生したものを△とした。成形体の全てにシルバーが認められるものを×とした。
(6)成形体のリサイクル性は、射出成形時に排出されるスプルー部分および/またはランナー部分を破砕し、原料の樹脂に所定の量を混合して用いてリサイクル成形体を成形し、元の成形体とリサイクル成形体の二つの成形体のYI値を測定し、その差をリサイクル性として評価した。YI値の測定は、日本電色工業製色度・濁度測定機COH−300Aを用いて、3.2mm厚の円盤を透過法で測定した。一般的に樹脂は熱履歴を受けることによって、黄色に着色するため、この値が小さいほどリサイクル性に優れていると言える。
(1) The molar ratio of structural units in the copolymer was calculated by 1 H-NMR measurement (400 MHz).
(2) The hydrogenation reaction rate of the resin was evaluated by the rate of decrease in absorption at 260 nm in the UV spectrum measurement before and after the hydrogenation reaction.
(3) The glass transition temperature (Tg) of the resin was evaluated by using a DSC220 type differential scanning calorimetry (DSC) apparatus manufactured by Seiko Denshi Kogyo Co., Ltd. 10 mg of resin was added at 10 ° C./min. And calculated by the midpoint method.
(4) The transferability of the molded product was evaluated by preparing 20 molded products after various measurement conditions and holding pressure conditions were changed and stable molded products were obtained. In the case where the wrinkle pattern is formed in every corner, the mark is given as “◯”, when the wrinkle pattern has transfer unevenness even at one place, “△”, and when the transfer unevenness is observed in all the molded articles, “x” is given.
(5) The appearance of the molded product was evaluated by producing and evaluating 20 molded products after various measurement conditions and holding pressure conditions were changed and stable molded products were obtained. The case where there was no silver was marked as ◯, and the case where silver was generated was marked as △. The case where silver was recognized in all of the molded bodies was rated as x.
(6) The recyclability of the molded body is that the sprue part and / or runner part discharged during the injection molding is crushed, a predetermined amount is mixed with the raw material resin, the recycled molded body is molded, and the original molding is performed. The YI values of the two molded bodies, the molded body and the recycled molded body, were measured, and the difference was evaluated as the recyclability. The YI value was measured by a transmission method using a 3.2 mm thick disc using a chromaticity / turbidity measuring device COH-300A manufactured by Nippon Denshoku Industries Co., Ltd. In general, the resin is colored yellow by receiving a thermal history. Therefore, it can be said that the smaller the value, the better the recyclability.

[樹脂の製造]
<製造例1>
モノマー成分としてメタクリル酸メチル59.9モル%とスチレン39.9モル%を、連鎖移動剤としてn−ドデシルメルカプタンを0.17モル%、重合開始剤としてt−アミルパーオキシ2−エチルヘキサノエートを4.2×10-3モル%の濃度となるように配合したモノマー組成物をヘリカルリボン翼付き10リットル完全混合槽に1kg/時間で連続的にフィードし、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。
[Production of resin]
<Production Example 1>
Methyl methacrylate 59.9 mol% and styrene 39.9 mol% as monomer components, n-dodecyl mercaptan 0.17 mol% as chain transfer agent, and t-amylperoxy 2-ethylhexanoate as polymerization initiator the 4.2 × 10 -3 mol% of the monomer composition was blended so that the concentration was continuously fed at 1 kg / time 10 l complete mixing tank with a helical ribbon blade, the average residence time of 2.5 hours, Continuous polymerization was performed at a polymerization temperature of 150 ° C.

重合槽液面が一定となるように、底部から反応液をギヤポンプで抜き出し、重合液を150℃に維持しながら、ベント口を備えた脱揮押出機に導入して揮発分を脱揮し、ストランドを切断してペレットとした(樹脂A1)。このとき共重合体中の構成モノマー単位のモル比(A/B)は1.5であった。   The reaction liquid is withdrawn from the bottom with a gear pump so that the polymerization tank liquid level is constant, and while maintaining the polymerization liquid at 150 ° C., it is introduced into a devolatilizing extruder equipped with a vent port to devolatilize the volatile matter, The strand was cut into pellets (resin A1). At this time, the molar ratio (A / B) of the constituent monomer units in the copolymer was 1.5.

上記、樹脂A1をジオキサンに溶解し、10wt%ジオキサン溶液を調製した。1000mLオートクレーブ装置に10wt%ジオキサン溶液を500重量部、10wt%Pd/C(NEケムキャット社製)を1重量部仕込み、水素圧10MPaで200℃、15時間保持して水素化反応した。フィルターにより触媒を除去した後、ジオキサンを加熱留去して反応液を50wt%まで濃縮、トルエンで再び10wt%まで希釈することを繰り返して溶媒置換し、50wt%トルエン溶液を得た。これを再びベント口を備えた脱揮押出機に導入して揮発分を脱揮、ストランドを切断してペレットを得た(樹脂A2)。水素化反応率は96%であった。樹脂A1およびA2のガラス転移温度を評価した。結果を表1に示す。   The resin A1 was dissolved in dioxane to prepare a 10 wt% dioxane solution. A 1000 mL autoclave was charged with 500 parts by weight of a 10 wt% dioxane solution and 1 part by weight of 10 wt% Pd / C (manufactured by NE Chemcat), and the hydrogenation reaction was carried out by maintaining the hydrogen pressure at 10 MPa at 200 ° C. for 15 hours. After removing the catalyst with a filter, dioxane was heated to distill off, the reaction solution was concentrated to 50 wt%, and diluted with toluene again to 10 wt% to replace the solvent, thereby obtaining a 50 wt% toluene solution. This was again introduced into a devolatilizing extruder equipped with a vent port, volatile components were devolatilized, and the strands were cut to obtain pellets (resin A2). The hydrogenation reaction rate was 96%. The glass transition temperatures of the resins A1 and A2 were evaluated. The results are shown in Table 1.

<製造例2>
モノマー成分としてメタクリル酸メチル80.0モル%とスチレン19.8モル%を用いた以外は製造例1と同様にして樹脂を合成した(樹脂B1)。共重合体中の構成モノマー単位のモル比(A/B)は4.0であった。
<Production Example 2>
A resin was synthesized in the same manner as in Production Example 1 except that 80.0 mol% methyl methacrylate and 19.8 mol% styrene were used as monomer components (resin B1). The molar ratio (A / B) of the constituent monomer units in the copolymer was 4.0.

樹脂A1の代わりに樹脂B1を用いた以外は製造例1と同様にして、水素化反応してペレットを得た(樹脂B2)。水素化反応率は100%であった。樹脂B1および樹脂B2のガラス転移温度を評価した。結果を表1に示す。   Pellets were obtained by a hydrogenation reaction in the same manner as in Production Example 1 except that resin B1 was used instead of resin A1 (resin B2). The hydrogenation reaction rate was 100%. The glass transition temperatures of Resin B1 and Resin B2 were evaluated. The results are shown in Table 1.

<製造例3>
モノマー成分としてメタクリル酸メチル20.4モル%とスチレン79.4モル%を用いた以外は製造例1と同様にして樹脂を合成した(樹脂C1)。共重合体中の構成モノマー単位のモル比(A/B)は0.25であった。
<Production Example 3>
A resin was synthesized in the same manner as in Production Example 1 except that 20.4 mol% methyl methacrylate and 79.4 mol% styrene were used as monomer components (resin C1). The molar ratio (A / B) of the constituent monomer units in the copolymer was 0.25.

樹脂A1の代わりに樹脂C1を用いた以外は製造例1と同様にして、水素化反応してペレットを得た(樹脂C2)。水素化反応率は94%であった。樹脂C1および樹脂C2のガラス転移温度を評価した。結果を表1に示す。   Pellets were obtained by a hydrogenation reaction in the same manner as in Production Example 1 except that resin C1 was used instead of resin A1 (resin C2). The hydrogenation reaction rate was 94%. The glass transition temperatures of Resin C1 and Resin C2 were evaluated. The results are shown in Table 1.

[成形体の作製]
<実施例1>
樹脂A2を用いて電動射出成形機(ファナック製AUTOSHOT−100B)により、シリンダ温度は260℃、金型温度は(ガラス転移温度−30)℃として設定し、冷却時間は40秒として、50mmx50mm、厚さ3.2mmの平板試験片(金型の片面にシボパターン有り)を作製し、成形体の転写性と外観(シルバーの発生の有無)を目視で評価した。結果を表1に示す。
[Production of molded body]
<Example 1>
By using an electric injection molding machine (FANUC AUTOSHOT-100B) using resin A2, the cylinder temperature is set to 260 ° C., the mold temperature is set to (glass transition temperature-30) ° C., the cooling time is 40 seconds, and the thickness is 50 mm × 50 mm. A 3.2 mm flat plate test piece (with a wrinkle pattern on one side of the mold) was prepared, and the transferability and appearance (whether silver was generated) of the molded body were visually evaluated. The results are shown in Table 1.

<実施例2>
樹脂A2の代わりに樹脂B2を用いた以外は実施例1と同様にして試験片を作製し、成形体の転写性と外観(シルバーの発生の有無)を目視で評価した。結果を表1に示す。
<Example 2>
A test piece was prepared in the same manner as in Example 1 except that the resin B2 was used instead of the resin A2, and the transferability and appearance (whether silver was generated) of the molded body were visually evaluated. The results are shown in Table 1.

<実施例3>
樹脂A2の代わりに樹脂C2を用いた以外は実施例1と同様にして試験片を作製し、成形体の転写性と外観(シルバーの発生の有無)を目視で評価した。結果を表1に示す。
<Example 3>
A test piece was prepared in the same manner as in Example 1 except that the resin C2 was used instead of the resin A2, and the transferability and appearance (whether silver was generated) of the molded body were visually evaluated. The results are shown in Table 1.

<比較例1>
樹脂A2の代わりに樹脂A1を用いた以外は実施例1と同様にして試験片を作製し、成形体の転写性と外観(シルバーの発生の有無)を目視で評価した。結果を表1に示す。
<Comparative Example 1>
A test piece was prepared in the same manner as in Example 1 except that the resin A1 was used instead of the resin A2, and the transferability and appearance (whether silver was generated) of the molded body were visually evaluated. The results are shown in Table 1.

<比較例2>
樹脂A2の代わりに樹脂B1を用いた以外は実施例1と同様にして試験片を作製し、成形体の転写性と外観(シルバーの発生の有無)を目視で評価した。結果を表1に示す。
<Comparative example 2>
A test piece was prepared in the same manner as in Example 1 except that the resin B1 was used instead of the resin A2, and the transferability and appearance (whether silver was generated) of the molded body were visually evaluated. The results are shown in Table 1.

<比較例3>
樹脂A2の代わりに樹脂C1を用いた以外は実施例1と同様にして試験片を作製し、成形体の転写性と外観(シルバーの発生の有無)を目視で評価した。結果を表1に示す。
<Comparative Example 3>
A test piece was prepared in the same manner as in Example 1 except that the resin C1 was used instead of the resin A2, and the transferability and appearance (whether silver was generated) of the molded body were visually evaluated. The results are shown in Table 1.

Figure 2006063126
Figure 2006063126

[リサイクル性の評価]
<実施例4>
実施例1と同様にして、樹脂A2を用いて50φ、3.2mm厚の円盤を成形した。成形体の射出成形時に排出されるスプルー部分およびランナー部分を破砕しフレーク状にした後、樹脂A2ならびにスプルー部分およびランナー部分の合計に対し10重量%のスプルー部分およびランナー部分を混合(ドライブレンド)して用いて、3.2mm厚の円盤(リサイクル成形体)を成形した。リサイクル性とリサイクル成形体の外観を評価した。結果を表2に示す。
[Evaluation of recyclability]
<Example 4>
In the same manner as in Example 1, a disk having a diameter of 50φ and a thickness of 3.2 mm was formed using the resin A2. After sprue part and runner part discharged at the time of injection molding of the molded product are crushed into flakes, resin A2 and 10% by weight of sprue part and runner part with respect to the total of sprue part and runner part are mixed (dry blend) Then, a 3.2 mm thick disk (recycled molded body) was formed. Recyclability and the appearance of the recycled molded body were evaluated. The results are shown in Table 2.

<実施例5>
樹脂A2の代わりに樹脂B2を用いた以外は実施例4と同様にして円盤を作製しリサイクル性、リサイクル成形体の外観(シルバーの発生の有無)を評価した。結果を表2に示す。
<Example 5>
A disk was prepared in the same manner as in Example 4 except that the resin B2 was used instead of the resin A2, and the recyclability and the appearance of the recycled molded body (whether silver was generated) were evaluated. The results are shown in Table 2.

<実施例6>
樹脂A2の代わりに樹脂C2を用いた以外は実施例4と同様にして円盤を作製しリサイクル性、リサイクル成形体の外観(シルバーの発生の有無)を評価した。結果を表2に示す。
<Example 6>
A disk was prepared in the same manner as in Example 4 except that the resin C2 was used instead of the resin A2, and the recyclability and the appearance of the recycled molded body (whether silver was generated) were evaluated. The results are shown in Table 2.

<比較例4>
樹脂A2の代わりに樹脂A1を用いた以外は実施例4と同様にして円盤を作製しリサイクル性、リサイクル成形体の外観(シルバーの発生の有無)を評価した。結果を表2に示す。
<Comparative example 4>
A disk was prepared in the same manner as in Example 4 except that the resin A1 was used instead of the resin A2, and the recyclability and the appearance of the recycled molded body (whether silver was generated) were evaluated. The results are shown in Table 2.

<比較例5>
樹脂A2の代わりに樹脂B1を用いた以外は実施例4と同様にして円盤を作製しリサイクル性、リサイクル成形体の外観(シルバーの発生の有無)を評価した。結果を表2に示す。
<Comparative Example 5>
A disk was prepared in the same manner as in Example 4 except that the resin B1 was used instead of the resin A2, and the recyclability and the appearance of the recycled molded body (whether silver was generated) were evaluated. The results are shown in Table 2.

<比較例6>
樹脂A2の代わりに樹脂C1を用いた以外は実施例4と同様にして円盤を作製しリサイクル性、リサイクル成形体の外観(シルバーの発生の有無)を評価した。結果を表2に示す。
<Comparative Example 6>
A disk was prepared in the same manner as in Example 4 except that the resin C1 was used instead of the resin A2, and the recyclability and the appearance of the recycled molded body (whether silver was generated) were evaluated. The results are shown in Table 2.

Figure 2006063126
Figure 2006063126

Claims (5)

(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを含むモノマー組成物を重合して得られる共重合体の構成単位において芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリル酸エステルモノマー由来の構成単位(Aモル)のモル比(A/B)が0.25〜4.0である共重合体の芳香環を水素化反応した樹脂を用いてなる射出成形体。 (Meth) acrylic acid ester with respect to structural unit (B mole) derived from aromatic vinyl monomer in the structural unit of copolymer obtained by polymerizing monomer composition containing (meth) acrylic acid ester monomer and aromatic vinyl monomer An injection-molded article using a resin obtained by hydrogenating an aromatic ring of a copolymer having a monomer-derived structural unit (A mole) molar ratio (A / B) of 0.25 to 4.0. 前記芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリル酸エステルモノマー由来の構成単位(Aモル)のモル比(A/B)が1.0〜4.0である共重合体の芳香環を水素化反応した樹脂を用いてなる請求項1記載の射出成形体。 The copolymer whose molar ratio (A / B) of the structural unit (A mol) derived from the (meth) acrylic acid ester monomer to the structural unit (B mole) derived from the aromatic vinyl monomer is 1.0 to 4.0 The injection-molded article according to claim 1, wherein a resin obtained by hydrogenating the aromatic ring is used. 前記(メタ)アクリル酸エステルモノマーがメタクリル酸メチル80〜100モル%およびアクリル酸アルキル0〜20モル%からなり、前記芳香族ビニルモノマーがスチレンである共重合体の芳香環を水素化反応した樹脂を用いてなる請求項1または2に記載の射出成形体。 Resin obtained by hydrogenating an aromatic ring of a copolymer in which the (meth) acrylic acid ester monomer is composed of 80 to 100 mol% of methyl methacrylate and 0 to 20 mol% of alkyl acrylate, and the aromatic vinyl monomer is styrene. The injection-molded article according to claim 1 or 2, comprising: 水素化反応率が芳香環に対して70%以上である樹脂を用いてなる請求項1ないし3のいずれかに記載の射出成形体。 The injection-molded article according to any one of claims 1 to 3, wherein a resin having a hydrogenation reaction rate of 70% or more with respect to the aromatic ring is used. 射出成形時に排出されるスプルー部分および/またはランナー部分を破砕し、前記樹脂ならびに該スプルー部分および/またはランナー部分の合計に対し該スプルー部分および/またはランナー部分を20重量%以下混合して用いてなる請求項1ないし4のいずれかに記載の射出成形体。 The sprue part and / or the runner part discharged at the time of injection molding are crushed, and the sprue part and / or the runner part are mixed and used in an amount of 20% by weight or less based on the total of the resin and the sprue part and / or the runner part. The injection-molded article according to any one of claims 1 to 4.
JP2004244917A 2004-08-25 2004-08-25 Injection molded product Pending JP2006063126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244917A JP2006063126A (en) 2004-08-25 2004-08-25 Injection molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244917A JP2006063126A (en) 2004-08-25 2004-08-25 Injection molded product

Publications (1)

Publication Number Publication Date
JP2006063126A true JP2006063126A (en) 2006-03-09

Family

ID=36109894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244917A Pending JP2006063126A (en) 2004-08-25 2004-08-25 Injection molded product

Country Status (1)

Country Link
JP (1) JP2006063126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291184A (en) * 2005-03-14 2006-10-26 Mitsubishi Gas Chem Co Inc Manufacturing method of hydrogenated polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291184A (en) * 2005-03-14 2006-10-26 Mitsubishi Gas Chem Co Inc Manufacturing method of hydrogenated polymer

Similar Documents

Publication Publication Date Title
KR100607006B1 (en) Styrene Polymer Resin and Composition Thereof
JP5713014B2 (en) Thermoplastic resin laminate
JP4306682B2 (en) Styrene copolymer and process for producing the same
KR101346528B1 (en) Method of Preparing Hydrogenated Polymer
EP1702934B1 (en) Method of producing hydrogenated polymers
JP5023519B2 (en) Method for producing hydrogenated polymer
JP3781110B2 (en) Molding method and molded body of vinyl alicyclic hydrocarbon polymer composition
JP2006063126A (en) Injection molded product
JP2003128707A (en) Methacrylic resin for optical material and method for producing the same
JP5812001B2 (en) Thermoplastic transparent resin composition
KR102501480B1 (en) Antistatic resin composition, method for producing antistatic resin composition, and packing material for electronic component
KR101968378B1 (en) Thermoplastic resin
JP2008015199A (en) Resin composition for optical material, and optical element
JP4479894B2 (en) Light diffusing resin
JP6524760B2 (en) Thermoplastic transparent resin composition
JP6524761B2 (en) Thermoplastic resin composition
JP2009179668A (en) Heat-resistant styrenic resin composition and method for producing the same
JP5368712B2 (en) Weather resistant heat resistant styrene resin composition and method for producing the same
JP2014077044A (en) Method of producing nuclear hydrogenated polymer using material containing no sulfur
JP2001133736A (en) Spectacle lens and method for manufacturing the same
JP2010047738A (en) Hydrogenated styrene-based polymer
JP2002060572A (en) Resin composition and method for producing the same
JP2010007006A (en) Method for producing vinyl alicyclic hydrocarbon polymer
JP2005187641A (en) Transparent resin composition