JP2006059968A - Semiconductor device and its manufacturing method, ferroelectric capacitor structure - Google Patents

Semiconductor device and its manufacturing method, ferroelectric capacitor structure Download PDF

Info

Publication number
JP2006059968A
JP2006059968A JP2004239435A JP2004239435A JP2006059968A JP 2006059968 A JP2006059968 A JP 2006059968A JP 2004239435 A JP2004239435 A JP 2004239435A JP 2004239435 A JP2004239435 A JP 2004239435A JP 2006059968 A JP2006059968 A JP 2006059968A
Authority
JP
Japan
Prior art keywords
film
ferroelectric
electrode member
member layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004239435A
Other languages
Japanese (ja)
Inventor
Kenichi Kurokawa
賢一 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004239435A priority Critical patent/JP2006059968A/en
Publication of JP2006059968A publication Critical patent/JP2006059968A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having a stack capacitor structure of lower electrode/ferroelectric film/upper electrode, in which excess capacitor structure is eliminated from a lower electrode and crystal orientation of the lower electrode and the overlying ferroelectric film is enhanced, and to provide its manufacturing method and a ferroelectric capacitor structure. <P>SOLUTION: The semiconductor device comprises a transistor element 12 formed on a semiconductor substrate 11, an insulating film 13 covering the transistor element 12, a conductive plug 14 penetrating the insulating film 13 and being connected with the source S of the transistor element 12, and a ferroelectric capacitor C1 formed on the insulating film 13 and constituted of a lower electrode 15 being connected with the conductive plug 14, a ferroelectric film 16 and an upper electrode 17. At least the lower electrode 15 is arranged with an interlayer film 152 for enhancing ferroelectric characteristics and includes a first multilayer portion L1, consisting of a first electrode member layer 151/the interlayer film 152/a second electrode member layer 153 from the conductive plug 14 side, and a second multilayer portion L2, where the interlayer film 152 is removed and the first electrode member layer 151 is connected with the second electrode member layer 153. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、下部電極/強誘電体膜/上部電極のスタックキャパシタ構造を有する半導体装置及びその製造方法、強誘電体キャパシタ構造に関する。   The present invention relates to a semiconductor device having a stacked capacitor structure of lower electrode / ferroelectric film / upper electrode, a manufacturing method thereof, and a ferroelectric capacitor structure.

強誘電体メモリは、高速性、低消費電力、高集積性、耐書き換え特性に優れた不揮発性メモリの一つである。強誘電体メモリは、スタックキャパシタ構造にした場合、トランジスタ素子と接続されるW等のコンタクトプラグ上に下部電極/強誘電体膜/上部電極のキャパシタが構成される。下部電極は、当然のことながらコンタクトプラグと導通のとれる導電性材料で構成される。   A ferroelectric memory is one of nonvolatile memories excellent in high speed, low power consumption, high integration, and rewrite resistance. When the ferroelectric memory has a stacked capacitor structure, a capacitor of lower electrode / ferroelectric film / upper electrode is formed on a contact plug such as W connected to the transistor element. As a matter of course, the lower electrode is made of a conductive material that is electrically connected to the contact plug.

強誘電体膜における強誘電体材料がPZT((PbZrTi1−X)系:ジルコン酸チタン酸鉛系)の場合、下部電極に用いられるPtは、その結晶配向性が重要である。すなわち、強誘電体キャパシタは、Pt(111)結晶配向性を高めることによって、PZTの(111)結晶配向性が引き継がれ、良好な特性を得ることとなる。 Ferroelectric material of the ferroelectric film is PZT: For ((PbZr X Ti 1-X O 3) based lead zirconate titanate-based), Pt used for the lower electrode, the crystalline orientation thereof is important . That is, in the ferroelectric capacitor, by improving the Pt (111) crystal orientation, the (111) crystal orientation of PZT is inherited and good characteristics are obtained.

Ptの結晶配向性は、下地材料によって異なる。一般に、強誘電体材料に関する特性評価は、下地材料としてTi、TiOが好適に用いられる。例えば、PZTの膜質、強誘電体特性は、SiO/Ti/Ptの積層や、SiO/TiO/Pt積層といった下地材料を電極として用い、評価される。これにより、Ptの結晶配向性(Pt(111))が期待でき、PZTの結晶配向性も向上する。このため、良好な特性が得られる。 The crystal orientation of Pt varies depending on the underlying material. In general, Ti and TiO X are suitably used as a base material for property evaluation relating to a ferroelectric material. For example, the film quality and ferroelectric characteristics of PZT are evaluated using an underlying material such as a SiO 2 / Ti / Pt laminate or a SiO 2 / TiO X / Pt laminate as an electrode. Thereby, the crystal orientation of Pt (Pt (111)) can be expected, and the crystal orientation of PZT is also improved. Therefore, good characteristics can be obtained.

また、従来技術には、強誘電体膜を形成する際、下部電極は、下地凹凸のない平坦な表面を構成するという開示がある(例えば、特許文献1参照)。ここでの下部電極のバリアメタルはTiO膜、下部電極はPtを用いる。下部電極のパターニング後、下部電極表面は、層間絶縁膜と共にCMP(化学的機械的研磨)法により平坦化される。この[特許文献1]は、強誘電体膜の結晶配向性云々の開示はないが、下地凹凸のない平坦な下部電極に良好な膜特性を有する強誘電体膜を形成することが可能であるとしている。
特開2000−138349号公報(第3頁、図1)
Further, the prior art has disclosed that when forming a ferroelectric film, the lower electrode constitutes a flat surface without underlying irregularities (see, for example, Patent Document 1). Here, a TiO 2 film is used for the barrier metal of the lower electrode, and Pt is used for the lower electrode. After the patterning of the lower electrode, the surface of the lower electrode is planarized by a CMP (Chemical Mechanical Polishing) method together with the interlayer insulating film. Although this [Patent Document 1] does not disclose the crystal orientation of the ferroelectric film, it is possible to form a ferroelectric film having good film characteristics on a flat lower electrode without underlying irregularities. It is said.
JP 2000-138349 A (page 3, FIG. 1)

上述のTiO膜またはTiO膜は、絶縁性膜である。下部電極は、コンタクトプラグと接続されるが、TiO膜による寄生的なキャパシタが含まれることになる。
また、下部電極として、上述したSiO/Ti/Ptの積層による下地材料を構成することを考える。Ptは、酸素を通す材料であることは周知である。また、PZTは、プロセス劣化によるダメージ回復のための熱処理が必要である。ここで、PZTは、高温の酸素雰囲気中での結晶化アニール工程を経る。従って、下地材料は、たとえTiを用いたとしても、上記PZT結晶化アニールなどの高温酸素雰囲気下で、Ti+O→TiOと酸化されて絶縁性膜が形成されてしまう。
The above-described TiO 2 film or TiO X film is an insulating film. The lower electrode is connected to the contact plug, but includes a parasitic capacitor formed of a TiO X film.
Further, as the lower electrode, it is considered to form a base material by the above-described lamination of SiO 2 / Ti / Pt. It is well known that Pt is a material that allows oxygen to pass through. In addition, PZT requires heat treatment to recover damage due to process deterioration. Here, PZT undergoes a crystallization annealing process in a high-temperature oxygen atmosphere. Therefore, even if Ti is used as the base material, it is oxidized as Ti + O 2 → TiO X in a high-temperature oxygen atmosphere such as the PZT crystallization annealing, so that an insulating film is formed.

このようなことから、強誘電体キャパシタは、PZTとTiOの直列キャパシタを擁することになる。強誘電体メモリとしての特性を考えた場合、TiOによる寄生的なキャパシタの存在は、さらなる微細化に際し、悪影響を及ぼす懸念がある。 For this reason, the ferroelectric capacitor has a series capacitor of PZT and TiO X. Considering the characteristics as a ferroelectric memory, the presence of a parasitic capacitor due to TiO X may have an adverse effect on further miniaturization.

本発明は上記のような事情を考慮してなされたもので、下部電極に余計なキャパシタ構造を無くすると共に、下部電極及びその上の強誘電体膜の結晶配向性を向上させる、下部電極/強誘電体膜/上部電極のスタックキャパシタ構造を有する半導体装置及びその製造方法、強誘電体キャパシタ構造を提供しようとするものである。   The present invention has been made in view of the above circumstances, and eliminates an unnecessary capacitor structure in the lower electrode and improves the crystal orientation of the lower electrode and the ferroelectric film thereon. It is an object of the present invention to provide a semiconductor device having a ferroelectric capacitor / upper electrode stack capacitor structure, a method of manufacturing the same, and a ferroelectric capacitor structure.

本発明に係る半導体装置は、半導体基板上に形成されたトランジスタ素子と、前記半導体基板上に形成され前記トランジスタ素子を覆う絶縁膜と、前記絶縁膜を貫通し前記トランジスタ素子の所定部に接続される導電性プラグと、前記絶縁膜上に形成され前記導電性プラグと接続される下部電極、前記下部電極上の強誘電体膜、前記強誘電体膜上の上部電極で構成される強誘電体キャパシタとを含み、少なくとも前記下部電極は、強誘電体特性向上のための層間膜を配し、前記導電性プラグ側から第1電極部材層/層間膜/第2電極部材層でなる第1積層部分と、前記層間膜が除去され前記第1電極部材層と前記第2電極部材層が接続されている第2積層部分が存在する。   A semiconductor device according to the present invention includes a transistor element formed on a semiconductor substrate, an insulating film formed on the semiconductor substrate and covering the transistor element, and penetrating the insulating film and connected to a predetermined portion of the transistor element. A ferroelectric plug comprising: a lower electrode formed on the insulating film and connected to the conductive plug; a ferroelectric film on the lower electrode; and an upper electrode on the ferroelectric film A capacitor, and at least the lower electrode is provided with an interlayer film for improving ferroelectric characteristics, and a first stacked layer comprising a first electrode member layer / an interlayer film / a second electrode member layer from the conductive plug side. There is a portion and a second laminated portion in which the interlayer film is removed and the first electrode member layer and the second electrode member layer are connected.

上記本発明に係る半導体装置によれば、プロセス中に層間膜が酸化反応し、最終的に層間膜が絶縁性膜化したとしても、第2積層部分が存在するため、強誘電体キャパシタに直列的なキャパシタが寄生しない。なお、層間膜は強誘電体特性向上に有用な膜であり、強誘電体膜の結晶配向性に影響を与える。   According to the semiconductor device of the present invention, even if the interlayer film undergoes an oxidation reaction during the process, and the interlayer film finally becomes an insulating film, the second stacked portion is present, so that the series connection to the ferroelectric capacitor is present. No parasitic capacitor. The interlayer film is a film useful for improving the ferroelectric characteristics, and affects the crystal orientation of the ferroelectric film.

また、上記本発明に係る半導体装置において、次のようないずれかの特徴を有することにより強誘電体キャパシタとしての特性向上に寄与する。
前記層間膜は、少なくとも前記第2電極部材の結晶配向性に作用する膜であることを特徴とする。
前記第1積層部分の面積は、前記第2積層部分の面積より大きいことを特徴とする。
前記第2積層部分は、前記導電性プラグの直上に設けられていることを特徴とする。
前記第2積層部分は、前記下部電極の周縁近傍に設けられていることを特徴とする。
前記層間膜は、少なくともTiまたはAlを含む膜であることを特徴とする。
前記第1電極部材層は、少なくとも前記導電性プラグとの密着並びに拡散バリア性を有する第1導電層と、前記第1導電層上を覆う少なくとも酸化防止機能を有する第2導電層を含むことを特徴とする。
前記第2電極部材層はPtを含み、前記強誘電体膜はPbを含むことを特徴とする。
In addition, the semiconductor device according to the present invention contributes to improvement of characteristics as a ferroelectric capacitor by having any of the following features.
The interlayer film is a film that affects at least the crystal orientation of the second electrode member.
The area of the first stacked portion is larger than the area of the second stacked portion.
The second stacked portion is provided immediately above the conductive plug.
The second laminated portion is provided in the vicinity of the periphery of the lower electrode.
The interlayer film is a film containing at least Ti or Al.
The first electrode member layer includes at least a first conductive layer having adhesion and diffusion barrier properties with the conductive plug, and a second conductive layer having at least an anti-oxidation function covering the first conductive layer. Features.
The second electrode member layer includes Pt, and the ferroelectric film includes Pb.

本発明に係る半導体装置の製造方法は、基板上にトランジスタ素子を形成する工程と、前記基板上に前記トランジスタ素子上を覆う絶縁膜を形成する工程と、前記絶縁膜を貫通し前記トランジスタ素子の所定部に接続される導電性プラグを形成する工程と、前記導電性プラグ上を含む前記絶縁膜上に下部電極の一部である少なくとも拡散・反応バリア性を有する第1電極部材層を形成する工程と、前記第1電極部材層上に上層の結晶配向性を高める層間膜を形成する工程と、前記第1電極部材層を露出させる前記層間膜の除去領域を形成する工程と、前記第1電極部材層上を含む前記層間膜上に下部電極の一部である第2電極部材層を形成する工程と、前記第2電極部材層上に強誘電体膜を形成する工程と、前記強誘電体膜上に少なくとも前記第2電極部材層と同じ電極部材層を含む上部電極部材を形成する工程と、前記上部電極部材、前記強誘電体膜、及び前記下部電極の全部材層を所定のキャパシタ形状にパターニングする工程と、を含む。   A method of manufacturing a semiconductor device according to the present invention includes a step of forming a transistor element on a substrate, a step of forming an insulating film covering the transistor element on the substrate, a through-hole of the insulating film, and Forming a conductive plug connected to a predetermined portion; and forming a first electrode member layer having at least diffusion / reaction barrier properties as a part of the lower electrode on the insulating film including the conductive plug. A step of forming an interlayer film for enhancing the crystal orientation of the upper layer on the first electrode member layer, a step of forming a removal region of the interlayer film exposing the first electrode member layer, and the first Forming a second electrode member layer which is a part of a lower electrode on the interlayer film including the electrode member layer; forming a ferroelectric film on the second electrode member layer; and At least before on the body membrane Forming an upper electrode member including the same electrode member layer as the second electrode member layer; patterning all member layers of the upper electrode member, the ferroelectric film, and the lower electrode into a predetermined capacitor shape; ,including.

上記本発明に係る半導体装置の製造方法によれば、下部電極は、第1電極部材層と第2電極部材層、その間に上層すなわち第2電極部材層の結晶配向性を高める層間膜を形成してなる。プロセス中に層間膜が酸化反応し、最終的に層間膜が絶縁性膜化したとしても、予め層間膜の除去領域を形成しておくので、第1電極部材層と第2電極部材層は確実に接続領域を持つ構成となる。よって、強誘電体キャパシタに直列的なキャパシタが形成されない。第2電極部材層の結晶配向性を引き継ぎ、強誘電体膜も高い結晶配向性を持つようになる。   According to the method for manufacturing a semiconductor device according to the present invention, the lower electrode is formed by forming the first electrode member layer and the second electrode member layer, and an interlayer film between the upper electrode, that is, the second electrode member layer, for improving the crystal orientation of the upper electrode. It becomes. Even if the interlayer film undergoes an oxidation reaction during the process, and the interlayer film eventually becomes an insulating film, a removal region of the interlayer film is formed in advance, so that the first electrode member layer and the second electrode member layer are securely With a connection area. Therefore, a capacitor in series with the ferroelectric capacitor is not formed. Inheriting the crystal orientation of the second electrode member layer, the ferroelectric film also has a high crystal orientation.

また、上記本発明に係る半導体装置の製造方法において、次のようないずれかの特徴を有することにより強誘電体キャパシタとしての特性向上に寄与する。
前記層間膜を形成する工程は、少なくともスパッタリング法または溶液法またはCVD法の利用を経てTiまたはAlを含む膜を形成することを特徴とする。
前記層間膜の除去領域は、前記導電性プラグの直上を含む領域または前記導電性プラグの直上の領域以外の前記キャパシタ形状の周縁部近傍領域に形成することを特徴とする。
前記強誘電体膜を形成する工程は、ゾル−ゲル法により所望の膜厚を得た強誘電体材料を熱処理して結晶化することを特徴とする。
In addition, the method for manufacturing a semiconductor device according to the present invention contributes to improvement of characteristics as a ferroelectric capacitor by having any of the following characteristics.
The step of forming the interlayer film is characterized in that a film containing Ti or Al is formed through the use of at least a sputtering method, a solution method, or a CVD method.
The interlayer film removal region is formed in a region in the vicinity of the peripheral portion of the capacitor shape other than a region including immediately above the conductive plug or a region immediately above the conductive plug.
The step of forming the ferroelectric film is characterized by crystallizing a ferroelectric material having a desired film thickness by a sol-gel method by heat treatment.

また、本発明は、強誘電体膜をキャパシタ絶縁膜とする強誘電体キャパシタ構造において、前記強誘電体膜を挟む下部電極及び上部電極と、下部電極の中央またはその付近の領域に接続される導電性部材とを具備し、前記下部電極は、少なくとも上層の結晶配向性を高める層間膜を所定領域に設け、前記導電性部材側から第1電極部材層/層間膜/第2電極部材層でなる第1積層部分と、前記第1積層部分より小さい領域で前記第1電極部材層と前記第2電極部材層が接続されている第2積層部分が存在する。   Further, the present invention provides a ferroelectric capacitor structure having a ferroelectric film as a capacitor insulating film, and is connected to a lower electrode and an upper electrode sandwiching the ferroelectric film, and a region at or near the center of the lower electrode. The lower electrode is provided with an interlayer film for improving crystal orientation of at least the upper layer in a predetermined region, and the first electrode member layer / interlayer film / second electrode member layer from the conductive member side. And a second laminated portion in which the first electrode member layer and the second electrode member layer are connected in a region smaller than the first laminated portion.

上記本発明に係る強誘電体キャパシタ構造によれば、下部電極に、少なくとも上層の結晶配向性を高める層間膜を設ける。プロセス中に層間膜が酸化反応し、最終的に層間膜が絶縁性膜化したとしても、第2積層部分が存在するため、強誘電体キャパシタに直列的なキャパシタが寄生しない。   According to the ferroelectric capacitor structure of the present invention, the lower electrode is provided with the interlayer film for improving the crystal orientation of at least the upper layer. Even if the interlayer film undergoes an oxidation reaction during the process and eventually the interlayer film becomes an insulating film, the second stacked portion is present, so that no capacitor in series with the ferroelectric capacitor is parasitic.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

図1は、本発明の第1実施形態に係る半導装置の要部を示す断面図である。強誘電体メモリセルの構造を示しており、1メモリセルが、1つの選択トランジスタと1つの強誘電体キャパシタで構成されている。
導体基板11において、MOS型電界効果トランジスタ素子でなる選択トランジスタ12が形成されている。選択トランジスタ12のドレインDは、図示しない選択線(ビット線)に繋がる。選択トランジスタ12のゲートGは、制御線(ワード線)として機能する。選択トランジスタ12のソースSは、導電性プラグ14を介して強誘電体キャパシタC1に接続されている。強誘電体キャパシタC1は、下部電極15、下部電極15上の強誘電体膜16、強誘電体膜16上の上部電極17で構成される。
FIG. 1 is a cross-sectional view showing a main part of a semiconductor device according to the first embodiment of the present invention. The structure of a ferroelectric memory cell is shown. One memory cell is composed of one selection transistor and one ferroelectric capacitor.
On the conductor substrate 11, a selection transistor 12 made of a MOS field effect transistor element is formed. The drain D of the selection transistor 12 is connected to a selection line (bit line) (not shown). The gate G of the selection transistor 12 functions as a control line (word line). The source S of the selection transistor 12 is connected to the ferroelectric capacitor C1 through the conductive plug 14. The ferroelectric capacitor C1 includes a lower electrode 15, a ferroelectric film 16 on the lower electrode 15, and an upper electrode 17 on the ferroelectric film 16.

導電性プラグ14は、層間の絶縁膜13を貫通して底部が選択トランジスタ12のソースSに、上端部は強誘電体キャパシタC1の下部電極15と接続されている。導電性プラグ14は、例えばW(タングステン)プラグである。導電性プラグ14がWプラグの場合、絶縁膜13貫通内側壁及びソースSとの接触部には図示しないバリアメタルが介在している。   The conductive plug 14 penetrates through the insulating film 13 between the layers, the bottom is connected to the source S of the selection transistor 12, and the upper end is connected to the lower electrode 15 of the ferroelectric capacitor C1. The conductive plug 14 is, for example, a W (tungsten) plug. When the conductive plug 14 is a W plug, a barrier metal (not shown) is interposed in the contact portion between the insulating film 13 inner wall and the source S.

強誘電体キャパシタC1の下部電極15は、導電性プラグ14を略中心として、例えば1μm角程度の領域を有する。下部電極15は、導電性プラグ14側から第1電極部材層151/層間膜152/第2電極部材層153でなる第1積層部分L1と、層間膜152が除去され第1電極部材層151と第2電極部材層153が接続されている第2積層部分L2が存在する。   The lower electrode 15 of the ferroelectric capacitor C1 has a region of about 1 μm square, for example, with the conductive plug 14 being substantially at the center. The lower electrode 15 includes the first electrode member layer 151 / the first laminated portion L1 formed of the first electrode member layer 151 / the interlayer film 152 / the second electrode member layer 153 from the conductive plug 14 side, and the first electrode member layer 151 from which the interlayer film 152 is removed. There is a second laminated portion L2 to which the second electrode member layer 153 is connected.

第1電極部材層151は、第1導電層151aと、第2導電層151bを含む。第1導電層151aは、導電性プラグ14との密着並びに拡散・反応バリアとして、TiNまたはTiAlNを用いる。第2導電層151bにおいても、拡散・反応バリア性を有し、下層の酸化防止機能に富むIrまたはIr/IrO積層またはIrOを用いる。このように、第1電極部材層151は、全体的に導電性プラグ14(例えばW)との拡散・反応バリアで、特に酸化防止の役割を担うものを用いる。
第2電極部材層153は、強誘電体膜16と接するため、熱、化学的安定性の優れた貴金属が用いられる。ここでは第2電極部材層153としてPtが用いられる。
The first electrode member layer 151 includes a first conductive layer 151a and a second conductive layer 151b. The first conductive layer 151a uses TiN or TiAlN as an adhesion to the conductive plug 14 and a diffusion / reaction barrier. Also in the second conductive layer 151b, Ir or Ir / IrO X laminated layer or IrO X having diffusion / reaction barrier properties and rich in anti-oxidation function of the lower layer is used. As described above, the first electrode member layer 151 is a diffusion / reaction barrier with the conductive plug 14 (for example, W) as a whole, and a layer that particularly plays a role of preventing oxidation.
Since the second electrode member layer 153 is in contact with the ferroelectric film 16, a noble metal having excellent heat and chemical stability is used. Here, Pt is used as the second electrode member layer 153.

また、層間膜152は、TiまたはTiOまたはAlO膜を用いる。これらの膜上に形成された第2電極部材層153、すなわちPtは、その結晶配向性(Pt(111))が高まる。さらに、強誘電体膜16がPZTの場合、Pt(111)結晶配向性を高めることによって、PZTの(111)結晶配向性が引き継がれ、良好な特性を得ることができる。 The interlayer film 152 is a Ti, TiO X, or AlO X film. The crystal orientation (Pt (111)) of the second electrode member layer 153 formed on these films, that is, Pt is increased. Further, when the ferroelectric film 16 is PZT, by improving the Pt (111) crystal orientation, the (111) crystal orientation of the PZT is inherited, and good characteristics can be obtained.

このような層間膜152は、30nm程度の薄膜または30nm以下の薄膜である。これにより、第1積層部分L1と第2積層部分L2の段差を小さくして結晶の乱れを最小限に留めている。第1積層部分L1の領域は、第2積層部分L2の領域より大きい。これにより、第2電極部材層153のPt(111)結晶配向性が良好な領域を増やし、ひいては強誘電体膜16の膜質、強誘電体特性を良好なものとする。この実施形態では、第2積層部分L2の領域は、導電性プラグ14の直上に設けられている。第2積層部分L2の領域は、導電性プラグ14の径より小さい方がよい。   Such an interlayer film 152 is a thin film of about 30 nm or a thin film of 30 nm or less. As a result, the level difference between the first stacked portion L1 and the second stacked portion L2 is reduced to minimize crystal disturbance. The region of the first stacked portion L1 is larger than the region of the second stacked portion L2. Thereby, the region where the Pt (111) crystal orientation of the second electrode member layer 153 is good is increased, and the film quality and ferroelectric properties of the ferroelectric film 16 are improved. In this embodiment, the region of the second stacked portion L2 is provided immediately above the conductive plug 14. The region of the second stacked portion L2 is preferably smaller than the diameter of the conductive plug 14.

上部電極17は、第2電極部材層153と同様にPtが強誘電体膜16と接している。上部電極17は、Ptを含む積層構造としてもよい。上部電極17は、好ましくは、Pt膜上に上記第2導電層151bと同様に、Ir/IrO積層またはIrOが設けられる。なお、その際のPt膜は0〜100nm程度の膜厚で、Pt膜はなくてもよい。また、上部電極17は、図示しない別の配線が接続されるなどして基準電位(プレート電位等)が与えられる構成としてもよい。 In the upper electrode 17, Pt is in contact with the ferroelectric film 16 as in the second electrode member layer 153. The upper electrode 17 may have a laminated structure containing Pt. The upper electrode 17 is preferably provided with an Ir / IrO X stack or IrO X on the Pt film in the same manner as the second conductive layer 151b. In this case, the Pt film has a thickness of about 0 to 100 nm, and the Pt film may not be provided. The upper electrode 17 may be configured to be supplied with a reference potential (plate potential or the like) by connecting another wiring (not shown).

図2〜図5は、それぞれ本発明の第2実施形態に係り、前記図1のような構成の半導体装置の製造方法に関する一例を工程順に示す断面図である。図1と同様の箇所には同一の符号を付して説明する。
図2に示すように、半導体基板11にMOS型電界効果トランジスタ12を形成する。すなわち、半導体基板11の所定の不純物濃度で構成される素子領域において、チャネル領域上に、ゲート酸化膜21及びポリシリコン層22を順次形成してゲート電極Gをパターニングする。次に、ソース/ドレイン領域S/Dを形成する。ここでは、LDD(Lightly Doped Drain )構造、いわゆるエクステンション領域を有するソース/ドレイン領域S/Dを形成してもよい。その場合、まずゲート電極Gの領域をマスクに低濃度領域23を不純物イオン注入により形成する。次に、CVD(Chemical Vapor Deposition )法によりゲート電極G上を覆うように絶縁膜を堆積後、異方性のドライエッチングによりスペーサ24を形成する。次に、ゲート電極G及びスペーサ24の領域をマスクにしてソース/ドレインの高濃度領域25を不純物イオン注入により形成し、ソース/ドレイン領域S/Dが形成される。図示しないが、ゲートGのポリシリコン層22をシリサイド化してもよい。また、さらにはソースS、ドレインDまでもシリサイド化されたサリサイドプロセスを用いた構造としてもよい。このようにして、MOS電界効果型トランジスタ素子でなる選択トランジスタ12が形成される。
2 to 5 are cross-sectional views illustrating an example of a method of manufacturing a semiconductor device having the configuration as shown in FIG. 1 in the order of steps according to the second embodiment of the present invention. The same parts as those in FIG. 1 will be described with the same reference numerals.
As shown in FIG. 2, a MOS field effect transistor 12 is formed on a semiconductor substrate 11. That is, in the element region having a predetermined impurity concentration of the semiconductor substrate 11, the gate oxide film 21 and the polysilicon layer 22 are sequentially formed on the channel region, and the gate electrode G is patterned. Next, source / drain regions S / D are formed. Here, a source / drain region S / D having an LDD (Lightly Doped Drain) structure, that is, a so-called extension region may be formed. In that case, first, the low concentration region 23 is formed by impurity ion implantation using the region of the gate electrode G as a mask. Next, after depositing an insulating film so as to cover the gate electrode G by a CVD (Chemical Vapor Deposition) method, a spacer 24 is formed by anisotropic dry etching. Next, using the regions of the gate electrode G and the spacer 24 as a mask, the source / drain high concentration region 25 is formed by impurity ion implantation to form the source / drain region S / D. Although not shown, the polysilicon layer 22 of the gate G may be silicided. Further, the source S and the drain D may be structured using a silicided salicide process. In this way, the selection transistor 12 made of a MOS field effect transistor element is formed.

次に、選択トランジスタ12を覆う層間の絶縁膜13を形成する。この間に必要な工程に応じてドレインDにつながる選択線(ビット線)を形成する工程を経てもよい(図示せず)。絶縁膜13をエッチバック法やCMP(Chemical Mechanical Polishing )技術を利用して平坦化し、リソグラフィ技術を用いてソースSに到達する開孔部26を形成する。開孔部26内壁にTiNやTaN等のバリア膜27を被覆後、CVD法を用いてWを形成し、CMP技術を経て埋め込んだ形にする。これにより、導電性プラグ14が形成される。なお、導電性プラグ14はこのようなWプラグに限らない。導電性プラグ14は例えばポリシリコンプラグを利用してもよい。   Next, an interlayer insulating film 13 covering the selection transistor 12 is formed. During this time, a selection line (bit line) connected to the drain D may be formed according to a necessary process (not shown). The insulating film 13 is planarized using an etch back method or a CMP (Chemical Mechanical Polishing) technique, and an opening 26 reaching the source S is formed using a lithography technique. After coating the inner wall of the opening 26 with a barrier film 27 such as TiN or TaN, W is formed using a CVD method, and is embedded through a CMP technique. Thereby, the conductive plug 14 is formed. The conductive plug 14 is not limited to such a W plug. For example, a polysilicon plug may be used as the conductive plug 14.

次に、導電性プラグ14上を含む絶縁膜13上に下部電極15の一部である第1電極部材層151として、TiAlN膜をスパッタリング法で100nm程度形成する(第1導電層151a)。次いで、TiAlN膜上にIr膜をスパッタリング法で100nm程度形成する(第2導電層151b)。このIr膜上に、層間膜152としてTiをスパッタリング法で成膜する。その後、ファーネス酸化を経て30nm程度のTiO膜を得る。TiO膜は、その他、Tiをターゲットとした酸素雰囲気でのスパッタリング、またはTiOをターゲットとしたスパッタリングによる形成が考えられる。また、溶液法を利用し、その後の熱酸化によってTiO膜を形成することもできる。 Next, a TiAlN film is formed on the insulating film 13 including the conductive plug 14 as a first electrode member layer 151 which is a part of the lower electrode 15 by a sputtering method to a thickness of about 100 nm (first conductive layer 151a). Next, an Ir film is formed to a thickness of about 100 nm on the TiAlN film by a sputtering method (second conductive layer 151b). On this Ir film, Ti is deposited as an interlayer film 152 by a sputtering method. Then, a TiO X film having a thickness of about 30 nm is obtained through furnace oxidation. In addition, the TiO X film may be formed by sputtering in an oxygen atmosphere using Ti as a target or sputtering using TiO X as a target. Further, a TiO X film can be formed by a subsequent thermal oxidation using a solution method.

次に、図3に示すように、フォトリソグラフィ工程、エッチング工程を経ることにより、層間膜152(TiO膜)をパターニングする。これにより、第1電極部材層151上面は、TiO膜の被覆された領域と、TiO膜が除去されIr膜が露出された領域が存在する。ここで、層間膜152の除去領域CNTは、導電性プラグ14の直上に、導電性プラグ14の径より小さく設けられる。 Next, as shown in FIG. 3, the interlayer film 152 (TiO X film) is patterned through a photolithography process and an etching process. Thus, the first electrode member layer 151 top surface, a coated region of the TiO X film, a region where Ir film TiO X film is removed is exposed there. Here, the removal region CNT of the interlayer film 152 is provided directly above the conductive plug 14 and smaller than the diameter of the conductive plug 14.

次に、図4に示すように、第1電極部材層151上を含む層間膜152上に、下部電極15の一部である第2電極部材層153を形成する。第2電極部材層153は、Pt膜であり、スパッタリング法で100nm程度形成する。次に、第2電極部材層153上に強誘電体膜16を形成する。強誘電体膜16は、ゾル−ゲル法により成膜するPZTとする。PZTの組成比は、Pb:Zr:Ti=110:40:60、膜厚は150nmとした。なお、PZT結晶化条件は、例えば酸素雰囲気中での熱処理、600℃、5分程度である。   Next, as shown in FIG. 4, a second electrode member layer 153 that is a part of the lower electrode 15 is formed on the interlayer film 152 including the first electrode member layer 151. The second electrode member layer 153 is a Pt film and is formed with a thickness of about 100 nm by a sputtering method. Next, the ferroelectric film 16 is formed on the second electrode member layer 153. The ferroelectric film 16 is PZT formed by a sol-gel method. The composition ratio of PZT was Pb: Zr: Ti = 110: 40: 60, and the film thickness was 150 nm. The PZT crystallization conditions are, for example, heat treatment in an oxygen atmosphere, 600 ° C., and about 5 minutes.

次に、このPZTでなる強誘電体膜16上に上部電極部材層17s、ここではPt膜をスパッタリング法で200nm程度形成する。なお、上部電極部材層17sは、Pt膜上に上記第2導電層151bと同様に、Ir/IrO積層またはIrOが設けられてもよい。その際のPt膜は0〜100nm程度の膜厚で、Pt膜はなくてもよい。 Next, an upper electrode member layer 17s, here a Pt film, is formed on the ferroelectric film 16 made of PZT by sputtering to a thickness of about 200 nm. Note that the upper electrode member layer 17s may be provided with an Ir / IrO X stack or IrO X on the Pt film, similarly to the second conductive layer 151b. In this case, the Pt film has a thickness of about 0 to 100 nm, and the Pt film may be omitted.

次に、図5に示すように、フォトリソグラフィ工程、エッチング工程を経ることにより、強誘電体キャパシタC1の形状を得る。すなわち、所定領域に形成したレジストマスク(破線)で覆われていない領域における上部電極部材層17s、強誘電体膜16、第2電極部材層153、層間膜152、第1電極部材層151(151b,151a)を、物理的なエッチング、トリミング等を伴って除去する。その後、熱処理を経るなどして強誘電体膜16を安定化させる。これにより、図1に示すような構成を得る。その後、図示しないが層間の絶縁膜や保護膜を形成する。上部電極17が別の配線と接続されるなどして基準電位(プレート電位等)が与えられる形態をとってもよい。   Next, as shown in FIG. 5, the shape of the ferroelectric capacitor C1 is obtained through a photolithography process and an etching process. That is, the upper electrode member layer 17s, the ferroelectric film 16, the second electrode member layer 153, the interlayer film 152, and the first electrode member layer 151 (151b) in the region not covered with the resist mask (broken line) formed in the predetermined region. 151a) is removed with physical etching, trimming, and the like. Thereafter, the ferroelectric film 16 is stabilized through heat treatment or the like. Thereby, a configuration as shown in FIG. 1 is obtained. Thereafter, although not shown, an interlayer insulating film or protective film is formed. A configuration in which a reference potential (plate potential or the like) is applied by connecting the upper electrode 17 to another wiring may be employed.

上記第1、第2実施形態に係る構成及び方法によれば、層間膜152の介在する第1積層部分L1と、層間膜152の介在しない第2積層部分L2が含まれる下部電極15、強誘電体膜16、上部電極17でなる強誘電体キャパシタC1の構造が得られる。層間膜152は、Tiを含む膜で、第2電極部材層153のPtの結晶配向性(Pt(111))を高める作用がある。さらに、強誘電体膜16のPZTの結晶配向性(111)が高められ、良好な強誘電体特性を得ることができる。プロセス中に層間膜152がTiO膜となり、絶縁性膜化したとしても、第2積層部分L2が存在するため、強誘電体キャパシタC1に直列的な余計なキャパシタが寄生しない。これにより、キャパシタ特性の劣化しない高信頼性の強誘電体メモリが構成可能である。 According to the configuration and method according to the first and second embodiments, the lower electrode 15 including the first stacked portion L1 where the interlayer film 152 is interposed and the second stacked portion L2 where the interlayer film 152 is not interposed, the ferroelectric layer A structure of the ferroelectric capacitor C1 including the body film 16 and the upper electrode 17 is obtained. The interlayer film 152 is a film containing Ti and has an effect of increasing the Pt crystal orientation (Pt (111)) of the second electrode member layer 153. Furthermore, the crystal orientation (111) of PZT of the ferroelectric film 16 is enhanced, and good ferroelectric properties can be obtained. Even if the interlayer film 152 becomes a TiO x film and becomes an insulating film during the process, the second stacked portion L2 exists, and therefore no extra capacitor in series with the ferroelectric capacitor C1 is parasitic. As a result, a highly reliable ferroelectric memory that does not deteriorate the capacitor characteristics can be configured.

図6〜図8は、それぞれ本発明の第3実施形態に係り、前記第1、第2実施形態における層間膜152のパターン変形例を含む半導体装置及びその製造方法を示す断面図である。図6は、前記図3に対応しており、層間膜152を別のパターンにしている。層間膜152の除去領域CNTは、導電性プラグ14の直上の領域以外で、キャパシタ形状の周縁部近傍領域に形成する。層間膜152は、導電性プラグ14の直上に、導電性プラグ14の径より大きく設けられる。その後の図7、図8に示す構成に至る工程は、前記第2実施形態(図4、図5)に準ずる。これにより、層間膜152の介在する第1積層部分L1と、層間膜152の介在しない第2積層部分L2が含まれる下部電極15、強誘電体膜16、上部電極17でなる強誘電体キャパシタC2の構造が得られる。   6 to 8 are cross-sectional views showing a semiconductor device including a pattern modification example of the interlayer film 152 in the first and second embodiments and a method for manufacturing the same according to the third embodiment of the present invention. FIG. 6 corresponds to FIG. 3, and the interlayer film 152 has a different pattern. The removal region CNT of the interlayer film 152 is formed in the vicinity of the peripheral portion of the capacitor shape other than the region immediately above the conductive plug 14. The interlayer film 152 is provided directly above the conductive plug 14 and larger than the diameter of the conductive plug 14. The subsequent steps leading to the configuration shown in FIGS. 7 and 8 are in accordance with the second embodiment (FIGS. 4 and 5). Thus, the ferroelectric capacitor C2 including the lower electrode 15, the ferroelectric film 16, and the upper electrode 17 including the first stacked portion L1 with the interlayer film 152 interposed therebetween and the second stacked portion L2 without the interlayer film 152 interposed therebetween. The following structure is obtained.

上記第3実施形態に係る構成及び方法によっても、前記第1、第2実施形態と同様の効果が得られる。すなわち、層間膜152は、Tiを含む膜で構成され、第2電極部材層153のPtの結晶配向性(Pt(111))を高める作用がある。さらに、強誘電体膜16のPZTの結晶配向性(111)が高められ、良好な強誘電体特性を得ることができる。プロセス中に層間膜152がTiO膜となり、絶縁性膜化したとしても、第2積層部分L2が存在するため、強誘電体キャパシタC1に直列的な余計なキャパシタが寄生しない。これにより、キャパシタ特性の劣化しない高信頼性の強誘電体メモリが構成可能である。 The same effects as those of the first and second embodiments can also be obtained by the configuration and method according to the third embodiment. That is, the interlayer film 152 is made of a film containing Ti, and has an effect of increasing the Pt crystal orientation (Pt (111)) of the second electrode member layer 153. Furthermore, the crystal orientation (111) of PZT of the ferroelectric film 16 is enhanced, and good ferroelectric properties can be obtained. Even if the interlayer film 152 becomes a TiO x film and becomes an insulating film during the process, the second stacked portion L2 exists, and therefore no extra capacitor in series with the ferroelectric capacitor C1 is parasitic. As a result, a highly reliable ferroelectric memory that does not deteriorate the capacitor characteristics can be configured.

なお、前記第2、第3実施形態では、第1電極部材層151は、第1導電層151aとして、TiAlN膜を用いたが、TiAlN膜の代りにTiN膜を用いてもよい。また、第2導電層151bとしてIr膜を形成したが、プロセスを経ればIr/IrO積層またはIrO膜となる。また、層間膜152としてTiO膜を形成したが、始めはTi形成し、プロセスを経るに伴いTiO膜にするようにしてもよい。その他、層間膜152は、AlO膜を用いるということも考えられる。AlO膜は、化学安定性もあり、上層の結晶配向性(Pt(111))を高め、もってPZTの(111)結晶配向性を高めるという目的の観点から採用可能である。 In the second and third embodiments, the first electrode member layer 151 uses a TiAlN film as the first conductive layer 151a. However, a TiN film may be used instead of the TiAlN film. Further, although an Ir film is formed as the second conductive layer 151b, an Ir / IrO X stacked layer or an IrO X film is obtained through a process. Further, although the TiO X film is formed as the interlayer film 152, Ti may be formed at first, and the TiO X film may be formed as the process proceeds. In addition, it is conceivable that an AlO X film is used as the interlayer film 152. The AlO X film also has chemical stability, and can be employed from the viewpoint of increasing the crystal orientation (Pt (111)) of the upper layer, thereby increasing the (111) crystal orientation of PZT.

以上説明したように本発明によれば、強誘電体キャパシタの下部電極は、導電性プラグとの密着及び酸化防止等、拡散・反応バリアとなる第1電極部材層と、強誘電体膜と接する第2電極部材層で構成され、間に上層すなわち第2電極部材層の結晶配向性を高める層間膜を所定領域形成してなる。プロセス中に層間膜が酸化反応し、最終的に層間膜が絶縁性膜化したとしても、層間膜の除去領域を形成してあるので、第1電極部材層と第2電極部材層は確実に接続領域を持つ構成となる。よって、強誘電体キャパシタに直列的なキャパシタが余計に形成されることはない。第2電極部材層の結晶配向性を引き継ぎ、強誘電体膜も高い結晶配向性を持つようになる。これにより、キャパシタ特性の劣化しない高信頼性の強誘電体メモリが構成可能である。この結果、下部電極に余計なキャパシタ構造を無くすると共に、下部電極及びその上の強誘電体膜の結晶配向性を向上させる、下部電極/強誘電体膜/上部電極のスタックキャパシタ構造を有する半導体装置及びその製造方法、強誘電体キャパシタ構造を提供することができる。   As described above, according to the present invention, the lower electrode of the ferroelectric capacitor is in contact with the ferroelectric film and the first electrode member layer serving as a diffusion / reaction barrier such as adhesion to the conductive plug and prevention of oxidation. A predetermined region is formed between the second electrode member layers and an upper layer, that is, an interlayer film for improving the crystal orientation of the second electrode member layers. Even if the interlayer film undergoes an oxidation reaction during the process, and the interlayer film eventually becomes an insulating film, the removal region of the interlayer film is formed, so the first electrode member layer and the second electrode member layer are securely It has a configuration with a connection area. Therefore, no capacitor in series with the ferroelectric capacitor is formed. Inheriting the crystal orientation of the second electrode member layer, the ferroelectric film also has a high crystal orientation. As a result, a highly reliable ferroelectric memory that does not deteriorate the capacitor characteristics can be configured. As a result, a semiconductor having a stack capacitor structure of a lower electrode / ferroelectric film / upper electrode that eliminates an extra capacitor structure in the lower electrode and improves the crystal orientation of the lower electrode and the ferroelectric film thereon. An apparatus, a manufacturing method thereof, and a ferroelectric capacitor structure can be provided.

第1実施形態に係る半導装置の要部を示す断面図。Sectional drawing which shows the principal part of the semiconductor device which concerns on 1st Embodiment. 第2実施形態に係る半導体装置の製造方法を工程順に示す第1断面図。The 1st sectional view showing the manufacturing method of the semiconductor device concerning a 2nd embodiment in order of a process. 図2に続く第2断面図。The 2nd sectional view following Drawing 2. 図3に続く第3断面図。FIG. 4 is a third sectional view following FIG. 3. 図4に続く第4断面図。FIG. 5 is a fourth cross-sectional view following FIG. 4. 第3実施形態に係る半導体装置、製造方法を工程順に示す第1断面図。The 1st sectional view showing the semiconductor device concerning a 3rd embodiment, and a manufacturing method in order of a process. 図6に続く第2断面図。The 2nd sectional view following Drawing 6. 図7に続く第3断面図。FIG. 8 is a third cross-sectional view following FIG. 7.

符号の説明Explanation of symbols

11…半導体基板、12…選択トランジスタ(MOS型電界効果トランジスタ素子)、13…絶縁膜、14…導電性プラグ、15…下部電極、151…第1電極部材層、151a…第1導電層、151b…第2導電層、152…層間膜、153…第2電極部材層、16…強誘電体膜、17…上部電極、17s…上部電極部材層、21…ゲート酸化膜、22…ポリシリコン層、23…ソース/ドレインの低濃度領域、24…スペーサ、25…ソース/ドレインの高濃度領域、26…開孔部、27…バリア膜、L1…第1積層部分、L2…第2積層部分、C1,C2…強誘電体キャパシタ、S…ソース、D…ドレイン、G…ゲート(制御線、ワード線)、CNT…層間膜の除去領域。   DESCRIPTION OF SYMBOLS 11 ... Semiconductor substrate, 12 ... Selection transistor (MOS type field effect transistor element), 13 ... Insulating film, 14 ... Conductive plug, 15 ... Lower electrode, 151 ... 1st electrode member layer, 151a ... 1st conductive layer, 151b ... second conductive layer, 152 ... interlayer film, 153 ... second electrode member layer, 16 ... ferroelectric film, 17 ... upper electrode, 17s ... upper electrode member layer, 21 ... gate oxide film, 22 ... polysilicon layer, 23 ... Low concentration region of source / drain, 24 ... Spacer, 25 ... High concentration region of source / drain, 26 ... Opening portion, 27 ... Barrier film, L1 ... First laminated portion, L2 ... Second laminated portion, C1 , C2 ... Ferroelectric capacitor, S ... Source, D ... Drain, G ... Gate (control line, word line), CNT ... Removal region of interlayer film.

Claims (13)

半導体基板上に形成されたトランジスタ素子と、
前記半導体基板上に形成され前記トランジスタ素子を覆う絶縁膜と、
前記絶縁膜を貫通し前記トランジスタ素子の所定部に接続される導電性プラグと、
前記絶縁膜上に形成され前記導電性プラグと接続される下部電極、前記下部電極上の強誘電体膜、前記強誘電体膜上の上部電極で構成される強誘電体キャパシタとを含み、
少なくとも前記下部電極は、強誘電体特性向上のための層間膜を配し、前記導電性プラグ側から第1電極部材層/層間膜/第2電極部材層でなる第1積層部分と、前記層間膜が除去され前記第1電極部材層と前記第2電極部材層が接続されている第2積層部分が存在する半導体装置。
A transistor element formed on a semiconductor substrate;
An insulating film formed on the semiconductor substrate and covering the transistor element;
A conductive plug passing through the insulating film and connected to a predetermined portion of the transistor element;
A lower electrode formed on the insulating film and connected to the conductive plug; a ferroelectric film on the lower electrode; a ferroelectric capacitor including an upper electrode on the ferroelectric film;
At least the lower electrode is provided with an interlayer film for improving ferroelectric characteristics, and a first laminated portion composed of a first electrode member layer / interlayer film / second electrode member layer from the conductive plug side, and the interlayer A semiconductor device having a second stacked portion in which a film is removed and the first electrode member layer and the second electrode member layer are connected.
前記層間膜は、少なくとも前記第2電極部材の結晶配向性に作用する膜である請求項1記載の半導体装置。 The semiconductor device according to claim 1, wherein the interlayer film is a film that acts on crystal orientation of at least the second electrode member. 前記第1積層部分の面積は、前記第2積層部分の面積より大きい請求項1または2記載の半導体装置。 The semiconductor device according to claim 1, wherein an area of the first stacked portion is larger than an area of the second stacked portion. 前記第2積層部分は、前記導電性プラグの直上に設けられている請求項1〜3いずれか一つに記載の半導体装置。 The semiconductor device according to claim 1, wherein the second stacked portion is provided immediately above the conductive plug. 前記第2積層部分は、前記下部電極の周縁近傍に設けられている請求項1〜3いずれか一つに記載の半導体装置。 The semiconductor device according to claim 1, wherein the second stacked portion is provided near a periphery of the lower electrode. 前記層間膜は、少なくともTiまたはAlを含む膜である請求項1〜5いずれか一つに記載の半導体装置。 The semiconductor device according to claim 1, wherein the interlayer film is a film containing at least Ti or Al. 前記第1電極部材層は、少なくとも前記導電性プラグとの密着並びに拡散バリア性を有する第1導電層と、前記第1導電層上を覆う少なくとも酸化防止機能を有する第2導電層を含む請求項1〜6いずれか一つに記載の半導体装置。 The first electrode member layer includes at least a first conductive layer having adhesion and diffusion barrier properties with the conductive plug, and a second conductive layer having at least an anti-oxidation function covering the first conductive layer. The semiconductor device according to any one of 1 to 6. 前記第2電極部材層はPtを含み、前記強誘電体膜はPbを含む請求項1〜7いずれか一つに記載の半導体装置。 The semiconductor device according to claim 1, wherein the second electrode member layer includes Pt, and the ferroelectric film includes Pb. 基板上にトランジスタ素子を形成する工程と、
前記基板上に前記トランジスタ素子上を覆う絶縁膜を形成する工程と、
前記絶縁膜を貫通し前記トランジスタ素子の所定部に接続される導電性プラグを形成する工程と、
前記導電性プラグ上を含む前記絶縁膜上に下部電極の一部である少なくとも拡散・反応バリア性を有する第1電極部材層を形成する工程と、
前記第1電極部材層上に上層の結晶配向性を高める層間膜を形成する工程と、
前記第1電極部材層を露出させる前記層間膜の除去領域を形成する工程と、
前記第1電極部材層上を含む前記層間膜上に下部電極の一部である第2電極部材層を形成する工程と、
前記第2電極部材層上に強誘電体膜を形成する工程と、
前記強誘電体膜上に上部電極部材を形成する工程と、
前記上部電極部材、前記強誘電体膜、及び前記下部電極の全部材層を所定のキャパシタ形状にパターニングする工程と、
を含む半導体装置の製造方法。
Forming a transistor element on the substrate;
Forming an insulating film covering the transistor element on the substrate;
Forming a conductive plug penetrating the insulating film and connected to a predetermined portion of the transistor element;
Forming a first electrode member layer having at least diffusion / reaction barrier properties, which is a part of the lower electrode, on the insulating film including the conductive plug;
Forming an interlayer film for enhancing the crystal orientation of the upper layer on the first electrode member layer;
Forming a removal region of the interlayer film exposing the first electrode member layer;
Forming a second electrode member layer that is a part of a lower electrode on the interlayer film including the first electrode member layer;
Forming a ferroelectric film on the second electrode member layer;
Forming an upper electrode member on the ferroelectric film;
Patterning all member layers of the upper electrode member, the ferroelectric film, and the lower electrode into a predetermined capacitor shape;
A method of manufacturing a semiconductor device including:
前記層間膜を形成する工程は、少なくともスパッタリング法または溶液法またはCVD法の利用を経てTiまたはAlを含む膜を形成する請求項9記載の半導体装置の製造方法。 10. The method of manufacturing a semiconductor device according to claim 9, wherein the step of forming the interlayer film forms a film containing Ti or Al through at least a sputtering method, a solution method, or a CVD method. 前記層間膜の除去領域は、前記導電性プラグの直上を含む領域または前記導電性プラグの直上の領域以外の前記キャパシタ形状の周縁部近傍領域に形成する請求項9または10いずれか一つに記載の半導体装置の製造方法。 11. The removal region of the interlayer film is formed in a region in the vicinity of the peripheral portion of the capacitor shape other than a region including immediately above the conductive plug or a region directly above the conductive plug. Semiconductor device manufacturing method. 前記強誘電体膜を形成する工程は、ゾル−ゲル法により所望の膜厚を得た強誘電体材料を熱処理して結晶化する請求項9〜11いずれか一つに記載の半導体装置の製造方法。 12. The method of manufacturing a semiconductor device according to claim 9, wherein the step of forming the ferroelectric film crystallizes by heat-treating a ferroelectric material having a desired film thickness by a sol-gel method. Method. 強誘電体膜をキャパシタ絶縁膜とする強誘電体キャパシタ構造において、
前記強誘電体膜を挟む下部電極及び上部電極と、
下部電極の中央またはその付近の領域に接続される導電性部材とを具備し、
前記下部電極は、少なくとも上層の結晶配向性を高める層間膜を所定領域に設け、前記導電性部材側から第1電極部材層/層間膜/第2電極部材層でなる第1積層部分と、前記第1積層部分より小さい領域で前記第1電極部材層と前記第2電極部材層が接続されている第2積層部分が存在する強誘電体キャパシタ構造。
In the ferroelectric capacitor structure in which the ferroelectric film is a capacitor insulating film,
A lower electrode and an upper electrode sandwiching the ferroelectric film;
A conductive member connected to the center of the lower electrode or a region in the vicinity thereof,
The lower electrode is provided with an interlayer film for enhancing crystal orientation of at least an upper layer in a predetermined region, and a first laminated portion composed of a first electrode member layer / interlayer film / second electrode member layer from the conductive member side; A ferroelectric capacitor structure in which a second multilayer portion in which the first electrode member layer and the second electrode member layer are connected is present in a region smaller than the first multilayer portion.
JP2004239435A 2004-08-19 2004-08-19 Semiconductor device and its manufacturing method, ferroelectric capacitor structure Withdrawn JP2006059968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239435A JP2006059968A (en) 2004-08-19 2004-08-19 Semiconductor device and its manufacturing method, ferroelectric capacitor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239435A JP2006059968A (en) 2004-08-19 2004-08-19 Semiconductor device and its manufacturing method, ferroelectric capacitor structure

Publications (1)

Publication Number Publication Date
JP2006059968A true JP2006059968A (en) 2006-03-02

Family

ID=36107198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239435A Withdrawn JP2006059968A (en) 2004-08-19 2004-08-19 Semiconductor device and its manufacturing method, ferroelectric capacitor structure

Country Status (1)

Country Link
JP (1) JP2006059968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250774A (en) * 2006-03-15 2007-09-27 Seiko Epson Corp Ferroelectric memory, and manufacturing method thereof
JP2007250775A (en) * 2006-03-15 2007-09-27 Seiko Epson Corp Ferroelectric memory, and manufacturing method thereof
JP2008135698A (en) * 2006-10-27 2008-06-12 Seiko Epson Corp Method of manufacturing dielectric capacitor
JP2008198827A (en) * 2007-02-14 2008-08-28 Fujitsu Ltd Semiconductor device and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250774A (en) * 2006-03-15 2007-09-27 Seiko Epson Corp Ferroelectric memory, and manufacturing method thereof
JP2007250775A (en) * 2006-03-15 2007-09-27 Seiko Epson Corp Ferroelectric memory, and manufacturing method thereof
JP4683224B2 (en) * 2006-03-15 2011-05-18 セイコーエプソン株式会社 Manufacturing method of ferroelectric memory
JP4730541B2 (en) * 2006-03-15 2011-07-20 セイコーエプソン株式会社 Ferroelectric memory and manufacturing method thereof
JP2008135698A (en) * 2006-10-27 2008-06-12 Seiko Epson Corp Method of manufacturing dielectric capacitor
JP2008198827A (en) * 2007-02-14 2008-08-28 Fujitsu Ltd Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2003289134A (en) Semiconductor device and manufacturing method therefor
US20090068763A1 (en) Method for manufacturing semiconductor device and its manufacturing method
JP4690985B2 (en) Nonvolatile memory device and manufacturing method thereof
KR101184013B1 (en) Semiconductor device having capacitor and its manufacturing method
KR20070098411A (en) Semiconductor device and manufacturing method thereof
JP2003068993A (en) Semiconductor device and its manufacturing method
JP2006261483A (en) Ferroelectric capacitor and its fabrication process
JP2003086771A (en) Capacitive element, and semiconductor device and its manufacturing method
JP4105656B2 (en) Semiconductor device and manufacturing method thereof
JP2006310637A (en) Semiconductor device
KR100668881B1 (en) Capacitor and method of its manufacture
JP2004079675A (en) Semiconductor device and method of manufacturing same
JP2006059968A (en) Semiconductor device and its manufacturing method, ferroelectric capacitor structure
JP4375561B2 (en) Semiconductor memory device and manufacturing method thereof
JP2006202988A (en) Semiconductor device and its manufacturing method
JP3921401B2 (en) Capacitor element manufacturing method
JP4913994B2 (en) Ferroelectric capacitor, ferroelectric memory, ferroelectric capacitor manufacturing method, and ferroelectric memory manufacturing method
JP4316193B2 (en) Ferroelectric capacitor and ferroelectric memory device
JP2004311868A (en) Semiconductor device
JP2009188243A (en) Ferroelectric memory device and its manufacturing method
JP2006060107A (en) Method for manufacturing semiconductor device
JP2009071141A (en) Manufacturing method of ferroelectric memory device, and ferroelectric memory device
JP2008016557A (en) Semiconductor device and manufacturing method thereof
JP2003152167A (en) Capacitor of semiconductor element and its manufacturing method
JP2023112910A (en) Semiconductor device and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106