JP2006059757A - Method for manufacturing nb3x compound superconducting wire - Google Patents

Method for manufacturing nb3x compound superconducting wire Download PDF

Info

Publication number
JP2006059757A
JP2006059757A JP2004242601A JP2004242601A JP2006059757A JP 2006059757 A JP2006059757 A JP 2006059757A JP 2004242601 A JP2004242601 A JP 2004242601A JP 2004242601 A JP2004242601 A JP 2004242601A JP 2006059757 A JP2006059757 A JP 2006059757A
Authority
JP
Japan
Prior art keywords
superconducting wire
alloy
compound
sheet
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004242601A
Other languages
Japanese (ja)
Inventor
Takashi Zaitsu
享司 財津
Hiroyuki Kato
弘之 加藤
Takayoshi Miyazaki
隆好 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004242601A priority Critical patent/JP2006059757A/en
Publication of JP2006059757A publication Critical patent/JP2006059757A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which facilitates the roll-up of a raw material on a core material in a Jelly-roll method and manufactures an Nb<SB>3</SB>X compound superconducting wire having a stable and high super conducting property throughout the length. <P>SOLUTION: A process for manufacturing the Nb<SB>3</SB>X compound superconducting wire by the Jelly-roll method includes a step for forming the superconducting wire where an Nb including sheet made of Nb or an Nb alloy and a sheet made of an alloy including an element X are used, the element X reacts with Nb to form the superconducting compound, the sheets are lapped over with one another, rolled up on the core material the surface of which is not smooth in the circumferential direction throughout the length, and formed into a roll shape lamination, and the roll shape lamination is inserted into a pipe made of Cu or a Cu alloy and squeezed out by static water pressure for the sheets to be formed into a shape of folds. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、Nb3Al系やNb3Sn系(以下、「Nb3X化合物系」と略記することがある)の超電導線材をジェリーロール法によって製造する方法に関するものであり、殊に核融合装置、電力貯蔵装置、物性研究などに使用される超電導マグネットの素材として有用なNb3X化合物系超電導線材を製造するための有用な方法に関するものである。以下では、Nb3X化合物系として、代表的なものとしてNb3Al系超電導線材を採り上げて説明を進める。 The present invention relates to a method for producing a Nb 3 Al-based or Nb 3 Sn-based (hereinafter sometimes abbreviated as “Nb 3 X compound-based”) superconducting wire by the jelly roll method, and in particular, nuclear fusion. The present invention relates to a useful method for producing a Nb 3 X compound-based superconducting wire useful as a material for a superconducting magnet used in a device, a power storage device, physical property research, and the like. In the following description, a typical Nb 3 Al-based superconducting wire will be taken as an example of the Nb 3 X compound system, and the description will proceed.

高磁場応用の分野において使用される超電導線材においては、高磁界下における高臨界電流密度に加え、超電導線材に作用する電磁力によって生じる機械的歪応力に耐えるだけの耐歪特性の高い材料の開発が望まれている。こうした中で、Nb3Al系金属間化合物は高磁場下での耐歪特性が高いことから、核融合装置、電力貯蔵装置、物性研究等に使用される超電導マグネットへの利用が期待されている。 In superconducting wires used in the field of high magnetic field applications, in addition to high critical current density under high magnetic fields, the development of materials with high strain resistance that can withstand mechanical strain stress caused by electromagnetic force acting on superconducting wires Is desired. Under these circumstances, Nb 3 Al-based intermetallic compounds are expected to be used in superconducting magnets used for fusion devices, power storage devices, physical properties research, etc., because of their high strain resistance in high magnetic fields. .

Nb3Al系金属間化合物の生成法としては、(A)線材を加熱して1600℃以上の高温に保持した後に急冷してNb3Al相を得る急熱急冷法、(B)NbとAlを微細に分散させた状態で1000℃以下の温度で熱処理を施してNbとAlの拡散反応でNb3Al相を得る方法(拡散法)等が知られている。 As a method for producing an Nb 3 Al-based intermetallic compound, (A) a rapid heating and quenching method in which a wire is heated and held at a high temperature of 1600 ° C. or higher and then rapidly cooled to obtain an Nb 3 Al phase; (B) Nb and Al There is known a method (diffusion method) or the like in which Nb 3 Al phase is obtained by a diffusion reaction between Nb and Al by performing a heat treatment at a temperature of 1000 ° C. or less in a state in which is finely dispersed.

上記方法のうち急熱急冷法を適用した場合のNb3Al相は、Nb:Al=3:1という化学量論組成の化合物が安定して存在可能であり、極めて高い超電導特性(高磁場下での高臨界電流密度)が期待できる。しかしながら、1600℃以上の高温条件下では、超電導線材の安定性を高めるために配置されるCuやAlなどの安定化金属が溶融してしまうため、安定化金属の複合が困難であるという問題があり、実用化するための大きな障害になっている。 Among the above methods, the Nb 3 Al phase when the rapid thermal quenching method is applied can stably have a compound having a stoichiometric composition of Nb: Al = 3: 1, and has extremely high superconducting characteristics (under a high magnetic field). High critical current density). However, under a high temperature condition of 1600 ° C. or higher, a stabilizing metal such as Cu or Al that is arranged to enhance the stability of the superconducting wire is melted, so that there is a problem that it is difficult to combine the stabilizing metals. Yes, it has become a big obstacle for practical use.

一方、拡散法を適用した場合には、1000℃以下の温度で熱処理されることから、安定化金属の複合化は比較的容易であるが、処理温度が低いため、化学量論組成(Nb:Al=3:1)からずれた化合物が生成し易く、超電導特性が劣ることが多い。但し、この方法では、Nb中への拡散距離が短い場合には、1000℃以下の処理温度であっても良質なNb3Al相が生成することが知られるようになり、この拡散法を適用するNb3Al系超電導線材の開発が進められている。 On the other hand, when the diffusion method is applied, since the heat treatment is performed at a temperature of 1000 ° C. or lower, the composite of the stabilized metal is relatively easy. However, since the treatment temperature is low, the stoichiometric composition (Nb: A compound deviating from Al = 3: 1) is likely to be produced, and the superconducting properties are often inferior. However, in this method, when the diffusion distance into Nb is short, it is known that a good quality Nb 3 Al phase is generated even at a processing temperature of 1000 ° C. or less. Development of Nb 3 Al-based superconducting wires is underway.

NbへのAlの拡散距離を短くするNb3Al系超電導線材の製造方法として、粉末冶金法、チューブ法、クラッドチップ押出し法、ジェリーロール法等、様々な製造方法が提案されているが、このうちジェリーロール法では超電導線材の多芯化、長尺化が比較的容易であることから実用化に最も適した方法であると考えられている。 Various manufacturing methods such as a powder metallurgy method, a tube method, a clad chip extrusion method, and a jelly roll method have been proposed as a method for manufacturing an Nb 3 Al-based superconducting wire that shortens the diffusion distance of Al to Nb. Among them, the jelly roll method is considered to be the most suitable method for practical use since it is relatively easy to increase the length of the superconducting wire and lengthen it.

このジェリーロール法では、NbまたはNb合金からなるNb含有シートと、AlまたはAl合金からなるAl含有シートを、CuまたはCu合金(或はNbまたはNb合金)からなる芯材を中心として重ね巻きして積層物とし、CuまたはCu合金からなるパイプ内に挿入した後、縮径加工(減面加工)して一次超電導線材を作成し、これを同じ断面形状のCu線と一緒にして複数本束ね、CuまたはCu合金からなるパイプ内に挿入して縮径加工することによって多芯フィラメントを持つ線材が製造される。こうした方法では、減面加工を施すことによって、積層されたNb製シートとAl製シートの厚さを薄くしていき、Nb中へのAlの拡散距離を短くすることができる。   In this jelly roll method, an Nb-containing sheet made of Nb or an Nb alloy and an Al-containing sheet made of Al or an Al alloy are wound around a core material made of Cu or a Cu alloy (or Nb or Nb alloy). After being inserted into a pipe made of Cu or Cu alloy, a primary superconducting wire is created by reducing the diameter (reducing surface area) and bundled together with Cu wires having the same cross-sectional shape. A wire rod having a multi-core filament is manufactured by inserting into a pipe made of Cu or Cu alloy and reducing the diameter. In such a method, by reducing the surface, the thicknesses of the laminated Nb sheet and Al sheet can be reduced, and the diffusion distance of Al into Nb can be shortened.

ところで、加工初期段階の重ね巻き工程においては、巻き密度を上げて反応界面を多く導入することが超電導特性の向上に直結するため、芯材に巻きつける原料シートの広がりを抑えながら巻き密度を上げた巻き取り作業を行う必要がある。   By the way, in the lap winding process at the initial stage of processing, increasing the winding density and introducing more reaction interfaces directly improves the superconducting properties, so the winding density is increased while suppressing the spread of the raw material sheet wound around the core material. It is necessary to perform the winding operation.

またジェリーロール法で、Nb3Al系超電導線材を作製した場合のNb3Al相生成反応は、Nb/Al積層界面のみで起こるので反応速度が遅く、NbとAlを完全に反応させる熱処理条件下では初期に生成したNb3Alの結晶の粗大化が著しく進行し、磁束ピン止め点としてのNb3Al結晶粒界の減少によって、臨界電流密度が劣化することになる。 In addition, the Nb 3 Al phase formation reaction when the Nb 3 Al-based superconducting wire is produced by the jelly roll method occurs only at the Nb / Al laminated interface, so the reaction rate is slow, and the heat treatment conditions allow Nb and Al to completely react. Then, the coarsening of the Nb 3 Al crystal formed at an early stage proceeds remarkably, and the critical current density deteriorates due to the decrease of the Nb 3 Al crystal grain boundary as the magnetic flux pinning point.

一方、Nb3Al結晶粒の粗大化が進行しない熱処理条件下では、未反応のNbやAlが存在するため、十分な臨界電流密度を得ることはできない。このように、ジェリーロール法で製造したNb3Al系超電導線材に対して拡散法でNb3Al相の生成を試みた場合には、期待するほどの臨界電流密度が得られないという問題がある。こうした問題を解決するために、これまでにも様々な技術が提案されている。 On the other hand, under the heat treatment conditions in which the coarsening of Nb 3 Al crystal grains does not proceed, unreacted Nb and Al are present, so that a sufficient critical current density cannot be obtained. As described above, when an Nb 3 Al phase is produced by the diffusion method for the Nb 3 Al-based superconducting wire manufactured by the jelly roll method, there is a problem that a critical current density as expected cannot be obtained. . In order to solve such problems, various techniques have been proposed so far.

例えば特許文献1には、Nb含有シートの結晶組織を調整し、Nb/Al複合組織をAl相がマトリックス中に繊維状に分散した組織とすることによって、臨界電流密度を向上させたNb3Al系超電導線材について提案されている。また特許文献2には、巻き取りに先立ってNb含有シートを熱処理して結晶方位を調整し、Nb含有シートとAl含有シートの界面が密にジグザグ形状となるようにすることによって、臨界電流密度を向上させたNb3Al系超電導線材について提案されている。 For example, in Patent Document 1, Nb 3 Al whose critical current density is improved by adjusting the crystal structure of an Nb-containing sheet and making the Nb / Al composite structure a structure in which an Al phase is dispersed in a fibrous form in a matrix. -Based superconducting wires have been proposed. In Patent Document 2, the Nb-containing sheet is heat-treated prior to winding to adjust the crystal orientation so that the interface between the Nb-containing sheet and the Al-containing sheet has a dense zigzag shape. Nb 3 Al-based superconducting wires with improved resistance have been proposed.

これらの技術において、臨界電流密度を向上させる原理は、加工に対して異方性を有するNb結晶組織を利用するものである。しかしながら、これらの技術では、線材の長尺化に際して使用する長尺のNb含有シートの厳密な結晶粒組織制御は困難であり、部分的に意図した形状にシートを変形させることが困難であるので、超電導線材の特性にバラツキが生じるという問題がある。   In these techniques, the principle of improving the critical current density is to use an Nb crystal structure having anisotropy for processing. However, with these techniques, it is difficult to strictly control the crystal grain structure of the long Nb-containing sheet used for lengthening the wire, and it is difficult to partially deform the sheet into an intended shape. There is a problem that variations occur in the characteristics of the superconducting wire.

ところで、ジェリーロール法でNb含有シートとAl含有シートを芯材に交互に重ね巻きする際には、芯材としては丸棒金属芯を用いるのが一般的であるが、芯材とシート間には十分な摩擦力が働かないことから、芯材が空回りしてシートの巻き弛みが発生しやすくなり、こうした巻き弛みが発生すると超電導特性が低下することになる。こうした巻き弛みを解消するたには、巻き直しを行う必要があるが、そうすると製造時間がかかってしまうという問題がある。また巻き弛みが発生することによる不都合も、従来の技術では解消されていないのが実情である。   By the way, when the Nb-containing sheet and the Al-containing sheet are alternately wound on the core material by the jelly roll method, it is common to use a round metal core as the core material, but between the core material and the sheet. Since a sufficient frictional force does not work, the core material is idle, and the sheet is liable to be loosened. When such looseness is generated, the superconducting characteristics are deteriorated. In order to eliminate such winding slack, it is necessary to perform rewinding, but there is a problem that manufacturing time is required. In fact, the inconvenience caused by the loosening of the winding has not been solved by the conventional technology.

こうした問題は、上記したNb3Al系超電導線材に限らず、Nbと反応して超電導相を形成する元素(Sn,Ge,Ga等)を用いる場合においても、同様に生じる共通の課題である。
特許第3438271号公報 特許請求の範囲等 特開平6−290651号公報 特許請求の範囲等
Such a problem is not limited to the above-described Nb 3 Al-based superconducting wire, but is a common problem that occurs in the same manner even when elements (Sn, Ge, Ga, etc.) that react with Nb to form a superconducting phase are used.
Japanese Patent No. 3438271 Patent Claims etc. JP, 6-290651, A Claims etc.

本発明は、こうした状況の下でなされたものであって、その目的は、ジェリーロール法における芯材への原料シートの巻取り作業を容易に行うことができると共に、全長に亘って安定した高い超電導特性を示すNb3X化合物系超電導線材を製造する方法を提供することにある。 The present invention has been made under such circumstances, and the object thereof is to easily perform the winding operation of the raw material sheet around the core material in the jelly roll method, and to achieve a stable high over the entire length. An object of the present invention is to provide a method for producing a Nb 3 X compound-based superconducting wire exhibiting superconducting characteristics.

上記目的を達成することのできた本発明のNb3X化合物系超電導線材の製造方法とは、Nb3X化合物系超電導線材をジェリーロール法によって製造するに当たり、NbまたはNb合金からなるNb含有シートと、Nbと反応して超電導性化合物を形成する元素Xまたは元素Xを含む合金からなるシートを用い、これらを重ね合わせて、全長に亘って表面が周方向に滑らかでない芯材に巻取って構成したロール状積層物を、CuまたはCu合金からなるパイプに挿入し、これを静水圧押し出しすることによって前記シートを襞状に形成した一次超電導線材とする工程を含む点に要旨を有するものである。 The Nb 3 method for producing X compound superconducting wire of the present invention which could achieve the above object, in producing a Nb 3 X compound superconducting wire by a jelly roll method, a Nb sheet consisting of Nb or Nb alloy , A sheet made of an element X that reacts with Nb to form a superconducting compound or an alloy containing the element X, and is superposed and wound around a core whose surface is not smooth in the circumferential direction over its entire length The roll-shaped laminate is inserted into a pipe made of Cu or Cu alloy, and is hydrostatically pressed to form a primary superconducting wire having a sheet-like shape. .

本発明の製造方法においては、前記一次超電導線材を複数本束ねて、CuまたはCu合金からなるパイプに挿入し、これを縮径加工した後熱処理することによって多芯線のNb3X化合物系超電導線材を得ることができる。 In the manufacturing method of the present invention, a plurality of the primary superconducting wires are bundled, inserted into a pipe made of Cu or Cu alloy, subjected to heat treatment after reducing the diameter, and then subjected to heat treatment to form a multi-core Nb 3 X compound superconducting wire. Can be obtained.

また、本発明の製造方法においては、Nbと反応して超電導性化合物を形成する元素Xとしては、Al,Sn,GeおよびGaよりなる群から選ばれる1種以上の元素が挙げられる。   In the production method of the present invention, the element X that forms a superconducting compound by reacting with Nb includes one or more elements selected from the group consisting of Al, Sn, Ge, and Ga.

本発明の製造方法では、Nb3X化合物系超伝導線材をジェリーロール法によって製造するに際して、全長に亘って表面が周方向に滑らかでない芯材を用いると共に、この芯材にシートを巻取って構成したロール状積層物を、CuまたはCu合金からなるパイプに挿入し、これを静水圧押し出しすることによって前記シートを襞状に形成した一次超電導線材を用いることによって、金属芯材へのシートの巻き取り作業を容易にすることができると共に、希望する超電導特性を発揮する超電導線材が得られることになる。また上記の様な一次超電導線材を複数本束ねて、CuまたはCu合金からなるパイプに挿入し、これを縮径加工した後熱処理することによって、効果的に線材の多芯化を実現することができる。 In the production method of the present invention, when producing a Nb 3 X compound superconducting wire by the jelly roll method, a core material whose surface is not smooth in the circumferential direction is used over the entire length, and a sheet is wound around the core material. By inserting the constructed roll-shaped laminate into a pipe made of Cu or Cu alloy and extruding the sheet into a pipe by hydrostatic pressure, the sheet is formed into a metal core by using the primary superconducting wire formed into a bowl shape. The winding work can be facilitated, and a superconducting wire exhibiting desired superconducting characteristics can be obtained. Also, it is possible to effectively realize the multi-core of the wire by bundling a plurality of primary superconducting wires as described above, inserting them into a pipe made of Cu or Cu alloy, reducing the diameter of this, and then performing heat treatment. it can.

本発明者らは、従来技術における問題を解決するには、(1)金属芯材とシートとの摩擦力を増大させるような構成を採用すること、および(2)積層の各界面を全長さに亘って襞状に変形させた構成とし、Nbと元素Xの接触面積を大きくし、結晶粒の粗大化が進行する前にNbと元素Xとの拡散反応を完了させることが必要であると考えた。こうした着想に基づいて様々な角度から検討した。その結果、上記のような構成を採用すれば、上記目的が見事に達成されることを見出し、本発明を完成した。以下、本発明の構成を、図面に基づいて詳細に説明する。   In order to solve the problems in the prior art, the inventors of the present invention (1) adopt a configuration that increases the frictional force between the metal core and the sheet, and (2) lengthen each interface of the stack. The contact area between Nb and element X is increased, and the diffusion reaction between Nb and element X must be completed before the coarsening of crystal grains proceeds. Thought. Based on these ideas, we examined from various angles. As a result, the inventors have found that the above object can be achieved brilliantly by adopting the configuration as described above, thereby completing the present invention. Hereinafter, the configuration of the present invention will be described in detail with reference to the drawings.

本発明では、NbまたはNb合金からなるNb含有シートと、Nbと反応して超電導性化合物を形成する元素Xまたは元素Xを含む合金からなるシート(以下、「Al含有シートで代表する」を重ね合わせて芯材に巻取る必要があるが、このとき用いる芯材の形状例を模式的に図1に示す。   In the present invention, an Nb-containing sheet made of Nb or Nb alloy and a sheet made of an element X or an alloy containing the element X that reacts with Nb to form a superconducting compound (hereinafter referred to as “Al-containing sheet”) are stacked. Although it is necessary to wind up around a core material collectively, the example of the shape of the core material used at this time is typically shown in FIG.

図1に示した芯材1では、芯材表面の軸心方向全長に沿って凹凸1aが形成されたものである。こうした芯材に対して、その表面にNb含有シート2とAl含有シート3を重ね合わせて(Nb/Al積層部4)、芯材1に巻き取った後の断面構造(一次複合材)を図2に示す。   In the core material 1 shown in FIG. 1, the unevenness | corrugation 1a is formed along the axial center direction full length of the core material surface. For such a core material, the Nb-containing sheet 2 and the Al-containing sheet 3 are superposed on the surface (Nb / Al laminated portion 4), and the cross-sectional structure (primary composite material) after winding on the core material 1 is illustrated. It is shown in 2.

図2に示すように、芯材1とNb/Al積層部4が接しない芯材凹部には、空隙5が形成された状態となっている。こうした構成の一次複合材6をCuまたはCu合金ケース7中に装填後、静水圧押し出し・伸線加工すると、図3に示すような単芯複合材(一次超電導線材)10を得ることができる。   As shown in FIG. 2, voids 5 are formed in the core material recess where the core material 1 and the Nb / Al laminated portion 4 do not contact. When the primary composite material 6 having such a configuration is loaded into a Cu or Cu alloy case 7 and then subjected to isostatic pressing and wire drawing, a single-core composite material (primary superconducting wire) 10 as shown in FIG. 3 can be obtained.

この単芯複合材10では、静水圧押し出しの際に、印加される等方圧と伸線ダイスによる減面加工によって、前記空隙5内にNb/Al積層部4が変形して入り込み、図4(図3のA領域部分拡大図)に示すように、襞状に変形したNb/Al積層部4を得ることができる。   In the single-core composite material 10, the Nb / Al laminated portion 4 is deformed and enters the gap 5 by the isotropic pressure applied during the hydrostatic pressure extrusion and the surface reduction by the wire drawing die. As shown in the A region partial enlarged view of FIG. 3, the Nb / Al laminated portion 4 deformed into a bowl shape can be obtained.

尚、一次複合材を構成するに際して、芯材1として安定化の為のCu(安定化銅)を配置する場合には、Nb3Al相生成熱処理中の安定化銅の汚損を防止する為に、Nb含有シートとAl含有シートを重ね巻きする前に、芯材にNbシートを複数回巻き付けて拡散障壁層を設けるようにしてもよい。また、外側のCu安定化銅(前記CuまたはCu合金ケース7)の汚染を防ぐ為に、Nb/Al積層部の外側にNb管(Nb含有材をパイプ状に加工したもの)を被せるか、或いはNb/Al積層部を巻き取った後に、Nbシートを複数回巻き付け、拡散障壁層を設けることも可能である。 In order to prevent fouling of the stabilized copper during the heat treatment for generating the Nb 3 Al phase when Cu (stabilized copper) for stabilization is disposed as the core material 1 when constituting the primary composite material. In addition, before the Nb-containing sheet and the Al-containing sheet are overwrapped, the diffusion barrier layer may be provided by winding the Nb sheet around the core material a plurality of times. Further, in order to prevent contamination of the outer Cu-stabilized copper (the Cu or Cu alloy case 7), the Nb / Al laminated portion is covered with an Nb tube (Nb-containing material processed into a pipe shape), Alternatively, after winding the Nb / Al laminated portion, it is possible to wind the Nb sheet a plurality of times to provide a diffusion barrier layer.

次に、一次超電導線材10を伸線によって六角断面形状にして、同じ様に六角断面形状にしたCuまたはCu合金スペーサ(図示せず)とともに複数本束ね、図5に示すようにCuまたはCu合金製パイプ8内に挿入して、押出し加工および伸線加工を行い、図6に示すような断面形状のNb3Al系多芯超電導線材12を得る。 Next, the primary superconducting wire 10 is made into a hexagonal cross-sectional shape by wire drawing, and bundled together with a Cu or Cu alloy spacer (not shown) having the same hexagonal cross-sectional shape, and as shown in FIG. It is inserted into the pipe 8 and subjected to extrusion processing and wire drawing processing to obtain a Nb 3 Al multi-core superconducting wire 12 having a cross-sectional shape as shown in FIG.

最終的に、このNb3Al系多芯超電導線材12を比較的低い温度(例えば、700〜800℃程度)で熱処理することによって、Nb含有シート2とAl含有シート3の間で反応が進行し、Nb3Al系超電導体相が形成されてNb3Al系超伝導線材を得ることができる。 Finally, the Nb 3 Al-based multicore superconducting wire 12 is heat-treated at a relatively low temperature (for example, about 700 to 800 ° C.), whereby the reaction proceeds between the Nb-containing sheet 2 and the Al-containing sheet 3. A Nb 3 Al-based superconductor phase is formed, and an Nb 3 Al-based superconducting wire can be obtained.

こうした構成では、表面が周方向に滑らかでない芯材1を使用するものであるので、芯材1とこの芯材に直接巻き付ける原料シート間の摩擦が向上することになり、巻き取り作業性が良好となり、短時間で巻き密度を向上させながら巻き取り作業が可能となる。   In such a configuration, since the core material 1 whose surface is not smooth in the circumferential direction is used, the friction between the core material 1 and the raw material sheet directly wound around the core material is improved, and the winding workability is good. Thus, the winding work can be performed while improving the winding density in a short time.

また、上記のような構成の芯材1に複合材(Nb/Al積層部4)を巻き取った後に、等方静水圧を印加することによって、巻き付けたNbシート2とAlシート3を直接的に襞状に変形することが可能となり、事前の熱処理などを必要とせずに、確実に且つ容易に線材全長さに亘ってNbとAlの反応界面を増大した超電導特性の高いNb3Al系超電導線材が実現できる。また、こうした構成であれば、従来と比べて大幅に反応界面を増大することができることになる。 Further, after winding the composite material (Nb / Al laminated portion 4) around the core material 1 having the above-described configuration, the wound Nb sheet 2 and Al sheet 3 are directly bonded by applying an isotropic hydrostatic pressure. Nb 3 Al-based superconductivity with high superconducting properties that can increase the reaction interface between Nb and Al reliably and easily over the entire length of the wire without the need for prior heat treatment, etc. Wire can be realized. Further, with such a configuration, the reaction interface can be greatly increased as compared with the conventional case.

前記図1に示した芯材1の構成では、芯材1の凸部の断面形状は先細り状のものを示したけれども、この凸部形状は図1に示したものに限らず、例えば図7に示すように断面矩形の歯車型のものや、図8に示すように断面波状のもの、等を形成することができる。また、この凹凸形状は軸心方向に沿って一定のものにする必要はなく、例えば図9に示すように平面格子状となる凹凸であってもよい。更には、ローレット加工(ナーリング)によって、その表面にダイヤモンド状や七子目状の刻みをいれたものであっても良い。要するに、表面性状が周方向に滑らかでないものであれば、いずれも本発明の芯材1として用いることができる。こうした表面性状における凹部と凸部の高低も自由に選択可能であるので、任意の形状(断面襞状)のNb/Al積層部4を形成することができる。   In the configuration of the core material 1 shown in FIG. 1, the cross-sectional shape of the convex portion of the core material 1 is a tapered shape, but this convex shape is not limited to that shown in FIG. As shown in FIG. 8, a gear type having a rectangular section, a corrugated section as shown in FIG. 8, and the like can be formed. Further, the uneven shape does not have to be constant along the axial direction, and may be an uneven shape having a planar lattice shape as shown in FIG. Furthermore, the surface may be diamond-like or heptagonal notched by knurling (knurling). In short, as long as the surface properties are not smooth in the circumferential direction, any can be used as the core material 1 of the present invention. Since the height of the concave portion and the convex portion in the surface property can be freely selected, the Nb / Al laminated portion 4 having an arbitrary shape (cross-sectional shape) can be formed.

尚本発明で用いるNb含有シート2としては、工業用純Nbの他、Ti,Ta,Zr,Hf等の合金元素を含むNb合金を用いることができる。またNbと反応して超電導性化合物を形成する元素Xとしては、Al,Sn,GeおよびGaよりなる群から選ばれる1種以上の元素が挙げられ、これらの単独の元素からなるシート、或いはこれらの2種以上を合金化したシート、更にはMg,Be,Ag,Cu等の合金元素を含有させたもの等は、いずれも元素Xを含むシートとして用いることができる。   As the Nb-containing sheet 2 used in the present invention, an Nb alloy containing alloy elements such as Ti, Ta, Zr, and Hf can be used in addition to industrial pure Nb. Examples of the element X that reacts with Nb to form a superconducting compound include one or more elements selected from the group consisting of Al, Sn, Ge, and Ga, and a sheet made of these single elements, or these A sheet obtained by alloying two or more of these, and further containing an alloy element such as Mg, Be, Ag, or Cu can be used as a sheet containing the element X.

以下、本発明を実施例によってより具体的に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することは、いずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not of a nature that limit the present invention, and any design changes may be made in accordance with the gist of the present invention. It is included in the technical scope.

実施例
芯材1として、凹部と凸部の直径の差が1.0mmとなるようにローレット加工を施したCu棒を用い、これに厚み0.1mmのNbシート2と厚み0.03mmのAlシート3を積層して巻き取り、前記図2に示したような一次複合材6を作製した。このとき、Nbシート2とAlシート3の巻き取りに要した時間は約2時間であった。
As an example core material 1, a Cu rod knurled so that the difference in diameter between the concave portion and the convex portion is 1.0 mm is used, and an Nb sheet 2 having a thickness of 0.1 mm and an Al having a thickness of 0.03 mm are used. The sheet 3 was laminated and wound up to produce a primary composite material 6 as shown in FIG. At this time, the time required for winding the Nb sheet 2 and the Al sheet 3 was about 2 hours.

得られた一次複合材をCuケース7中に装填後(前記図3)、静水圧押し出し・伸線加工し、六角断面単芯複合材(Nb/Al/Cu複合体)を作製した。この六角断面単芯複合材を102本束ねてCuケース内に組み込み、伸線加工を行い、φ1.00mmまで加工し、多芯複合材(Nb3Al系多芯超電導線材12)を作製した。 The obtained primary composite material was loaded into the Cu case 7 (FIG. 3) and then subjected to hydrostatic pressure extrusion and wire drawing to prepare a hexagonal cross-section single-core composite material (Nb / Al / Cu composite). 102 hexagonal cross-section single core composites were bundled and incorporated in a Cu case, drawn, and processed to φ1.00 mm to produce a multicore composite (Nb 3 Al multicore superconducting wire 12).

作製した多芯複合材中のNb/Al積層部形状調査のために多芯複合材を50等分し、その断面を観察したところ、いずれの断面においてもNb/Al積層部4は前記図4に模式的に示したような非常に細かな湾曲部を持つ襞状を呈していた。   In order to investigate the shape of the Nb / Al laminated portion in the produced multicore composite material, the multicore composite material was divided into 50 equal parts and the cross sections thereof were observed. As shown schematically in Fig. 1, it had a bowl shape with a very fine curved part.

またこの多芯複合材を、750℃×50時間のNb3Al相生成熱処理を施し、温度:4.2k、磁場:12Tで臨界電流密度を測定したところ、690A/mm2であった。 This multi-core composite was subjected to Nb 3 Al phase generation heat treatment at 750 ° C. for 50 hours, and the critical current density was measured at a temperature of 4.2 k and a magnetic field of 12 T. As a result, it was 690 A / mm 2 .

比較例
芯材1として、滑らかな表面を持つCu棒を用い、これに厚み0.1mmのNbシートと厚み0.03mmのAlシートを積層して巻き取り、図10に示すような一次複合材15を作製した。このとき、Nbシート2とAlシート3の巻き取りに要した時間は約5時間であった。
As a comparative example core material 1, a Cu bar having a smooth surface is used, and a Nb sheet having a thickness of 0.1 mm and an Al sheet having a thickness of 0.03 mm are laminated and wound, and a primary composite material as shown in FIG. 15 was produced. At this time, the time required for winding the Nb sheet 2 and the Al sheet 3 was about 5 hours.

得られた一次複合材15をCuケース7中に装填後、静水圧押し出し・伸線加工し、図11に示すような単芯複合材16を作製した。更に、この単芯複合材16を加工し、六角断面単芯複合材(Nb/Al/Cu複合体)を作製した。この六角断面単芯複合材を102本束ねてCuケース内に組み込み、伸線加工を行い、φ1.00mmまで加工し、多芯複合材を作製した。   After the obtained primary composite material 15 was loaded into the Cu case 7, it was subjected to hydrostatic extrusion and wire drawing to produce a single-core composite material 16 as shown in FIG. Further, the single-core composite material 16 was processed to prepare a hexagonal cross-section single-core composite material (Nb / Al / Cu composite). 102 hexagonal cross-section single-core composite materials were bundled and incorporated in a Cu case, wire drawing was performed, and processing was performed to φ1.00 mm to prepare a multicore composite material.

作製した多芯複合材中のNb/Al積層部形状調査のために多芯複合材を50等分し、その断面を観察したところ、いずれの断面においてもNb/Al積層部は図12(図11におけるB領域部分拡大図)に模式的に示すようわずかに湾曲した形状を呈していた。   In order to investigate the shape of the Nb / Al laminated portion in the produced multicore composite material, the multicore composite material was divided into 50 equal parts and the cross-sections were observed. 11 and a slightly curved shape as schematically shown in FIG.

またこの多芯複合材を、750℃×50時間のNb3Al相生成熱処理を施し、温度:4.2k、磁場:12Tで臨界電流密度を測定したところ、630A/mm2であった。 This multi-core composite was subjected to Nb 3 Al phase generation heat treatment at 750 ° C. for 50 hours, and the critical current density was measured at a temperature of 4.2 k and a magnetic field of 12 T. As a result, it was 630 A / mm 2 .

本発明で使用する芯材1の一例を示す概略図である。It is the schematic which shows an example of the core material 1 used by this invention. 本発明で作製される一次複合材6の一構成例を示した概略断面図である。It is the schematic sectional drawing which showed one structural example of the primary composite material 6 produced by this invention. 本発明で作製される単芯複合材10の概略図である。It is the schematic of the single core composite material 10 produced by this invention. 図3におけるA領域部分拡大図である。FIG. 4 is an enlarged view of a portion A in FIG. 3. 本発明でNb3Al系多芯超電導線材を作製する際の模式図である。It is a schematic view of making the Nb 3 Al-based multi-core superconducting wire in the present invention. 本発明で作製されるNb3Al系多芯超電導線材の概略断面図である。It is a schematic cross-sectional view of a Nb 3 Al-based multi-core superconducting wire manufactured in this invention. 本発明で使用する芯材1の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the core material 1 used by this invention. 本発明で使用する芯材1の更に他の例を示す概略断面図である。It is a schematic sectional drawing which shows the further another example of the core material 1 used by this invention. 本発明で使用する芯材の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the core material used by this invention. 比較例としての一次複合材15の構成例を示した概略断面図である。It is the schematic sectional drawing which showed the structural example of the primary composite material 15 as a comparative example. 比較例としての単芯複合材16の一構成例を示す概略断面図である。It is a schematic sectional drawing which shows one structural example of the single core composite material 16 as a comparative example. 図11におけるB領域部分拡大図である。It is the B area | region partial enlarged view in FIG.

符号の説明Explanation of symbols

1 芯材
2 Nb含有シート
3 Al含有シート
4 Nb/Al積層部
5 空隙
6,15 一次複合材
10,16 単芯複合材(一次超電導線材)
12 Nb3Al系多芯超電導線材
DESCRIPTION OF SYMBOLS 1 Core material 2 Nb containing sheet 3 Al containing sheet 4 Nb / Al lamination | stacking part 5 Space | gap 6,15 Primary composite material 10,16 Single core composite material (primary superconducting wire)
12 Nb 3 Al multi-core superconducting wire

Claims (3)

Nb3X化合物系超電導線材をジェリーロール法によって製造するに当たり、NbまたはNb合金からなるNb含有シートと、Nbと反応して超電導性化合物を形成する元素Xまたは元素Xを含む合金からなるシートを用い、これらを重ね合わせて、全長に亘って表面が周方向に滑らかでない芯材に巻取って構成したロール状積層物を、CuまたはCu合金からなるパイプに挿入し、これを静水圧押し出しすることによって前記シートを襞状に形成した一次超電導線材とする工程を含むことを特徴とするNb3X化合物系超電導線材の製造方法。 In producing an Nb 3 X compound-based superconducting wire by the jelly roll method, an Nb-containing sheet made of Nb or an Nb alloy, and a sheet made of an element X or an alloy containing the element X that reacts with Nb to form a superconducting compound A roll-shaped laminate formed by superimposing and winding these around a core material whose surface is not smooth in the circumferential direction over the entire length is inserted into a pipe made of Cu or Cu alloy, and this is hydrostatically extruded. method for producing a Nb 3 X compound superconducting wire which comprises the step of the primary superconducting wire forming the sheet into pleated by. 前記一次超電導線材を複数本束ねて、CuまたはCu合金からなるパイプに挿入し、これを縮径加工した後熱処理する請求項1に記載のNb3X化合物系超電導線材の製造方法。 2. The method of producing a Nb 3 X compound-based superconducting wire according to claim 1, wherein a plurality of the primary superconducting wires are bundled, inserted into a pipe made of Cu or a Cu alloy, and subjected to heat treatment after diameter reduction processing. Nbと反応して超電導性化合物を形成する元素Xは、Al,Sn,GeおよびGaよりなる群から選ばれる1種以上の元素である請求項1または2に記載のNb3X系超電導線材の製造方法。 The element X that reacts with Nb to form a superconducting compound is at least one element selected from the group consisting of Al, Sn, Ge, and Ga. 3. The Nb 3 X-based superconducting wire according to claim 1 or 2, Production method.
JP2004242601A 2004-08-23 2004-08-23 Method for manufacturing nb3x compound superconducting wire Withdrawn JP2006059757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004242601A JP2006059757A (en) 2004-08-23 2004-08-23 Method for manufacturing nb3x compound superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004242601A JP2006059757A (en) 2004-08-23 2004-08-23 Method for manufacturing nb3x compound superconducting wire

Publications (1)

Publication Number Publication Date
JP2006059757A true JP2006059757A (en) 2006-03-02

Family

ID=36107037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242601A Withdrawn JP2006059757A (en) 2004-08-23 2004-08-23 Method for manufacturing nb3x compound superconducting wire

Country Status (1)

Country Link
JP (1) JP2006059757A (en)

Similar Documents

Publication Publication Date Title
US4611390A (en) Method of manufacturing superconducting compound stranded cable
JPH09259660A (en) Oxide superconducting wire, manufacture thereof, oxide superconductive stranded wire and conductor using the oxide superconducting wire
JP2009301928A (en) Method for manufacturing superconducting wire
JPH06251645A (en) Wire for nb3x system superconducting wire
JP4163719B2 (en) Powder method Nb3Sn superconducting wire precursor and manufacturing method
JP2007294375A (en) Nb3Sn SUPERCONDUCTING WIRING MATERIAL FABRICATION PRECURSOR, METHOD FOR FABRICATION THEREOF AND Nb3Sn SUPERCONDUCTING WIRING MATERIAL
JP2006059757A (en) Method for manufacturing nb3x compound superconducting wire
JP4723306B2 (en) Manufacturing method of Nb3Al-based superconducting wire, primary composite material for manufacturing Nb3Al-based superconducting wire and manufacturing method thereof, and multi-core composite material for manufacturing Nb3Al-based superconducting wire
JP5598825B2 (en) Nb3Al superconducting wire manufacturing method
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP2009059652A (en) BRONZE PROCESS Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS PRECURSOR
JP4697240B2 (en) Manufacturing method of Nb3Sn superconducting wire
JP4569053B2 (en) Superconducting wire manufacturing method and superconducting wire
JP2007027089A (en) Superconductive element containing copper inclusion, complex material, and manufacturing method of the same
JP2006004870A (en) MANUFACTURING METHOD OF Nb3Al GROUP SUPERCONDUCTING WIRE ROD
JP4476755B2 (en) Method for producing Nb3Sn superconducting wire and composite wire therefor
JP2010080199A (en) Method of manufacturing superconductive cable, superconductive cable, and thin film superconductive wire
JPH09204828A (en) Manufacture of nb3al superconducting wire
JP3663948B2 (en) Nb3Al compound-based superconducting wire and manufacturing method thereof
JPH08227621A (en) Compound superconducting wire material
JP2006100063A (en) MANUFACTURING METHOD OF Nb3X COMPOUND BASED SUPERCONDUCTING WIRE MATERIAL
JP2010129453A (en) BRONZE METHOD NB3Sn SUPERCONDUCTIVE WIRE ROD
JP5632767B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090331