JP2006059703A - Electrochemical cell - Google Patents

Electrochemical cell Download PDF

Info

Publication number
JP2006059703A
JP2006059703A JP2004241030A JP2004241030A JP2006059703A JP 2006059703 A JP2006059703 A JP 2006059703A JP 2004241030 A JP2004241030 A JP 2004241030A JP 2004241030 A JP2004241030 A JP 2004241030A JP 2006059703 A JP2006059703 A JP 2006059703A
Authority
JP
Japan
Prior art keywords
electrochemical cell
electrode
conductor
oxygen
ion conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004241030A
Other languages
Japanese (ja)
Inventor
Masaharu Yamada
雅治 山田
Takashi Yamada
喬 山田
Koji Hoshino
孝二 星野
Hiroyuki Tsujimura
浩行 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004241030A priority Critical patent/JP2006059703A/en
Publication of JP2006059703A publication Critical patent/JP2006059703A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To attain an electrode of a fine structure using a lanthane-gallate based material as an oxygen ion conductor and accomplish efficiency of an electrochemical reaction. <P>SOLUTION: This is an electrochemical cell constructed of a solid electrolyte layer comprising an ion conductor and an electrode provided on its both sides. The cathode electrode is composed of a porous mixed body of the ion conductor 5 and an electron conductor 6 and insulating ceramic particulates 8 are filled in the gap 7 of the porous mixed body. Thereby, the cathode electrode of fine structure can be obtained and decomposition and purification of nitrogen oxide by electrochemical reaction under the existence of oxygen can be performed highly efficiently. A lanthane-gallate based material is used as an ion conductor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、NOxや炭化水素等、窒素酸化物の浄化に用いて好適な電気化学セルに関するものである。  The present invention relates to an electrochemical cell suitable for use in purifying nitrogen oxides such as NOx and hydrocarbons.

図3に示すように、酸素イオン伝導性を有する薄板状の固体電解質層3の両面にそれぞれ電極2、4を設けて構成した電気化学セル1においては、例えば、800℃以上といった高温下で電極間に直流電圧Vを印加すると、上記固体電解質層3が、その一方の面から他方の面に酸素を透過させる酸素透過膜として作用することが知られている。   As shown in FIG. 3, in an electrochemical cell 1 configured by providing electrodes 2 and 4 on both surfaces of a thin plate-like solid electrolyte layer 3 having oxygen ion conductivity, the electrode is formed at a high temperature of, for example, 800 ° C. or higher. It is known that when a DC voltage V is applied between them, the solid electrolyte layer 3 acts as an oxygen permeable membrane that allows oxygen to pass from one surface to the other surface.

すなわち、上記構成の電気化学セル1では、負電圧がかかる電極側(カソード電極2側)で酸素分子(O2)が電子を受け取って酸素イオン(O2-)にイオン化され、この酸素イオンが固体電解質中を正電圧がかかる電極側(アノード電極4側)に移動し、当電極4側において電子を放出して再び酸素分子に戻る現象が生じている。
このような固体電解質層の性質を利用して、例えば、NOx、炭化水素、酸素の混合ガス(被処理物質)中から酸素を分離して選択的に取り出し、有害な窒素酸化物を浄化することが可能であり、その先行例として特許文献1が開示されている。
特開2003−33646号公報
That is, in the electrochemical cell 1 having the above configuration, oxygen molecules (O 2 ) receive electrons and are ionized into oxygen ions (O 2− ) on the electrode side (cathode electrode 2 side) to which a negative voltage is applied. A phenomenon occurs in which the solid electrolyte moves to the electrode side (anode electrode 4 side) to which a positive voltage is applied, releases electrons on the electrode 4 side, and returns to oxygen molecules again.
Utilizing such a property of the solid electrolyte layer, for example, separating and selectively removing oxygen from a mixed gas (treated substance) of NOx, hydrocarbon and oxygen to purify harmful nitrogen oxides. As a prior example, Patent Document 1 is disclosed.
JP 2003-33646 A

上記特許文献1には、カソード電極における電気化学反応を高効率で行うためには、カソード電極をイオン伝導体と電子伝導体の混合層で構成し、且つ、この混合層が微細構造を有することが好ましく、さらに、このような微細構造を形成する方法として電子伝導体・イオン伝導体に対する1000〜1600℃の熱処理と熱処理温度の制御が有効であり、例えば、電子伝導体として酸化ニッケルを、イオン伝導体としてジルコニアを用いた場合、1400℃または1450℃の熱処理により望ましい微細構造が形成できることが記載されている。
尚、図4は微細構造の電極内部を示しており、イオン伝導体5であるイットリア安定化ジルコニアと電子伝導体6である酸化ニッケルがナノメートルからミクロン以下のサイズで相互に密着したネットワーク状に分布している望ましい電極構造が示されている。
In Patent Document 1, in order to perform an electrochemical reaction at the cathode electrode with high efficiency, the cathode electrode is composed of a mixed layer of an ion conductor and an electron conductor, and the mixed layer has a fine structure. Further, as a method for forming such a fine structure, heat treatment of 1000 to 1600 ° C. and control of the heat treatment temperature for the electron conductor / ion conductor are effective. For example, nickel oxide is used as the electron conductor, It is described that when zirconia is used as a conductor, a desirable microstructure can be formed by heat treatment at 1400 ° C. or 1450 ° C.
FIG. 4 shows the inside of a fine-structured electrode, in a network form in which yttria-stabilized zirconia, which is an ionic conductor 5, and nickel oxide, which is an electronic conductor 6, are in close contact with each other with a size of nanometer to micron. A desirable distributed electrode structure is shown.

ところで、従来、上記イオン伝導体として、酸素イオンに対し高い伝導性を示すイットリア安定化ジルコニア、或いは、サマリウム添加セリア等の酸素イオン伝導性材料が主として用いられているが、近年、これらの酸素物イオン伝導性材料に勝る極めて高い酸素イオン伝導性を有するランタンガレート系材料が注目されている。当ランタンガレート系材料は低温でも高い酸素イオン伝導性を示すため、電気化学セルの低温作動が可能となるという大きメリットがある。   Conventionally, oxygen ion conductive materials such as yttria-stabilized zirconia or samarium-added ceria, which exhibit high conductivity with respect to oxygen ions, have been mainly used as the ion conductor. A lanthanum gallate material having an extremely high oxygen ion conductivity superior to that of an ion conductive material has attracted attention. Since this lanthanum gallate material exhibits high oxygen ion conductivity even at a low temperature, there is a great merit that the electrochemical cell can be operated at a low temperature.

特許文献1によれば、イオン伝導体と電子伝導体の混合層で微細構造を得るには、1400℃以上の高熱処理(電極焼成)を行う必要があるとされているが、ランタンガレート系材料は上記した他の酸素イオン伝導性材料に比べて反応性が極めて高いため、例えば、酸化ニッケル−ランタンガレート系材料の混合材料(サーメット)を熱処理すると、1350℃以上の温度で混合材料が化合物化してしまうという問題があった。
化合化反応が生じない1350℃以下の熱処理では、電子伝導体とイオン伝導体の間の空隙が大きい多孔質状態となっており、望ましい微細構造を得ることはできない。
According to Patent Document 1, it is necessary to perform high heat treatment (electrode firing) at 1400 ° C. or higher in order to obtain a fine structure with a mixed layer of an ion conductor and an electron conductor. Is extremely reactive compared to the other oxygen ion conductive materials described above. For example, when a mixed material (cermet) of nickel oxide-lanthanum gallate material is heat-treated, the mixed material is compounded at a temperature of 1350 ° C. or higher. There was a problem that.
In a heat treatment at 1350 ° C. or lower where no compounding reaction occurs, the void between the electron conductor and the ionic conductor is in a porous state, and a desirable fine structure cannot be obtained.

本発明は、上記問題に鑑み成されたもので、酸素イオン伝導体としてランタンガレート系材料を用いて微細構造の電極を実現することにより、被処理物質に対する電気化学反応の効率化を図った電気化学セルを提供することを目的としている。   The present invention has been made in view of the above problems, and by realizing a fine-structure electrode using a lanthanum gallate-based material as an oxygen ion conductor, it is possible to improve the efficiency of an electrochemical reaction on a substance to be treated. It aims to provide a chemical cell.

すなわち、請求項1に記載の本発明は、イオン伝導体で成る固体電解質層とその両面に設けた電極とで構成される電気化学セルであって、一方の電極がイオン伝導体と電子伝導体の多孔質混合体で成り、且つ、前記多孔質混合体の空隙に絶縁性セラミックス微粒子が充填されていることを特徴としている。   That is, the present invention according to claim 1 is an electrochemical cell comprising a solid electrolyte layer made of an ionic conductor and electrodes provided on both sides thereof, one of which is an ionic conductor and an electronic conductor. The porous mixture is filled with insulating ceramic fine particles in the voids of the porous mixture.

また、請求項2に記載の本発明は、請求項1に記載の電気化学セルにおいて、前記イオン伝導体としてランタンガレート系材料を用いたことを特徴としている。   Further, the present invention described in claim 2 is characterized in that, in the electrochemical cell described in claim 1, a lanthanum gallate material is used as the ion conductor.

ところで、電気化学セルにおいて、カソード電極が多孔質の状態では、本来の被処理物質ではなく、主として共存酸素を還元するために無駄な電力が消費されることになり、その分、NOx等の窒素酸化物の分解効率が低下するが、本発明に記載の構成のように、多孔質混合体の内部空隙を絶縁性セラミックス微粒子で埋め、カソード電極をメソ細孔による微細構造とすることにより、酸素共存下においても窒素酸化物を選択的に還元できるようになる。これにより、被処理物質に対する電気化学反応の効率化が図れる。   By the way, in the electrochemical cell, when the cathode electrode is in a porous state, wasteful power is consumed mainly for reducing the coexisting oxygen, not the original material to be treated. Although the decomposition efficiency of the oxide is reduced, as in the configuration described in the present invention, the internal voids of the porous mixture are filled with insulating ceramic fine particles, and the cathode electrode is formed into a fine structure by mesopores. Nitrogen oxide can be selectively reduced even in the presence of coexistence. Thereby, the efficiency of the electrochemical reaction with respect to a to-be-processed substance can be achieved.

ここで、イオン伝導体として、酸素イオン伝導性が極めて高いランタンガレート系材料を用いており、具体的には、例えば、La0.8Sr0.2Ga0.8Mg0.15Co0.053を用いることができる。 Here, a lanthanum gallate material having extremely high oxygen ion conductivity is used as the ion conductor, and specifically, for example, La 0.8 Sr 0.2 Ga 0.8 Mg 0.15 Co 0.05 O 3 can be used.

本発明によれば、イオン伝導体と電子伝導体の多孔質混合体で成る電極の内部空隙に絶縁性セラミックス微粒子を充填するようにしたので、イオン伝導体としてランタンガレート系材料を用いた微細構造の電極を形成することが可能となり、これにより、酸素共存条件下において、電気化学反応による窒素酸化物の分解、浄化を高効率で行うことができる。加えて、ランタンガレート系材料の有する高い酸素イオン伝導性によって作動温度が300〜400℃の低温作動の電気化学セルを実現することができる。   According to the present invention, since the insulating ceramic fine particles are filled in the internal voids of the electrode composed of the porous mixture of the ion conductor and the electron conductor, the fine structure using the lanthanum gallate material as the ion conductor. This makes it possible to decompose and purify nitrogen oxides by electrochemical reaction with high efficiency under oxygen coexistence conditions. In addition, a low temperature operation electrochemical cell having an operation temperature of 300 to 400 ° C. can be realized by the high oxygen ion conductivity of the lanthanum gallate material.

以下、図面に基づいて本発明に係る電気化学セルの実施形態を説明する。図1は本発明の電気化学セルのカソード電極の内部構造を示し、図2は同、焼成時のカソード電極の内部構造を示し、図3は電気化学セルの構成を示している。   Hereinafter, an embodiment of an electrochemical cell according to the present invention will be described with reference to the drawings. FIG. 1 shows the internal structure of the cathode electrode of the electrochemical cell of the present invention, FIG. 2 shows the internal structure of the cathode electrode during firing, and FIG. 3 shows the structure of the electrochemical cell.

本実施形態による電気化学セル1は、図3に示すように、固体電解質層3(イオン伝導相)とその両面に配したカソード電極2(還元相)とアノード電極4(酸化相)により構成されている。   As shown in FIG. 3, the electrochemical cell 1 according to the present embodiment includes a solid electrolyte layer 3 (ion conduction phase), a cathode electrode 2 (reduction phase) and an anode electrode 4 (oxidation phase) disposed on both sides thereof. ing.

固体電解質層3は、内部を酸素イオンが移動するために、酸素イオン伝導性を有する材料から構成する必要があり、本実施形態では、ペロブスカイト型結晶構造のランタンガレート系材料、具体的には、LSGMC:La0.8Sr0.2Ga0.8Mg0.15Co0.053を用いている。 The solid electrolyte layer 3 needs to be composed of a material having oxygen ion conductivity in order for oxygen ions to move inside. In this embodiment, the lanthanum gallate material having a perovskite crystal structure, specifically, LSGMC: La 0.8 Sr 0.2 Ga 0.8 Mg 0.15 Co 0.05 O 3 is used.

ランタンガレート系材料は、従来より、酸素イオン伝導体として広く用いられているイットリア安定化ジルコニア、或いは、サマリウム添加セリア等と比べてより高い酸素イオン伝導性を有し、よって、これを用いることにより、被処理物質に対する電気化学反応の効率化が図れると共に、作動温度が300〜400℃の低温作動の電気化学セルを実現することができる。   Lanthanum gallate-based materials have higher oxygen ion conductivity than yttria-stabilized zirconia or samarium-doped ceria, which has been widely used as an oxygen ion conductor. Thus, the efficiency of the electrochemical reaction with respect to the substance to be treated can be improved, and a low-temperature operation electrochemical cell having an operation temperature of 300 to 400 ° C. can be realized.

また、カソード電極2は、窒素酸化物等の被処理物質中に含まれる元素へ電子を供給してイオン化し、固体電解質層3へ伝導するために、電子伝導性とイオン伝導性の両特性を有する混合材料を用いるのが好ましい。本実施形態では、イオン伝導性材料として、特に、上記固体電解質層3と同様のランタンガレート系材料を用いている。電子伝導性材料としては、特に限定されるものではないが、例えば、酸化ニッケル、酸化銅、酸化コバルト等の金属酸化物を用いることができる。   In addition, the cathode electrode 2 supplies electrons to elements contained in the material to be treated such as nitrogen oxides, ionizes them, and conducts them to the solid electrolyte layer 3. It is preferable to use a mixed material. In the present embodiment, a lanthanum gallate material similar to that of the solid electrolyte layer 3 is used as the ion conductive material. The electron conductive material is not particularly limited. For example, metal oxides such as nickel oxide, copper oxide, and cobalt oxide can be used.

アノード電極4は、固体電解質層3からの酸素イオンから電子を放出させるために、電子伝導性とともにイオン伝導性を有する混合材料が用いるのが好ましく、特に限定されるものではないが、例えば、イオン伝導性材料として、ランタンガレート、イットリア安定化ジルコニア、サマリウム添加セリア等を用い、電子伝導性材料として、酸化ニッケル、酸化銅、酸化コバルト等の金属酸化物を用いることができる。   The anode electrode 4 is preferably made of a mixed material having both electron conductivity and ion conductivity in order to emit electrons from oxygen ions from the solid electrolyte layer 3, and is not particularly limited. As the conductive material, lanthanum gallate, yttria-stabilized zirconia, samarium-added ceria, or the like can be used, and as the electron conductive material, a metal oxide such as nickel oxide, copper oxide, or cobalt oxide can be used.

上記構成の電気化学セル1において、電気化学反応を高効率で行うためには、イオン伝導体−電子伝導体の混合体で成るカソード電極2が微細構造を有することが重要であることは既述した通りであるが、本実施形態では、このカソード電極材料として、酸化ニッケル−ランタンガレート系材料の混合材料を用いて微細構造の電極を実現している。   In the electrochemical cell 1 configured as described above, it is important that the cathode electrode 2 made of a mixture of an ion conductor and an electron conductor has a fine structure in order to perform an electrochemical reaction with high efficiency. As described above, in this embodiment, an electrode having a fine structure is realized by using a mixed material of nickel oxide-lanthanum gallate material as the cathode electrode material.

その電極形成方法を説明すれば、以下の通りである。
先ず、ランタンガレート系材料[La0.8Sr0.2Ga0.8Mg0.15Co0.053]の粉末に溶媒やバインダ等を混練してスラリーを調製した後、これを公知のドクターブレード法等によりグリーンシートを作製し、これを1400℃で高熱処理(高温焼結)することにより、薄板状の固体電解質層3を得る。
The electrode forming method will be described as follows.
First, a slurry of a lanthanum gallate material [La 0.8 Sr 0.2 Ga 0.8 Mg 0.15 Co 0.05 O 3 ] is prepared by kneading a solvent, a binder, or the like, and then a green sheet is produced by using a known doctor blade method or the like. Then, this is subjected to high heat treatment (high temperature sintering) at 1400 ° C. to obtain a thin plate-like solid electrolyte layer 3.

次に、ランタンガレート系材料と酸化ニッケルの混合材料の粉末に溶剤やバインダ等を加えて混練してスラリーを調整し、これを固体電解質層の一方の面にスクリーン印刷法等で薄膜状に塗布すると共に、1350℃以下の比較的低い温度で一旦焼結し、カソード電極2を形成する。
この混合焼結体は、焼成温度が1350℃以下と低いため、混合体の緻密化が進まず、図2に示すように、イオン伝導体であるランタンガレート系材料粒子5と電子伝導体である酸化ニッケル粒子6と共に多数の空隙7が混在した多孔質の状態となっている。
Next, a solvent or binder is added to the powder of the mixed material of the lanthanum gallate material and nickel oxide and kneaded to prepare a slurry, which is applied to one surface of the solid electrolyte layer as a thin film by screen printing or the like. At the same time, the cathode electrode 2 is formed by sintering once at a relatively low temperature of 1350 ° C. or lower.
Since this mixed sintered body has a low firing temperature of 1350 ° C. or lower, densification of the mixture does not proceed, and, as shown in FIG. 2, lanthanum gallate material particles 5 that are ion conductors and electron conductors. It is in a porous state in which a large number of voids 7 are mixed together with the nickel oxide particles 6.

そこで、本実施形態では、図1に示すように、この多孔質混合体の空隙7に易焼性の絶縁性セラミックス微粒子8を充填し、セラミックス微粒子で内部空隙7を埋めることにより、微細構造のカソード電極2を形成するようにしている。   Therefore, in this embodiment, as shown in FIG. 1, the void 7 of the porous mixture is filled with easily baked insulating ceramic fine particles 8, and the internal voids 7 are filled with the ceramic fine particles. The cathode electrode 2 is formed.

易焼性の絶縁性セラミックス微粒子8として、例えば、アルミナ微粒子(δ-アルミナ粉末)を用いることができ、平均一次粒径2〜60ナノメートルのアルミナ微粒子を含有するスラリーを上記多孔質混合体に含浸させて内部の空隙7にアルミナ微粒子を充填すると共に、スラリー含浸後、再度、多孔質混合体を500℃程度の温度で低温焼結して、空隙7にアルミナ微粒子によるメソ細孔を形成する。これで、微細構造の緻密なカソード電極2を得る。
尚、アノード電極4については、従来公知の電極材料スラリーのスクリーン印刷−高温焼成の工程を経て形成することができる。
For example, alumina fine particles (δ-alumina powder) can be used as the easily bakable insulating ceramic fine particles 8, and a slurry containing alumina fine particles having an average primary particle size of 2 to 60 nanometers is formed into the porous mixture. The impregnated void 7 is filled with alumina fine particles, and after impregnation with the slurry, the porous mixture is again sintered at a low temperature of about 500 ° C. to form mesopores in the void 7 by the fine alumina particles. . Thus, a fine cathode electrode 2 having a fine structure is obtained.
In addition, about the anode electrode 4, it can form through the process of screen printing-high temperature baking of a conventionally well-known electrode material slurry.

以上のように、本発明では、1350℃以下の温度で焼結した多孔質混合体の空隙7を絶縁性セラミックス微粒子8で埋めることにより、カソード電極2を微細構造とすることができ、これにより、酸素共存下においてもNOx等の窒素酸化物を選択的に還元し、窒素酸化物の浄化を高効率で行うことができる。   As described above, in the present invention, the cathode electrode 2 can be made into a fine structure by filling the voids 7 of the porous mixture sintered at a temperature of 1350 ° C. or less with the insulating ceramic fine particles 8. Even in the presence of oxygen, nitrogen oxides such as NOx can be selectively reduced, and nitrogen oxides can be purified with high efficiency.

本発明に係る電気化学セルの電極の内部構造を示す図。The figure which shows the internal structure of the electrode of the electrochemical cell which concerns on this invention. 同、電気化学セルの焼成時の電極の内部構造を示す図。The figure which shows the internal structure of the electrode at the time of baking of an electrochemical cell. 電気化学セルの構成を示す図。The figure which shows the structure of an electrochemical cell. 従来の電気化学セルの電極の内部構造を示す図。The figure which shows the internal structure of the electrode of the conventional electrochemical cell.

符号の説明Explanation of symbols

1 電気化学セル
2 カソード電極
3 固体電解質層
4 アノード電極
5 イオン伝導体
6 電子伝導体
7 空隙
8 セラミックス微粒子
1 Electrochemical Cell 2 Cathode Electrode 3 Solid Electrolyte Layer 4 Anode Electrode 5 Ion Conductor 6 Electron Conductor 7 Void 8 Ceramic Fine Particle

Claims (2)

イオン伝導体で成る固体電解質層とその両面に設けた電極とで構成される電気化学セルであって、
一方の電極がイオン伝導体と電子伝導体の多孔質混合体で成り、
且つ、前記多孔質混合体の空隙に絶縁性セラミックス微粒子が充填されていることを特徴とする電気化学セル。
An electrochemical cell comprising a solid electrolyte layer made of an ionic conductor and electrodes provided on both sides thereof,
One electrode consists of a porous mixture of ionic and electronic conductors,
An electrochemical cell characterized in that a void of the porous mixture is filled with insulating ceramic fine particles.
前記イオン伝導体としてランタンガレート系材料を用いたことを特徴する請求項1に記載の電気化学セル。 The electrochemical cell according to claim 1, wherein a lanthanum gallate material is used as the ion conductor.
JP2004241030A 2004-08-20 2004-08-20 Electrochemical cell Pending JP2006059703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241030A JP2006059703A (en) 2004-08-20 2004-08-20 Electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241030A JP2006059703A (en) 2004-08-20 2004-08-20 Electrochemical cell

Publications (1)

Publication Number Publication Date
JP2006059703A true JP2006059703A (en) 2006-03-02

Family

ID=36106992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241030A Pending JP2006059703A (en) 2004-08-20 2004-08-20 Electrochemical cell

Country Status (1)

Country Link
JP (1) JP2006059703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524956A (en) * 2009-04-24 2012-10-18 テクニカル・ユニヴァーシティ・オブ・デンマーク Composite oxygen electrode and method of manufacturing the same
CN113264713A (en) * 2021-03-05 2021-08-17 成都佰思格科技有限公司 Hard carbon-silicon composite negative electrode material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044340A (en) * 1998-07-24 2000-02-15 Tokyo Gas Co Ltd Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP2003033646A (en) * 2001-07-25 2003-02-04 National Institute Of Advanced Industrial & Technology Chemical reactor
JP2003263993A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Method for manufacturing power generating cell in solid oxide type fuel battery
JP2003263997A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Solid oxide fuel cell
JP2003317744A (en) * 2002-04-26 2003-11-07 Nissan Motor Co Ltd Lanthanum gallate based sintered body, its manufacturing method, and solid electrolyte fuel cell using it as solid electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044340A (en) * 1998-07-24 2000-02-15 Tokyo Gas Co Ltd Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP2003033646A (en) * 2001-07-25 2003-02-04 National Institute Of Advanced Industrial & Technology Chemical reactor
JP2003263993A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Method for manufacturing power generating cell in solid oxide type fuel battery
JP2003263997A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Solid oxide fuel cell
JP2003317744A (en) * 2002-04-26 2003-11-07 Nissan Motor Co Ltd Lanthanum gallate based sintered body, its manufacturing method, and solid electrolyte fuel cell using it as solid electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524956A (en) * 2009-04-24 2012-10-18 テクニカル・ユニヴァーシティ・オブ・デンマーク Composite oxygen electrode and method of manufacturing the same
CN113264713A (en) * 2021-03-05 2021-08-17 成都佰思格科技有限公司 Hard carbon-silicon composite negative electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
AU2008291251B2 (en) Removal of impurity phases from electrochemical devices
US20090004072A1 (en) Ceramic Chemical Reaction Device Capable of Decomposing Solid Carbon
AU2010241164B2 (en) Composite oxygen electrode and method
Fan et al. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells
JP4395567B2 (en) Electrochemical element and exhaust gas purification method
JP3626971B2 (en) Chemical reactor
JP5127437B2 (en) Electrolyte / electrode assembly and method for producing the same
JP2008307493A (en) Self-organizing porous thin film type electrochemical reactor
US7691770B2 (en) Electrode structure and methods of making same
JP2004055194A (en) Electrode of solid oxide type fuel cell
WO2020004333A1 (en) Electrode for solid oxide cells, and solid oxide cell using same
JP2009163884A (en) Electrolyte-electrode assembly
JP5188191B2 (en) Electrolyte / electrode assembly
JP2006059703A (en) Electrochemical cell
RU2197039C2 (en) Solid-oxide fuel cell and its manufacturing process
Tamm et al. Investigation of microstructure of Sr-doped lanthanum vanadium oxide anode based on SDC electrolyte
Sasaki et al. Electrical conductivity of Sr2MgMoO6− δ for solid oxide fuel cell anodes
JP2007027036A (en) Electrode structure for solid oxide fuel cell, and manufacturing method of the same
JP2003288904A (en) Electrochemical element, oxygen concentrator, and fuel cell
KR102247686B1 (en) Self-transforming solid oxide cell and method of manufacturing the same
Song et al. Electrochemical decomposition of NO over composite electrodes on YSZ electrolyte
KR100760605B1 (en) A method for production of a lamellar structure of metal support/fuel electrode/solid electrolyte for a solid oxide fuel cell
JP2008307492A (en) Electrochemical reactor having electrode for stable and high efficient operation
JP2006219340A (en) Electrochemical cell
JP2008243744A (en) Metal thin film, forming method of metal thin film, solid oxide fuel cell using metal thin film, hydrogen pump, membrane reactor, hydrogen purification device, and solid oxide steam electrolytic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727