JP2006058682A - 光反射素子およびこれを用いた光学装置 - Google Patents

光反射素子およびこれを用いた光学装置 Download PDF

Info

Publication number
JP2006058682A
JP2006058682A JP2004241415A JP2004241415A JP2006058682A JP 2006058682 A JP2006058682 A JP 2006058682A JP 2004241415 A JP2004241415 A JP 2004241415A JP 2004241415 A JP2004241415 A JP 2004241415A JP 2006058682 A JP2006058682 A JP 2006058682A
Authority
JP
Japan
Prior art keywords
light
reflecting element
reflecting portion
torsion spring
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004241415A
Other languages
English (en)
Inventor
Naoyuki Fujimura
直之 藤村
Tomoya Kimura
友哉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2004241415A priority Critical patent/JP2006058682A/ja
Publication of JP2006058682A publication Critical patent/JP2006058682A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract


【課題】 モータや直動機構を用いることなくミラーの回転角度を調整する光反射素子およびこれを用いた光学装置を提供する。
【解決手段】 反射部と、反射部の中心線上に配置され、前記反射部を回転可能に保持するねじりばねと、前記ねじりばねの両端を保持する第1の基板と、前記第1の基板の前記反射部に対応する位置にギャップを備え、前記ねじりばねを中心に配置された前記反射部の両側の位置にそれぞれ電極を備える第2の基板とを備え、前記第1の基板と前記第2の基板を一体に接合して構成する。
【選択図】 図1

Description

本発明は、入力光の反射角度を可変可能な光反射素子およびこれを用いた光学装置に関するものである。
一般に、波長可変装置などでは、光ファイバからの入射光をレンズを介して平行光に変換して回折格子に入射し、その回折光をミラー等反射手段で反射して再び光ファイバに接続する構成が用いられている。回折格子は、光の回折を利用して、分光、波長選別、或いは光偏光等を行う光学部材であって、平面あるいは凹面の基板上に周期的な凹凸構造を持たせたものである。反射手段は回転可能に構成されていて、回折格子からの入射光に対する角度を調整することによって、波長の選択を行う。
引用文献1の図1には、モータ3による回転運動によりリードネジが回転して、アームにベアリングを介して連結されたナットが直線運動を行い、このナットの直線運動によって、アームが図示の矢印(C)方向に角度が変化し、アームに固定されているミラーのグレーティングに対する角度を変化させて、波長を選択する波長可変機構の構成例が記載されている。
特開2003−29167号公報
特許文献1に記載の波長可変機構では、本体とアームとの間の第1の関節以外に、モータの駆動軸とアームとの間の第2の関節及び本体とモータとの間の第3の関節の3個の関節を有して各構成要素間を連結しているので、機構の強度を従来のものに比較して高くすることができる。
しかし、ミラーの回転をモータと直動機構により行なっているため、小型化する事が困難である。また、モータによりミラーの角度を制御しているため、精度を上げるためには直動機構のバックラッシュに対する補正が必要であり、また、機構が大きいため、温度変化による波長確度も低下するという問題がある。
本発明は、上述した問題点を解決するためになされたものであり、モータや直動機構を用いることなくミラーの回転角度を調整する光反射素子およびこれを用いた光学装置を提供することを目的とする。
このような課題を達成するために、請求項1に記載の発明は、反射部と、反射部の中心線上に配置され、前記反射部を回転可能に保持するねじりばねと、前記ねじりばねの両端を保持する第1の基板と、前記第1の基板の前記反射部に対応する位置にギャップを備え、前記ねじりばねを中心に配置された前記反射部の両側の位置にそれぞれ電極を備える第2の基板とを備え、前記第1の基板と前記第2の基板を一体に接合して構成することを特徴とする。
請求項2の発明は、反射部と、反射部の中心線上に配置され、前記反射部を回転可能に保持するねじりばねと、前記ねじりばねの両端を保持するシリコン基板と、前記シリコン基板の前記反射部に対応する位置にギャップを備え、前記ねじりばねを中心に配置された前記反射部の両側の位置にそれぞれ電極を備えるガラス基板とを備え、前記シリコン基板と前記ガラス基板を陽極接合により一体に接合して構成することを特徴とする。
請求項3の発明は、請求項1または請求項2記載の光反射素子において、前記反射部は表裏両面にAu−Crをコーティングすることを特徴とする。
請求項4の発明は、請求項1乃至3記載の光反射素子において、前記反射部と前記ねじりばねはシリコン単結晶で一体に形成することを特徴とする。
請求項5の発明は、請求項1乃至4記載の光反射素子において、前記ねじりばねは、前記反射部の一辺の長さより長く形成することを特徴とする。
請求項6の発明は、請求項1乃至4記載の光反射素子において、前記反射部は、四角形に形成する事を特徴とすることを特徴とする。
請求項7の発明は、入射光を回折し反射する回折格子と、前記回折格子からの光を入射する前記光反射素子と、前記光反射素子の電極に印加する電圧を制御する制御装置と、前記光反射素子からの戻り光を入射するサーキュレータを備え、前記制御装置により前記電極に印加する電圧を制御して前記反射部の角度を調整し、反射部からの反射光を回折格子を介して前記サーキュレータの出力側光ファイバから取り出すことを特徴とする。
請求項8の発明はレーザダイオードの出射光を回折し反射する回折格子と、前記回折格子からの光を入射する前記光反射素子と、前記光反射素子の電極に印加する電圧を制御する制御装置と、
前記光反射素子からの戻り光を入射するアイソレータを備え、前記制御装置により前記電極に印加する電圧を制御して前記反射部の角度を調整し、反射部からの反射光を回折格子を介して前記アイソレータから取り出すことを特徴とする。
請求項9の発明は、外部光源からの光を入射する前記光反射素子と、前記光反射素子の電極に印加する電圧を制御する制御装置と、前記光反射素子からの反射光を入射する第1の光ファイバを備え、前記光を前記光反射素子に入射し、前記制御装置にて電極に電圧を印加し、前記反射部を回転して第1の光ファイバに入射する光量を可変することを特徴とする。
請求項10の発明は、外部光源からの光を入射する前記光反射素子と、前記光反射素子の電極に印加する電圧を制御する制御装置と、前記光反射素子からの反射光を入射する第2の光ファイバと、前記光反射素子からの反射光を入射する第3の光ファイバと備え、前記光を前記光反射素子に入射し、前記制御装置にて電極に電圧を印加し、前記反射部を回転して第2の光ファイバと第3の光ファイバに入射する光を切り替えることを特徴とする。
この発明によれば、モータ及び著駆動機構を用いないので、装置全体を小型化することができ、機械的な振動、共振等が発生しにくい構成で、精度良く角度を決定することができる。
また、反射部とねじりばねを、MEMS(Micro Electro Mechanical Systems)によりシリコン基板上に一体に構成しているので、反射部とねじりばねの組み立て等は不要であり、残留応力や動作時のヒステリシスがない上に機械的疲労がなく、素子としての安定性、信頼性が向上する。
さらに、反射部を含む構成をシリコン基板で一体に形成し、電極を含む構成をガラス基板で形成することにより、それぞれの加工が容易であり、また、シリコンとガラスは同程度の線膨張係数であるので、これらを陽極接合で一体化することにより、温度変化に対して強く、信頼性が向上する。
このミラー駆動機構を使用することにより、波長可変フィルタや波長可変光源、可変アッテネータ、光スイッチ等、光学装置自体を小型化することができる。
以下、本発明による光反射素子の構成を説明する。図1の(ア)は本発明による光反射素子(MEMSミラー)10の平面図であり、図1の(イ)は図1(ア)のA−A断面図である。図1(ア)で、シリコン基板2には反射部3とねじりばね4が形成されている。反射部3とねじりばね4の詳細については後述する。
ガラス基板1には、ねじりばね4を中心に、反射部3の両側に電極5が形成されている。電極5は、図1(イ)に示すように、ガラス基板1に設けられたギャップ1A上に形成されている。ギャップ1Aは、ミラーの回転に必要なスペースを確保するためのものである。ギャップ1Aは、例えば微細砥流を使用したブラスト工法で形成する。ブラスト加工は、通常の半導体製造時のケミカルな工法ではないため、対環境性に優れ、加工レートも高い。
反射部3には、表面にスパッタリングによりAu/Crがコーディングされている。これにより、反射部の表面反射率はSi素地の約30%から98%に向上する。反射部の一方の面にのみAu/Crをコーティングすると、Auの収縮応力により表面に反りが生じる。この応力を打ち消すため、反射部の裏面にもAu/Crをコーティングする。
シリコン単結晶にしたのは、機械的疲労がないためである。例えば、ねじりばねが仮に金属の場合、何度も回転させていると、金属疲労により折れるなどの破壊が起こってしまう。しかし、シリコン単結晶の場合、何度回転させても疲労することはなく、半永久的に破壊することがない。
ガラス基板1とシリコン基板2は同程度の線膨張係数の材料であり、例えば陽極接合法により一体化し接合する。陽極接合法は、接着剤やはんだを用いない直接接合法の中では、最も低温かつ少ない変形量で精密にガラスと金属とを接合することができるものであり、逆電圧印加によって、ガラスと金属とを変形・破壊させることなく分離することができる。さらに分離されたガラスを再接合することも可能な技術である。
ガラス基板1に電極5を形成し、シリコン基板に反射部等を形成した後に、これらを一体にするのは、反射部3と電極5を一つの材料で作ることができないためである。すなわち、回転可能な反射部をガラスのみで形成することはできない。一方、電極5をシリコン基板上に備えることは可能だが、この場合、シリコン基板同士の接合は接着により行うこととなり、動作時に接着剤の残留応力でヒステリシスが出てしまう問題がある。したがって、ガラス基板とシリコン基板を陽極接合するのが一番機構的に安定しており、工数もかからない手段である。
次に、反射部3とねじりばね4について図2を参照して説明する。図2は反射部3とねじりばね4の形成状態部分拡大説明図であり、(ア)は形成前の状態図、(イ)は形成後の状態図である。図2(イ)で、反射部3は、剛性を高めるため四角形状としており、反射部3とねじりばね4はウエットエッチング・ドライエッチングといった通常の半導体加工プロセスにより加工され、形成される。
なお、図1で反射部3とねじりばね4はシリコン基板2に段部2Aを介して形成されているが、
これは、シリコン基板としてSOI(Silicon on Insulator)基板を利用した場合に、数μm〜数10μmの厚さの反射部をSOI基板の活性層部分に形成するために、不要な厚さ部分を除去した結果形成されるものである。
ギャップ1Aは、ミラーの回転角度が大きくなり、ミラー端と電極間の距離が2/3以下になると、静電引力によりミラーが自然に電極側に吸い寄せられるPull−Inの発生を避けるだけの深さを有している。例えば、反射部の幅=600μmのミラーが+−5度回転する場合のミラー端の変位は、
300*tan(5度)=26.2μm である。
したがって、Pull−Inの発生を避けるため、ギャップ1Aの深さは少なくとも79μm必要となる。
以上のように構成された光反射素子は、電極に電圧を与えることにより、反射部3と電極5の間に静電引力が働き、ねじりばね4が捩れ、反射部3が回転する。電圧は、図示を省略した制御回路から与えられ、電圧を可変制御することにより、反射部の回転角度を調節する。
次に、この光反射素子10を用いた波長可変フィルタの構成を図3に示す。図3で、波長可変フィルタは、本発明によるMEMSミラー10と、入力側光ファイバ11Aおよび出力側光ファイバ11Bを備えるサーキュレータ11と、光ファイバ12と、レンズ13と、回折格子14と、制御回路15を備える。
制御部15は、反射部3の回転角度を制御する電圧を電極に与える制御のほかに、反射部の角度を一定に保つための制御および、温度変化による電圧等の誤差補正等(温度制御)を行う回路である。
サーキュレータ3は入力側光ファイバ11Aおよび出力側光ファイバ11Bと光ファイバ12との間に接続され、レンズ13に対向して配置される。入力側光ファイバ11Aからの入力光は、サーキュレータ11をとおり、光ファイバ12の端面から出射し、レンズ13により平行光に変換され、回折格子14に入力される。
回折格子14に入射して波長選択された回折光は、MEMSミラー10の反射部3に対し垂直に入射し、全反射した後、回折格子14に戻る。MEMSミラー10の反射部3から回折格子14への戻り光は、レンズ13によりファイバ12の端面に集光され、サーキュレータ11をとおり、出力側光ファイバ11Bから出力される。
図3の構成において、制御回路15で可変制御した電圧を電極5に与えることにより、反射部3と電極5の間に静電引力が働き、図示を省略したねじりばねが捩れ、矢印方向に反射部3が回転する。反射部3を回転させて入射光に対する角度を調節することによって、任意の波長が選択可能になる。また、反射部3によって、回折格子14からの光を反射させて再度回折格子14に戻しているので、光が回折格子14を2回通過することになり、波長選択性をより高めることが可能になる。
次に、この光反射素子10を用いた波長可変光源の構成を図4に示す。図4で、光源25の端面から出射した光はレンズ26により平行光にされ、回折格子14に入射する。回折格子14に入射して波長選択された回折光は、MEMSミラー10内の反射部3に垂直に入射して全反射し、回折格子14に戻る。即ち、2回の回折格子14による波長選択により、波長選択性が高められる。
制御回路15で可変制御した電圧を電極5に与えることにより、反射部3と電極5の間に静電引力が働き、図示を省略したねじりばねが捩れ、矢印方向に反射部3が回転する。反射部3を回転させて入射光に対する角度を調節することによって、波長掃引が可能となる。
こうして波長選択された光は、レンズ26により集光されて、光源25に帰還する。すなわち、光源25の端面と回折格子14とにより外部共振器が構成されて、レーザ発振するようになっている。光源25の端面からの出射光は、レンズ24により平行光に変換され、アイソレータ23を通過して、レンズ22により集光された後、光ファイバ21から出力光として取り出される。
次に、この光反射素子10を用いた可変減衰器の構成を図5に示す。図5で、光ファイバ31の端面から出射した光は、レンズ32により集光されて、MEMSミラー10内の反射部3に入射して全反射した後、レンズ33により集光されて、光ファイバ34から出力光として取りだされる。
制御回路15で可変制御した電圧を電極5に与えることにより、反射部3と電極5の間に静電引力が働き、図示を省略したねじりばねが捩れ、矢印方向に反射部3が回転する。反射部3を回転させて入射光に対する角度を調節することによって、光ファイバ34が入射する光のパワーが調整される。
次に、この光反射素子10を用いた光スイッチの構成を図6に示す。図6で、光ファイバ41の端面から出射した光はレンズ42により集光されて、MEMSミラー10内の反射部3に入射して全反射した後、レンズ43Aにより集光され、出力ファイバ44Aから出力光として取り出される。
制御回路15で可変制御した電圧を電極5に与えることにより、反射部3と電極5の間に静電引力が働き、図示を省略したねじりばねが捩れ、矢印方向に反射部3が回転する。反射部3の回転により、レンズ43Aに集光されていた光をレンズ43Bに集光されるようにし、出力ファイバ44Bへ入射するようにする。図6では出力ファイバ数は2つだが、ミラーの回転角により出力ファイバ数の増設が可能である。
なお、本発明の説明では、ミラー駆動機構の電極を備える基板がガラス基板の場合について説明したが、シリコン基板や金属基板としても良い。シリコン基板の場合、接合面のSi表面を酸化させて、陽極接合をする。また、金属基板の場合は、接合面の金属表面にガラス薄膜をつける等の処理を施し、陽極接合を行う。
また、本発明では、光反射素子の反射部を含む構成を、シリコン単結晶により形成した場合について説明したが、機械的疲労がない物質であれば、シリコン単結晶に限らず、反射部を含む基板材料に用いることができる
また、本発明の説明では電極が2つの場合について説明したが、4つ、6つ等偶数の電極をねじりばねを中心としたミラーの両側に配置し、制御回路で制御することにより、ミラーの角度調整をさらに微調整するようにしてもよい。また、実施例では説明では電極が2つの場合について説明したが、4つ、6つ等偶数の電極をねじりばねを中心としたミラーの両側に配置し、制御回路で制御することにより、ミラーの角度調整をさらに微調整するようにしてもよい。
本発明の光反射素子は、実施例で説明したもの以外にも、光の反射方向を可変、制御して出力する装置に応用することができる。
<構成と動作>
本発明の光反射素子の実施例の構成図である。 反射部3とねじりばね4の形成状態部分拡大説明図である。 本発明の光反射素子を適用した波長可変フィルタの構成図である。 本発明の光反射素子を適用した波長可変光源の構成図である。 本発明の光反射素子を適用した可変減衰器の構成図である。 本発明の光反射素子を適用した光スイッチの構成図である。 従来技術による波長可変機構の構成図である。
符号の説明
1 ガラス基板
1A ギャップ
2 シリコン基板
2A 段部
3 反射部
3A Au−Cr
4 ねじりばね
5 電極
10 光反射素子(MEMSミラー)

Claims (10)

  1. 反射部と、
    反射部の中心線上に配置され、前記反射部を回転可能に保持するねじりばねと、
    前記ねじりばねの両端を保持する第1の基板と、
    前記第1の基板の前記反射部に対応する位置にギャップを備え、前記ねじりばねを中心に配置された前記反射部の両側の位置にそれぞれ電極を備える第2の基板とを備え、
    前記第1の基板と前記第2の基板を一体に接合して構成することを特徴とする光反射素子。
  2. 反射部と、
    反射部の中心線上に配置され、前記反射部を回転可能に保持するねじりばねと、
    前記ねじりばねの両端を保持するシリコン基板と、
    前記シリコン基板の前記反射部に対応する位置にギャップを備え、前記ねじりばねを中心に配置された前記反射部の両側の位置にそれぞれ電極を備えるガラス基板とを備え、
    前記シリコン基板と前記ガラス基板を陽極接合により一体に接合して構成することを特徴とする光反射素子。
  3. 前記反射部は表裏両面にAu−Crをコーティングすることを特徴とする請求項1または請求項2記載の光反射素子。
  4. 前記反射部と前記ねじりばねはシリコン単結晶で一体に形成することを特徴とする請求項1乃至3記載の光反射素子。
  5. 前記ねじりばねは、前記反射部の一辺の長さより長く形成することを特徴とする請求項1乃至4記載の光反射素子。
  6. 前記反射部は、四角形に形成する事を特徴とする請求項1乃至4記載の光反射素子。
  7. 入射光を回折し反射する回折格子と、
    前記回折格子からの光を入射する前記光反射素子と、
    前記光反射素子の電極に印加する電圧を制御する制御装置と、
    前記光反射素子からの戻り光を入射するサーキュレータを備え、
    前記制御装置により前記電極に印加する電圧を制御して前記反射部の角度を調整し、反射部からの反射光を回折格子を介して前記サーキュレータの出力側光ファイバから取り出すことを特徴とする光学装置。
  8. レーザダイオードの出射光を回折し反射する回折格子と、
    前記回折格子からの光を入射する前記光反射素子と、
    前記光反射素子の電極に印加する電圧を制御する制御装置と、
    前記光反射素子からの戻り光を入射するアイソレータを備え、
    前記制御装置により前記電極に印加する電圧を制御して前記反射部の角度を調整し、反射部からの反射光を回折格子を介して前記アイソレータから取り出すことを特徴とする光学装置。
  9. 外部光源からの光を入射する前記光反射素子と、
    前記光反射素子の電極に印加する電圧を制御する制御装置と、
    前記光反射素子からの反射光を入射する第1の光ファイバを備え、
    前記光を前記光反射素子に入射し、前記制御装置にて電極に電圧を印加し、前記反射部を回転して第1の光ファイバに入射する光量を可変することを特徴とする光学装置。
  10. 外部光源からの光を入射する前記光反射素子と、
    前記光反射素子の電極に印加する電圧を制御する制御装置と、
    前記光反射素子からの反射光を入射する第2の光ファイバと、
    前記光反射素子からの反射光を入射する第3の光ファイバと備え、
    前記光を前記光反射素子に入射し、前記制御装置にて電極に電圧を印加し、前記反射部を回転して第2の光ファイバと第3の光ファイバに入射する光を切り替えることを特徴とする光学装置。
JP2004241415A 2004-08-20 2004-08-20 光反射素子およびこれを用いた光学装置 Pending JP2006058682A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241415A JP2006058682A (ja) 2004-08-20 2004-08-20 光反射素子およびこれを用いた光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241415A JP2006058682A (ja) 2004-08-20 2004-08-20 光反射素子およびこれを用いた光学装置

Publications (1)

Publication Number Publication Date
JP2006058682A true JP2006058682A (ja) 2006-03-02

Family

ID=36106181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241415A Pending JP2006058682A (ja) 2004-08-20 2004-08-20 光反射素子およびこれを用いた光学装置

Country Status (1)

Country Link
JP (1) JP2006058682A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031536A (ja) * 2007-07-27 2009-02-12 Seiko Epson Corp スキャナ
US7613370B2 (en) 2007-03-28 2009-11-03 Fujitsu Limited Optical switch and method of adjusting optical switch
WO2021166502A1 (ja) * 2020-02-20 2021-08-26 株式会社日立ハイテク 凹面回折格子、及び光学装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7613370B2 (en) 2007-03-28 2009-11-03 Fujitsu Limited Optical switch and method of adjusting optical switch
JP2009031536A (ja) * 2007-07-27 2009-02-12 Seiko Epson Corp スキャナ
WO2021166502A1 (ja) * 2020-02-20 2021-08-26 株式会社日立ハイテク 凹面回折格子、及び光学装置
JP7441071B2 (ja) 2020-02-20 2024-02-29 株式会社日立ハイテク 凹面回折格子の製造方法

Similar Documents

Publication Publication Date Title
EP1714178B1 (en) Mems mirror driven by an electrostatic comb drive with tapered comb teeth
US7201824B2 (en) Hybrid optical multi-axis beam steering apparatus
JP4492252B2 (ja) アクチュエータ
JP6447683B2 (ja) 走査型微小電気機械反射鏡システム、光検出及び測距(lidar)装置、及び走査型微小電気機械反射鏡システムの作動方法
US20100231087A1 (en) Micro oscillating element
US6975442B2 (en) Resonance scanner
JP2002524271A (ja) 捩り撓みヒンジで連結されて相対的に回転する微細加工部材
US20080054758A1 (en) Micro-oscillation element
JPH10325935A (ja) 一体的な光共振器、光スキャナエンジンおよびそれにおける使用に適した走査光線を発生するための方法
JP3759598B2 (ja) アクチュエータ
WO2005102909A1 (ja) アクチュエータ
JPWO2020045152A1 (ja) 光学反射素子
WO2015145943A1 (ja) 光走査デバイス
CN110799899B (zh) 经光学接触的声光装置及其制造方法
JP2006058682A (ja) 光反射素子およびこれを用いた光学装置
US9244269B2 (en) Micro movable device and optical switching apparatus
US20050185680A1 (en) Tunable semiconductor laser apparatus with external resonator
JP4435164B2 (ja) 電気的に回転起動可能なマイクロミラー又はマイクロレンズ
JP5618681B2 (ja) ホルダ部とデバイス部を有する構造体及びその固定方法
JP2004264702A (ja) Mems素子および光デバイス
US7046421B1 (en) MEMS scanning mirror with trenched surface and I-beam like cross-section for reducing inertia and deformation
KR100349941B1 (ko) 광 스위칭을 위한 마이크로 액추에이터 및 그 제조방법
US10101546B2 (en) Optical module and method for manufacturing the optical module
KR102032044B1 (ko) 스캐닝 마이크로 미러
JPH0575344B2 (ja)