JP2006058070A - Differential pressure measuring system and differential pressure measuring method - Google Patents

Differential pressure measuring system and differential pressure measuring method Download PDF

Info

Publication number
JP2006058070A
JP2006058070A JP2004238289A JP2004238289A JP2006058070A JP 2006058070 A JP2006058070 A JP 2006058070A JP 2004238289 A JP2004238289 A JP 2004238289A JP 2004238289 A JP2004238289 A JP 2004238289A JP 2006058070 A JP2006058070 A JP 2006058070A
Authority
JP
Japan
Prior art keywords
wavelength
pressure
temperature
light
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004238289A
Other languages
Japanese (ja)
Other versions
JP4615932B2 (en
Inventor
Seiichiro Kinugasa
静一郎 衣笠
Junichi Yoshinaga
純一 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2004238289A priority Critical patent/JP4615932B2/en
Publication of JP2006058070A publication Critical patent/JP2006058070A/en
Application granted granted Critical
Publication of JP4615932B2 publication Critical patent/JP4615932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a differential pressure measuring system capable of excluding a measurement error resulting from a temperature change, without requiring computer processing. <P>SOLUTION: The system is provided with a light source 4 for emitting light of a first and a second wavelength, a first pressure sensitive section 3 which reflects first reflected light of a first wavelength, a first external pressure and a first temperature are applied to, and has a first thermal expansion coefficient and a first reflection wavelength temperature coefficient being the product of the first thermal expansion coefficient and the first wavelength, a first thermosensitive section 6 which reflects second reflected light of the second wavelength, the first temperature is applied to, and has a second thermal expansion coefficient and a second reflection wavelength temperature coefficient being the product of the second thermal expansion coefficient and the second wavelength, a second pressure sensitive section 13 which reflects third reflected light of the second wavelength, a second external pressure and a second temperature are applied to, and has a second thermal expansion coefficient and a second reflection wavelength temperature coefficient, a second thermosensitive section 16 which reflects fourth reflected light of the first wavelength, a second temperature is applied to, and has the first thermal expansion coefficient and the first reflection wavelength temperature coefficient, and a signal processor 7 for calculating the differential pressure between the first external pressure and the second external pressure, from the fluctuation of the phase difference between a first interference fringe by the first and fourth reflected light and a second interference fringe by the second and third reflected light. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は圧力測定技術に関し、特に周囲の温度変化に起因する測定誤差を排除する差圧測定システム及び差圧測定方法に関する。   The present invention relates to a pressure measurement technique, and more particularly to a differential pressure measurement system and a differential pressure measurement method that eliminate measurement errors caused by ambient temperature changes.

石油プラント等を制御する場合、石油プラント内の異なる位置における流体の差圧を測定することが必要な場合がある。従来の差圧測定方法としては、測定位置にファブリペロ干渉計を配置し、圧力によって生じるファブリペロ干渉計の共振波長の変化を光で読み取る方法が提案されている。しかし、ファブリペロ干渉計の位相差は、圧力変化のみならず、温度変化によっても変化する。そのため、測定位置の温度変化の影響を排除した正確な差圧を測定する方法として、圧力測定用のファブリペロ干渉計と共に温度測定用のファブリペロ干渉計を測定位置に配置する方法が提案されている。この場合、ハロゲンランプ等から照射された光で読み取られる測定信号から、温度変化の影響を計算機で除去することにより、差圧を測定している(例えば、特許文献1参照。)。しかし、計算機による温度変化の影響除去には高速な演算装置と大容量のメモリが必要であり、また演算処理にも時間がかかる。
特開2003-166891号公報
When controlling an oil plant or the like, it may be necessary to measure the differential pressure of the fluid at different locations within the oil plant. As a conventional differential pressure measurement method, there has been proposed a method in which a Fabry-Perot interferometer is arranged at a measurement position and a change in resonance wavelength of the Fabry-Perot interferometer caused by pressure is read with light. However, the phase difference of the Fabry-Perot interferometer changes not only with pressure change but also with temperature change. For this reason, as a method for measuring an accurate differential pressure excluding the influence of the temperature change at the measurement position, a method of arranging a Fabry-Perot interferometer for temperature measurement at the measurement position together with a Fabry-Perot interferometer for pressure measurement has been proposed. In this case, the differential pressure is measured by removing the influence of the temperature change from the measurement signal read by the light irradiated from a halogen lamp or the like with a computer (see, for example, Patent Document 1). However, removal of the influence of temperature changes by a computer requires a high-speed computing device and a large-capacity memory, and computation processing takes time.
Japanese Patent Laid-Open No. 2003-166891

本発明は、複雑な計算機処理を必要とせず、温度変化による測定誤差を排除可能な差圧測定システム及び差圧測定方法を提供する。   The present invention provides a differential pressure measurement system and a differential pressure measurement method that do not require complicated computer processing and can eliminate measurement errors due to temperature changes.

上記目的を達成するために本発明の第1の特徴は、(イ)第1及び第2波長の光を照射する光源と、(ロ)第1波長の第1反射光を反射し、第1外部圧力及び第1温度が加えられ、第1熱膨張係数及び第1熱膨張係数に第1波長を掛けた第1反射波長温度係数を有する第1感圧部と、(ハ)第2波長の第2反射光を反射し、第1温度が加えられ、第2熱膨張係数及び第2熱膨張係数に第2波長を掛けた第2反射波長温度係数を有する第1感熱部と、(ニ)第2波長の第3反射光を反射し、第2外部圧力及び第2温度が加えられ、第2熱膨張係数及び第2反射波長温度係数を有する第2感圧部と、(ホ)第1波長の第4反射光を反射し、第2温度が加えられ、第1熱膨張係数及び第1反射波長温度係数を有する第2感熱部と、(ヘ)第1及び第4反射光による第1干渉縞と第2及び第3反射光による第2干渉縞の位相差の変動から第1及び第2外部圧力の差圧を算出する信号処理装置とを備える差圧測定システムであることを要旨とする。   In order to achieve the above object, the first feature of the present invention is: (a) a light source that irradiates light of the first and second wavelengths; and (b) the first reflected light of the first wavelength is reflected; A first pressure-sensitive portion having a first reflection wavelength temperature coefficient obtained by applying an external pressure and a first temperature and multiplying the first thermal expansion coefficient and the first thermal expansion coefficient by the first wavelength; A first thermal part that reflects the second reflected light, has a first temperature applied, and has a second thermal expansion coefficient and a second reflected wavelength temperature coefficient obtained by multiplying the second thermal expansion coefficient by the second wavelength; A second pressure-sensitive part that reflects the third reflected light of the second wavelength, is applied with a second external pressure and a second temperature, and has a second thermal expansion coefficient and a second reflected wavelength temperature coefficient; A second heat sensitive part that reflects the fourth reflected light of the wavelength, is applied with a second temperature, has a first thermal expansion coefficient and a first reflected wavelength temperature coefficient, and (f) the first by the first and fourth reflected light. Due to interference fringes and second and third reflected light And summarized in that the variation of the phase difference between two interference patterns is the differential pressure measurement system comprising a signal processor for calculating a differential pressure of the first and second external pressure.

本発明の第2の特徴は、(イ)第1及び第2波長の光を照射するステップと、(ロ)第1外部圧力及び第1温度が加えられ、第1熱膨張係数及び第1熱膨張係数に第1波長を掛けた第1反射波長温度係数を有する第1感圧部で光を受け、第1波長の第1反射光を反射するステップと、(ハ)第1温度が加えられ、第2熱膨張係数及び第2熱膨張係数に第2波長を掛けた第2反射波長温度係数を有する第1感熱部で光を受け、第2波長の第2反射光を反射するステップと、(ニ)第2外部圧力及び第2温度が加えられ、第2熱膨張係数及び第2反射波長温度係数を有する第2感圧部で光を受け、第2波長の第3反射光を反射するステップと、(ホ)第2温度が加えられ、第1熱膨張係数及び第1反射波長温度係数を有する第2感熱部で光を受け、第1波長の第4反射光を反射するステップと、(ヘ)第1及び第4反射光の第1干渉縞と第2及び第3反射光の第2干渉縞の位相差の変動から第1及び第2外部圧力の差圧を算出するステップとを含む差圧測定方法であることを要旨とする。   The second feature of the present invention is that (a) the step of irradiating light of the first and second wavelengths, and (b) the first external pressure and the first temperature are applied, the first thermal expansion coefficient and the first heat Receiving light at the first pressure-sensitive portion having the first reflection wavelength temperature coefficient obtained by multiplying the expansion coefficient by the first wavelength, and reflecting the first reflected light of the first wavelength; and (c) adding the first temperature. Receiving the light at the first heat sensitive part having the second thermal expansion coefficient and the second thermal expansion coefficient multiplied by the second wavelength and the second reflected wavelength temperature coefficient, and reflecting the second reflected light of the second wavelength; (D) The second external pressure and the second temperature are applied, the light is received by the second pressure sensing unit having the second thermal expansion coefficient and the second reflection wavelength temperature coefficient, and the third reflected light of the second wavelength is reflected. And (e) receiving a light at a second thermal part having a first thermal expansion coefficient and a first reflection wavelength temperature coefficient, wherein the second temperature is applied, and reflecting the fourth reflected light of the first wavelength; And f) calculating a differential pressure between the first and second external pressures from fluctuations in the phase difference between the first interference fringes of the first and fourth reflected lights and the second interference fringes of the second and third reflected lights. The gist is that it is a differential pressure measurement method.

本発明によれば、複雑な計算機処理を必要とせず、周囲の温度変化に起因する測定誤差を排除可能な差圧測定システム及び差圧測定方法を提供可能である。   According to the present invention, it is possible to provide a differential pressure measurement system and a differential pressure measurement method that do not require complicated computer processing and can eliminate measurement errors caused by ambient temperature changes.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

本発明の実施の形態に係る差圧測定システムは、図1に示すように、第1波長λ1及び第2波長λ2の光を照射する光源4と、第1波長λ1の第1反射光を反射し、第1外部圧力PO1及び第1温度T1が加えられ、第1熱膨張係数E1及び第1熱膨張係数E1に第1波長λ1を掛けた第1反射波長温度係数D1を有する第1感圧部3、第2波長λ2の第2反射光を反射し、第1温度T1が加えられ、第2熱膨張係数E2及び第2熱膨張係数E2に第2波長λ2を掛けた第2反射波長温度係数D2を有する第1感熱部6を有する。差圧測定システムはさらに第2波長λ2の第3反射光を反射し、第2外部圧力PO2及び第2温度T2が加えられ、第2熱膨張係数E2及び第2反射波長温度係数D2を有する第2感圧部13、第1波長λ1の第4反射光を反射し、第2温度T2が加えられ、第1熱膨張係数E1及び第1反射波長温度係数D1を有する第2感熱部16、及び第1及び第4反射光による第1干渉縞と第2及び第3反射光による第2干渉縞の位相差の変動から第1及び第2外部圧力の差圧を算出する信号処理装置7を有する。 As shown in FIG. 1, the differential pressure measurement system according to the embodiment of the present invention includes a light source 4 that emits light of a first wavelength λ 1 and a second wavelength λ 2 , and a first reflection of a first wavelength λ 1 . Reflecting light, first external pressure P O1 and first temperature T 1 are applied, and first reflection wavelength temperature obtained by multiplying first thermal expansion coefficient E 1 and first thermal expansion coefficient E 1 by first wavelength λ 1 first pressure sensing 3 having coefficients D 1, reflects the second wavelength λ second reflected light 2, the first temperature T 1 is applied, the second thermal expansion coefficient E 2 and the second thermal expansion coefficient E 2 having a first heat-sensitive part 6 having a second reflection wavelength temperature coefficient D 2 multiplied by the second wavelength lambda 2 in. The differential pressure measurement system further reflects the third reflected light of the second wavelength λ 2 , the second external pressure P O2 and the second temperature T 2 are applied, the second thermal expansion coefficient E 2 and the second reflected wavelength temperature coefficient. The second pressure-sensitive part 13 having D 2 reflects the fourth reflected light of the first wavelength λ 1 and is added with the second temperature T 2 , and the first thermal expansion coefficient E 1 and the first reflected wavelength temperature coefficient D 1 And the differential pressure between the first and second external pressures from the variation in the phase difference between the first interference fringe due to the first and fourth reflected light and the second interference fringe due to the second and third reflected light. A signal processing device 7 for calculating

光源4には、紫外域から赤外域(185nm〜2000nm)までの連続スペクトルに対応可能なキセノンランプ等が使用可能である。また、光源4には第1波長λ1及び第2波長λ2の光を照射可能なLED、あるいはレーザ発振器等も使用可能である。光源4には照射された光を伝搬する光ファイバ30が接続される。さらに光ファイバ30には、伝搬光を2方向に分割するスプリッタ21が接続される。分割された光は、それぞれ光ファイバ31及び光ファイバ32で伝搬される。 As the light source 4, a xenon lamp or the like that can support a continuous spectrum from the ultraviolet region to the infrared region (185 nm to 2000 nm) can be used. As the light source 4, an LED that can emit light of the first wavelength λ 1 and the second wavelength λ 2 or a laser oscillator can be used. An optical fiber 30 that propagates the irradiated light is connected to the light source 4. Further, the optical fiber 30 is connected to a splitter 21 that divides the propagation light in two directions. The divided lights are propagated through the optical fiber 31 and the optical fiber 32, respectively.

光ファイバ31には第1測定ユニット5が接続される。第1測定ユニット5は、図2及び図2のA-A方向からの断面図である図3に示すように、コア130a及びクラッド131aを有する光ファイバ31が挿入されるホルダ60a、光ファイバ31の挿入された側の端面に配置された第1感熱部6、第1感熱部6と平行位置に配置され、第1外部圧力PO1を受ける第1感圧膜50a、第1感圧膜50aの第1感熱部6と対向する表面に配置され、第1感熱部6を透過した光を受ける第1感圧部3、第1感熱部6と第1感圧部3との第1の間隔h1を規定する第1測定用筐体43aを有する。また第1測定ユニット5は、第1感圧膜50a、第1測定用筐体43a、及びホルダ60aで囲まれた領域の第1内部圧力PI1を調節するためにホルダ60aに設けられた通気孔160aと、通気孔160aの開閉を制御する開放弁70aを備える。さらに第1感圧膜50aの外部には、表出する第1感圧膜50aの図2に示した半径aを規定する第1測定センサ基底部40aが配置される。 The first measurement unit 5 is connected to the optical fiber 31. The first measurement unit 5 includes a holder 60a into which an optical fiber 31 having a core 130a and a clad 131a is inserted, and insertion of the optical fiber 31, as shown in FIG. the first heat-sensitive part 6 is arranged on the end face of the by side, arranged in parallel position to the first heat-sensitive part 6, the first sense of the pressure membrane 50a for receiving a first external pressure P O1, the first sensitive pressure membrane 50a first 1 The first pressure-sensitive portion 3 that is disposed on the surface facing the heat-sensitive portion 6 and receives light transmitted through the first heat-sensitive portion 6, the first interval h 1 between the first heat-sensitive portion 6 and the first pressure-sensitive portion 3 Has a first measurement housing 43a. In addition, the first measurement unit 5 includes a first pressure-sensitive film 50a, a first measurement housing 43a, and a passage provided in the holder 60a for adjusting the first internal pressure PI1 in a region surrounded by the holder 60a. The air hole 160a and an open valve 70a for controlling the opening and closing of the air hole 160a are provided. Further, a first measurement sensor base 40a that defines the radius a shown in FIG. 2 of the first pressure-sensitive film 50a to be exposed is disposed outside the first pressure-sensitive film 50a.

ここで、第1感熱部6は光源4から照射された光を受けると、図8(a)に示すように、第2波長λ2に強度のピークが現れる第2波長帯域WB2の光を反射する。第1感熱部6は第2熱膨張係数E2及び第2熱膨張係数E2に第2波長λ2を掛けた値に等しい第2反射波長温度係数D2を有するシリコン(Si)系材料による多層膜からなる。なお「反射波長温度係数」とは、多層膜についての温度変化に起因する反射波長の変化の程度を示す係数である。この「反射波長温度係数」は、例えば多層膜の材料や積層数の選定等によって調整される。また第1感熱部6の反射光の第2波長λ2も、多層膜の蒸着積層数で調整される。図4に示すグラフは、多層膜の積層数が5の場合、中心波長870nmで帯域幅10nmの反射光が得られる例を示している。図5に示すグラフは、積層数が30の場合、中心波長1300nmで帯域幅0.3nmの反射光が得られる例を示している。なお図1に示すように、スプリッタ21から第1感熱部6までの距離を第1感熱光距離L1rとする。 Here, when the first heat sensitive unit 6 receives the light emitted from the light source 4, as shown in FIG. 8 (a), the first heat sensitive unit 6 converts the light in the second wavelength band WB 2 where the intensity peak appears at the second wavelength λ 2. reflect. The first thermosensitive part 6 is made of a silicon (Si) -based material having a second reflection wavelength temperature coefficient D 2 equal to a value obtained by multiplying the second thermal expansion coefficient E 2 and the second thermal expansion coefficient E 2 by the second wavelength λ 2. It consists of a multilayer film. The “reflection wavelength temperature coefficient” is a coefficient indicating the degree of change in the reflection wavelength caused by the temperature change in the multilayer film. This “reflection wavelength temperature coefficient” is adjusted, for example, by selecting the material of the multilayer film or the number of stacked layers. Further, the second wavelength λ 2 of the reflected light of the first heat sensitive part 6 is also adjusted by the number of deposited multilayer films. The graph shown in FIG. 4 shows an example in which when the number of stacked multilayer films is 5, reflected light having a center wavelength of 870 nm and a bandwidth of 10 nm can be obtained. The graph shown in FIG. 5 shows an example in which when the number of stacked layers is 30, reflected light having a center wavelength of 1300 nm and a bandwidth of 0.3 nm can be obtained. As shown in FIG. 1, the distance from the splitter 21 to the first heat sensitive unit 6 is defined as a first heat sensitive light distance L 1r .

第1感圧部3は第1感熱部6の透過光を受け、図8(a)に示すように第1波長λ1に強度のピークが現れる第1波長帯域WB1の光を反射する。第1感圧部3は、第1熱膨張係数E1及び第1熱膨張係数E1に第1波長λ1を掛けた値に等しい第1反射波長温度係数D1を有するSi系材料による多層膜からなる。なお図1に示すように、スプリッタ21から第1感圧部3までの距離を第1感圧光距離L1sとする。 The first pressure sensing unit 3 receives the transmitted light from the first heat sensing unit 6 and reflects the light in the first wavelength band WB 1 in which the intensity peak appears at the first wavelength λ 1 as shown in FIG. 8 (a). The first pressure sensing unit 3 is a multilayer made of a Si-based material having a first reflection wavelength temperature coefficient D 1 equal to a value obtained by multiplying the first thermal expansion coefficient E 1 and the first thermal expansion coefficient E 1 by the first wavelength λ 1. It consists of a membrane. As shown in FIG. 1, the distance from the splitter 21 to the first pressure sensing unit 3 is defined as a first pressure sensitive light distance L 1s .

図3に示す第1感圧膜50aは、第1内部圧力PI1と第1外部圧力PO1が等しい「定常状態」では撓みは生じない。しかし、図6に示すように、第1内部圧力PI1と比較して第1外部圧力PO1が大きくなったときは、第1感圧膜50aは内部方向に撓む。また図7に示すように、第1内部圧力PI1と比較して第1外部圧力PO1が小さくなったときは、第1感圧膜50aは外部方向に撓む。第1測定ユニット5は、図6及び図7に示した第1感圧膜50aの撓みwを検出することにより、第1外部圧力PO1を測定するために用いられる。 The first pressure-sensitive film 50a shown in FIG. 3 does not bend in the “steady state” where the first internal pressure PI1 and the first external pressure PO1 are equal. However, as shown in FIG. 6, when the increased compared to the first internal pressure P I1 is the first external pressure P O1 is first sensitive pressure membrane 50a is bent in an inward direction. Further, as shown in FIG. 7, when the smaller first external pressure P O1 as compared with the first internal pressure P I1, the first sense of the pressure membrane 50a is bent in the outside direction. The first measurement unit 5 is used to measure the first external pressure PO1 by detecting the deflection w of the first pressure-sensitive film 50a shown in FIGS.

図6に示すように第1外部圧力PO1が加わったときの第1感圧膜50aの撓みwは、第1感圧膜50aが図2に示すように半径aである場合、下記(1)式で表される。:
w =(PO1 - PI1)× (a2 - r2)2 / (64 ×D) …(1)
ここでr(r : 0 ≦ r ≦ a)は第1感圧膜50aの中心位置Mから測定位置までの距離である。Dは下記(2)式で与えられる。:
D = E ×c3 / {12 × (1 - υ2)} …(2)
(2)式において、Eは第1感圧膜50aのヤング率、cは第1感圧膜50aの厚さ、υは第1感圧膜50aのポアッソン比である。(1)式を用いることにより、第1感圧膜50aの撓みwから第1外部圧力PO1を算出することが可能である。
As shown in FIG. 6, the deflection w of the first pressure-sensitive film 50a when the first external pressure PO1 is applied is as follows when the first pressure-sensitive film 50a has the radius a as shown in FIG. ) Expression. :
w = (P O1 -P I1 ) × (a 2 -r 2 ) 2 / (64 × D)… (1)
Here, r (r: 0 ≦ r ≦ a) is a distance from the center position M of the first pressure-sensitive film 50a to the measurement position. D is given by the following equation (2). :
D = E × c 3 / {12 × (1-υ 2 )}… (2)
In equation (2), E is the Young's modulus of the first pressure-sensitive film 50a, c is the thickness of the first pressure-sensitive film 50a, and υ is the Poisson's ratio of the first pressure-sensitive film 50a. (1) By using the equation, it is possible to calculate the first external pressure P O1 from the deflection w of the first sensitive pressure membrane 50a.

図3乃至図7に示した第1感圧膜50aの厚さcが50μmの場合における第1外部圧力PO1と撓みwの関係をプロットしたグラフが図9である。図9においては、図2に示した第1感圧膜50aの半径aが0.01mm、0.10mm、及び1.00mmの場合のそれぞれについてプロットされている。また第1感圧膜50aの厚さcが1μmの場合における第1外部圧力PO1と撓みwの関係をプロットしたグラフが図10である。図10においては、第1感圧膜50aの半径aが0.01mm、0.10mm、及び1.00mmの場合のそれぞれについてプロットされている。図9及び図10に示すように、第1感圧膜50aの半径a及び厚さcを適宜選択することにより、第1外部圧力PO1に対する圧力感度を調整することが可能である。 FIG. 9 is a graph plotting the relationship between the first external pressure PO1 and the deflection w when the thickness c of the first pressure-sensitive film 50a shown in FIGS. 3 to 7 is 50 μm. In FIG. 9, the plots are plotted for the cases where the radius a of the first pressure-sensitive film 50a shown in FIG. 2 is 0.01 mm, 0.10 mm, and 1.00 mm. FIG. 10 is a graph plotting the relationship between the first external pressure PO1 and the deflection w when the thickness c of the first pressure-sensitive film 50a is 1 μm. In FIG. 10, the plots are plotted for the cases where the radius a of the first pressure-sensitive film 50a is 0.01 mm, 0.10 mm, and 1.00 mm. As shown in FIGS. 9 and 10, the pressure sensitivity with respect to the first external pressure PO1 can be adjusted by appropriately selecting the radius a and the thickness c of the first pressure-sensitive film 50a.

なお図2乃至図7に示す第1感圧膜50aは、第1外部圧力PO1で撓む他に、周囲の第1温度T1の変動量ΔT1に依存して膨張あるいは収縮する。また第1感熱部6及び第1感圧部3のそれぞれも、周囲の第1温度T1の変動量ΔT1に依存して膨張あるいは収縮する。さらに第1感熱部6及び第1感圧部3のそれぞれは、周囲の第1温度T1の変動量ΔT1に依存して屈折率が変化し、反射光に波長シフトが生じうる。そのため、第1温度T1の変動量ΔT1に依存する第1感圧膜50a、第1感熱部6及び第1感圧部3のそれぞれの伸縮あるいは屈折率変化は第1外部圧力PO1の測定の誤差要因となる。図1に示す差圧測定システムが、第1温度T1の変動量ΔT1に起因する第1測定ユニット5の測定誤差を除去する機構については、後に詳述する。図1に示すように、第1測定ユニット5からの反射光は、スプリッタ21に接続された光ファイバ33によって受光素子8に伝搬される。 Note first sense pressure membrane 50a shown in FIGS. 2-7, in addition to deflect in the first external pressure P O1, to expand or contract depending on the variation amount [Delta] T 1 of the first temperature T 1 of the surroundings. Also, each of the first heat sensitive part 6 and the first pressure sensitive part 3 expands or contracts depending on the fluctuation amount ΔT 1 of the surrounding first temperature T 1 . Furthermore, the refractive index of each of the first heat sensitive part 6 and the first pressure sensitive part 3 changes depending on the fluctuation amount ΔT 1 of the surrounding first temperature T 1 , and a wavelength shift may occur in the reflected light. Therefore, the first sense of pressure membrane 50a which depends on the variation amount [Delta] T 1 of the first temperature T 1, each of the expansion or the refractive index change of the first heat-sensitive part 6 and the first pressure sensing 3 of the first external pressure P O1 It becomes a measurement error factor. A mechanism in which the differential pressure measurement system shown in FIG. 1 removes the measurement error of the first measurement unit 5 caused by the fluctuation amount ΔT 1 of the first temperature T 1 will be described in detail later. As shown in FIG. 1, the reflected light from the first measurement unit 5 is propagated to the light receiving element 8 by the optical fiber 33 connected to the splitter 21.

光ファイバ32には第2測定ユニット15が接続される。第2測定ユニット15は、図11に示すようにコア130b及びクラッド131bを有する光ファイバ32が挿入されるホルダ60b、光ファイバ32の挿入された側の端面に配置された第2感熱部16、第2感熱部16と平行位置に配置され、第2外部圧力PO2を受ける第2感圧膜50b、第2感圧膜50bの第2感熱部16と対向する表面に配置され、第2感熱部16を透過した光を受ける第2感圧部13、第2感熱部16と第2感圧部13との第2の間隔h2を規定する第2測定用筐体43bを有する。また第2測定ユニット15は、第2感圧膜50b、第2測定用筐体43b及びホルダ60bで囲まれた領域の第2内部圧力PI2を調節するためにホルダ60bに設けられた通気孔160bと、通気孔160bの開閉を制御する開放弁70bを備える。さらに第2感圧膜50bの外部には、表出する第2感圧膜50bの図2に示した半径aを規定する第1測定センサ基底部40aと同様の第2測定センサ基底部40bが配置される。 The second measurement unit 15 is connected to the optical fiber 32. As shown in FIG. 11, the second measurement unit 15 includes a holder 60b into which an optical fiber 32 having a core 130b and a clad 131b is inserted, a second heat sensitive unit 16 disposed on the end face on the side where the optical fiber 32 is inserted, arranged parallel position to the second heat-sensitive part 16, the second sense pressure membrane 50b for receiving a second external pressure P O2, disposed in the second heat-sensitive part 16 and the facing surface of the second sensitive pressure membrane 50b, the second heat-sensitive A second pressure-sensitive part 13 that receives light transmitted through the part 16, and a second measurement housing 43b that defines a second distance h2 between the second heat-sensitive part 16 and the second pressure-sensitive part 13. The second measuring unit 15, the second sense of pressure membrane 50b, the second measuring housing 43b and vent hole provided in the holder 60b to adjust the second internal pressure P I2 of the area surrounded by the holder 60b 160b and an open valve 70b for controlling the opening and closing of the vent hole 160b. Further, outside the second pressure sensitive film 50b, there is a second measurement sensor base 40b similar to the first measurement sensor base 40a that defines the radius a shown in FIG. 2 of the second pressure sensitive film 50b to be exposed. Be placed.

第2感熱部16は光源4から照射された光を受けると、図8(b)に示すように第1波長λ1に強度のピークが現れる第4波長帯域WB4の光を反射する。また第2感熱部16は、第1感熱部6と同様に、第1熱膨張係数E1及び第1反射波長温度係数D1を有するSi系材料による多層膜からなる。なお図1に示すように、スプリッタ21から第2感熱部16までの距離を第2感熱光距離L2rとする。 When receiving the light emitted from the light source 4, the second heat sensitive unit 16 reflects the light in the fourth wavelength band WB 4 in which the intensity peak appears at the first wavelength λ 1 as shown in FIG. 8 (b). The second heat sensitive part 16, similarly to the first heat-sensitive part 6, a multilayer film of Si-based material having a first thermal expansion coefficient E 1 and a first reflection wavelength temperature coefficient D 1. As shown in FIG. 1, the distance from the splitter 21 to the second heat sensitive unit 16 is a second heat sensitive light distance L 2r .

第2感圧部13は第2感熱部16の透過光を受け、図8(b)に示すように第2波長λ2に強度のピークが現れる第3波長帯域WB3の光を反射する。第2感圧部13は、第1感熱部6と同様に、第2熱膨張係数E2及び第2反射波長温度係数D2を有するSi系材料による多層膜からなる。なお図1に示すように、スプリッタ21から第2感圧部13までの距離を第2感圧光距離L2sとする。 The second pressure sensing unit 13 receives the transmitted light from the second heat sensing unit 16 and reflects the light in the third wavelength band WB 3 in which the intensity peak appears at the second wavelength λ 2 as shown in FIG. 8 (b). Second pressure sensing 13, like the first heat-sensitive part 6, a multilayer film of Si-based material having a second thermal expansion coefficient E 2 and the second reflection wavelength temperature coefficient D 2. As shown in FIG. 1, the distance from the splitter 21 to the second pressure sensing unit 13 is defined as a second pressure sensitive light distance L 2s .

図11に示す第2の間隔h2は、図3に示す第1測定ユニット5の第1の間隔h1と同じであっても、異なる間隔であってもかまわない。図11に示す第2測定ユニット15のその他の構成要素は図3に示す第1測定ユニット5と同様の構造であり、第2内部圧力PI2は第1内部圧力PI1と同じに設定される。したがって、第2測定ユニット15の第2感圧膜50bの撓みwが0で、第1測定ユニット5の第1温度T1及び第2測定ユニット15の第2温度T2のそれぞれが等しい場合には、図8(a)及び図8(b)に示すように、第1感熱部6と第2感圧部13の反射スペクトルは等しくなる。また第1測定ユニット5の第1感圧膜50aの撓みwが0で、第1測定ユニット5の第1温度T1及び第2測定ユニット15の第2温度T2のそれぞれが等しい場合には、図8(a)及び図8(b)に示すように、第1感圧部3と第2感熱部16の反射スペクトルは等しくなる。 Second spacing h 2 shown in FIG. 11 may be the same as the first distance h 1 of the first measuring unit 5 shown in FIG. 3, may be a different intervals. Other components of the second measurement unit 15 shown in FIG. 11 have the same structure as the first measurement unit 5 shown in FIG. 3, and the second internal pressure PI2 is set to be the same as the first internal pressure PI1. . Thus, in the deflection w of the second sense pressure membrane 50b of the second measurement unit 15 is 0, when the second respective temperature T 2 of the first temperature T 1 and the second measuring unit 15 of the first measuring unit 5 is equal to As shown in FIGS. 8 (a) and 8 (b), the reflection spectra of the first heat-sensitive part 6 and the second pressure-sensitive part 13 are equal. In w is 0 flexure of the first sense pressure membrane 50a of the first measuring unit 5, if the second respective temperature T 2 of the first temperature T 1 and the second measuring unit 15 of the first measuring unit 5 are equal As shown in FIGS. 8 (a) and 8 (b), the reflection spectra of the first pressure-sensitive part 3 and the second heat-sensitive part 16 are equal.

図11に示す第2感圧膜50bは、第2外部圧力PO2で撓む他に、周囲の第2温度T2の変動量ΔT2に依存して膨張あるいは収縮する。また第2感熱部16及び第2感圧部13のそれぞれも、周囲の第2温度T2の変動量ΔT2に依存して膨張あるいは収縮する。さらに第2感熱部16及び第2感圧部13のそれぞれは、周囲の第2温度T2の変動量ΔT2に依存して屈折率が変化し、反射光に波長シフトが生じうる。そのため、第2温度T2の変動量ΔT2に依存する第2感圧膜50b、第2感熱部16及び第2感圧部13のそれぞれの伸縮あるいは屈折率変化は第2外部圧力PO2の測定の誤差要因となる。図1に示す差圧測定システムが、第2温度T2の変動量ΔT2に起因する第2測定ユニット15の測定誤差を除去する機構については、後に詳述する。 Second pressure sensing thick film 50b shown in FIG. 11, in addition to deflect the second external pressure P O2, to expand or contract depending on the variation amount [Delta] T 2 of the second temperature T 2 ambient. Further, each of the second heat sensitive part 16 and the second pressure sensitive part 13 expands or contracts depending on the fluctuation amount ΔT 2 of the surrounding second temperature T 2 . Further, the refractive index of each of the second heat sensitive part 16 and the second pressure sensitive part 13 changes depending on the fluctuation amount ΔT 2 of the surrounding second temperature T 2 , and a wavelength shift may occur in the reflected light. Therefore, the second sense pressure membrane 50b that depends on the variation amount [Delta] T 2 of the second temperature T 2, each stretch or refractive index change of the second heat-sensitive part 16 and the second pressure sensing 13 of the second external pressure P O2 It becomes a measurement error factor. A mechanism in which the differential pressure measurement system shown in FIG. 1 removes the measurement error of the second measurement unit 15 caused by the fluctuation amount ΔT 2 of the second temperature T 2 will be described in detail later.

図1に示す差圧測定システムにおいて、光源4から照射された光が受光素子8に至るまでの伝搬経路による干渉縞は、図12に示す第1の組合せ、図13に示す第2の組合せ、図14に示す第3の組合せ、及び図15に示す第4の組合せの4通りによるものが考え得る。   In the differential pressure measurement system shown in FIG. 1, the interference fringes due to the propagation path from the light irradiated from the light source 4 to the light receiving element 8 are the first combination shown in FIG. 12, the second combination shown in FIG. There are four possible combinations of the third combination shown in FIG. 14 and the fourth combination shown in FIG.

図12に示す第1の組合せにおいては、光源4から照射された光はスプリッタ21で第1感圧部3及び第2感熱部16のそれぞれに導かれる。第1感圧部3では第1波長帯域WB1を有する光が反射され、反射光はスプリッタ21を経て受光素子8に向かう。また第2感熱部16では第4波長帯域WB4を有する光が反射され、反射光はスプリッタ21を経て受光素子8に向かう。ここで、定常状態における第1感圧部3及び第2感熱部16のそれぞれの反射スペクトルは、図8(a)及び図8(b)に示すように、共に第1波長λ1を強度のピークとして重なる。したがって、図12に示す第1の組合せにおいては、第1波長帯域WB1を有する光と第4波長帯域WB4を有する光とが受光素子8上において第1干渉縞を形成する。 In the first combination shown in FIG. 12, light emitted from the light source 4 is guided by the splitter 21 to each of the first pressure-sensitive unit 3 and the second heat-sensitive unit 16. The first pressure sensing unit 3 reflects light having the first wavelength band WB 1 , and the reflected light travels through the splitter 21 toward the light receiving element 8. The second heat sensitive unit 16 reflects light having the fourth wavelength band WB 4 , and the reflected light travels through the splitter 21 toward the light receiving element 8. Here, each of the reflection spectrum of the first pressure sensing 3 and the second heat-sensitive portion 16 in the steady state, as shown in FIG. 8 (a) and 8 (b), both of the first wavelength lambda 1 intensity Overlapping as a peak. Therefore, in the first combination shown in FIG. 12, the light having the first wavelength band WB 1 and the light having the fourth wavelength band WB 4 form a first interference fringe on the light receiving element 8.

図13に示す第2の組合せにおいては、光源4から照射された光はスプリッタ21で第1感熱部6及び第2感圧部13のそれぞれに導かれる。第1感熱部6では第2波長帯域WB2を有する光が反射され、反射光はスプリッタ21を経て受光素子8に向かう。第2感圧部13では第3波長帯域WB3を有する光が反射され、反射光はスプリッタ21を経て受光素子8に向かう。ここで、定常状態における第1感熱部6及び第2感圧部13のそれぞれの反射スペクトルは、図8(a)及び図8(b)に示すように、共に第2波長λ2を強度のピークとして重なる。したがって、図13に示す第2の組合せにおいては、第2波長帯域WB2を有する光と第3波長帯域WB3を有する光とが受光素子8上において第2干渉縞を形成する。 In the second combination shown in FIG. 13, the light emitted from the light source 4 is guided to each of the first heat sensitive unit 6 and the second pressure sensitive unit 13 by the splitter 21. The light having the second wavelength band WB 2 is reflected at the first heat sensitive unit 6, and the reflected light travels through the splitter 21 toward the light receiving element 8. The second pressure sensing unit 13 reflects light having the third wavelength band WB 3 , and the reflected light travels through the splitter 21 toward the light receiving element 8. Here, the respective reflection spectra of the first heat-sensing unit 6 and the second pressure-sensing unit 13 in the steady state have the intensity of the second wavelength λ 2 as shown in FIGS. 8 (a) and 8 (b). Overlapping as a peak. Therefore, in the second combination shown in FIG. 13, the light having the second wavelength band WB 2 and the light having the third wavelength band WB 3 form a second interference fringe on the light receiving element 8.

図14に示す第3の組合せにおいては、光源4から照射された光は第1感圧部3及び第2感圧部13のそれぞれに導かれる。ここで図8(a)及び図8(b)に示すように、第1感圧部3と第2感圧部13とでは反射可能な波長帯域が異なる。したがって、図14に示す第3の組合せにおいては、受光素子8上においては干渉縞が形成されない。   In the third combination shown in FIG. 14, the light emitted from the light source 4 is guided to each of the first pressure sensing unit 3 and the second pressure sensing unit 13. Here, as shown in FIG. 8 (a) and FIG. 8 (b), the first pressure-sensitive part 3 and the second pressure-sensitive part 13 have different wavelength bands that can be reflected. Therefore, no interference fringes are formed on the light receiving element 8 in the third combination shown in FIG.

図15に示す第4の組合せにおいては、光源4から照射された光はスプリッタ21で第1感熱部6及び第2感熱部16のそれぞれに導かれる。第4の組合せにおいても図8(a)及び図8(b)に示すように、第1感熱部6と第2感熱部16とでは反射可能な波長帯域が異なる。したがって、図15に示す第4の組合せにおいては、受光素子8上においては干渉縞が形成されない。   In the fourth combination shown in FIG. 15, the light emitted from the light source 4 is guided to each of the first heat sensitive unit 6 and the second heat sensitive unit 16 by the splitter 21. Also in the fourth combination, as shown in FIG. 8 (a) and FIG. 8 (b), the first heat-sensitive part 6 and the second heat-sensitive part 16 have different wavelength bands that can be reflected. Therefore, no interference fringes are formed on the light receiving element 8 in the fourth combination shown in FIG.

以上のことから、図1に示す差圧測定システムにおいて、光源4から照射された光が受光素子8に至るまでの伝搬経路の組み合わせは、図12に示す第1の組合せ、及び図13に示す第2の組合せの2通りのみを考慮すればよい。   From the above, in the differential pressure measurement system shown in FIG. 1, the combination of propagation paths from the light emitted from the light source 4 to the light receiving element 8 is the first combination shown in FIG. 12 and the combination shown in FIG. Only two combinations of the second combination need be considered.

フォトダイオード等である受光素子8上においては、第1干渉縞と第2干渉縞とが重ね合わされ、合成干渉縞が形成される。合成干渉縞の光強度Iは、下記(3)式で表される。   On the light receiving element 8, which is a photodiode or the like, the first interference fringes and the second interference fringes are overlapped to form a composite interference fringe. The light intensity I of the synthetic interference fringes is expressed by the following equation (3).

I = 2 + 2cos{(2π / λ1) × (L1s - L2r)} + 2cos{(2π / λ2) × (L2s - L1r)}
= 2 + 2cos{2π{(L1s - L2r) / λ1 + (L2s - L1r) / λ2}} × cos{2π{(L1s - L2r) / λ1 - (L2s - L1r) / λ2}} …(3)
ここで図1に示す第1感圧部3の反射光と、第2感熱部16の反射光との第1の光路差L12は下記(4)式で表される。また第2感圧部13の反射光と、第1感熱部6の反射光との第2の光路差L21は下記(5)式で表される。
I = 2 + 2cos {(2π / λ 1 ) × (L 1s -L 2r )} + 2cos {(2π / λ 2 ) × (L 2s -L 1r )}
= 2 + 2cos {2π {(L 1s -L 2r ) / λ 1 + (L 2s -L 1r ) / λ 2 }} × cos {2π {(L 1s -L 2r ) / λ 1- (L 2s- L 1r ) / λ 2 }}… (3)
Here, the first optical path difference L 12 between the reflected light of the first pressure-sensitive portion 3 and the reflected light of the second heat-sensitive portion 16 shown in FIG. 1 is expressed by the following equation (4). Further, the second optical path difference L 21 between the reflected light of the second pressure sensitive unit 13 and the reflected light of the first heat sensitive unit 6 is expressed by the following equation (5).

L12 = L1s - L2r …(4)
L21 = L2s - L1r …(5)
したがって(3)乃至(5)式より、合成干渉縞の光強度Iは下記(6)式に示す高周波成分cos{2π(L12 / λ1 + L21 / λ2)}と低周波成分cos{2πφ}の積で表される。
L 12 = L 1s -L 2r … (4)
L 21 = L 2s -L 1r … (5)
Therefore, from the equations (3) to (5), the light intensity I of the combined interference fringes is expressed by the high frequency component cos {2π (L 12 / λ 1 + L 21 / λ 2 )} and the low frequency component cos shown in the following equation (6). It is represented by the product of {2πφ}.

I = 2 + 2cos{2π(L12 / λ1 + L21 / λ2)} × cos{2πφ} …(6)
なお(6)式中のφは、下記(7)式で表される第1波長λ1の光と第2波長λ2の光との位相差である。
I = 2 + 2cos {2π (L 12 / λ 1 + L 21 / λ 2 )} × cos {2πφ}… (6)
In the equation (6), φ is a phase difference between the light having the first wavelength λ 1 and the light having the second wavelength λ 2 expressed by the following equation (7).

φ = L12 / λ1- L21 / λ2 …(7)
ここで、図1に示す第1測定ユニット5と第2測定ユニット15との間に圧力差が生じた場合、第1の光路差L12及び第2の光路差L21の変動に応じて位相差φも変動する。しかし、第1測定ユニット5と第2測定ユニット15との間に温度差が生じても、差圧測定システムを図1に示す配置で構成することにより、位相差φは変動しないとみなすことができる。位相差φが温度差で変動しないとみなすことができる理由を以下説明する。
φ = L 12 / λ 1 -L 21 / λ 2 (7)
Here, in accordance with a variation of the first when the pressure difference is generated between the measuring unit 5 and the second measuring unit 15, the first optical path difference L 12 and the second optical path difference L 21 shown in FIG. 1 position The phase difference φ also varies. However, even if a temperature difference occurs between the first measurement unit 5 and the second measurement unit 15, the phase difference φ can be regarded as not fluctuating by configuring the differential pressure measurement system in the arrangement shown in FIG. it can. The reason why the phase difference φ can be regarded as not fluctuating due to the temperature difference will be described below.

まず第1の光路差L12は、第1感圧部3に加わる第1外部圧力PO1、第1温度T1、及び第2感熱部16に加わる第2温度T2に依存して変動するため、下記(8)式で与えられる第1外部圧力PO1、第1温度T1、及び第2温度T2の関数に書き直すことができる。また第2の光路差L21は、第2感圧部13に加わる第2外部圧力PO2、第2温度T2、及び第1感熱部6に加わる第1温度T1に依存して変動するため、下記(9)式で与えられる第2外部圧力PO2、第2温度T2、及び第1温度T1の関数に書き直すことができる。 First, the first optical path difference L 12 varies depending on the first external pressure P O1 applied to the first pressure sensing unit 3, the first temperature T 1 , and the second temperature T 2 applied to the second heat sensing unit 16. Therefore, the function of the first external pressure P O1 , the first temperature T 1 , and the second temperature T 2 given by the following equation (8) can be rewritten. The second optical path difference L 21 varies depending on the second external pressure P O2 applied to the second pressure sensing unit 13, the second temperature T 2 , and the first temperature T 1 applied to the first heat sensing unit 6. Therefore, the function of the second external pressure P O2 , the second temperature T 2 , and the first temperature T 1 given by the following equation (9) can be rewritten.

L12 = L12(PO1, T1, T2) …(8)
L21 = L21(PO2, T1, T2) …(9)
図12に示す第1の組み合わせによる経路を伝搬する光の第1波長λ1は、第1感圧部3に加わる第1温度T1及び第2感熱部16に加わる第2温度T2に依存して波長シフトするため、下記(10)式で与えられる第1温度T1及び第2温度T2の関数に書き直すことができる。さらに図13に示す第2の組み合わせによる経路を伝搬する光の第2波長λ2は、第1感熱部6に加わる第1温度T1及び第2感圧部13に加わる第2温度T2に依存して波長シフトするため、下記(11)式で与えられる第1温度T1及び第2温度T2の関数で書き直すことができる。
L 12 = L 12 (P O1 , T 1 , T 2 )… (8)
L 21 = L 21 (P O2 , T 1 , T 2 )… (9)
The first wavelength λ 1 of the light propagating through the path by the first combination shown in FIG. 12 depends on the first temperature T 1 applied to the first pressure sensitive unit 3 and the second temperature T 2 applied to the second thermal unit 16 Since the wavelength shifts, the function of the first temperature T 1 and the second temperature T 2 given by the following equation (10) can be rewritten. Further, the second wavelength λ 2 of the light propagating through the path by the second combination shown in FIG. 13 is changed to the first temperature T 1 applied to the first heat sensitive unit 6 and the second temperature T 2 applied to the second pressure sensitive unit 13. Since the wavelength shift depends on this, it can be rewritten by a function of the first temperature T 1 and the second temperature T 2 given by the following equation (11).

λ1 = λ1(T1, T2) …(10)
λ2 = λ2(T1, T2) …(11)
ここで、第1外部圧力PO1、第2外部圧力PO2、第1温度T1及び第2温度T2のそれぞれに変動が生じた場合、(7)式で示された位相差φの変動量Δφは下記(12)式で表される。
λ 1 = λ 1 (T 1 , T 2 )… (10)
λ 2 = λ 2 (T 1 , T 2 )… (11)
Here, when fluctuations occur in each of the first external pressure P O1 , the second external pressure P O2 , the first temperature T 1 and the second temperature T 2 , the fluctuation of the phase difference φ expressed by the equation (7) The amount Δφ is expressed by the following equation (12).

Δφ = Δ(L12 / λ1)- Δ(L21 / λ2)
= [(1 / λ1) {(δL12 / δPO1)ΔPO1 + (δL12 / δT1)ΔT1 +(δL12 / δT2)ΔT2 } + L12 {(δ(1 / λ1) / δT1)ΔT1 + (δ(1 / λ1) / δT2)ΔT2]
- [(1 / λ2) {(δL21 / δPO2)ΔPO2 + (δL21 / δT1)ΔT1 +(δL21 / δT2)ΔT2 } + L21 {(δ(1 / λ2) / δT1)ΔT1 + (δ(1 / λ2) / δT2)ΔT2] …(12)
(12)式の各項を、それぞれ第1外部圧力PO1の変動量ΔPO1、第2外部圧力PO2の変動量ΔPO2、第1温度T1の変動量ΔT1、及び第2温度T2の変動量ΔT2を有する項で整理すると、下記(13)式が導かれる。
Δφ = Δ (L 12 / λ 1 )-Δ (L 21 / λ 2 )
= ((1 / λ 1 ) {(δL 12 / δP O1 ) ΔP O1 + (δL 12 / δT 1 ) ΔT 1 + (δL 12 / δT 2 ) ΔT 2 } + L 12 {(δ (1 / λ 1 ) / δT 1 ) ΔT 1 + (δ (1 / λ 1 ) / δT 2 ) ΔT 2 ]
-[(1 / λ 2 ) {(δL 21 / δP O2 ) ΔP O2 + (δL 21 / δT 1 ) ΔT 1 + (δL 21 / δT 2 ) ΔT 2 } + L 21 {(δ (1 / λ 2 ) / δT 1 ) ΔT 1 + (δ (1 / λ 2 ) / δT 2 ) ΔT 2 ]… (12)
The sections (12), the variation amount [Delta] P O1 of the first external pressure P O1, respectively, the variation [Delta] P O2 of the second external pressure P O2, variation [Delta] T 1 of the first temperature T 1, and the second temperature T to summarize in the section having the second variation amount [Delta] T 2, the following equation (13) is derived.

Δφ = (1 / λ1)(δL12 / δPO1)ΔPO1 - (1 / λ2)(δL21 / δPO2)ΔPO2
+ [(1 / λ1)(δL12 / δT1) + L12 (δ(1 / λ1) / δT1) - {(1 / λ2)(δL21 / δT1) + L21 (δ(1 / λ2) / δT1)}]ΔT1
+ [(1 / λ1)(δL12 / δT2) + L12 (δ(1 / λ1) / δT2) - {(1 / λ2)(δL21 / δT2) + L21 (δ(1 / λ2) / δT2)}]ΔT2 …(13)
さらに(13)式を変形すると、下記(14)式が導かれる。
Δφ = (1 / λ 1 ) (δL 12 / δP O1 ) ΔP O1- (1 / λ 2 ) (δL 21 / δP O2 ) ΔP O2
+ ((1 / λ 1 ) (δL 12 / δT 1 ) + L 12 (δ (1 / λ 1 ) / δT 1 )-((1 / λ 2 ) (δL 21 / δT 1 ) + L 21 (δ (1 / λ 2) / δT 1)}] ΔT 1
+ [(1 / λ 1 ) (δL 12 / δT 2 ) + L 12 (δ (1 / λ 1 ) / δT 2 )-((1 / λ 2 ) (δL 21 / δT 2 ) + L 21 (δ (1 / λ 2 ) / δT 2 )}] ΔT 2 (13)
Further transforming equation (13) leads to equation (14) below.

Δφ = (1 / λ1)(δL12 / δPO1)ΔPO1 - (1 / λ2)(δL21 / δPO2)ΔPO2
+ [(1 / λ1)(δL12 / δT1) - (L12 / λ1 2)(δλ1 / δT1)
- {(1 / λ2)(δL21 / δT1) - (L21 / λ2 2)(δλ2 / δT1)}]ΔT1
+ [(1 / λ1)(δL12 / δT2) - (L12 / λ1 2)(δλ1 / δT2)
- {(1 / λ2)(δL21 / δT2) - (L21 / λ2 2)δλ2 / δT2}]ΔT2 …(14)
ここで、第1の光路差L12の第1外部圧力PO1に対する第1圧力感度αP1 (1)、及び第2の光路差L21の第2外部圧力PO2に対する第2圧力感度αP2 (2)のそれぞれは、下記(15)及び(16)式で定義することができる。
Δφ = (1 / λ 1 ) (δL 12 / δP O1 ) ΔP O1- (1 / λ 2 ) (δL 21 / δP O2 ) ΔP O2
+ ((1 / λ 1 ) (δL 12 / δT 1 )-(L 12 / λ 1 2 ) (δλ 1 / δT 1 )
-{(1 / λ 2 ) (δL 21 / δT 1 )-(L 21 / λ 2 2 ) (δλ 2 / δT 1 )}] ΔT 1
+ ((1 / λ 1 ) (δL 12 / δT 2 )-(L 12 / λ 1 2 ) (δλ 1 / δT 2 )
-{(1 / λ 2 ) (δL 21 / δT 2 )-(L 21 / λ 2 2 ) δλ 2 / δT 2 }] ΔT 2 (14)
Here, the first pressure sensitivity α P1 (1) for the first external pressure P O1 of the first optical path difference L 12 and the second pressure sensitivity α P2 for the second external pressure P O2 of the second optical path difference L 21 Each of (2) can be defined by the following equations (15) and (16).

αP1 (1) = δL12 / δPO1 …(15)
αP2 (2) = δL21 / δPO2 …(16)
また、第1の光路差L12の第1温度T1に対する熱膨張量C12 (1)、第1の光路差L12の第2温度T2に対する熱膨張量C12 (2)、第2の光路差L21の第1温度T1に対する熱膨張量C21 (1)、及び第2の光路差L21の第2温度T2に対する熱膨張量C21 (2)のそれぞれは、下記(17)乃至(20)式で定義することができる。
α P1 (1) = δL 12 / δP O1 … (15)
α P2 (2) = δL 21 / δP O2 (16)
The thermal expansion amount C 12 with respect to the first temperature T 1 of the first optical path difference L 12 (1), the thermal expansion amount C 12 with respect to the second temperature T 2 of the first optical path difference L 12 (2), second the thermal expansion amount C 21 with respect to the first temperature T 1 of the optical path difference L 21 (1), and each of the thermal expansion amount C 21 with respect to the second temperature T 2 (2) second optical path difference L 21, following ( 17) to (20) can be defined.

C12 (1) = δL12 / δT1 …(17)
C12 (2) = δL12 / δT2 …(18)
C21 (1) = δL21 / δT1 …(19)
C21 (2) = δL21 / δT2 …(20)
さらに、第1波長λ1の第1温度T1に対する反射波長温度係数D1 (1)、第1波長λ1の第2温度T2に対する反射波長温度係数D1 (2)、第2波長λ2の第1温度T1に対する反射波長温度係数D2 (1)、及び第2波長λ2の第2温度T2に対する反射波長温度係数D2 (2)のそれぞれは、下記(21)乃至(24)式で定義することができる。
C 12 (1) = δL 12 / δT 1 (17)
C 12 (2) = δL 12 / δT 2 (18)
C 21 (1) = δL 21 / δT 1 (19)
C 21 (2) = δL 21 / δT 2 (20)
Further, the reflection wavelength temperature coefficient D 1 (1) to the first temperature T 1 of the first wavelength lambda 1, the reflection wavelength temperature coefficient D 1 (2) to the second temperature T 2 of the first wavelength lambda 1, the second wavelength lambda The reflection wavelength temperature coefficient D 2 (1) for the first temperature T 1 of 2 and the reflection wavelength temperature coefficient D 2 (2) for the second temperature T 2 of the second wavelength λ 2 are respectively (21) to (21) It can be defined by equation (24).

D1 (1) = δλ1 / δT1 …(21)
D1 (2) = δλ1 / δT2 …(22)
D2 (1) = δλ2 / δT1 …(23)
D2 (2) = δλ2 / δT2 …(24)
したがって(15)乃至(24)式を(14)式に代入することにより、位相差φの変動量Δφは下記(25)式で表される。
D 1 (1) = δλ 1 / δT 1 (21)
D 1 (2) = δλ 1 / δT 2 (22)
D 2 (1) = δλ 2 / δT 1 (23)
D 2 (2) = δλ 2 / δT 2 (24)
Therefore, by substituting the equations (15) to (24) into the equation (14), the fluctuation amount Δφ of the phase difference φ is expressed by the following equation (25).

Δφ = (1 / λ1P1 (1)ΔPO1 - (1 / λ2P2 (2)ΔPO2
+ [(1 / λ1)C12 (1) - (L12 / λ1 2)D1 (1)
- {(1 / λ2)C21 (1) - (L21 / λ2 2)D2 (1)}]ΔT1
+ [(1 / λ1)C12 (2) - (L12 / λ1 2)D1 (2)
- {(1 / λ2)C21 (2) - (L21 / λ2 2)D2 (2)}]ΔT2 …(25)
また、第1感圧部3と第2感熱部16のそれぞれは、第1熱膨張係数E1及び第1反射波長温度係数D1を有する材料からなるため、下記(26)を近似することができ、また(27)式が成立する。さらに第1感熱部6と第2感圧部13のそれぞれは、第2熱膨張係数E2及び第2反射波長温度係数D2を有する材料からなるため、下記(28)を近似することができ、また(29)式が成立する。
Δφ = (1 / λ 1 ) α P1 (1) ΔP O1- (1 / λ 2 ) α P2 (2) ΔP O2
+ [(1 / λ 1 ) C 12 (1) -(L 12 / λ 1 2 ) D 1 (1)
-{(1 / λ 2 ) C 21 (1) -(L 21 / λ 2 2 ) D 2 (1) }] ΔT 1
+ [(1 / λ 1 ) C 12 (2) -(L 12 / λ 1 2 ) D 1 (2)
-{(1 / λ 2 ) C 21 (2) -(L 21 / λ 2 2 ) D 2 (2) }] ΔT 2 … (25)
Also, a first pressure sensing 3 each of the second heat-sensitive portion 16, since a material having a first thermal expansion coefficient E 1 and a first reflection wavelength temperature coefficient D 1, be approximated to the following (26) Yes, equation (27) holds. Furthermore the first heat-sensitive part 6 each of the second pressure sensing 13, since a material having a second thermal expansion coefficient E 2 and the second reflection wavelength temperature coefficient D 2, can be approximated to the following (28) In addition, equation (29) holds.

C12 = C12 (1) = C12 (2) …(26)
D1 = D1 (1) = D1 (2) …(27)
C21 = C21 (1) = C21 (2) …(28)
D2 = D2 (1) = D2 (2) …(29)
(26)乃至(29)式において、C12は第1の光路差L12の第1温度T1及び第2温度T2に対する第1近似熱膨張量、C21は第2の光路差L21の第1温度T1及び第2温度T2に対する第2近似熱膨張量を示す。よって(25)乃至(29)式から、位相差φの変動量Δφは下記(30)式で表される。
C 12 = C 12 (1) = C 12 (2) … (26)
D 1 = D 1 (1) = D 1 (2) … (27)
C 21 = C 21 (1) = C 21 (2) … (28)
D 2 = D 2 (1) = D 2 (2) … (29)
In Expressions (26) to (29), C 12 is a first approximate thermal expansion amount of the first optical path difference L 12 with respect to the first temperature T 1 and the second temperature T 2 , and C 21 is the second optical path difference L 21. The second approximate thermal expansion amount with respect to the first temperature T 1 and the second temperature T 2 is shown. Therefore, from the equations (25) to (29), the fluctuation amount Δφ of the phase difference φ is expressed by the following equation (30).

Δφ = (1 / λ1P1 (1)ΔPO1 - (1 / λ2P2 (2)ΔPO2
+ [(1 / λ1)C12 - (L12 / λ1 2)D1
- {(1 / λ2)C21 - (L21 / λ2 2)D2}]ΔT1
+ [(1 / λ1)C12 - (L12 / λ1 2)D1
- {(1 / λ2)C21 - (L21 / λ2 2)D2}]ΔT2 …(30)
さらに(30)式を変形すると、位相差φの変動量Δφは下記(31)式で表される。
Δφ = (1 / λ 1 ) α P1 (1) ΔP O1- (1 / λ 2 ) α P2 (2) ΔP O2
+ [(1 / λ 1) C 12 - (L 12 / λ 1 2) D 1
-{(1 / λ 2 ) C 21- (L 21 / λ 2 2 ) D 2 }] ΔT 1
+ [(1 / λ 1) C 12 - (L 12 / λ 1 2) D 1
-{(1 / λ 2 ) C 21- (L 21 / λ 2 2 ) D 2 }] ΔT 2 … (30)
Further, when the equation (30) is modified, the fluctuation amount Δφ of the phase difference φ is expressed by the following equation (31).

Δφ = (1 / λ1P1 (1)ΔPO1 - (1 / λ2P2 (2)ΔPO2
+ [(1 / λ1)C12 - (L12 / λ1 2)D1](ΔT1 + ΔT2)
- [(1 / λ2)C21 - (L21 / λ2 2)D2](ΔT1 + ΔT2 ) …(31)
ここで、第1近似熱膨張量C12と、第1熱膨張係数E1及び第1の光路差L12との間には下記(32)式の関係が成り立つ。
Δφ = (1 / λ 1 ) α P1 (1) ΔP O1- (1 / λ 2 ) α P2 (2) ΔP O2
+ [(1 / λ 1) C 12 - (L 12 / λ 1 2) D 1] (ΔT 1 + ΔT 2)
-[(1 / λ 2 ) C 21- (L 21 / λ 2 2 ) D 2 ] (ΔT 1 + ΔT 2 )… (31)
Here, the first approximation thermal expansion amount C 12, the following equation (32) in relation holds between the first thermal expansion coefficient E 1 and the first optical path difference L 12.

C12 = E1 × L12 …(32)
したがって、(31)式の第2項は第1熱膨張係数E1を用いて下記(33)式で表すことができる。
C 12 = E 1 × L 12 … (32)
Therefore, the second term of the equation (31) can be expressed by the following equation (33) using the first thermal expansion coefficient E 1 .

[(1 / λ1)C12 - (L12 / λ1 2)D1](ΔT1 + ΔT2)
= [(1 / λ1)E1 × L12 - (L12 / λ1 2)D1](ΔT1 + ΔT2)
= [(L12 / λ1) {E1 - (D1 / λ1)}](ΔT1 + ΔT2) …(33)
(33)式より、下記(34)式に示す関係が成立する場合に(31)式の第2項は0となる。
[(1 / λ 1) C 12 - (L 12 / λ 1 2) D 1] (ΔT 1 + ΔT 2)
= [(1 / λ 1) E 1 × L 12 - (L 12 / λ 1 2) D 1] (ΔT 1 + ΔT 2)
= [(L 12 / λ 1 ) {E 1- (D 1 / λ 1 )}] (ΔT 1 + ΔT 2 )… (33)
From the equation (33), the second term of the equation (31) becomes 0 when the relationship shown in the following equation (34) is established.

E1 - (D1 / λ1) = 0
D1 = E1×λ1 …(34)
また第2近似熱膨張量C21と、第2熱膨張係数E2及び第2の光路差L21との間には下記(35)式の関係が成り立つ。
E 1- (D 1 / λ 1 ) = 0
D 1 = E 1 × λ 1 (34)
The second approximation thermal expansion amount C 21, the following equation (35) relationship is established between the second thermal expansion coefficient E 2 and the second optical path difference L 21.

C21 = E2 × L21 …(35)
したがって、(31)式の第3項は第2熱膨張係数E2を用いて下記(36)式で表すことができる。
C 21 = E 2 × L 21 … (35)
Therefore, the third term in (31) can be expressed by the following equation (36) using a second thermal expansion coefficient E 2.

[(1 / λ2)C21 - (L21 / λ2 2)D2](ΔT1 + ΔT2 )
= [(1 / λ2)E2 × L21 - (L21 / λ2 2)D2](ΔT1 + ΔT2)
= [(L21 / λ2) {E2 - (D2 / λ2)}](ΔT1 + ΔT2) …(36)
(36)式より、下記(37)式に示す関係が成立する場合に(31)式の第3項は0となる。
[(1 / λ 2 ) C 21- (L 21 / λ 2 2 ) D 2 ] (ΔT 1 + ΔT 2 )
= [(1 / λ 2 ) E 2 × L 21- (L 21 / λ 2 2 ) D 2 ] (ΔT 1 + ΔT 2 )
= [(L 21 / λ 2 ) {E 2- (D 2 / λ 2 )}] (ΔT 1 + ΔT 2 )… (36)
From the expression (36), the third term of the expression (31) becomes 0 when the relationship expressed by the following expression (37) is established.

E2 - (D2 / λ2) = 0
D2 = E2×λ2…(37)
したがって、(34)式に示したように、第1感圧部3及び第2感熱部16のそれぞれの第1反射波長温度係数D1の値が、第1熱膨張係数E1に第1波長λ1を掛けた値と等しく、また(37)式に示したように、第2感圧部13及び第1感熱部6のそれぞれの第2反射波長温度係数D2の値が、第2熱膨張係数E2に第2波長λ2を掛けた値と等しくなる材料で図1のシステムを構成すれば、(31)式の第2項及び第3項は消去され、位相差φの変動量Δφは下記(38)式で表される。
E 2- (D 2 / λ 2 ) = 0
D 2 = E 2 × λ 2 (37)
Therefore, (34) as indicated formula, each of the first value of the reflection wavelength temperature coefficient D 1 of the first pressure sensing 3 and the second heat-sensitive portion 16, the first wavelength to the first thermal expansion coefficient E 1 equal to the value obtained by multiplying the lambda 1, and (37) as indicated formula, each of the second values of the reflection wavelength temperature coefficient D 2 of the second pressure sensing 13 and the first heat-sensitive part 6, the second heat If the system of FIG. 1 is configured with a material that is equal to the value obtained by multiplying the expansion coefficient E 2 by the second wavelength λ 2 , the second and third terms of the equation (31) are eliminated, and the amount of fluctuation of the phase difference φ Δφ is expressed by the following equation (38).

Δφ = (1 / λ1P1 (1)ΔPO1 - (1 / λ2P2 (2)ΔPO2 …(38)
そのため、図1に示す第1測定ユニット5と第2測定ユニット15との間に圧力差が生じた場合には位相差φは変動するが、温度差が生じても位相差φは変動しないとみなすことができる。なお図3に示す第1感圧膜50aは第1感圧部3と同じ第1熱膨張係数E1を有し、図11に示す第2感圧膜50bは第2感圧部13と同じ第2熱膨張係数E2を有するのが望ましい。
Δφ = (1 / λ 1 ) α P1 (1) ΔP O1- (1 / λ 2 ) α P2 (2) ΔP O2 … (38)
Therefore, if a pressure difference occurs between the first measurement unit 5 and the second measurement unit 15 shown in FIG. 1, the phase difference φ varies, but even if a temperature difference occurs, the phase difference φ does not vary. Can be considered. Note first sense pressure membrane 50a shown in FIG. 3 have the same first thermal expansion coefficient E 1 and the first pressure sensing 3, second pressure sensing thick film 50b shown in FIG. 11 is the same as the second pressure sensing 13 It is desirable to have a second coefficient of thermal expansion E2.

実用上においては、(34)及び(37)式は厳密に成立しなくとも近似式が成立すれば、(31)式の第2項及び第3項が充分に小さくなり(38)式を近似できる。例えば、第1波長λ1を1.30μm、第1の光路差L12を10μmとし、第1感圧部3及び第2感熱部16の材料に第1熱膨張係数E1が4.13×10-6 /Kの単結晶Siを用いると(32)式より第1近似熱膨張量C12は4.13 × 10-11 m/Kとなる。さらに第1感圧部3及び第2感熱部16の成膜条件を第1反射波長温度係数D1が5.30 ×10-12 m/Kとなるように設定すると、(31)式の第2項は下記(39)式で表される。 In practice, if the approximate expression is satisfied even if the expressions (34) and (37) are not strictly established, the second and third terms of the expression (31) are sufficiently small to approximate the expression (38). it can. For example, the first wavelength λ 1 is 1.30 μm, the first optical path difference L 12 is 10 μm, and the first thermal expansion coefficient E 1 is 4.13 × 10 −6 in the material of the first pressure-sensitive part 3 and the second heat-sensitive part 16. When single crystal Si of / K is used, the first approximate thermal expansion C 12 is 4.13 × 10 −11 m / K from the equation (32). Further, when the film formation conditions of the first pressure sensing 3 and the second heat-sensitive part 16 first reflection wavelength temperature coefficient D 1 is set to be 5.30 × 10 -12 m / K, (31) second term of the equation Is represented by the following equation (39).

[(1 / λ1)C12 - (L12 / λ1 2)D1](ΔT1 + ΔT2)
= (3.18 ×10-5 - 3.14 ×10-5 )×(ΔT1 + ΔT2)
= 0.04 ×10-5 ×(ΔT1 + ΔT2) …(39)
また第2波長λ2を1.31μm、第2の光路差L21を5μmとし、第1感熱部6及び第2感圧部13の材料に第2熱膨張係数E2が4.13×10-6 /Kの単結晶Siを用いると第2近似熱膨張量C21が2.06 × 10-11 m/Kとなる。さらに第1感熱部6及び第2感圧部13の成膜条件を第2反射波長温度係数D2が5.30 ×10-12 m/Kとなるように設定すると、(31)式の第3項は下記(40)式で表される。
[(1 / λ 1) C 12 - (L 12 / λ 1 2) D 1] (ΔT 1 + ΔT 2)
= (3.18 × 10 -5 - 3.14 × 10 -5) × (ΔT 1 + ΔT 2)
= 0.04 × 10 -5 × (ΔT 1 + ΔT 2 )… (39)
The second wavelength λ 2 is 1.31 μm, the second optical path difference L 21 is 5 μm, and the second thermal expansion coefficient E 2 is 4.13 × 10 −6 / When K single crystal Si is used, the second approximate thermal expansion C 21 is 2.06 × 10 −11 m / K. Furthermore, when the film formation conditions of the first heat sensitive part 6 and the second pressure sensitive part 13 are set so that the second reflection wavelength temperature coefficient D 2 is 5.30 × 10 −12 m / K, the third term of the equation (31) Is represented by the following equation (40).

- [(1 / λ2)C21 - (L21 / λ2 2)D2](ΔT1 + ΔT2 )
= - (1.57 ×10-5 - 1.54 ×10-5)×(ΔT1 + ΔT2)
= - 0.03 ×10-5 ×(ΔT1 + ΔT2) …(40)
したがって、上記条件では(31)式は下記(41)式で表されるので、(38)式を近似することが可能となる。
-[(1 / λ 2 ) C 21- (L 21 / λ 2 2 ) D 2 ] (ΔT 1 + ΔT 2 )
= - (1.57 × 10 -5 - 1.54 × 10 -5) × (ΔT 1 + ΔT 2)
=-0.03 × 10 -5 × (ΔT 1 + ΔT 2 )… (40)
Therefore, since the equation (31) is expressed by the following equation (41) under the above conditions, the equation (38) can be approximated.

Δφ = (1 / λ1P1 (1)ΔPO1 - (1 / λ2P2 (2)ΔPO2
+ 1.00 ×10-7×(ΔT1 + ΔT2)
≒ (1 / λ1P1 (1)ΔPO1 - (1 / λ2P2 (2)ΔPO2 …(41)
図1に示す受光素子8は光強度Iを電気信号に変換し、信号処理装置7に出力する。信号処理装置7は上記(7)式で表される第1波長λ1の光と第2波長λ2の光との位相差φの(38)式で表される変動量Δφを観測する。ここで、第1波長λ1、第2波長λ2、第1圧力感度αP1 (1)、及び第2圧力感度αP2 (2)のそれぞれの値は既知であるから、(38)式より信号処理装置7は第1外部圧力PO1と第2外部圧力PO2との差圧を算出することが可能となる。
Δφ = (1 / λ 1 ) α P1 (1) ΔP O1- (1 / λ 2 ) α P2 (2) ΔP O2
+ 1.00 × 10 -7 × (ΔT 1 + ΔT 2 )
≒ (1 / λ 1 ) α P1 (1) ΔP O1- (1 / λ 2 ) α P2 (2) ΔP O2 … (41)
The light receiving element 8 shown in FIG. 1 converts the light intensity I into an electric signal and outputs it to the signal processing device 7. The signal processing device 7 observes the fluctuation amount Δφ expressed by the equation (38) of the phase difference φ between the light of the first wavelength λ 1 and the light of the second wavelength λ 2 expressed by the equation (7). Here, since the respective values of the first wavelength λ 1 , the second wavelength λ 2 , the first pressure sensitivity α P1 (1) , and the second pressure sensitivity α P2 (2) are known, from the equation (38) The signal processing device 7 can calculate the differential pressure between the first external pressure PO1 and the second external pressure PO2 .

以上示したように、図1に示した差圧測定システムは、第1温度T1及び第2温度T2によって第1感圧部3及び第2感圧部13のそれぞれによる圧力測定に誤差が生じうる場合でも、第1波長λ1の光と第2波長λ2の光との位相差φの変動量Δφが第1温度T1及び第2温度T2の影響を受けないよう構成されている。 As indicated above, the differential pressure measurement system shown in Figure 1, the error in the pressure measurement by each of the first temperature T 1 and the second temperature T 2 by the first pressure sensing 3 and the second pressure sensing 13 Even if it can occur, the variation Δφ of the phase difference φ between the light of the first wavelength λ 1 and the light of the second wavelength λ 2 is not affected by the first temperature T 1 and the second temperature T 2. Yes.

したがって、図1に示した差圧測定システムにおいては、第1温度T1及び第2温度T2の影響を受けないため、第1外部圧力PO1と第2外部圧力PO2との差圧を算出する際に温度変化によって生ずる誤差を除去するための複雑な計算をする必要がない。そのため、(38)式から瞬時に第1外部圧力PO1と第2外部圧力PO2との差圧を算出することが可能となる。 Accordingly, in the differential pressure measurement system shown in FIG. 1, it is not affected by the first temperature T 1 and the second temperature T 2, the first external pressure P O1 of the differential pressure between the second external pressure P O2 When calculating, there is no need to perform complicated calculations for removing errors caused by temperature changes. Therefore, the differential pressure between the first external pressure P O1 and the second external pressure P O2 can be calculated instantaneously from the equation (38).

次に図2乃至図7に示した実施の形態に係る第1測定ユニット5の製造方法を、図16乃至図24を参照して説明する。   Next, a method for manufacturing the first measurement unit 5 according to the embodiment shown in FIGS. 2 to 7 will be described with reference to FIGS.

(a) まず図16に示すように、Si等の第1半導体層141、第1半導体層141上部に配置された酸化シリコン(SiO2)等の絶縁膜である第1感圧膜50a、及び第1感圧膜50a上に配置されたSi等の第2半導体層142を備えるシリコン・オン・インシュレータ(SOI)基板を準備する。第2半導体層142は厚さh1を有する。次に第2半導体層142表面にレジスト膜を塗布した後、リソグラフィ法等によりパターニングし、図17に示すようにレジストマスク161a, 161bを形成する。 (a) First, as shown in FIG. 16, a first semiconductor layer 141 such as Si, a first pressure sensitive film 50a that is an insulating film such as silicon oxide (SiO 2 ) disposed on the first semiconductor layer 141, and A silicon-on-insulator (SOI) substrate including a second semiconductor layer 142 such as Si disposed on the first pressure-sensitive film 50a is prepared. The second semiconductor layer 142 has a thickness h 1. Next, after a resist film is applied to the surface of the second semiconductor layer 142, patterning is performed by a lithography method or the like to form resist masks 161a and 161b as shown in FIG.

(b) レジストマスク161a, 161bから表出する第2半導体層142の一部を、図18に示すように第1感圧膜50aが表出するまで異方性エッチング法等により選択的に除去し、第1測定用筐体43a及び凹部121を形成させる。アルカリ溶液等でレジストマスク161a, 161bを除去した後、第1半導体層141の表面にレジスト膜を塗布する。レジスト膜をリソグラフィ法等によりパターニングし、図19に示すようにレジストマスク162a, 162bを形成する。  (b) A part of the second semiconductor layer 142 exposed from the resist masks 161a and 161b is selectively removed by anisotropic etching or the like until the first pressure-sensitive film 50a is exposed as shown in FIG. Then, the first measurement housing 43a and the recess 121 are formed. After removing the resist masks 161a and 161b with an alkaline solution or the like, a resist film is applied to the surface of the first semiconductor layer 141. The resist film is patterned by a lithography method or the like to form resist masks 162a and 162b as shown in FIG.

(c) レジストマスク162a, 162bから表出する第1半導体層141の一部を、図20に示すように第1感圧膜50aが表出するまで異方性エッチング法等により選択的に除去し、第1測定センサ基底部40a及び凹部123を形成する。アルカリ溶液等でレジストマスク162a, 162bを除去した後、図21に示すように第2半導体層142上にメタルマスク180を配置する。真空蒸着法等によりSi系材料の多層膜を蒸着させ、第1熱膨張係数E1及び第1反射波長温度係数D1を有する第1感圧部3を凹部121によって表出している第1感圧膜50a上に形成する。 (c) A part of the first semiconductor layer 141 exposed from the resist masks 162a and 162b is selectively removed by anisotropic etching or the like until the first pressure sensitive film 50a is exposed as shown in FIG. Then, the first measurement sensor base 40a and the recess 123 are formed. After removing the resist masks 162a and 162b with an alkaline solution or the like, a metal mask 180 is disposed on the second semiconductor layer 142 as shown in FIG. By depositing a multilayer film of Si-based material by a vacuum deposition method or the like, the first feeling that exposed by the first thermal expansion coefficient E 1 and a first reflection wavelength temperature coefficient D 1 first pressure sensing 3 a recess 121 having a It is formed on the pressure film 50a.

(d) 新たに、図22に示す貫通孔62及び通気孔160aを有するホルダ60aを用意する。次に図23に示すように貫通孔62にコア130a及びクラッド131aを有する光ファイバ32を挿入し、光ファイバ32の端面を研磨する。次に光ファイバ32の端面の下部に図24に示すようにメタルマスク181を配置し、真空蒸着法等によりSi系材料の多層膜で、第2熱膨張係数E2及び第2反射波長温度係数D2を有する第1感熱部6を形成する。さらにホルダ60aと、図21に示した第1測定用筐体43aを接合して図2乃至図7に示した第1測定ユニット5が完成する。 (d) A holder 60a having a through hole 62 and a vent hole 160a shown in FIG. 22 is newly prepared. Next, as shown in FIG. 23, the optical fiber 32 having the core 130a and the clad 131a is inserted into the through hole 62, and the end face of the optical fiber 32 is polished. Next, a metal mask 181 is disposed below the end face of the optical fiber 32 as shown in FIG. 24, and a second thermal expansion coefficient E 2 and a second reflection wavelength temperature coefficient are formed of a multilayer film of Si material by vacuum deposition or the like. A first heat sensitive part 6 having D 2 is formed. Furthermore, the holder 60a and the first measurement housing 43a shown in FIG. 21 are joined to complete the first measurement unit 5 shown in FIGS.

なお図11に示した第2測定ユニット15も、図21において第2熱膨張係数E2及び第2反射波長温度係数D2を有する第2感圧部13を蒸着し、図24において第1熱膨張係数E1及び第1反射波長温度係数D1を有する第2感熱膜16を蒸着すれば、第1測定ユニット5と同様に製造することができるので、詳細な説明は省略する。 Note the second measurement unit 15 shown in FIG. 11 also, by depositing a second pressure sensing 13 having a second thermal expansion coefficient E 2 and the second reflection wavelength temperature coefficient D 2 in FIG. 21, the first heat in 24 If the second heat-sensitive film 16 having the expansion coefficient E 1 and the first reflection wavelength temperature coefficient D 1 is deposited, it can be manufactured in the same manner as the first measurement unit 5, and thus detailed description is omitted.

次に、図25を用いて図1に示した差圧測定システムを用いた差圧測定方法について説明する。   Next, a differential pressure measuring method using the differential pressure measuring system shown in FIG. 1 will be described with reference to FIG.

(a) ステップS101で、図1に示す光源4より光を照射する。ステップS102で、第1熱膨張係数E1及び第1反射波長温度係数D1を有し、第1外部圧力PO1及び第1温度T1が加えられる第1感圧部3で光源4より照射された光を受け、第1波長λ1の第1反射光を反射させる。さらにステップS103で、第2熱膨張係数E2及び第2反射波長温度係数D2を有し、第1温度T1が加えられる第1感熱部6で光源4より照射された光を受け、第2波長λ2の第2反射光を反射させる。 (a) In step S101, light is emitted from the light source 4 shown in FIG. In step S102, the first has a thermal expansion coefficient E 1 and a first reflection wavelength temperature coefficient D 1, emitted from the light source 4 in the first external pressure P O1 and a first temperature T 1 is the first pressure sensing 3 applied The reflected light is received and the first reflected light having the first wavelength λ 1 is reflected. Further in step S103, has a second thermal expansion coefficient E 2 and the second reflection wavelength temperature coefficient D 2, receives the light emitted from the light source 4 in the first heat-sensitive portion 6 first temperature T 1 is applied, the Second reflected light having two wavelengths λ 2 is reflected.

(b) ステップS104で、第2熱膨張係数E2及び第2反射波長温度係数D2を有し、第2外部圧力PO2及び第2温度T2が加えられる第2感圧部13で光源4より照射された光を受け、第2波長λ2の第3反射光を反射させる。ステップS105で、第1熱膨張係数E1及び第1反射波長温度係数D1を有し、第2温度T2が加えられる第2感熱部16で光源4より照射された光を受け、第1波長λ1の第4反射光を反射させる。 (b) In step S104, a second thermal expansion coefficient E 2 and the second reflection wavelength temperature coefficient D 2, the light source in the second external pressure P O2 and the second temperature T 2 is the second pressure sensing 13 applied The light irradiated from 4 is received, and the third reflected light having the second wavelength λ 2 is reflected. In step S105, the first has a thermal expansion coefficient E 1 and a first reflection wavelength temperature coefficient D 1, it receives the light emitted from the light source 4 at a second temperature T 2 is the second heat-sensitive part 16 to be added, first The fourth reflected light having the wavelength λ 1 is reflected.

(c) ステップS106で、第1及び第4反射光による第1干渉縞と第2及び第3反射光による第2干渉縞との合成干渉縞を受光素子8上に形成させる。ステップS107で、信号処理装置7は、受光素子8上に形成された合成干渉縞の光強度から上記(7)式で表される第1波長λ1の光と第2波長λ2の光との位相差φの(34)式で表される変動量Δφを観測する。ステップS108で、信号処理装置7は第1波長λ1、第2波長λ2、第1圧力感度αP1 (1)、及び第2圧力感度αP2 (2)のそれぞれの既知の値を用いて、(34)式より第1外部圧力PO1と第2外部圧力PO2との差圧を算出し、実施の形態にかかる差圧測定方法を終了する。 (c) In step S106, a combined interference fringe of the first interference fringe by the first and fourth reflected light and the second interference fringe by the second and third reflected light is formed on the light receiving element 8. In step S107, the signal processing device 7 calculates the light of the first wavelength λ 1 and the light of the second wavelength λ 2 represented by the above equation (7) from the light intensity of the combined interference fringes formed on the light receiving element 8. The fluctuation amount Δφ expressed by the equation (34) of the phase difference φ is observed. In step S108, the signal processing device 7 uses the known values of the first wavelength λ 1 , the second wavelength λ 2 , the first pressure sensitivity α P1 (1) , and the second pressure sensitivity α P2 (2). , (34) to calculate the differential pressure between the first external pressure PO1 and the second external pressure PO2, and the differential pressure measurement method according to the embodiment is completed.

(実施の形態の変形例1)
図26に示す実施の形態の変形例1に係る差圧測定システムは、図1と異なり、第1及び第4反射光による第1干渉縞と第2及び第3反射光による第2干渉縞との合成干渉縞を形成させる干渉計28をさらに有する。図26において、スプリッタ21で分割された一方の光は光ファイバ31aで伝搬され、第1干渉用スプリッタ22で光ファイバ31b, 36のそれぞれに分割される。光ファイバ31bは第1測定ユニット5に接続される。第1測定ユニット5からの反射光は、第1干渉用スプリッタ22に接続された光ファイバ34に分割される。
(Modification 1 of the embodiment)
The differential pressure measurement system according to Modification 1 of the embodiment shown in FIG. 26 differs from FIG. 1 in that the first interference fringes by the first and fourth reflected lights and the second interference fringes by the second and third reflected lights The interferometer 28 is further provided to form the combined interference fringes. In FIG. 26, one light split by the splitter 21 is propagated by the optical fiber 31a, and is split by the first interference splitter 22 into the optical fibers 31b and 36, respectively. The optical fiber 31b is connected to the first measurement unit 5. The reflected light from the first measurement unit 5 is split into an optical fiber 34 connected to the first interference splitter 22.

スプリッタ21で分割された他方の光は光ファイバ32aで伝搬され、第2干渉用スプリッタ23で光ファイバ32b, 37のそれぞれに分割される。光ファイバ32bは第2測定ユニット15に接続される。第2測定ユニット15からの反射光は、第2干渉用スプリッタ23に接続された光ファイバ35に分割される。   The other light split by the splitter 21 is propagated by the optical fiber 32a and split by the second interference splitter 23 into the optical fibers 32b and 37, respectively. The optical fiber 32b is connected to the second measurement unit 15. The reflected light from the second measurement unit 15 is split into an optical fiber 35 connected to the second interference splitter 23.

光ファイバ34, 35、及び受光素子8は干渉計28を構成する。光ファイバ34, 35のそれぞれによって伝搬された光は、図27に示すように、光ファイバ34, 35のそれぞれの端部から受光素子8上に放射される。放射された光は受光素子8上で重ね合わされ第1及び第4反射光による第1干渉縞と第2及び第3反射光による第2干渉縞との合成干渉縞が形成される。受光素子8には、CMOSイメージセンサ、リニアセンサ、CCD、及びフォトダイオードアレイ等が使用可能である。干渉縞の周波数は、光ファイバ34, 35のそれぞれから照射された光の波長と光路差dによって決定される。干渉縞の光強度Iは下記(42)式で表される。   The optical fibers 34 and 35 and the light receiving element 8 constitute an interferometer 28. The light propagated by each of the optical fibers 34 and 35 is radiated onto the light receiving element 8 from each end of the optical fibers 34 and 35, as shown in FIG. The emitted light is superimposed on the light receiving element 8 to form a combined interference fringe of the first interference fringe by the first and fourth reflected light and the second interference fringe by the second and third reflected light. As the light receiving element 8, a CMOS image sensor, a linear sensor, a CCD, a photodiode array, or the like can be used. The frequency of the interference fringes is determined by the wavelength of the light emitted from each of the optical fibers 34 and 35 and the optical path difference d. The light intensity I of the interference fringes is expressed by the following formula (42).

I = 2 + 2cos{(2π / λ1) × d} + 2cos{(2π / λ2) × d}
= 2 + 2cos{2πd{1 / λ1 + 1 / λ2}} × cos{2πd{1 / λ1 - 1 / λ2}} …(42)
したがって、実施の形態で示した(6)式乃至(41)式の第1の光路差L12及び第2の光路差L21のそれぞれを光路差dと置き換えることにより、図26及び図27に示した差圧測定システムでも位相差φの変動量Δφは第1測定ユニット5と第2測定ユニット15との間に圧力差が生じた場合には変動するが、温度差が生じても変動しないとみなすことができる。さらに図1に示した差圧測定システムと比較して、図26及び図27に示す配置をとることにより、より測定レンジを大きくすることも可能となる。
I = 2 + 2cos {(2π / λ 1 ) × d} + 2cos {(2π / λ 2 ) × d}
= 2 + 2cos {2πd {1 / λ 1 + 1 / λ 2}} × cos {2πd {1 / λ 1 - 1 / λ 2}} ... (42)
Therefore, by replacing each of the first optical path difference L 12 and the second optical path difference L 21 in the expressions (6) to (41) shown in the embodiment with the optical path difference d, FIG. 26 and FIG. Even in the illustrated differential pressure measurement system, the fluctuation amount Δφ of the phase difference φ varies when a pressure difference occurs between the first measurement unit 5 and the second measurement unit 15, but does not vary even if a temperature difference occurs. Can be considered. Furthermore, compared with the differential pressure measurement system shown in FIG. 1, the arrangement shown in FIGS. 26 and 27 can be used to further increase the measurement range.

なお干渉計28において、受光素子8上に合成干渉縞を形成させる方法は図26及び図27に示す配置に限定されない。例えば、図28に示すように、光ファイバ34, 35のそれぞれの末端から放射された光をレンズ90で平行光にし、プリズム91を介して受光素子8上に合成干渉縞を形成させてもよい。この場合、プリズム91のX点から入射した光は光路U1をたどり、受光素子8上のV1点に到達する。またプリズム91のZ2点から入射した光は光路U2をたどり、受光素子8上のV1点に到達する。光路U1と光路U2の光路差dにより、受光素子8上のV1点において光路U1をたどった光と、光路U2をたどった光とが干渉する。 In the interferometer 28, the method of forming the synthetic interference fringes on the light receiving element 8 is not limited to the arrangement shown in FIGS. For example, as shown in FIG. 28, the light emitted from the respective ends of the optical fibers 34 and 35 may be converted into parallel light by the lens 90, and a synthetic interference fringe may be formed on the light receiving element 8 via the prism 91. . In this case, the light incident from the X point of the prism 91 follows the optical path U 1 and reaches the V 1 point on the light receiving element 8. The light incident from the Z 2 point of the prism 91 follows the optical path U 2 and reaches the V 1 point on the light receiving element 8. By the optical path U 1 and the optical path difference of the optical path U 2 d, and the light traversing the optical path U 1 in V 1 point on the light receiving element 8, and the light traversing the optical path U 2 interferes.

またプリズム91のY点から入射した光は光路U4をたどり、受光素子8上のV2点に到達する。プリズム91のZ1点から入射した光は光路U3をたどり、受光素子8上のV2点に到達する。光路U3と光路U4の光路差dにより、受光素子8上のV2点において光路U3をたどった光と、光路U4をたどった光とが干渉する。 Light incident from the Y point of the prism 91 follows the optical path U 4 and reaches the V 2 point on the light receiving element 8. The light incident from the Z 1 point of the prism 91 follows the optical path U 3 and reaches the V 2 point on the light receiving element 8. By the optical path U 3 and the optical path difference of the optical path U 4 d, the light traversing the optical path U 3 at V 2 points on the light receiving element 8, and the light traversing the optical path U 4 interferes.

図29に示す例においては、光ファイバ34, 35のそれぞれから放射された光をレンズ90でx方向に向かう平行光にした後、ビームスプリッタ92で平行光をx方向とy方向の2方向に分割する。x方向に進行した光は第1全反射鏡93で全反射された後、再びビームスプリッタ92に入射し、-y方向に反射され、受光素子8に向かう。また、ビームスプリッタ92でy方向に進行した光は、第2全反射鏡94で全反射される。   In the example shown in FIG. 29, the light emitted from each of the optical fibers 34 and 35 is converted into parallel light directed in the x direction by the lens 90, and then the parallel light is converted into two directions by the beam splitter 92 in the x direction and the y direction. To divide. The light traveling in the x direction is totally reflected by the first total reflection mirror 93, then enters the beam splitter 92 again, is reflected in the −y direction, and travels toward the light receiving element 8. The light traveling in the y direction by the beam splitter 92 is totally reflected by the second total reflection mirror 94.

ここで、第1全反射鏡93はx方向に対して垂直に配置される。これに対し、第2全反射鏡94はy方向に対し、垂直方向からさらにθ傾けて配置される。そのため、第1全反射鏡93で反射し受光素子8に向かう光と、第2全反射鏡94で反射し受光素子8に向かう光には光路差dが生じ、受光素子8上に合成干渉縞が形成される。   Here, the first total reflection mirror 93 is arranged perpendicular to the x direction. On the other hand, the second total reflection mirror 94 is arranged with a further tilt of θ from the vertical direction with respect to the y direction. Therefore, an optical path difference d is generated between the light reflected by the first total reflection mirror 93 and directed to the light receiving element 8 and the light reflected by the second total reflection mirror 94 and directed to the light receiving element 8, and a synthetic interference fringe is formed on the light receiving element 8. Is formed.

第1波長λ1が0.675μm、第2波長λ2が0.687μmの場合の合成干渉縞と、第1波長λ1が0.669μm、第2波長λ2が0.697μmの場合の合成干渉縞の例を図30に示す。図26に示す信号処理装置7は合成干渉縞の強度のピークの間隔を測定し、その逆数を算出することにより位相差φを求める。あるいは位相差φは、合成干渉縞をフーリエ変換処理することにより導いてもよい。フーリエ変換処理を行う場合には、図30に示したように干渉縞の包絡線を(6)式に近似し、低周波成分cos{2πφ}を抽出することにより行う。また光源4の強度の変調が生じる場合には、信号処理装置7は合成干渉縞の電気信号をバンドパスフィルタリングすることとしてもよい。 The first wavelength lambda 1 is 0.675Myuemu, and synthetic interference fringes when the second wavelength lambda 2 is 0.687Myuemu, the first wavelength lambda 1 is 0.669Myuemu, examples of synthetic fringe in the case of the second wavelength lambda 2 is 0.697μm This is shown in FIG. The signal processing device 7 shown in FIG. 26 measures the interval between the intensity peaks of the combined interference fringes and calculates the reciprocal thereof to obtain the phase difference φ. Alternatively, the phase difference φ may be derived by subjecting the synthetic interference fringes to Fourier transform processing. When the Fourier transform process is performed, the interference fringe envelope is approximated by the equation (6) as shown in FIG. 30, and the low frequency component cos {2πφ} is extracted. When the intensity of the light source 4 is modulated, the signal processing device 7 may perform band-pass filtering on the electrical signal of the combined interference fringes.

(実施の形態の変形例2)
図1に示す差圧測定システムに、外乱要因によるノイズを除去するためのノイズ除去手段を付加してもよい。例えば図31に示す差圧測定システムは、ロックインアンプ27をさらに有する。ロックインアンプ27は、既知の周波数の参照信号Rを発生させる発振器74、参照信号Rを基に光源4から照射される光に位相変調Aを加える位相変調器71、受光素子8が出力する電気信号を増幅するアンプ72、アンプ72の出力に参照信号Rを重畳する積算器73、及び積算器73に接続され、参照信号Rと同じ周波数の電気信号のみが通過できるローパスフィルタ75を有する。発振器74が発生させる参照信号Rは下記(43)式で表される。
(Modification 2 of embodiment)
Noise removal means for removing noise due to disturbance factors may be added to the differential pressure measurement system shown in FIG. For example, the differential pressure measurement system shown in FIG. 31 further includes a lock-in amplifier 27. The lock-in amplifier 27 includes an oscillator 74 that generates a reference signal R having a known frequency, a phase modulator 71 that applies phase modulation A to light emitted from the light source 4 based on the reference signal R, and an electric power output from the light receiving element 8. The amplifier 72 amplifies the signal, the integrator 73 that superimposes the reference signal R on the output of the amplifier 72, and the low-pass filter 75 that is connected to the integrator 73 and that allows only an electric signal having the same frequency as the reference signal R to pass therethrough. The reference signal R generated by the oscillator 74 is expressed by the following equation (43).

R = G ・ sin(2πf・t) …(43)
(43)式において、Gは任意の定数、fは周波数、及びtは時間を表す。位相変調器71は光源4が照射する光を伝搬する光ファイバ30aに接続されている。位相変調器71が光に加える位相変調Aは下記(44)式で与えられる。
R = G ・ sin (2πf ・ t) (43)
In the equation (43), G represents an arbitrary constant, f represents a frequency, and t represents time. The phase modulator 71 is connected to an optical fiber 30a that propagates light emitted from the light source 4. The phase modulation A applied to the light by the phase modulator 71 is given by the following equation (44).

A = ΔL・sin(2π・f・t) …(44)
(44)式においてΔLは光路長変化範囲を表す。位相変調Aを加えられた光は、位相変調器71に接続された光ファイバ30bでスプリッタ21に伝搬される。
A = ΔL ・ sin (2π ・ f ・ t)… (44)
In equation (44), ΔL represents the optical path length change range. The light subjected to the phase modulation A is propagated to the splitter 21 through the optical fiber 30b connected to the phase modulator 71.

アンプ72は受光素子8に接続されている。積算器73はアンプ72の出力に接続されている。積算器73はアンプ72で増幅された電気信号に、発振器74が発生させた既知の周波数の参照信号Rを重畳する。積算器73の出力にはローパスフィルタ75が接続されている。ローパスフィルタ75においては、参照信号Rと周波数が等しい電気信号のみが通過可能であるため、外乱要因によるノイズが除去される。   The amplifier 72 is connected to the light receiving element 8. The integrator 73 is connected to the output of the amplifier 72. The integrator 73 superimposes the reference signal R having a known frequency generated by the oscillator 74 on the electric signal amplified by the amplifier 72. A low-pass filter 75 is connected to the output of the integrator 73. In the low-pass filter 75, only an electric signal having the same frequency as that of the reference signal R can pass, so that noise due to a disturbance factor is removed.

また図32に示す差圧測定システムは図1に対して外乱要因によるノイズを除去する位相検波手段127をさらに有する。図32に示す位相検波手段127は、発振器74、位相変調器71、受光素子8の出力に並列に接続された第1ローパスフィルタ76及び第2ローパスフィルタ77、参照信号Rを遅延させ遅延参照信号RDを出力する遅延回路176、第1ローパスフィルタ76を通過した電気信号に遅延参照信号RDを重畳する積算器173、第2ローパスフィルタ77を通過した電気信号を増幅するアンプ172、及びアンプ172の出力に積算器173の出力を加算する加算器175を有する。位相検波手段127が外乱要因によるノイズを除去する原理を以下説明する。 Further, the differential pressure measurement system shown in FIG. 32 further includes phase detection means 127 for removing noise due to disturbance factors as compared with FIG. The phase detection means 127 shown in FIG. 32 delays the reference signal R by delaying the reference signal R, the oscillator 74, the phase modulator 71, the first low-pass filter 76 and the second low-pass filter 77 connected in parallel to the output of the light receiving element 8. delay circuit 176 which outputs the R D, multiplier 173 for superimposing a delayed reference signal R D to an electrical signal passed through the first low-pass filter 76, an amplifier 172 for amplifying the electric signal passed through the second low-pass filter 77, and amplifier An adder 175 for adding the output of the integrator 173 to the output of 172 is provided. The principle by which the phase detection means 127 removes noise due to disturbance factors will be described below.

位相変調器71が加えられているため、受光素子8上における合成干渉縞の光強度Iは下記(45)式で表される。   Since the phase modulator 71 is added, the light intensity I of the combined interference fringe on the light receiving element 8 is expressed by the following equation (45).

I = 2 + 2cos{2π(L121 + L212) + 2πΔL(1 /λ1 + 1 /λ2)sin(2π・f・t)}
×cos{2π(L121- L212) + 2πΔL(1 /λ1 - 1 /λ2)sin(2π・f・t)} …(45)
ここで(45)式の低周波成分V0に着目すると、下記(46)式が導かれる。
I = 2 + 2cos {2π (L 12 / λ 1 + L 21 / λ 2 ) + 2πΔL (1 / λ 1 + 1 / λ 2 ) sin (2π ・ f ・ t)}
× cos {2π (L 12 / λ 1 - L 21 / λ 2) + 2πΔL (1 / λ 1 - 1 / λ 2) sin (2π · f · t)} ... (45)
If attention is paid to the low frequency component V 0 in the equation (45), the following equation (46) is derived.

V0 = cos{2π(L121- L212) + 2πΔL(1 /λ1 - 1 /λ2)sin(2π・f・t)}
= cosθ×cos(ηsin(2π・f・t)) - sinθ×sin(ηsin(2π・f・t)) …(46)
(46)式において、θ及びηは下記(47)式及び(48)式で定義される。
V 0 = cos {2π (L 12 / λ 1 - L 21 / λ 2) + 2πΔL (1 / λ 1 - 1 / λ 2) sin (2π · f · t)}
= cosθ × cos (ηsin (2π ・ f ・ t))-sinθ × sin (ηsin (2π ・ f ・ t))… (46)
In the equation (46), θ and η are defined by the following equations (47) and (48).

θ = 2π(L121- L212) = 2πφ …(47)
η = 2πΔL(1 /λ1 - 1 /λ2) …(48)
(46)式を書き直すと、低周波成分V0は(49)式で表される。

Figure 2006058070
θ = 2π (L 12 / λ 1 -L 21 / λ 2 ) = 2πφ ... (47)
η = 2πΔL (1 / λ 1 - 1 / λ 2) ... (48)
When the equation (46) is rewritten, the low frequency component V 0 is expressed by the equation (49).
Figure 2006058070

第1ローパスフィルタ76は低周波成分V0の高周波成分を減衰させ、下記(50)式で与えられる第1透過成分VLPF1を透過させる。 The first low-pass filter 76 attenuates the high-frequency component of the low-frequency component V 0 and transmits the first transmission component V LPF1 given by the following equation (50).

VLPF1 = cosθ×J0(η) …(50)
一方遅延回路176は、発振器74が発生させる参照信号Rをπ/2遅延させ、下記(51)式で与えられる遅延参照信号RDを出力する。
V LPF1 = cosθ × J 0 (η) (50)
On the other hand, the delay circuit 176 delays the reference signal R generated by the oscillator 74 by π / 2, and outputs a delayed reference signal RD given by the following equation (51).

RD = G・cos(2πf・t) …(51)
積算器173は第1ローパスフィルタ76及び遅延回路176のそれぞれの出力に接続されている。積算器173は第1透過成分VLPF1に遅延参照信号RDを重畳し、下記(52)式で与えられる積算成分VAを出力する。
R D = G ・ cos (2πf ・ t) (51)
The integrator 173 is connected to the respective outputs of the first low-pass filter 76 and the delay circuit 176. The integrator 173 superimposes the delayed reference signal RD on the first transmission component V LPF1 and outputs an integration component V A given by the following equation (52).

VA = G ×J0(η)cosθ×cos(2πf・t) …(52)
アンプ172は第2ローパスフィルタ77の出力に接続される。アンプ172の増幅率Bは下記(53)式で表される。
V A = G × J 0 (η) cosθ × cos (2πf ・ t) (52)
The amplifier 172 is connected to the output of the second low-pass filter 77. The amplification factor B of the amplifier 172 is expressed by the following equation (53).

B = J0(η) / 2 J1(η) …(53)
第2ローパスフィルタ77でフィルタリングされ、アンプ172で増幅された第2透過成分VLPF2は下記(54)式で与えられる。
B = J 0 (η) / 2 J 1 (η)… (53)
The second transmission component V LPF2 filtered by the second low-pass filter 77 and amplified by the amplifier 172 is given by the following equation (54).

VLPF2 = -2B J1(η)sinθ×sin(2πf・t) …(54)
積算器173の出力は、バンドパスフィルタ178に接続されている。バンドパスフィルタ178は積算成分VAをフィルタリングする。加算器175はバンドパスフィルタ178及びアンプ172のそれぞれの出力に接続されている。加算器175は積算成分VA に第2透過成分VLPF2を加算し、下記(55)式で与えられる処理後成分VFを信号処理装置7に出力する。
V LPF2 = -2B J 1 (η) sinθ × sin (2πf ・ t)… (54)
The output of the integrator 173 is connected to a band pass filter 178. The band pass filter 178 filters the integrated component V A. The adder 175 is connected to the respective outputs of the band pass filter 178 and the amplifier 172. The adder 175 adds the second transmission component V LPF2 to the integrated component V A and outputs the processed component V F given by the following equation (55) to the signal processing device 7.

VF = VLPF1 + VLPF2 = G ×B ×J0(η)cos(θ+ 2πf・t)
= G ×B ×J0(η)cos(2π(φ+ f・t)) …(55)
したがって、信号処理装置7はより高い精度で位相差φの変動量Δφを観測することが可能となる。
V F = V LPF1 + V LPF2 = G × B × J 0 (η) cos (θ + 2πf ・ t)
= G × B × J 0 (η) cos (2π (φ + f ・ t))… (55)
Therefore, the signal processing device 7 can observe the fluctuation amount Δφ of the phase difference φ with higher accuracy.

(実施の形態の変形例3)
図33に示す実施の形態の変形例3に係る第1測定ユニット105は、筐体11内部に配置された第1感熱部106及び第1感圧部103のそれぞれにファイバブラッググレーティングを用いている。図34に示すように、第1感熱部106は、コア130aにおいて第1屈折率部100a, 100b, 100c, …と第2屈折率部200a, 200b, 200c, …のそれぞれが交互に配置された周期構造を有する。第1感熱部106に入射した光は、第1屈折率部100a, 100b, 100c, …と第2屈折率部200a, 200b, 200c, …の周期構造により、特定の波長のみ選択的に反射される。ここで、第1屈折率部100a, 100b, 100c, …と第2屈折率部200a, 200b, 200c, …の周期構造における平均屈折率をnD2とし、周期構造の間隔を第2格子間隔Λm2として、下記(56)式で表され図8で示される第2波長λ2に強度のピークが現れる第2波長帯域WB2の光を第1感熱部106は反射する。
(Modification 3 of the embodiment)
The first measurement unit 105 according to the third modification of the embodiment shown in FIG. 33 uses fiber Bragg gratings for each of the first heat-sensitive part 106 and the first pressure-sensitive part 103 arranged inside the housing 11. . As shown in FIG. 34, in the first heat sensitive part 106, the first refractive index parts 100a, 100b, 100c,... And the second refractive index parts 200a, 200b, 200c,. Has a periodic structure. The light incident on the first heat sensitive part 106 is selectively reflected only at a specific wavelength by the periodic structure of the first refractive index parts 100a, 100b, 100c,... And the second refractive index parts 200a, 200b, 200c,. The Here, the first refractive index portions 100a, 100b, 100c, ... and a second refractive index portions 200a, 200b, 200c, an average refractive index and n D2 in ... periodic structure, the interval of the periodic structure second grating spacing Λ as m2, the second wavelength band WB 2 light peaks of the second wavelength lambda 2 to the intensity appears first heat-sensitive part 106 represented by represented 8 below (56) below is reflected.

λ2 = 2 ×nD2 ×Λm2 …(56)
図33に示す第1感圧部103は第1感圧ファイバ107及び第1回折格子108を有する。第1感圧ファイバ107上部には、図33のA-A方向から見た断面図である図35及び図36に示すように筐体11に感圧窓49が設けら、さらに第1感圧ファイバ107下部には中空部59が設けられている。そのため、第1外部圧力PO1と中空部59内部の第1内部圧力PI1が等しい場合は図35に示すように第1感圧ファイバ107は撓まない。これに対し、第1外部圧力PO1が第1内部圧力PI1を上回る場合には、図36に示すように、第1感圧ファイバ107は筐体11内部方向に撓む。第1回折格子108は、周期構造の間隔が第2格子間隔Λm2と異なる第1格子間隔Λm1を有する以外は、図34と同様の構造を有する。第1回折格子108の平均屈折率をnD1として、第1回折格子108は下記(57)式で表され図8で示される第1波長λ1に強度のピークが現れる第1波長帯域WB1の光を反射する。
λ 2 = 2 × n D2 × Λ m2 (56)
33 includes a first pressure-sensitive fiber 107 and a first diffraction grating 108. On the upper part of the first pressure-sensitive fiber 107, a pressure-sensitive window 49 is provided in the housing 11, as shown in FIGS. 35 and 36, which are cross-sectional views seen from the AA direction of FIG. A hollow part 59 is provided in the lower part. Therefore, when the first external pressure PO1 and the first internal pressure PI1 inside the hollow portion 59 are equal, the first pressure-sensitive fiber 107 does not bend as shown in FIG. In contrast, when the first external pressure P O1 is above the first internal pressure P I1, as shown in FIG. 36, the first pressure sensing fiber 107 is bent in the housing 11 inwardly. The first diffraction grating 108 has the same structure as that shown in FIG. 34 except that the periodic structure has a first grating interval Λ m1 that is different from the second grating interval Λ m2 . Assuming that the average refractive index of the first diffraction grating 108 is n D1 , the first diffraction grating 108 is expressed by the following equation (57), and the first wavelength band WB 1 in which an intensity peak appears at the first wavelength λ 1 shown in FIG. Reflects the light.

λ1 = 2 ×nD1 ×Λm1 …(57)
第1感圧部103では、図36に示した第1外部圧力PO1によって第1感圧ファイバ107が撓み、図1で説明した第1感圧光距離L1sが変化する。ここで第1感熱部106及び第1感圧部103のそれぞれは、周囲の第1温度T1の変動量ΔT1に依存して膨張あるいは収縮する。さらに第1感熱部106及び第1感圧部103のそれぞれは、周囲の第1温度T1の変動量ΔT1に依存して平均屈折率nD2, nD1が変化し、反射光λ2 , λ1に波長シフトが生じうる。
λ 1 = 2 × n D1 × Λ m1 (57)
In the first pressure sensing 103, the first pressure sensing fiber 107 deflection by the first external pressure P O1 shown in FIG. 36, the first pressure sensing piezo-distance L 1s described in FIG changes. Here, each of the first heat sensitive unit 106 and the first pressure sensitive unit 103 expands or contracts depending on the fluctuation amount ΔT 1 of the surrounding first temperature T 1 . Further, each of the first heat-sensitive part 106 and the first pressure-sensitive part 103 changes the average refractive index n D2 , n D1 depending on the fluctuation amount ΔT 1 of the surrounding first temperature T 1 , and the reflected light λ 2 , A wavelength shift can occur in λ 1 .

しかし、第1熱膨張係数E1及び第1反射波長温度係数D1を有する材料で図33に示す第1感圧部103を構成し、第2熱膨張係数E2及び第2反射波長温度係数D2を有する材料で第1感熱部106を構成すれば、ファイバブラッググレーティングを用いても実施の形態と同様の効果を得ることが可能となる。 However, a material having a first thermal expansion coefficient E 1 and a first reflection wavelength temperature coefficient D 1 constitute a first pressure sensing 103 shown in FIG. 33, the second thermal expansion coefficient E 2 and the second reflection wavelength temperature coefficient by configuring the first heat-sensitive part 106 of a material having a D 2, it is possible even using a fiber Bragg grating obtain the same effect as that of the embodiment.

(実施の形態の変形例4)
図37に示す差圧測定システムが図1と異なるのは、第1光源44と第2光源45の2つの光源が配置されている点である。第1光源44は、第1感圧部3及び第2感熱部16のそれぞれの図8(a)及び図8(b)に示した第1波長λ1に対応する光を照射する。また第2光源45は、第2感圧部13及び第1感熱部6のそれぞれの第2波長λ2に対応する光を照射する。なお図37に示す第2光源45には、図8(a)及び図8(b)に示した第2波長λ2での光強度が第1光源44の第1波長λ1での光強度と等しく、照射される光のスペクトルが第1光源44と相似となる光源が好適である。
(Modification 4 of embodiment)
The differential pressure measurement system shown in FIG. 37 is different from FIG. 1 in that two light sources, a first light source 44 and a second light source 45, are arranged. The first light source 44 emits light corresponding to the first wavelength λ 1 shown in FIGS. 8A and 8B of the first pressure sensing unit 3 and the second heat sensing unit 16, respectively. The second light source 45 emits light corresponding to the second wavelength λ 2 of each of the second pressure sensing unit 13 and the first heat sensing unit 6. The second light source 45 shown in FIG. 37 has the light intensity at the second wavelength λ 2 shown in FIGS. 8 (a) and 8 (b), which is the light intensity at the first wavelength λ 1 of the first light source 44. A light source having a spectrum similar to that of the first light source 44 is preferable.

図37に示す第1光源44には光ファイバ300aが接続され、第2光源45には光ファイバ300bが接続される。光ファイバ300a, 300bは光源用スプリッタ221に接続され、光源用スプリッタ221には2方向の出力端子がある場合には光ファイバ30, 300cのそれぞれが接続される。第1光源44及び第2光源45を配置することにより、図12に示す第1の組合せ及び図13に示す第2の組合せを伝搬する光の強度をより精度の高く揃えることが可能となる。そのため、より精度の高い差圧測定が可能となる。   An optical fiber 300a is connected to the first light source 44 shown in FIG. 37, and an optical fiber 300b is connected to the second light source 45. The optical fibers 300a and 300b are connected to the light source splitter 221. When the light source splitter 221 has two-direction output terminals, the optical fibers 30 and 300c are connected to each other. By arranging the first light source 44 and the second light source 45, it is possible to align the intensities of the light propagating through the first combination shown in FIG. 12 and the second combination shown in FIG. 13 with higher accuracy. As a result, differential pressure measurement with higher accuracy is possible.

(その他の実施の形態)
上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば図1に示す第1測定ユニット5においては、光ファイバ31に対して第1感熱部6と第1感圧部3を直列に配置したが、実施の形態はこれに限定されない。図38に示す第1測定ユニット105のように、光ファイバ31に対して第1感圧部103及び第1感熱部106のそれぞれを並列に配置してもよい。同様に、第2測定ユニット115においても、第2感圧部113及び第2感熱部116のそれぞれを光ファイバ32に対して並列に配置してもよい。
(Other embodiments)
As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operational techniques should be apparent to those skilled in the art. For example, in the first measurement unit 5 shown in FIG. 1, the first heat sensitive part 6 and the first pressure sensitive part 3 are arranged in series with respect to the optical fiber 31, but the embodiment is not limited to this. As in the first measurement unit 105 shown in FIG. 38, each of the first pressure-sensitive part 103 and the first heat-sensitive part 106 may be arranged in parallel to the optical fiber 31. Similarly, in the second measurement unit 115, each of the second pressure sensing unit 113 and the second heat sensing unit 116 may be arranged in parallel with the optical fiber 32.

また、実施の形態においては、図1に示す第1感熱部6、第1感圧部3、第2感熱部16、及び第2感圧部13のそれぞれはSi系の材料からなる多層薄膜であると説明した。しかし、実施の形態はこれに限定されることはなく、例えば酸化珪素(SiO2)と酸化チタン(TiO2)から成る交互多層膜で第1感熱部6、第1感圧部3、第2感熱部16、及び第2感圧部13のそれぞれを構成してもよい。また有機物系材料により構成してもよい。(41)式が近似できる範囲において、第1感熱部6、第1感圧部3、第2感熱部16、及び第2感圧部13のそれぞれには様々な材料が使用可能であることはいうまでもない。また第1測定ユニット5及び第2測定ユニット15のそれぞれの内部には光路差が変わる物質を充填してもよい。 Further, in the embodiment, each of the first heat-sensitive part 6, the first pressure-sensitive part 3, the second heat-sensitive part 16, and the second pressure-sensitive part 13 shown in FIG. 1 is a multilayer thin film made of a Si-based material. I explained that there was. However, the embodiment is not limited to this. For example, the first heat-sensitive portion 6, the first pressure-sensitive portion 3, and the second pressure-sensitive multilayer film made of alternating silicon oxide (SiO 2 ) and titanium oxide (TiO 2 ) are used. Each of the heat sensitive unit 16 and the second pressure sensitive unit 13 may be configured. Moreover, you may comprise with an organic type material. As long as the equation (41) can be approximated, various materials can be used for each of the first heat sensitive part 6, the first pressure sensitive part 3, the second heat sensitive part 16, and the second pressure sensitive part 13. Needless to say. Further, each of the first measurement unit 5 and the second measurement unit 15 may be filled with a substance that changes the optical path difference.

この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。   Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

本発明の実施の形態に係る差圧測定システムの模式図である。It is a mimetic diagram of a differential pressure measuring system concerning an embodiment of the invention. 本発明の実施の形態に係る第1測定ユニットの上面図である。It is a top view of the 1st measurement unit concerning an embodiment of the invention. 本発明の実施の形態に係る第1測定ユニットのA−A方向から見た断面図(その1)である。It is sectional drawing (the 1) seen from the AA direction of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1感熱部の反射特性を示すグラフ(その1)である。It is a graph (the 1) which shows the reflective characteristic of the 1st heat sensitive part which concerns on embodiment of this invention. 本発明の実施の形態に係る第1感熱部の反射特性を示すグラフ(その2)である。It is a graph (the 2) which shows the reflective characteristic of the 1st heat sensitive part which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットのA−A方向から見た断面図(その2)である。It is sectional drawing (the 2) seen from the AA direction of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットのA−A方向から見た断面図(その3)である。It is sectional drawing (the 3) seen from the AA direction of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る反射スペクトルを示すグラフである。It is a graph which shows the reflection spectrum which concerns on embodiment of this invention. 本発明の実施の形態に係る感圧膜に関するグラフ(その1)である。It is a graph (the 1) regarding the pressure-sensitive film which concerns on embodiment of this invention. 本発明の実施の形態に係る感圧膜に関するグラフ(その2)である。It is a graph (the 2) regarding the pressure-sensitive film which concerns on embodiment of this invention. 本発明の実施の形態に係る第2測定ユニットの断面図である。It is sectional drawing of the 2nd measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る干渉縞を形成する光の伝搬経路の第1の組合せを示す模式図である。It is a schematic diagram which shows the 1st combination of the propagation path of the light which forms the interference fringe which concerns on embodiment of this invention. 本発明の実施の形態に係る干渉縞を形成する光の伝搬経路の第2の組合せを示す模式図である。It is a schematic diagram which shows the 2nd combination of the propagation path of the light which forms the interference fringe which concerns on embodiment of this invention. 本発明の実施の形態に係る干渉縞を形成する光の伝搬経路の第3の組合せを示す模式図である。It is a schematic diagram which shows the 3rd combination of the propagation path of the light which forms the interference fringe which concerns on embodiment of this invention. 本発明の実施の形態に係る干渉縞を形成する光の伝搬経路の第4の組合せを示す模式図である。It is a schematic diagram which shows the 4th combination of the propagation path of the light which forms the interference fringe which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットの工程断面図(その1)である。It is process sectional drawing (the 1) of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットの工程断面図(その2)である。It is process sectional drawing (the 2) of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットの工程断面図(その3)である。It is process sectional drawing (the 3) of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットの工程断面図(その4)である。It is process sectional drawing (the 4) of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットの工程断面図(その5)である。It is process sectional drawing (the 5) of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットの工程断面図(その6)である。It is process sectional drawing (the 6) of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットの工程断面図(その7)である。It is process sectional drawing (the 7) of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットの工程断面図(その8)である。It is process sectional drawing (the 8) of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る第1測定ユニットの工程断面図(その9)である。It is process sectional drawing (the 9) of the 1st measurement unit which concerns on embodiment of this invention. 本発明の実施の形態に係る差圧測定方法を示すフローチャートである。It is a flowchart which shows the differential pressure measuring method which concerns on embodiment of this invention. 本発明の実施の形態の変形例1に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on the modification 1 of embodiment of this invention. 本発明の実施の形態の変形例1に係る干渉計の模式図(その1)である。It is a schematic diagram (the 1) of the interferometer which concerns on the modification 1 of embodiment of this invention. 本発明の実施の形態の変形例1に係る干渉計の模式図(その2)である。It is a schematic diagram (the 2) of the interferometer which concerns on the modification 1 of embodiment of this invention. 本発明の実施の形態の変形例1に係る干渉計の模式図(その3)である。It is a schematic diagram (the 3) of the interferometer which concerns on the modification 1 of embodiment of this invention. 本発明の実施の形態の変形例1に係る合成干渉縞を示すグラフである。It is a graph which shows the synthetic | combination interference fringe which concerns on the modification 1 of embodiment of this invention. 本発明の実施の形態の変形例2に係る差圧測定システム(その1)の模式図である。It is a schematic diagram of the differential pressure measurement system (the 1) which concerns on the modification 2 of embodiment of this invention. 本発明の実施の形態の変形例2に係る差圧測定システム(その2)の模式図である。It is a schematic diagram of the differential pressure measurement system (the 2) which concerns on the modification 2 of embodiment of this invention. 本発明の実施の形態の変形例3に係る第1測定ユニットの模式図である。It is a schematic diagram of the 1st measurement unit which concerns on the modification 3 of embodiment of this invention. 本発明の実施の形態の変形例3に係る第1感熱部の模式図である。It is a schematic diagram of the 1st heat sensitive part which concerns on the modification 3 of embodiment of this invention. 本発明の実施の形態の変形例3に係る第1測定センサの断面図(その1)である。It is sectional drawing (the 1) of the 1st measurement sensor which concerns on the modification 3 of embodiment of this invention. 本発明の実施の形態の変形例3に係る第1測定センサの断面図(その2)である。It is sectional drawing (the 2) of the 1st measurement sensor which concerns on the modification 3 of embodiment of this invention. 本発明の実施の形態の変形例4に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on the modification 4 of embodiment of this invention. 本発明のその他の実施の形態に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

3…第1感圧部
4…光源
5…第1測定ユニット
6…第1感熱部
7…信号処理装置
8…受光素子
11…筐体
13…第2感圧部
15…第2測定ユニット
16…第2感熱部
21…スプリッタ
22…第1干渉用スプリッタ
23…第2干渉用スプリッタ
27…ロックインアンプ
28…干渉計
30, 30a, 30b, 31, 31a, 31b, 32, 32a, 32b, 33, 34, 35, 300a, 300b…光ファイバ
40a…第1測定センサ基底部
40b…第2測定センサ基底部
43a…第1測定用筐体
43b…第2測定用筐体
44…第1光源
45…第2光源
49…感圧窓
50a…第1感圧膜
50b…第2感圧膜
59…中空部
60a, 60b…ホルダ
62…貫通孔
70a, 70b…開放弁
71…位相変調器
72, 172…アンプ
73, 173…積算器
74…発振器
75…ローパスフィルタ
76…第1ローパスフィルタ
77…第2ローパスフィルタ
90…レンズ
91…プリズム
92…ビームスプリッタ
93…第1全反射鏡
94…第2全反射鏡
100a, 100b, 100c, ……第1屈折率部
103…第1感圧部
105…第1測定ユニット
106…第1感熱部
107…第1感圧ファイバ
108…第1回折格子
113…第2感圧部
115…第2測定ユニット
116…第2感熱部
121, 123…凹部
127…位相検波手段
130a, 130b…コア
131a, 131b…クラッド
141…第1半導体層
142…第2半導体層
160a, 160b…通気孔
161a, 161b, 162a, 162b…レジストマスク
175…加算器
176…遅延回路
180, 181…メタルマスク
200a, 200b, 200c……第2屈折率部
221…光源用スプリッタ
3… First pressure sensing part
4 ... Light source
5… First measurement unit
6 ... 1st heat sensitive part
7 ... Signal processing device
8 ... Light receiving element
11 ... Case
13… Second pressure sensing part
15 ... Second measurement unit
16… The second heat sensitive part
21 ... Splitter
22 ... 1st interference splitter
23… 2nd interference splitter
27 ... Lock-in amplifier
28 ... Interferometer
30, 30a, 30b, 31, 31a, 31b, 32, 32a, 32b, 33, 34, 35, 300a, 300b ... Optical fiber
40a ... First measurement sensor base
40b ... Second measurement sensor base
43a ... First measurement housing
43b… Second measurement housing
44 ... 1st light source
45 ... Second light source
49… Pressure sensitive window
50a ... 1st pressure sensitive membrane
50b… Second pressure sensitive membrane
59… hollow part
60a, 60b ... holder
62 ... Through hole
70a, 70b ... Release valve
71 ... Phase modulator
72, 172 ... amplifier
73, 173 ... Integrator
74 ... Oscillator
75 ... Low-pass filter
76 ... 1st low-pass filter
77… Second low-pass filter
90 ... Lens
91 ... Prism
92 ... Beam splitter
93 ... 1st total reflection mirror
94… Second total reflection mirror
100a, 100b, 100c, ... 1st refractive index part
103 ... 1st pressure sensing part
105 ... 1st measurement unit
106 ... 1st heat sensitive part
107 ... 1st pressure sensitive fiber
108 ... 1st diffraction grating
113… Second pressure sensing part
115… Second measurement unit
116… The second heat sensitive part
121, 123 ... recess
127 ... Phase detection means
130a, 130b ... core
131a, 131b ... clad
141… First semiconductor layer
142… Second semiconductor layer
160a, 160b ... vent
161a, 161b, 162a, 162b ... resist mask
175 ... Adder
176 ... Delay circuit
180, 181 ... metal mask
200a, 200b, 200c …… Second refractive index part
221 ... Splitter for light source

Claims (9)

第1及び第2波長の光を照射する光源と、
前記第1波長の第1反射光を反射し、第1外部圧力及び第1温度が加えられ、第1熱膨張係数及び前記第1熱膨張係数に前記第1波長を掛けた第1反射波長温度係数を有する第1感圧部と、
前記第2波長の第2反射光を反射し、前記第1温度が加えられ、第2熱膨張係数及び前記第2熱膨張係数に前記第2波長を掛けた第2反射波長温度係数を有する第1感熱部と、
前記第2波長の第3反射光を反射し、第2外部圧力及び第2温度が加えられ、前記第2熱膨張係数及び第2反射波長温度係数を有する第2感圧部と、
前記第1波長の第4反射光を反射し、前記第2温度が加えられ、前記第1熱膨張係数及び第1反射波長温度係数を有する第2感熱部と、
前記第1及び第4反射光による第1干渉縞と前記第2及び第3反射光による第2干渉縞の位相差の変動から前記第1及び第2外部圧力の差圧を算出する信号処理装置
とを備えることを特徴とする差圧測定システム。
A light source that emits light of the first and second wavelengths;
Reflecting the first reflected light of the first wavelength, a first external pressure and a first temperature are applied, a first reflected wavelength temperature obtained by multiplying the first thermal expansion coefficient and the first thermal expansion coefficient by the first wavelength A first pressure sensitive part having a coefficient;
The second reflected light of the second wavelength is reflected, the first temperature is added, and a second thermal expansion coefficient and a second reflected wavelength temperature coefficient obtained by multiplying the second thermal expansion coefficient by the second wavelength. 1 heat sensitive part,
A second pressure-sensitive part that reflects the third reflected light of the second wavelength, is applied with a second external pressure and a second temperature, and has the second thermal expansion coefficient and the second reflected wavelength temperature coefficient;
Reflecting the fourth reflected light of the first wavelength, the second temperature is applied, the second thermal part having the first thermal expansion coefficient and the first reflection wavelength temperature coefficient,
A signal processing device that calculates a differential pressure between the first and second external pressures from a variation in the phase difference between the first interference fringes by the first and fourth reflected lights and the second interference fringes by the second and third reflected lights. And a differential pressure measuring system.
前記第1及び第2感圧部、及び第1及び第2感熱部のそれぞれの材料はシリコンを含むことを特徴とする請求項1に記載の差圧測定システム。   2. The differential pressure measurement system according to claim 1, wherein materials of the first and second pressure-sensitive parts and the first and second heat-sensitive parts include silicon. 前記第1及び第2感圧部、及び第1及び第2感熱部のそれぞれの材料は酸化珪素及び酸化チタンを含むことを特徴とする請求項1に記載の差圧測定システム。   2. The differential pressure measurement system according to claim 1, wherein the first and second pressure-sensitive parts and the first and second heat-sensitive parts each include silicon oxide and titanium oxide. 前記第1及び第2感圧部、及び第1及び第2感熱部のそれぞれは多層膜を有することを特徴とする請求項1乃至3のいずれか1項に記載の差圧測定システム。   4. The differential pressure measurement system according to claim 1, wherein each of the first and second pressure-sensitive parts and the first and second heat-sensitive parts has a multilayer film. 5. 前記第1及び第2感圧部、及び第1及び第2感熱部のそれぞれはファイバブラッググレーティングを有することを特徴とする請求項1又は2に記載の差圧測定システム。   3. The differential pressure measurement system according to claim 1, wherein each of the first and second pressure sensitive units and the first and second thermal sensitive units includes a fiber Bragg grating. 4. 前記第1及び第4反射光による第1干渉縞と前記第2及び第3反射光による第2干渉縞との合成干渉縞を形成させる干渉計を更に備えることを特徴とする請求項1乃至5のいずれか1項に記載の差圧測定システム。   6. The apparatus according to claim 1, further comprising an interferometer that forms a combined interference fringe of the first interference fringe by the first and fourth reflected light and the second interference fringe by the second and third reflected light. The differential pressure measurement system according to any one of the above. 前記第1乃至第4反射光に加わるノイズを除去するロックインアンプを更に備えることを特徴とする請求項1乃至6のいずれか1項に記載の差圧測定システム。   The differential pressure measurement system according to claim 1, further comprising a lock-in amplifier that removes noise added to the first to fourth reflected lights. 前記第1乃至第4反射光に加わるノイズを除去する位相検波手段を更に備えることを特徴とする請求項1乃至6のいずれか1項に記載の差圧測定システム。   The differential pressure measurement system according to claim 1, further comprising phase detection means for removing noise added to the first to fourth reflected lights. 第1及び第2波長の光を照射するステップと、
第1外部圧力及び第1温度が加えられ、第1熱膨張係数及び前記第1熱膨張係数に前記第1波長を掛けた第1反射波長温度係数を有する第1感圧部で前記光を受け、前記第1波長の第1反射光を反射するステップと、
前記第1温度が加えられ、第2熱膨張係数及び前記第2熱膨張係数に前記第2波長を掛けた第2反射波長温度係数を有する第1感熱部で前記光を受け、前記第2波長の第2反射光を反射するステップと、
第2外部圧力及び第2温度が加えられ、前記第2熱膨張係数及び第2反射波長温度係数を有する第2感圧部で前記光を受け、前記第2波長の第3反射光を反射するステップと、
前記第2温度が加えられ、前記第1熱膨張係数及び第1反射波長温度係数を有する第2感熱部で前記光を受け、前記第1波長の第4反射光を反射するステップと、
前記第1及び第4反射光の第1干渉縞と前記第2及び第3反射光の第2干渉縞の位相差の変動から前記第1及び第2外部圧力の差圧を算出するステップ
とを含むことを特徴とする差圧測定方法。
Irradiating light of first and second wavelengths;
A first external pressure and a first temperature are applied, and the light is received by a first pressure sensing unit having a first thermal expansion coefficient and a first reflection wavelength temperature coefficient obtained by multiplying the first thermal expansion coefficient by the first wavelength. Reflecting the first reflected light of the first wavelength;
The first temperature is applied, the second thermal expansion coefficient and the second thermal expansion coefficient multiplied by the second wavelength are received by the first heat sensitive part having a second reflection wavelength temperature coefficient, and the second wavelength. Reflecting the second reflected light of
A second external pressure and a second temperature are applied, the light is received by the second pressure sensing unit having the second thermal expansion coefficient and the second reflection wavelength temperature coefficient, and the third reflected light of the second wavelength is reflected. Steps,
Receiving the light at a second thermal part having the second temperature applied, the first thermal expansion coefficient and the first reflection wavelength temperature coefficient, and reflecting the fourth reflected light of the first wavelength;
Calculating a differential pressure between the first and second external pressures from a variation in the phase difference between the first interference fringes of the first and fourth reflected lights and the second interference fringes of the second and third reflected lights. A differential pressure measuring method characterized by comprising.
JP2004238289A 2004-08-18 2004-08-18 Differential pressure measurement system and differential pressure measurement method Expired - Fee Related JP4615932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004238289A JP4615932B2 (en) 2004-08-18 2004-08-18 Differential pressure measurement system and differential pressure measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004238289A JP4615932B2 (en) 2004-08-18 2004-08-18 Differential pressure measurement system and differential pressure measurement method

Publications (2)

Publication Number Publication Date
JP2006058070A true JP2006058070A (en) 2006-03-02
JP4615932B2 JP4615932B2 (en) 2011-01-19

Family

ID=36105659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004238289A Expired - Fee Related JP4615932B2 (en) 2004-08-18 2004-08-18 Differential pressure measurement system and differential pressure measurement method

Country Status (1)

Country Link
JP (1) JP4615932B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333414A (en) * 2006-06-12 2007-12-27 Yamatake Corp Differential pressure measuring system, and differential pressure measuring method
JP2009538423A (en) * 2006-05-23 2009-11-05 ローズマウント インコーポレイテッド Pressure sensor for pressure transmitter
WO2010005574A3 (en) * 2008-07-10 2010-03-04 Northrop Grumman Guidance And Electronics Company, Inc. Fiber optical acoustic sensor system and method using push-pull two wavelength fabry perot sensors
JP2011525620A (en) * 2008-06-27 2011-09-22 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical interference type pressure sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221085A (en) * 1998-11-27 2000-08-11 Fuji Electric Co Ltd Bragg grating pressure sensor
JP2000292287A (en) * 1999-04-12 2000-10-20 Tokimec Inc Pressure and temperature measuring apparatus
JP2003166891A (en) * 2001-09-21 2003-06-13 Yamatake Corp Physical quantity measuring method and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221085A (en) * 1998-11-27 2000-08-11 Fuji Electric Co Ltd Bragg grating pressure sensor
JP2000292287A (en) * 1999-04-12 2000-10-20 Tokimec Inc Pressure and temperature measuring apparatus
JP2003166891A (en) * 2001-09-21 2003-06-13 Yamatake Corp Physical quantity measuring method and its device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538423A (en) * 2006-05-23 2009-11-05 ローズマウント インコーポレイテッド Pressure sensor for pressure transmitter
JP2007333414A (en) * 2006-06-12 2007-12-27 Yamatake Corp Differential pressure measuring system, and differential pressure measuring method
JP2011525620A (en) * 2008-06-27 2011-09-22 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical interference type pressure sensor
WO2010005574A3 (en) * 2008-07-10 2010-03-04 Northrop Grumman Guidance And Electronics Company, Inc. Fiber optical acoustic sensor system and method using push-pull two wavelength fabry perot sensors
AU2009269103B2 (en) * 2008-07-10 2011-10-06 Northrop Grumman Guidance And Electronics Company, Inc. Fiber optical acoustic sensor system and method using push-pull two wavelength Fabry Perot sensors
JP2011527755A (en) * 2008-07-10 2011-11-04 ノースロップ グラマン ガイダンス アンド エレクトロニクス カンパニー,インコーポレーテツド Push-pull dual-wavelength Fabry-Perot sensor for optical fiber acoustic sensor array

Also Published As

Publication number Publication date
JP4615932B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US7187816B2 (en) In-fiber whitelight interferometry using long-period fiber grating
JP5512019B2 (en) Micro-mechanically tunable Fabry-Perot interferometer array and method for manufacturing the same
JP4828612B2 (en) Reflective encoder, scale thereof, and method of manufacturing scale
US10838148B2 (en) Method for manufacturing a waveguide for guiding an electro-magnetic wave
JP3736156B2 (en) Bragg grating pressure sensor
US20090195778A1 (en) Optical integrated nanospectrometer and method of manufacturing thereof
US8585284B2 (en) Temperature measurement apparatus and method
US11372158B2 (en) Waveguide for guiding an electro-magnetic wave comprising plural waveguide parts with different widths extend in parallel planes
US10119802B2 (en) Optical position-measuring device having grating fields with different step heights
JP4615932B2 (en) Differential pressure measurement system and differential pressure measurement method
US8463084B2 (en) Optical micromachined pressure sensor
JP2005084019A (en) Temperature measuring method of substrate
WO2010140998A1 (en) Optical integrated nanospectrometer and method of manufacturing thereof
JP2021521436A (en) Photonic device, how to operate the photonic device, and how to manufacture the photonic device
US11408764B2 (en) Environmental waveguide sensor with improved design configuration
JP2009109393A (en) Interferometer and wavelength measurement device
NL2022390B1 (en) Monolithic semiconductor device for optical sensing.
JP4615914B2 (en) Differential pressure measurement system and differential pressure measurement method
JP2017125685A (en) Thickness measurement device and thickness distribution measurement device
TW202332998A (en) Projection exposure apparatus, method for operating the projection exposure apparatus
JP4769531B2 (en) Differential pressure measurement system and differential pressure measurement method
JP2010276400A (en) Chemical substance sensor
JP2006090979A (en) Differential pressure measuring system
JP4331899B2 (en) Optical encoder
JP2007121140A (en) System and method for measuring differential pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees