JP2008268121A - Optical interference type measuring device - Google Patents

Optical interference type measuring device Download PDF

Info

Publication number
JP2008268121A
JP2008268121A JP2007114459A JP2007114459A JP2008268121A JP 2008268121 A JP2008268121 A JP 2008268121A JP 2007114459 A JP2007114459 A JP 2007114459A JP 2007114459 A JP2007114459 A JP 2007114459A JP 2008268121 A JP2008268121 A JP 2008268121A
Authority
JP
Japan
Prior art keywords
light
measurement
optical
interference
interference fringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007114459A
Other languages
Japanese (ja)
Other versions
JP4892401B2 (en
Inventor
Seiichiro Kinugasa
静一郎 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007114459A priority Critical patent/JP4892401B2/en
Publication of JP2008268121A publication Critical patent/JP2008268121A/en
Application granted granted Critical
Publication of JP4892401B2 publication Critical patent/JP4892401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical interference type measuring device capable of measuring the height difference between two points, in a non-contact manner. <P>SOLUTION: This device is provided with a light source 114 for emitting an irradiation light; a first half mirror 41 for splitting the irradiation light to first reference light and first inspection light; a first optical element 31 for forming a first interference fringe, by making the first reference light and the first inspection light irradiate on a first measurement point 91 and advancing to a first measurement light optical length interfere with each other; a second half mirror 42 for dividing the irradiation light to second reference light and second inspection light; a second optical element 32 forming a second interference fringe, by making the second reference light and the second inspection light irradiated to a second measurement point 92 and advancing to a second measurement optical path length interfere with each other, an interference fringe detecting element 153 for detecting combined interference fringe of the first interference fringe and the second interference fringe; an extraction module 310 for extracting an interference fringe component varying, according to the optical path difference between the first measurement optical path length and the second measurement optical path length from the combined interference fringe; and a calculation module 330 for calculating the height difference between the first measurement point 91 and the second measurement point 92 from the interference fringe component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は計測技術に関し、特に光干渉式測定装置に関する。   The present invention relates to measurement technology, and more particularly to an optical interference measurement device.

半導体装置を製造する際、シリコン基板にエッチング法で形成された段の高さや、シリコン基板上に形成された金属配線の膜厚等を正確に測定することが望まれる。従来、段の高さを測定する際には触針式段差計が使用されていた。しかし触針式段差計の触針がシリコン基板に接触すると、シリコン基板に傷や汚れがつくおそれがある。また触針の先端に異物が付着すると、正確に段の高さを測定することができない。また段の高さを測定可能な装置としては、走査型原子間力顕微鏡(AFM)がある(例えば、特許文献1参照。)。しかしAFMはナノメートルレベルの測定が可能であるものの、サブミクロン以上の段の高さを測定するのは困難である。またAFMの走査可能範囲は狭いため、離れた2点間の高さの差を正確に測定することができない。
特開2004-12466号公報
When manufacturing a semiconductor device, it is desired to accurately measure the height of a step formed by etching on a silicon substrate, the thickness of a metal wiring formed on the silicon substrate, and the like. Conventionally, when measuring the height of a step, a stylus type step gauge has been used. However, if the stylus of the stylus profilometer touches the silicon substrate, the silicon substrate may be scratched or soiled. Also, if a foreign object adheres to the tip of the stylus, the step height cannot be measured accurately. An apparatus that can measure the height of the step is a scanning atomic force microscope (AFM) (see, for example, Patent Document 1). However, although AFM can measure at the nanometer level, it is difficult to measure the height of a step of submicron or more. In addition, since the scanning range of AFM is narrow, the height difference between two distant points cannot be measured accurately.
JP 2004-12466 A

本発明は、非接触で2点間の高さの差を測定可能な光干渉式測定装置を提供することを目的とする。   An object of the present invention is to provide an optical interference measuring device capable of measuring a height difference between two points without contact.

本発明の特徴は、(イ)照射光を発する光源と、(ロ)照射光を第1参照光と第1検査光に分割する第1半透鏡と、(ハ)第1参照光と第1測定点に照射されて第1測定光路長を進んだ第1検査光とを干渉させ、第1干渉縞を形成させる第1光学素子と、(ニ)照射光を第2参照光と第2検査光に分割する第2半透鏡と、(ホ)第2参照光と第2測定点に照射されて第2測定光路長を進んだ第2検査光とを干渉させ、第2干渉縞を形成させる第2光学素子と、(ヘ)第1干渉縞と第2干渉縞の合成干渉縞を検出する干渉縞検出素子と、(ト)合成干渉縞から、第1測定光路長と第2測定光路長との光路差に応じて変動する干渉縞成分を抽出する抽出モジュールと、(チ)干渉縞成分から、第1測定点と第2測定点の高さの差を算出する算出モジュールとを備える光干渉式測定装置であることを要旨とする。   The features of the present invention are (a) a light source that emits irradiation light, (b) a first semi-transparent mirror that divides the irradiation light into first reference light and first inspection light, and (c) first reference light and first A first optical element that interferes with the first inspection light that has been irradiated to the measurement point and has traveled the first measurement optical path length to form a first interference fringe; and (d) the irradiation light is a second reference light and a second inspection. The second semi-transparent mirror that divides the light, and (e) the second reference light and the second inspection light that has been irradiated to the second measurement point and traveled the second measurement optical path length interfere with each other to form a second interference fringe. A second optical element; (f) an interference fringe detecting element for detecting a synthetic interference fringe of the first interference fringe and the second interference fringe; and (g) a first measurement optical path length and a second measurement optical path length from the synthetic interference fringe. An extraction module that extracts an interference fringe component that fluctuates according to the optical path difference between the first measurement point and a calculation module that calculates a height difference between the first measurement point and the second measurement point from the interference fringe component. Interferometric measuring device And summary that is.

本発明によれば、非接触で2点間の高さの差を測定可能な光干渉式測定装置を提供可能である。   According to the present invention, it is possible to provide an optical interference measurement device capable of measuring a height difference between two points without contact.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
第1の実施の形態に係る光干渉式測定装置は、図1に示すように、照射光を発する光源114、照射光を第1参照光と第1検査光に分割する第1半透鏡41、第1参照光と被測定物190の第1測定点91に照射されて第1測定光路長を進んだ第1検査光とを干渉させ、第1干渉縞を形成させる第1光学素子31、照射光を第2参照光と第2検査光に分割する第2半透鏡42、第2参照光と被測定物190の第2測定点92に照射されて第2測定光路長を進んだ第2検査光とを干渉させ、第2干渉縞を形成させる第2光学素子32、及び第1干渉縞と第2干渉縞の合成干渉縞を検出する干渉縞検出素子153を備える。光干渉式測定装置はさらに中央演算処理装置(CPU)300を備える。CPU300は、合成干渉縞から第1測定光路長と第2測定光路長との光路差に応じて変動する干渉縞成分を抽出する抽出モジュール310、及び干渉縞成分に基づいて第1測定点91と第2測定点92の高さの差を算出する算出モジュール330を備える。なお第1測定点91が含まれる第1測定面291と、第2測定点92が含まれる第2測定面292とは平行である。
(First embodiment)
As shown in FIG. 1, the optical interference measurement apparatus according to the first embodiment includes a light source 114 that emits irradiation light, a first semi-transparent mirror 41 that divides the irradiation light into first reference light and first inspection light, First optical element 31 for irradiating the first reference light and the first inspection light that has been irradiated to the first measurement point 91 of the object to be measured 190 and traveled the first measurement optical path length to form a first interference fringe, irradiation Second semi-transparent mirror 42 that divides the light into second reference light and second inspection light, second inspection light that is irradiated to the second reference light and the second measurement point 92 of the measurement object 190 and advances the second measurement optical path length A second optical element 32 that interferes with light to form a second interference fringe and an interference fringe detection element 153 that detects a combined interference fringe of the first interference fringe and the second interference fringe are provided. The optical interference measurement apparatus further includes a central processing unit (CPU) 300. The CPU 300 includes an extraction module 310 that extracts an interference fringe component that varies according to the optical path difference between the first measurement optical path length and the second measurement optical path length from the combined interference fringe, and a first measurement point 91 based on the interference fringe component. A calculation module 330 that calculates the height difference of the second measurement point 92 is provided. Note that the first measurement surface 291 including the first measurement point 91 and the second measurement surface 292 including the second measurement point 92 are parallel to each other.

光源114には紫外域から赤外域まで(185nm〜2,000nm)の連続スペクトルに対応可能なキセノンランプ、発光ダイオード、スーパールミネッセントダイオード、あるいはマルチモードレーザダイオード等の多波長光源が使用可能である。照射光の光強度である照射光強度S0(λ)は、例えば下記(1)式で表される。:
S0(λ) = D×exp{-(λ-λCS / ΔλS)2} …(1)
(1)式においてDは定数を表し、λCSは光源114から照射される照射光の照射光中心波長を表し、ΔλSは光源114の発光帯域幅を表す。
As the light source 114, a multi-wavelength light source such as a xenon lamp, a light emitting diode, a super luminescent diode, or a multimode laser diode capable of supporting a continuous spectrum from the ultraviolet region to the infrared region (185 nm to 2,000 nm) can be used. . The irradiation light intensity S 0 (λ) that is the light intensity of the irradiation light is expressed by, for example, the following formula (1). :
S 0 (λ) = D × exp {-(λ-λ CS / Δλ S ) 2 }… (1)
In Equation (1), D represents a constant, λ CS represents the irradiation light center wavelength of the irradiation light emitted from the light source 114, and Δλ S represents the emission bandwidth of the light source 114.

光源114には照射光を伝搬する光ファイバ等の共通光導波路29が接続されている。共通光導波路29には分光器3が接続されている。図2に示すように、分光器3は照射光の透過可能な波長成分の波長λを時間tに応じて走査する。分光器3は例えば図3に示すファブリペロ共振構造を有する。この場合、分光器3は内部に空洞が設けられた筐体14を有する。筐体14には外部から内部の空洞に向かって入力側内部筐体13が挿入されている。入力側内部筐体13は共通光導波路29とフェルール192を接続している。フェルール192の端面には入力側半透鏡125が配置されている。また筐体14には外部から内部に向かって入力側内部筐体13と対向する位置に出力側内部筐体12が挿入されている。出力側内部筐体12は共通光導波路30とフェルール191を接続している。フェルール191の端面には出力側半透鏡124が配置されている。筐体14に圧力等を加えると筐体14に撓みが生じ、入力側半透鏡125と出力側半透鏡124との間隔LOが変化する。 A common optical waveguide 29 such as an optical fiber that propagates the irradiation light is connected to the light source 114. The spectroscope 3 is connected to the common optical waveguide 29. As shown in FIG. 2, the spectroscope 3 scans the wavelength λ of the wavelength component through which the irradiation light can be transmitted according to time t. The spectroscope 3 has, for example, a Fabry-Perot resonance structure shown in FIG. In this case, the spectroscope 3 has a casing 14 in which a cavity is provided. An input-side internal housing 13 is inserted into the housing 14 from the outside toward the internal cavity. The input side inner casing 13 connects the common optical waveguide 29 and the ferrule 192. An input-side semi-transparent mirror 125 is disposed on the end face of the ferrule 192. The output-side internal housing 12 is inserted into the housing 14 at a position facing the input-side internal housing 13 from the outside to the inside. The output-side inner housing 12 connects the common optical waveguide 30 and the ferrule 191. An output-side semi-transparent mirror 124 is disposed on the end face of the ferrule 191. When pressure or the like is applied to the casing 14, the casing 14 is bent, and the interval L O between the input-side semi-transparent mirror 125 and the output-side semi-transparent mirror 124 changes.

共通光導波路29で分光器3に向かって伝搬された照射光の一部は入力側半透鏡125で反射され、その他は入力側半透鏡125を透過する。入力側半透鏡125を透過した照射光の一部は出力側半透鏡124表面で反射され、一部は出力側半透鏡124を透過する。反射された照射光は入力側半透鏡125方向に進行し、入力側半透鏡125表面で再び出力側半透鏡124に向かって反射される。このとき、照射光のうち出力側半透鏡124から入力側半透鏡125方向に進行する波長成分と、入力側半透鏡125から出力側半透鏡124方向に進行する波長成分との位相が揃う場合、波長成分の光強度は減衰しない。しかし照射光のうち出力側半透鏡124から入力側半透鏡125方向に進行する波長成分と、入力側半透鏡125から出力側半透鏡124方向に進行する波長成分との位相が揃わない場合、波長成分の光強度は減衰する。したがって、入力側半透鏡125と出力側半透鏡124との間隔LOを変化させることにより、分光器3を透過する照射光の波長を選択することが可能となる。分光器3の波長分解能をΔλRとすると、分光器3の周波数分解能Δνは下記(2)式で与えられる。 A part of the irradiation light propagated toward the spectroscope 3 in the common optical waveguide 29 is reflected by the input-side semi-transparent mirror 125, and the other is transmitted through the input-side semi-transparent mirror 125. Part of the irradiation light that has passed through the input-side semi-transparent mirror 125 is reflected by the surface of the output-side semi-transparent mirror 124, and part of it passes through the output-side semi-transparent mirror 124. The reflected irradiation light travels in the direction of the input-side semi-transparent mirror 125 and is reflected again toward the output-side semi-transparent mirror 124 on the surface of the input-side semi-transparent mirror 125. At this time, when the phase of the wavelength component that travels from the output-side semi-transparent mirror 124 to the input-side semi-transparent mirror 125 and the wavelength component that travels from the input-side semi-transparent mirror 125 to the output-side semi-transparent 124 direction in the irradiation light, The light intensity of the wavelength component is not attenuated. However, if the phase of the wavelength component that travels in the direction from the output-side semi-transparent mirror 124 to the input-side semi-transparent mirror 125 and the wavelength component that travels from the input-side semi-transparent mirror 125 to the output-side semi-transparent mirror 124 in the irradiating light is not aligned, The light intensity of the component is attenuated. Therefore, it is possible to select the wavelength of the irradiation light transmitted through the spectroscope 3 by changing the distance L O between the input-side semi-transparent mirror 125 and the output-side semi-transparent mirror 124. When the wavelength resolution of the spectrometer 3 is Δλ R , the frequency resolution Δν of the spectrometer 3 is given by the following equation (2).

Δν = cΔλR / λCS 2 …(2)
(2)式においてcは光速を表す。照射光のコヒーレンス長LCは、下記(3)式で与えられる。
LC = c / Δν …(3)
図1に示すように分光器3には、分光器3を透過した照射光を伝搬する光ファイバ等の共通光導波路30が接続されている。共通光導波路30には照射光を2方向に分割するスプリッタ21が接続されている。スプリッタ21には、光ファイバカプラ(光ファイバ型ビームスプリッタ)、ハーフミラー、あるいは薄膜導波路分岐装置等が使用可能である。スプリッタ21には、それぞれ光ファイバ等の光導波路である第1光学素子31及び第2光学素子32が接続されている。第1光学素子31及び第2光学素子32は照射光を伝搬する。ここで第2光学素子32の光路長LR2は、コヒーレンス長LCの半分よりも長い下記(4)式で与えられる迂回光路長LFだけ第1光学素子31の光路長LR1よりも長い。
Δν = cΔλ R / λ CS 2 (2)
In equation (2), c represents the speed of light. The coherence length L C of the irradiation light is given by the following equation (3).
L C = c / Δν (3)
As shown in FIG. 1, the spectroscope 3 is connected to a common optical waveguide 30 such as an optical fiber that propagates the irradiation light transmitted through the spectroscope 3. The common optical waveguide 30 is connected to a splitter 21 that divides the irradiated light in two directions. For the splitter 21, an optical fiber coupler (optical fiber beam splitter), a half mirror, a thin film waveguide branching device, or the like can be used. A first optical element 31 and a second optical element 32, which are optical waveguides such as optical fibers, are connected to the splitter 21, respectively. The first optical element 31 and the second optical element 32 propagate the irradiation light. Here, the optical path length L R2 of the second optical element 32 is longer than the optical path length L R1 of the first optical element 31 by the detour optical path length L F given by the following equation (4), which is longer than half of the coherence length L C. .

LF ≫ (LC / 2) …(4)
第1光学素子31の端面は、第1測定面291の第1測定点91と対向するように配置される。図4に示すように、第1光学素子31は石英(SiO2)等からなるコア130a及びクラッド131aを有する。石英と空気との屈折率差により、第1光学素子31の端面が第1半透鏡41として機能する。照射光の一部は第1半透鏡41で第1参照光として反射され、照射光の他の一部は第1半透鏡41を第1検査光として透過する。第1半透鏡41は、図1に示す第1測定面291に対して垂直方向に第1の測定距離LT1をおいて配置される。第1半透鏡41から放射された第1検査光の光軸は、第1測定面291に対して垂直である。第1検査光は第1測定点91で反射されて、第1半透鏡41に戻ってくる。したがって第1検査光は、第1半透鏡41と第1測定点91との間で、第1の測定距離LT1の2倍の長さである下記(6)式で与えられる第1測定光路長F1を進む。下記(5)式及び(6)式に示すように、第1の測定距離LT1はコヒーレンス長LCの半分よりも短くなるよう設定され、第1測定光路長F1はコヒーレンス長LCよりも短くなるよう設定される。:
2LT1 < LC …(5)
F1 = 2LT1 …(6)
第1半透鏡41に戻った第1検査光の一部は第1半透鏡41を透過し、第1光学素子31に入射してスプリッタ21に向かって進行する。他に、第1半透鏡41に戻った第1検査光の一部は第1半透鏡41で反射され、再び第1測定点91に向かって進行する。このとき、第1測定点91から第1半透鏡41に進行する第1検査光の波長成分と、第1半透鏡41から第1測定点91に進行する第1検査光の波長成分との位相が揃う場合、波長成分の光強度は減衰しない。しかし、 第1測定点91から第1半透鏡41に進行する第1検査光の波長成分と、第1半透鏡41から第1測定点91に進行する第1検査光の波長成分との位相が揃わない場合、波長成分の光強度は減衰する。したがって第1検査光において、第1半透鏡41と第1測定点91との間の多重反射の時に位相が揃わない波長帯域の光強度は減衰する。
L F >> (L C / 2) ... (4)
The end surface of the first optical element 31 is disposed so as to face the first measurement point 91 of the first measurement surface 291. As shown in FIG. 4, the first optical element 31 has a core 130a made of quartz (SiO 2 ) or the like and a clad 131a. Due to the refractive index difference between quartz and air, the end surface of the first optical element 31 functions as the first semi-transparent mirror 41. Part of the irradiation light is reflected as the first reference light by the first semi-transparent mirror 41, and the other part of the irradiation light passes through the first semi-transmission mirror 41 as the first inspection light. The first half mirror 41 is arranged at a first measurement distance L T1 in a direction perpendicular to the first measuring surface 291 shown in FIG. The optical axis of the first inspection light emitted from the first semi-transparent mirror 41 is perpendicular to the first measurement surface 291. The first inspection light is reflected at the first measurement point 91 and returns to the first semi-transparent mirror 41. The first inspection light therefore, between the first half mirror 41 and the first measuring point 91, the first measurement path given by the following equation (6) is a length of two times the first measured distance L T1 the length F 1 advance. As shown in the following equations (5) and (6), the first measurement distance L T1 is set to be shorter than half of the coherence length L C , and the first measurement optical path length F 1 is less than the coherence length L C Is set to be shorter. :
2L T1 <L C (5)
F 1 = 2L T1 (6)
Part of the first inspection light that has returned to the first semi-transparent mirror 41 passes through the first semi-transparent mirror 41, enters the first optical element 31, and travels toward the splitter 21. In addition, a portion of the first inspection light that has returned to the first semi-transparent mirror 41 is reflected by the first semi-transparent mirror 41 and travels toward the first measurement point 91 again. At this time, the phase of the wavelength component of the first inspection light traveling from the first measurement point 91 to the first semi-transparent mirror 41 and the wavelength component of the first inspection light traveling from the first semi-transmission mirror 41 to the first measurement point 91 Are equal, the light intensity of the wavelength component is not attenuated. However, the phase of the wavelength component of the first inspection light traveling from the first measurement point 91 to the first semi-transmission mirror 41 and the wavelength component of the first inspection light traveling from the first semi-transmission mirror 41 to the first measurement point 91 are If not, the light intensity of the wavelength component is attenuated. Accordingly, in the first inspection light, the light intensity in the wavelength band in which the phases are not uniform is attenuated when the multiple reflection between the first semi-transparent mirror 41 and the first measurement point 91 is performed.

上記(5)式で示したように、第1測定光路長F1はコヒーレンス長LCよりも短い。そのため第1測定光路長F1に相当する光路差により、第1半透鏡41で反射された第1参照光は、第1測定点91で反射され再び第1光学素子31に入射した第1検査光と干渉する。照射光の光強度に対する、第1光学素子31内をスプリッタ21に向かって進行する第1参照光と第1検査光の干渉強度の比である第1の光強度比RS1は、下記(7)式で与えられる。:
RS1={R1RaaR2Ra-2(ηaR1RaR2Ra)1/2cos2φa}/{1+ηaR1RaR2Ra-2(ηaR1RaR2Ra)1/2cos2φa} …(7)
ここで、R1Raは第1半透鏡41の反射率、R2Raは第1測定面291の反射率を表す。ηaは第1半透鏡41と第1測定点91の間での光損失を表し、下記(8)式で与えられる。またφaは位相を表し、下記(9)式で与えられる。(8)式においてqは照射光のビーム径を表す。:
ηa= 1 / {1 + (λ×F1) / (2πq2)}2 …(8)
φa= πF1 / λ …(9)
以下において簡略化のため、Aを第1半透鏡41と第1測定点91との間の可干渉度を表す定数として、第1の光強度比RS1を下記(10)式で与える。
As shown in the above equation (5), the first measurement optical path length F 1 is shorter than the coherence length L C. By the optical path difference corresponding to the first measuring optical path length F 1 Therefore, the first reference light reflected by the first half mirror 41, a first test which is incident on the first optical element 31 again and is reflected by the first measuring point 91 Interferes with light. The first light intensity ratio R S1 , which is the ratio of the interference intensity of the first reference light and the first inspection light traveling in the first optical element 31 toward the splitter 21 with respect to the light intensity of the irradiation light, is expressed as (7 ). :
R S1 = {R 1Ra + η a R 2Ra -2 (η a R 1Ra R 2Ra ) 1/2 cos2φ a } / {1 + η a R 1Ra R 2Ra -2 (η a R 1Ra R 2Ra ) 1/2 cos2φ a }… (7)
Here, R 1Ra represents the reflectance of the first semi- transparent mirror 41, and R 2Ra represents the reflectance of the first measurement surface 291. η a represents the optical loss between the first semi-transparent mirror 41 and the first measurement point 91, and is given by the following equation (8). Φ a represents a phase and is given by the following equation (9). In equation (8), q represents the beam diameter of the irradiation light. :
η a = 1 / {1 + (λ × F 1 ) / (2πq 2 )} 2 … (8)
φ a = πF 1 / λ (9)
In the following, for simplification, the first light intensity ratio R S1 is given by the following equation (10), where A is a constant representing the coherence between the first semi-transparent mirror 41 and the first measurement point 91.

RS1 = 1 + A cos {2π×F1 / λ} …(10)
第1参照光及び第1検査光は、第1光学素子31で伝搬され、スプリッタ21で2方向に分割される。さらに第1参照光及び第1検査光は、共通光導波路33で伝搬される。
R S1 = 1 + A cos {2π × F 1 / λ} (10)
The first reference light and the first inspection light are propagated by the first optical element 31 and divided in two directions by the splitter 21. Further, the first reference light and the first inspection light are propagated through the common optical waveguide 33.

第2光学素子32の端面は、第2測定点92と対向するように配置される。第2光学素子32もコア及びクラッドを有する。第2光学素子32の端面が第2半透鏡42として機能する。照射光の一部は第2半透鏡42で第2参照光として反射され、照射光の他の一部は第2半透鏡42を第2検査光として透過する。第2半透鏡42は、第2測定面292に対して垂直方向に第2の測定距離LT2をおいて配置される。なお第1測定面291の垂直方向において、第2半透鏡42が配置された位置の高さと第1半透鏡41が配置された位置の高さは同じである。第2半透鏡42から放射された第2検査光の光軸は、第2測定面292に対して垂直である。第2検査光は第2測定点92で反射されて、第2半透鏡42に戻ってくる。したがって第2検査光は、第2半透鏡42と第2測定点92との間で、第2の測定距離LT2の2倍の長さである下記(12)式で与えられる第2測定光路長F2を進む。下記(11)式及び(12)式に示すように、第2の測定距離LT2はコヒーレンス長LCの半分よりも短くなるよう設定され、第2測定光路長F2はコヒーレンス長LCよりも短くなるよう設定される。:
2LT2 < LC …(11)
F2 = 2LT2 …(12)
第2測定光路長F2に相当する光路差によって、第2半透鏡42で反射された第2参照光は、第2測定点92で反射され再び第2光学素子32に入射した第2検査光と干渉する。照射光の光強度に対する、第2光学素子32内をスプリッタ21に向かって進行する第2参照光と第2検査光の干渉強度の比である第2の光強度比RS2は、下記(13)式で与えられる。:
RS2={R1RbbR2Rb-2(ηbR1RbR2Rb)1/2cos2φb}/{1+ηbR1RbR2Rb-2(ηbR1RbR2Rb)1/2cos2φb} …(13)
ここでR1Rbは第2半透鏡42の反射率、R2Rbは第2測定面292の反射率を表す。ηbは第2半透鏡42と第2測定点92の間での光損失を表し、下記(14)式で与えられる。またφbは位相を表し、下記(15)式で与えられる。:
ηb= 1 / {1 + (λ×F2) / (2πq2)}2 …(14)
φb= πF2 / λ …(15)
以下において簡略化のため、Bを第2半透鏡42と第2測定点92との間の可干渉度を表す定数として、第2の光強度比RS2を下記(16)式で与える。
The end surface of the second optical element 32 is disposed so as to face the second measurement point 92. The second optical element 32 also has a core and a clad. The end surface of the second optical element 32 functions as the second half mirror 42. Part of the irradiation light is reflected as second reference light by the second semi-transparent mirror 42, and the other part of the irradiation light passes through the second semi-transmission mirror 42 as second inspection light. The second half mirror 42 is disposed at a second measurement distance L T2 in a direction perpendicular to the second measuring surface 292. In the direction perpendicular to the first measurement surface 291, the height at which the second semi-transparent mirror 42 is arranged is the same as the height at which the first semi-transparent 41 is arranged. The optical axis of the second inspection light emitted from the second semi-transparent mirror 42 is perpendicular to the second measurement surface 292. The second inspection light is reflected at the second measurement point 92 and returns to the second half mirror 42. The second inspection light therefore, between the second half mirror 42 and the second measurement point 92, the length of the double is below (12) the second measuring optical path is given by the equation of the second measuring distance L T2 the length F 2 advance. As shown in the following equations (11) and (12), the second measurement distance L T2 is set to be shorter than half of the coherence length L C , and the second measurement optical path length F 2 is calculated from the coherence length L C Is set to be shorter. :
2L T2 <L C ... (11 )
F 2 = 2L T2 (12)
By the optical path difference corresponding to the second measuring optical path length F 2, the second reference light reflected by the second half mirror 42, a second inspection light incident on the second optical element 32 again and is reflected by the second measurement point 92 Interfere with. A second light intensity ratio R S2 , which is a ratio of the interference intensity of the second reference light and the second inspection light traveling in the second optical element 32 toward the splitter 21 with respect to the light intensity of the irradiation light, is expressed by the following (13 ). :
R S2 = {R 1Rb + η b R 2Rb -2 (η b R 1Rb R 2Rb ) 1/2 cos2φ b } / {1 + η b R 1Rb R 2Rb -2 (η b R 1Rb R 2Rb ) 1/2 cos2φ b }… (13)
Here, R 1Rb represents the reflectance of the second semi-transparent mirror 42, and R 2Rb represents the reflectance of the second measurement surface 292. η b represents the optical loss between the second semi-transparent mirror 42 and the second measurement point 92, and is given by the following equation (14). Φ b represents a phase and is given by the following equation (15). :
η b = 1 / {1 + (λ × F 2 ) / (2πq 2 )} 2 … (14)
φ b = πF 2 / λ (15)
In the following, for simplification, the second light intensity ratio R S2 is given by the following equation (16), where B is a constant representing the coherence between the second semi-transparent mirror 42 and the second measurement point 92.

RS2 = 1 + B cos {2π×F2 / λ} …(16)
第2参照光及び第2検査光は、図1に示す第2光学素子32で伝搬され、スプリッタ21で2方向に分割される。さらに第2参照光及び第2検査光は共通光導波路33で伝搬される。よって共通光導波路33は、第1参照光、第1検査光、第2参照光、及び第2検査光を伝搬する。ここで第2光学素子32の光路長LR2は、(4)式で与えられる迂回光路長LFだけ第1光学素子31の光路長LR1より長い。したがって第1光学素子31を往復した光の光路と、第2光学素子32を往復した光の光路との光路差は、迂回光路長LFの2倍以上となる。そのため光路差はコヒーレンス長LCより長くなるため、第1参照光と第2参照光は干渉しない。
R S2 = 1 + B cos {2π × F 2 / λ} (16)
The second reference light and the second inspection light are propagated by the second optical element 32 shown in FIG. Further, the second reference light and the second inspection light are propagated through the common optical waveguide 33. Therefore, the common optical waveguide 33 propagates the first reference light, the first inspection light, the second reference light, and the second inspection light. Here, the optical path length L R2 of the second optical element 32 is longer than the optical path length L R1 of the first optical element 31 by the detour optical path length L F given by the equation (4). The optical path of the light reciprocating the first optical element 31 Accordingly, the optical path difference between the optical path of the light reciprocating the second optical element 32 is twice or more bypass optical path length L F. For this reason, the optical path difference is longer than the coherence length L C , so that the first reference light and the second reference light do not interfere with each other.

また第1光学素子31の光路長LR1の2倍及び第1測定光路長F1の和と、第2光学素子32の光路長LR2の2倍及び第2測定光路長F2の和との差の絶対値は、下記(17)式に示すようにコヒーレンス長LCよりも長くなるよう設定される。したがって、第1検査光と第2検査光は干渉しない。 The optical path length L R1 of the first optical element 31 and the sum of the first measurement optical path length F 1 , the optical path length L R2 of the second optical element 32 and the sum of the second measurement optical path length F 2 and The absolute value of the difference is set to be longer than the coherence length L C as shown in the following equation (17). Therefore, the first inspection light and the second inspection light do not interfere.

|2LR1 + F1 - (2LR2 + F2)| ≫ LC …(17)
また第1光学素子31の光路長LR1の2倍及び第1測定光路長F1の和と、第2光学素子32の光路長LR2の2倍との差の絶対値は、下記(18)式に示すようにコヒーレンス長LCよりも長くなるよう設定される。したがって、第1検査光と第2参照光は干渉しない。
| 2L R1 + F 1- (2L R2 + F 2 ) | ≫ L C … (17)
The absolute value of the difference between twice the optical path length L R1 of the first optical element 31 and the sum of the first measurement optical path length F 1 and twice the optical path length L R2 of the second optical element 32 is (18 ) Is set to be longer than the coherence length L C as shown in the equation. Therefore, the first inspection light and the second reference light do not interfere.

|2LR1 + F1 - 2LR2| ≫ LC …(18)
また第1光学素子31の光路長LR1の2倍と、第2光学素子32の光路長LR2の2倍及び第2測定光路長F2の和との差の絶対値は、下記(19)式に示すようにコヒーレンス長LCよりも長くなるよう設定される。したがって、第1参照光と第2検査光は干渉しない。
| 2L R1 + F 1 - 2L R2 | »L C ... (18)
The absolute value of the difference between twice the optical path length L R1 of the first optical element 31 and twice the optical path length L R2 of the second optical element 32 and the sum of the second measurement optical path length F 2 is (19 ) Is set to be longer than the coherence length L C as shown in the equation. Therefore, the first reference light and the second inspection light do not interfere.

|2LR1 - (2LR2 + F2)| ≫ LC …(19)
共通光導波路33には、第1参照光、第1検査光、第2参照光、及び第2検査光を受光する干渉縞検出素子153が接続されている。干渉縞検出素子153には、CCDイメージセンサ等が使用可能である。ここで、干渉縞検出素子153が受光する第1参照光及び第1検査光が形成する第1干渉縞の光強度である第1検査光強度S1(λ)は下記(20)式で与えられる。
| 2L R1- (2L R2 + F 2 ) | ≫ L C … (19)
An interference fringe detection element 153 that receives the first reference light, the first inspection light, the second reference light, and the second inspection light is connected to the common optical waveguide 33. As the interference fringe detecting element 153, a CCD image sensor or the like can be used. Here, the first inspection light intensity S 1 (λ), which is the light intensity of the first interference light formed by the first reference light and the first inspection light received by the interference fringe detection element 153, is given by the following equation (20). It is done.

S1(λ) = (1/4) × S0(λ) ×TL1(λ) ×RS1 …(20)
(20)式において照射光強度S0(λ)に係る1/4は、照射光がスプリッタ21を合計2回経由することによる光強度の損失を示している。TL1(λ)は、照射光、第1参照光及び第1検査光が干渉縞検出素子153に到着するまで経由する共通光導波路29、共通光導波路30、第1光学素子31及び共通光導波路33等の透過率を示している。
S 1 (λ) = (1/4) × S 0 (λ) × T L1 (λ) × R S1 … (20)
In equation (20), 1/4 relating to the irradiation light intensity S 0 (λ) indicates a loss of light intensity due to the irradiation light passing through the splitter 21 a total of two times. T L1 (λ) is the common optical waveguide 29, the common optical waveguide 30, the first optical element 31, and the common optical waveguide through which the irradiation light, the first reference light, and the first inspection light pass until they reach the interference fringe detection element 153. The transmittance of 33 mag is shown.

また干渉縞検出素子153が受光する第2参照光及び第2検査光が形成する第2干渉縞の光強度である第2検査光強度S2(λ)は下記(21)式で与えられる。 Further, the second inspection light intensity S 2 (λ) that is the light intensity of the second interference light formed by the second reference light and the second inspection light received by the interference fringe detection element 153 is given by the following equation (21).

S2(λ) = (1/4) × S0(λ) ×TL2(λ) ×RS2 …(21)
(21)式においてTL2(λ)は、照射光、第2参照光及び第2検査光が干渉縞検出素子153に到着するまで経由する共通光導波路29、共通光導波路30、第1光学素子31、及び共通光導波路33等の透過率を示している。(20)式及び(21)式より、第1干渉縞と第2干渉縞の合成干渉縞の光強度である出力光強度SOUT(λ)は、下記(22)式で与えられる。図5は、中心波長λCSが880nm、波長分解能ΔλRが3.6nm、迂回光路長LFが7.2m、コヒーレンス長LCが200μmの場合の出力光強度SOUT(λ)のスペクトルの一例である。
S 2 (λ) = (1/4) × S 0 (λ) × T L2 (λ) × R S2 … (21)
In Equation (21), T L2 (λ) is the common optical waveguide 29, the common optical waveguide 30, and the first optical element through which the irradiation light, the second reference light, and the second inspection light reach the interference fringe detection element 153. 31 shows the transmittance of the common optical waveguide 33 and the like. From the equations (20) and (21), the output light intensity S OUT (λ) that is the light intensity of the combined interference fringe of the first interference fringe and the second interference fringe is given by the following equation (22). FIG. 5 shows an example of the spectrum of the output light intensity S OUT (λ) when the center wavelength λ CS is 880 nm, the wavelength resolution Δλ R is 3.6 nm, the bypass optical path length L F is 7.2 m, and the coherence length L C is 200 μm. is there.

SOUT(λ) = S1(λ) + S2(λ)
= (1/4) × S0(λ) ×{TL1(λ) ×RS1 + TL2(λ) ×RS2}
= (1/4)×S0(λ) [{TL1(λ)+TL2(λ)}+TL1(λ)×A cos{2π×F1 /λ}
+ TL2(λ)×B cos {2π×F2 /λ}] …(22)
ここで下記(23)式及び(24)式で与えられる変数α, βを定義すると、(22)式で与えられた出力光強度SOUT(λ)は下記(25)式に変形される。
S OUT (λ) = S 1 (λ) + S 2 (λ)
= (1/4) × S 0 (λ) × {T L1 (λ) × R S1 + T L2 (λ) × R S2 }
= (1/4) × S 0 (λ) [{T L1 (λ) + T L2 (λ)} + T L1 (λ) × A cos {2π × F 1 / λ}
+ T L2 (λ) × B cos {2π × F 2 / λ}]… (22)
If the variables α and β given by the following equations (23) and (24) are defined, the output light intensity S OUT (λ) given by the equation (22) is transformed into the following equation (25).

α= TL1(λ)×A …(23)
β= TL2(λ)×B …(24)
SOUT(λ)=(1/4)×S0(λ) [{TL1(λ)+TL2(λ)}+
2αcos{(π/λ)(F1 - F2)}cos{(π/λ)(F1+F2)}
+(β-α)cos{(2π/λ)×F2}]
=(1/4)×S0(λ) [{TL1(λ)+TL2(λ)}+
2αcos{(π/λ)(F1 - F2)}cos{(π/λ)(F1+F2)}
+(β-α)cos{(2π/λ)×F2}] …(25)
(25)式の第2項のcos{(π/λ)(F1 - F2)}は、出力光強度SOUT(λ)のスペクトルの低周波成分として現れる。低周波成分は、図6に示すように、出力光強度SOUT(λ)のスペクトルの包絡線で表現される。ここで低周波成分の極大点又は極小点は2πの周期ごとに現れる。そこでnを2以上の整数として、n番目の極大点を与える波長をλnとし、n-1番目の極大点を与える波長をλn-1とすると、下記(26)式が成立する。
α = T L1 (λ) × A (23)
β = T L2 (λ) × B… (24)
S OUT (λ) = (1/4) × S 0 (λ) [{T L1 (λ) + T L2 (λ)} +
2αcos {(π / λ) (F 1- F 2 )} cos {(π / λ) (F 1 + F 2 )}
+ (β-α) cos {(2π / λ) × F 2 }]
= (1/4) × S 0 (λ) [{T L1 (λ) + T L2 (λ)} +
2αcos {(π / λ) (F 1- F 2 )} cos {(π / λ) (F 1 + F 2 )}
+ (β-α) cos {(2π / λ) × F 2 }]… (25)
The second term cos {(π / λ) (F 1 F 2 )} appears as a low frequency component of the spectrum of the output light intensity S OUT (λ). As shown in FIG. 6, the low-frequency component is expressed by an envelope of the spectrum of the output light intensity S OUT (λ). Here, the maximum point or minimum point of the low frequency component appears every 2π period. Therefore the n as an integer of 2 or more, the wavelength giving the n-th maximum point and lambda n, and the wavelength giving the n-1 th maximum point and lambda n-1, the following (26) is established.

(π/λn)(F1 - F2) - (π/λn-1)(F1 - F2) = 2π …(26)
(26)式より、出力光強度SOUT(λ)の低周波成分の極大点どうしの間隔、又は極小点どうしの間隔であるピーク間隔Pは下記(27)式で与えられる。
(π / λ n ) (F 1- F 2 )-(π / λ n-1 ) (F 1- F 2 ) = 2π… (26)
From the equation (26), the interval between the maximum points of the low frequency component of the output light intensity S OUT (λ) or the peak interval P which is the interval between the minimum points is given by the following equation (27).

P = 1/λn - 1/λn-1
= 2 / (F1 - F2) …(27)
第1半透鏡41及び第2半透鏡42の位置が固定されていれば、第1測定点91と第2測定点92の高さの差(LT1 - LT2)のみに依存して第1測定光路長と第2測定光路長との光路差(F1 - F2)は変動し、結果として合成干渉縞の低周波成分のピーク間隔Pが変動する。なお低周波成分のピーク間隔Pの変動は、第1検査光の光強度と第2検査光の光強度との差に影響されない。
P = 1 / λ n -1 / λ n-1
= 2 / (F 1 -F 2 )… (27)
If the positions of the first semi-transparent mirror 41 and the second semi-transparent mirror 42 are fixed, the first half point depends only on the height difference (L T1 -L T2 ) between the first measurement point 91 and the second measurement point 92. Optical path difference between measurement optical path length and second measurement optical path length (F 1- F 2 ) varies, and as a result, the peak interval P of the low-frequency component of the synthetic interference fringe varies. Note that the fluctuation in the peak interval P of the low frequency component is not affected by the difference between the light intensity of the first inspection light and the light intensity of the second inspection light.

図1に示す干渉縞検出素子153は、合成干渉縞の出力光強度SOUT(λ)をCPU300に伝送する。CPU300の補正モジュール306は、合成干渉縞の出力光強度SOUT(λ)を常時受信する。補正モジュール306は、移動平均法により合成干渉縞の出力光強度SOUT(λ)を補正する。ここで「移動平均法」について説明する。図6に示すように出力光強度SOUT(λ)のスペクトルが得られた場合、図1に示す補正モジュール306は、上記(25)式の第2項に含まれる低周波成分cos{(π/λ)(F1 - F2)}の1周期以上で照射光強度S0(λ)のスペクトル分布の1周期未満の幅の区間を定義する。さらに補正モジュール306は、定義された区間における出力光強度SOUT(λ)の平均値を算出し、区間の中心にプロットする。次に補正モジュール306は区間を波長方向に移動させ、移動された区間における出力光強度SOUT(λ)の平均値を算出し、区間の中心にプロットする。以後、補正モジュール306は区間の移動と出力光強度SOUT(λ)の平均値の算出を繰り返し、算出された出力光強度SOUT(λ)の平均値の集合である図7に示す移動平均線を算出する。 The interference fringe detection element 153 shown in FIG. 1 transmits the output light intensity S OUT (λ) of the combined interference fringe to the CPU 300. The correction module 306 of the CPU 300 always receives the output light intensity S OUT (λ) of the combined interference fringes. The correction module 306 corrects the output light intensity S OUT (λ) of the combined interference fringe by the moving average method. Here, the “moving average method” will be described. When the spectrum of the output light intensity S OUT (λ) is obtained as shown in FIG. 6, the correction module 306 shown in FIG. 1 performs the low-frequency component cos {(π / λ) (F 1- F 2 )} is defined as a section having a width of at least one period and less than one period of the spectral distribution of the irradiation light intensity S 0 (λ). Further, the correction module 306 calculates the average value of the output light intensity S OUT (λ) in the defined section and plots it at the center of the section. Next, the correction module 306 moves the section in the wavelength direction, calculates the average value of the output light intensity S OUT (λ) in the moved section, and plots it at the center of the section. Thereafter, the correction module 306 moving average shown in FIG. 7 is a collection of moving the repeated calculation of the average value of the output light intensity S OUT (λ), the mean value of the calculated output light intensity S OUT (lambda) of the section Calculate the line.

図6に例示する出力光強度SOUT(λ)のスペクトル分布には、照射光強度S0(λ)のスペクトル分布、上記(25)式の第2項に含まれる低周波成分cos{(π/λ)(F1 - F2)}のスペクトル分布、(25)式の第2項に含まれる高周波成分cos{(π/λ)(F1 + F2)}のスペクトル分布、及び(25)式の第3項で与えられる反射光成分(β-α)cos{(2π/λ)×F2}のスペクトル分布が重畳している。ここで低周波成分cos{(π/λ)(F1 - F2)}の周期以上で、照射光強度S0(λ)のスペクトル分布の周期よりも短い区間を設定して出力光強度SOUT(λ)の移動平均線を算出すると、低周波成分cos{(π/λ)(F1 - F2)}のスペクトル分布、高周波成分cos{(π/λ)(F1 + F2)}のスペクトル分布、及び反射光成分(β-α)cos{(2π/λ)×F2}のスペクトル分布が平均化される。そのため図7に示す移動平均線は、照射光強度S0(λ)のスペクトル分布のみを反映する。 The spectral distribution of the output light intensity S OUT (λ) illustrated in FIG. 6 includes the spectral distribution of the irradiated light intensity S 0 (λ), the low-frequency component cos {(π / λ) (F 1- F 2 )} spectral distribution, high-frequency component cos {(π / λ) (F 1 + F 2 )} included in the second term of equation (25), and third term of equation (25) The spectral distribution of the given reflected light component (β-α) cos {(2π / λ) × F 2 } is superimposed. Where the low frequency component cos {(π / λ) (F 1 F 2 )} period or more and shorter than the period of the spectral distribution of the irradiation light intensity S 0 (λ), and calculating the moving average line of the output light intensity S OUT (λ), the low frequency component cos {(π / λ) (F 1- F 2 )}, high-frequency component cos {(π / λ) (F 1 + F 2 )}, and reflected light component (β-α) cos {(2π / λ) × F 2 } The spectral distribution is averaged. Therefore, the moving average line shown in FIG. 7 reflects only the spectral distribution of the irradiation light intensity S 0 (λ).

図1に示す補正モジュール306は、下記(28)式に示すように、出力光強度SOUT(λ)を移動平均線で近似された照射光強度S0(λ)で割って、出力光強度SOUT(λ)のスペクトル分布から照射光強度S0(λ)のスペクトル分布を除去し、図8に示す補正された出力光強度SOUT_C(λ)のスペクトル分布を算出する。 As shown in the following equation (28), the correction module 306 shown in FIG. 1 divides the output light intensity S OUT (λ) by the irradiation light intensity S 0 (λ) approximated by the moving average line to obtain the output light intensity. The spectrum distribution of the irradiation light intensity S 0 (λ) is removed from the spectrum distribution of S OUT (λ), and the spectrum distribution of the corrected output light intensity S OUT_C (λ) shown in FIG. 8 is calculated.

SOUT_C(λ) = SOUT(λ) / S0(λ)
= (1/4)[{TL1(λ)+TL2(λ)}+
2αcos{(π/λ)(F1 - F2)}cos{(π/λ)(F1 + F2)}
+(β-α)cos{(2π/λ)×F2}] …(28)
ここで光の周波数νと、光速cと、波長λの関係は、下記(29)式で与えられる。
S OUT_C (λ) = S OUT (λ) / S 0 (λ)
= (1/4) [{T L1 (λ) + T L2 (λ)} +
2αcos {(π / λ) (F 1- F 2 )} cos {(π / λ) (F 1 + F 2 )}
+ (β-α) cos {(2π / λ) × F 2 }]… (28)
Here, the relationship among the light frequency ν, the light velocity c, and the wavelength λ is given by the following equation (29).

ν= c /λ …(29)
図1に示す変換モジュール307は(29)式を用いて、波長λの関数である(28)式を図9に示す周波数νの関数に変換する。周波数νの関数で表される補正された出力光強度SOUT_C(ν)は、下記(30)式で与えられる。
ν = c / λ (29)
The conversion module 307 shown in FIG. 1 uses the expression (29) to convert the expression (28), which is a function of the wavelength λ, into a function of the frequency ν shown in FIG. The corrected output light intensity S OUT — C (ν) expressed as a function of the frequency ν is given by the following equation (30).

SOUT_C(ν) = (1/4)[{TL1(c /ν)+ TL2(c /ν)}+
2αcos{(πν/ c)(F1 - F2)}cos{(πν/ c)(F1 + F2)}
+(β-α)cos{(2πν/ c)×F2}] …(30)
(30)式で与えられる出力光強度SOUT_C(ν)の低周波成分のn番目の極大点を与える周波数をνnとし、n-1番目の極大点を与える波長をνn-1とすると、下記(31)式が成立する。
S OUT_C (ν) = (1/4) [{T L1 (c / ν) + T L2 (c / ν)} +
2αcos {(πν / c) (F 1- F 2 )} cos {(πν / c) (F 1 + F 2 )}
+ (β-α) cos {(2πν / c) × F 2 }]… (30)
When the frequency that gives the nth local maximum point of the low frequency component of the output light intensity S OUT_C (ν) given by equation (30) is ν n and the wavelength that gives the n-1st local point is ν n-1. The following equation (31) is established.

(πνn / c)(F1 - F2) - (πνn-1 / c)(F1 - F2) = 2π …(31)
(31)式より、出力光強度SOUT_C(ν)の低周波成分のピーク間隔Pは下記(32)式で与えられる。
(πν n / c) (F 1- F 2 )-(πν n-1 / c) (F 1- F 2 ) = 2π… (31)
From the equation (31), the peak interval P of the low frequency component of the output light intensity S OUT — C (ν) is given by the following equation (32).

P = (νn - νn-1) / c
= 2 / (F1 - F2) …(32)
よって出力光強度SOUT_C(ν)の低周波成分のピーク間隔Pも、第1測定点91と第2測定点92の高さの差(LT1 - LT2)のみに依存して変動する。例えば図10は、第1測定点91と第2測定点92の高さの差(LT1 - LT2)が0μm、4.56μm、7.89μm、11.04μmの時の出力光強度SOUT_C(ν)のスペクトルである。高さの差(LT1 - LT2)が小さくなるにつれて、合成干渉縞の低周波成分のピーク間隔Pが広くなる。図1に示す抽出モジュール310は出力光強度SOUT_C(ν)から、低周波成分のピーク間隔Pを抽出する。算出モジュール330は、例えば図11に示す予め取得された2つの測定点の高さの差(LT1 - LT2)と低周波成分のピーク間隔Pとの関係を用いて、図1に示す抽出モジュール310が抽出した低周波成分のピーク間隔Pから第1測定点91と第2測定点92の高さの差(LT1 - LT2)を算出する。
P = (ν nn-1 ) / c
= 2 / (F 1 -F 2 )… (32)
Therefore, the peak interval P of the low frequency component of the output light intensity S OUT — C (ν) also varies depending on only the height difference (L T1 − L T2 ) between the first measurement point 91 and the second measurement point 92. For example, FIG. 10 shows the output light intensity S OUT_C (ν) when the height difference (L T1 -L T2 ) between the first measurement point 91 and the second measurement point 92 is 0 μm, 4.56 μm, 7.89 μm, 11.04 μm. Is the spectrum. As the height difference (L T1 −L T2 ) decreases, the peak interval P of the low frequency component of the combined interference fringes increases. The extraction module 310 shown in FIG. 1 extracts the peak interval P of the low frequency component from the output light intensity S OUT — C (ν). The calculation module 330 uses, for example, the relationship between the height difference (L T1 -L T2 ) of two measurement points acquired in advance shown in FIG. 11 and the peak interval P of the low frequency component to extract the frequency shown in FIG. A difference in height between the first measurement point 91 and the second measurement point 92 (L T1 −L T2 ) is calculated from the peak interval P of the low frequency component extracted by the module 310.

CPU300にはデータ記憶装置200が接続されている。データ記憶装置200は干渉縞成分記憶モジュール201、関係記憶モジュール202、及び結果記憶モジュール203を備える。干渉縞成分記憶モジュール201は、抽出モジュール310で抽出された合成干渉縞の低周波成分のピーク間隔Pを保存する。関係記憶モジュール202は、予め取得された2つの測定点の高さの差(LT1 - LT2)と低周波成分のピーク間隔Pとの関係を保存する。結果記憶モジュール203は、算出モジュール330で算出された第1測定点91と第2測定点92の高さの差(LT1 - LT2)を保存する。 A data storage device 200 is connected to the CPU 300. The data storage device 200 includes an interference fringe component storage module 201, a relation storage module 202, and a result storage module 203. The interference fringe component storage module 201 stores the peak interval P of the low frequency component of the combined interference fringe extracted by the extraction module 310. The relationship storage module 202 stores the relationship between the height difference (L T1 −L T2 ) between two measurement points acquired in advance and the peak interval P of the low frequency component. The result storage module 203 stores the height difference (L T1 −L T2 ) between the first measurement point 91 and the second measurement point 92 calculated by the calculation module 330.

以上説明した光干渉式測定装置において、共通光導波路29, 30, 33、第1光学素子31、第2光学素子32のそれぞれには、シングルモード光ファイバ、グレーテッドインデックス型光ファイバ、及びステップインデックス型光ファイバ等が使用可能である。なお図12に示すように、第1半透鏡41と第1測定点91の間にレンズ45を配置し、第2半透鏡42と第2測定点92の間にレンズ46を配置してもよい。レンズ45, 46は、光を集光する集光レンズでもよいし、光を平行光にするコリメートレンズでもよい。またレンズ45, 46のそれぞれの表面は、反射防止コーティングされていてもよい。   In the optical interference measurement apparatus described above, each of the common optical waveguides 29, 30, 33, the first optical element 31, and the second optical element 32 includes a single mode optical fiber, a graded index optical fiber, and a step index. Type optical fiber or the like can be used. As shown in FIG. 12, a lens 45 may be disposed between the first semi-transparent mirror 41 and the first measurement point 91, and a lens 46 may be disposed between the second semi-transparent mirror 42 and the second measurement point 92. . The lenses 45 and 46 may be a condensing lens that collects light or a collimating lens that converts light into parallel light. The surfaces of the lenses 45 and 46 may be anti-reflection coated.

次に図13を用いて、第1の実施の形態に係る光干渉式測定方法について説明する。   Next, the optical interference measurement method according to the first embodiment will be described with reference to FIG.

(a) ステップS101で図1に示す光源114は、(1)式で与えられる照射光強度S0(λ)のスペクトルを有する照射光を発する。照射光は共通光導波路29で分光器3に伝搬される。ステップS102で分光器3は、図2に示すように、時間tに応じて照射光の波長成分を選択的に透過させる。図1に示す分光器3を透過した照射光は共通光導波路30でスプリッタ21に伝搬される。ステップS103で照射光は、スプリッタ21で第1光学素子31と第2光学素子32の2方向に分割される。スプリッタ21で第1光学素子31に向かって分割された照射光は、第1光学素子31で第1半透鏡41に伝搬される。スプリッタ21で第2光学素子32に向かって分割された照射光は、第1光学素子31の光路長LR1よりも迂回光路長LFだけ長い第2光学素子32で第2半透鏡42に伝搬される。 (a) In step S101, the light source 114 shown in FIG. 1 emits irradiation light having a spectrum of irradiation light intensity S 0 (λ) given by equation (1). The irradiation light is propagated to the spectroscope 3 through the common optical waveguide 29. In step S102, the spectrometer 3 selectively transmits the wavelength component of the irradiation light according to the time t as shown in FIG. The irradiation light transmitted through the spectroscope 3 shown in FIG. 1 is propagated to the splitter 21 through the common optical waveguide 30. In step S103, the irradiation light is split by the splitter 21 in two directions, ie, the first optical element 31 and the second optical element 32. Irradiation light divided toward the first optical element 31 by the splitter 21 is propagated to the first semi-transparent mirror 41 by the first optical element 31. Irradiation light split toward the second optical element 32 by the splitter 21, propagated in the optical path length L bypass optical path length than R1 L F only long second optical element 32 of the first optical element 31 to the second half mirror 42 Is done.

(b) ステップS201で、第1光学素子31で伝搬された照射光は、第1半透鏡41で一部が第1参照光として反射され、一部が第1半透鏡41を第1検査光として透過する。ステップS202で第1検査光は第1測定点91に向かって進行し、第1測定点91で反射される。第1測定点91で反射された第1検査光は、第1半透鏡41を再び透過し、第1光学素子31に入射する。第1半透鏡41と第1測定点91との間を往復する時に、第1検査光は第1測定光路長F1を進む。ステップS203で、第1半透鏡41で反射された第1参照光は、第1測定光路長F1を進んだ第1検査光と干渉する。その後、第1参照光及び第1検査光は、第1光学素子31及びスプリッタ21を経て、共通光導波路33で干渉縞検出素子153に伝搬される。 (b) In step S201, a part of the irradiation light propagated by the first optical element 31 is reflected by the first semi-transparent mirror 41 as the first reference light, and a part of the first semi-transparent 41 is passed through the first inspection light. As transparent. In step S202, the first inspection light travels toward the first measurement point 91 and is reflected by the first measurement point 91. The first inspection light reflected at the first measurement point 91 is transmitted again through the first semi-transparent mirror 41 and enters the first optical element 31. When the first half mirror 41 reciprocates between the first measuring point 91, first inspection light advances a first measuring optical path length F 1. In step S203, the first reference light reflected by the first half mirror 41 interferes with the first first inspection light advanced measurement optical path length F 1. Thereafter, the first reference light and the first inspection light are propagated through the first optical element 31 and the splitter 21 to the interference fringe detection element 153 through the common optical waveguide 33.

(c) ステップS301で、第2光学素子32で伝搬された照射光は、第2半透鏡42で一部が第2参照光として反射され、一部が第2半透鏡42を第2検査光として透過する。ステップS302で第2検査光は第2測定点92に向かって進行し、第2測定点92で反射される。第2測定点92で反射された第2検査光は、第2半透鏡42を再び透過し、第2光学素子32に入射する。第2半透鏡42と第2測定点92との間を往復する時に、第2検査光は第2測定光路長F2を進む。 (c) In step S301, the irradiation light propagated by the second optical element 32 is partly reflected by the second semi-transparent mirror 42 as the second reference light, and part of the second semi-transparent mirror 42 passes through the second inspection light. As transparent. In step S302, the second inspection light travels toward the second measurement point 92 and is reflected at the second measurement point 92. The second inspection light reflected at the second measurement point 92 passes through the second semi-transparent mirror 42 again and enters the second optical element 32. When the second half mirror 42 reciprocates between the second measurement point 92, the second inspection light advances a second measurement optical path length F 2.

(d) ステップS303で、第2半透鏡42で反射された第2参照光は、第2測定光路長F2を進んだ第2検査光と干渉する。その後、第2参照光及び第2検査光は、第2光学素子32及びスプリッタ21を経て、共通光導波路33で干渉縞検出素子153に伝搬される。なお、ステップS301乃至ステップS303の進行は、ステップS201乃至ステップS203の進行と並行する。また、ステップS103、ステップS201乃至ステップS203、ステップS301乃至ステップS303は、ステップS102で時間tに応じて選択的に透過される照射光の波長成分のそれぞれについて連続的に実施される。 (d) In step S303, the second reference light reflected by the second half mirror 42 interferes with the second inspection light advanced to the second measuring optical path length F 2. Thereafter, the second reference light and the second inspection light are propagated to the interference fringe detection element 153 through the second optical element 32 and the splitter 21 through the common optical waveguide 33. Note that the progress of steps S301 to S303 is parallel to the progress of steps S201 to S203. Further, Step S103, Step S201 to Step S203, and Step S301 to Step S303 are continuously performed for each wavelength component of the irradiation light that is selectively transmitted according to time t in Step S102.

(e) ステップS401で干渉縞検出素子153は、第1検査光及び第1参照光による第1干渉縞、及び第2検査光及び第2参照光による第2干渉縞の合成干渉縞を検出する。干渉縞検出素子153は、検出した合成干渉縞の上記(25)式で与えられる出力光強度SOUT(λ)をCPU300に伝送する。ステップS402でCPU300の補正モジュール306は、合成干渉縞の出力光強度SOUT(λ)を受信する。次に補正モジュール306は、出力光強度SOUT(λ)のスペクトル分布の移動平均線を算出する。その後、補正モジュール306は出力光強度SOUT(λ)のスペクトル分布を移動平均線で近似された照射光強度S0(λ)のスペクトル分布で割り、(28)式で与えられる補正された出力光強度SOUT_C(λ)を算出する。補正モジュール306は、出力光強度SOUT_C(λ)を変換モジュール307に伝送する。 (e) In step S401, the interference fringe detection element 153 detects the first interference fringe by the first inspection light and the first reference light and the combined interference fringe of the second interference fringe by the second inspection light and the second reference light. . The interference fringe detecting element 153 transmits the output light intensity S OUT (λ) given by the above equation (25) of the combined interference fringe to the CPU 300. In step S402, the correction module 306 of the CPU 300 receives the output light intensity S OUT (λ) of the combined interference fringe. Next, the correction module 306 calculates a moving average line of the spectrum distribution of the output light intensity S OUT (λ). After that, the correction module 306 divides the spectral distribution of the output light intensity S OUT (λ) by the spectral distribution of the irradiation light intensity S 0 (λ) approximated by the moving average line, and corrects the corrected output given by Equation (28). The light intensity S OUT_C (λ) is calculated. The correction module 306 transmits the output light intensity S OUT — C (λ) to the conversion module 307.

(f) ステップS403で変換モジュール307は、(28)式で与えられる出力光強度SOUT_C(λ)を受信する。次に変換モジュール307は波長λの関数である(28)式を、周波数νの関数である(30)式に変換する。変換モジュール307は、(30)式で与えられる出力光強度SOUT_C(ν)を抽出モジュール310に伝送する。ステップS404で抽出モジュール310は、出力光強度SOUT_C(ν)を受信する。次に抽出モジュール310は、出力光強度SOUT_C(ν)のスペクトルに含まれる低周波成分のピーク間隔Pを抽出する。抽出モジュール310は、抽出した低周波成分のピーク間隔Pの値を干渉縞成分記憶モジュール201に保存する。 (f) In step S403, the conversion module 307 receives the output light intensity S OUT — C (λ) given by equation (28). Next, the conversion module 307 converts equation (28), which is a function of wavelength λ, into equation (30), which is a function of frequency ν. The conversion module 307 transmits the output light intensity S OUT — C (ν) given by the equation (30) to the extraction module 310. In step S404, the extraction module 310 receives the output light intensity S OUT — C (ν). Next, the extraction module 310 extracts the peak interval P of the low frequency component included in the spectrum of the output light intensity S OUT — C (ν). The extraction module 310 stores the extracted value of the peak interval P of the low frequency component in the interference fringe component storage module 201.

(g) ステップS405で算出モジュール330は、例えば図11に示す予め取得された2つの測定点の高さの差(LT1 - LT2)と低周波成分のピーク間隔Pとの関係を、図1に示す関係記憶モジュール202から読み出す。次に算出モジュール330は、高さの差(LT1 - LT2)とピーク間隔Pとの関係を、間隔を変数とする高さの差(LT1 - LT2)の近似式で近似する。その後、算出モジュール330は、抽出モジュール310が抽出した低周波成分のピーク間隔Pの値を干渉縞成分記憶モジュール201から読み出す。算出モジュール330は、ピーク間隔Pの値を近似式に代入し、第1測定点91と第2測定点92の高さの差(LT1 - LT2)を算出する。最後に算出モジュール330は算出した高さの差(LT1 - LT2)を結果記憶モジュール203に保存し、第1の実施の形態に係る光干渉式測定方法を終了する。 (g) In step S405, the calculation module 330, for example, shows the relationship between the height difference (L T1 -L T2 ) between two measurement points acquired in advance shown in FIG. 11 and the peak interval P of the low frequency component. Read from the relationship storage module 202 shown in FIG. Next, the calculation module 330 approximates the relationship between the height difference (L T1 −L T2 ) and the peak interval P using an approximate expression of the height difference (L T1 −L T2 ) with the interval as a variable. Thereafter, the calculation module 330 reads the value of the peak interval P of the low frequency component extracted by the extraction module 310 from the interference fringe component storage module 201. The calculation module 330 substitutes the value of the peak interval P into the approximate expression, and calculates the height difference (L T1 −L T2 ) between the first measurement point 91 and the second measurement point 92. Finally, the calculation module 330 saves the calculated height difference (L T1 −L T2 ) in the result storage module 203 and ends the optical interference measurement method according to the first embodiment.

従来、非接触で段の高さを測定する共焦点式段差計があった。共焦点式段差計は段の近傍を光で走査する際、反射光強度が一定となるようレンズの位置を変動させる。共焦点式段差計はレンズの位置の変動量を変位センサで検出し、変位量に基づいて段の高さを算出する。しかし共焦点式段差計で測定可能な高さの分解能は、変位センサに依存するため高くない。さらに光の回折限界により、空間分解能も波長オーダに限られる。また共焦点式段差計は段の高さを算出する際、段の上面と下面の共焦点位置をそれぞれ求め、共焦点位置の差を算出する。したがって走査時間がかかり、測定分解能も可変焦点レンズの位置分解能の半分以下となるという問題があった。   Conventionally, there has been a confocal level gauge that measures the height of a step without contact. The confocal step meter changes the position of the lens so that the reflected light intensity is constant when scanning the vicinity of the step with light. The confocal level difference meter detects a variation amount of the lens position with a displacement sensor, and calculates a step height based on the displacement amount. However, the resolution of the height that can be measured with the confocal step meter is not high because it depends on the displacement sensor. Furthermore, the spatial resolution is limited to the wavelength order due to the diffraction limit of light. Further, when calculating the height of the step, the confocal level difference meter calculates the confocal positions of the upper surface and the lower surface of the step, and calculates the difference between the confocal positions. Accordingly, there is a problem that it takes a long time to scan and the measurement resolution is less than half of the position resolution of the variable focus lens.

これに対し第1の実施の形態に係る光干渉式測定装置は、第1測定光路長と第2測定光路長との光路差(F1 - F2)に基づいて第1測定点91と第2測定点92の高さの差(LT1 - LT2)を算出するため、高さの差(LT1 - LT2)が波長よりも短い場合も測定可能である。また上記(4)式、(17)式乃至(19)式を満たす限り、第1光学素子31の光路長LR1と第2光学素子32の光路長LR2が変化しても、高さの差(LT1 - LT2)の測定結果に影響を及ぼさない。したがって、第1測定点91と第2測定点92とが離れていても、正確に高さの差(LT1 - LT2)を測定することが可能となる。 In contrast, the optical interference measurement apparatus according to the first embodiment has an optical path difference between the first measurement optical path length and the second measurement optical path length (F 1 The difference in height between F 2) first measuring point 91 and the second measuring point 92 on the basis of (L T1 - L T2) for calculating the difference in height (L T1 - is shorter than the wavelength L T2) In some cases, it can be measured. The equation (4), (17) to (19) as long as it satisfies the equation, even if the optical path length L R2 of the optical path length L R1 of the first optical element 31 second optical element 32 is changed, the height The measurement result of the difference (L T1 -L T2 ) is not affected. Therefore, even if the first measurement point 91 and the second measurement point 92 are separated from each other, it is possible to accurately measure the height difference (L T1 −L T2 ).

(第1の実施の形態の第1の変形例)
上記(25)式の第2項に含まれるcos{(π/λ)(F1 - F2)}に着目すると、出力光強度SOUT(λ)のスペクトルの低周波成分の任意の第1の波長λ1における第1の周期G1は下記(33)式で与えられ、第1の波長λ1と異なる第2の波長λ2における低周波成分の第2の周期G2は下記(34)式で与えられる。また第1の周期G1と第2の周期G2との差は、下記(35)式で与えられる。さらに(35)式から、第1測定光路長F1と第2測定光路長F2との差(F1 - F2)は下記(36)式で与えられる。
(First modification of the first embodiment)
Cos {(π / λ) (F 1 Paying attention to F 2 )}, the first period G 1 at an arbitrary first wavelength λ 1 of the low frequency component of the spectrum of the output light intensity S OUT (λ) is given by the following equation (33), The second period G 2 of the low frequency component at the second wavelength λ 2 different from the wavelength λ 1 is given by the following equation (34). The difference between the first period G 1 and the second period G 2 is given by the following equation (35). Furthermore, from equation (35), the difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 (F 1 F 2 ) is given by the following equation (36).

G1 = (F1 - F2) / (2×λ1) …(33)
G2 = (F1 - F2) / (2×λ2) …(34)
G1 - G2 = (F1 - F2)×{(1 / (2×λ1)) - (1 / (2×λ2))} …(35)
F1 - F2 = (G1 - G2) / {(1 / (2×λ1)) - (1 / (2×λ2))} …(36)
上記(6)式、(12)式、及び(36)式より、第1測定点91と第2測定点92の高さの差(LT1 - LT2)は下記(37)式で与えられる。
G 1 = (F 1- F 2 ) / (2 × λ 1 )… (33)
G 2 = (F 1- F 2 ) / (2 × λ 2 )… (34)
G 1 -G 2 = (F 1- F 2 ) × {(1 / (2 × λ 1 ))-(1 / (2 × λ 2 ))}… (35)
F 1- F 2 = (G 1 -G 2 ) / {(1 / (2 × λ 1 ))-(1 / (2 × λ 2 ))}… (36)
From the above equations (6), (12), and (36), the height difference (L T1 -L T2 ) between the first measurement point 91 and the second measurement point 92 is given by the following equation (37): .

LT1 - LT2 = (G1 - G2) / {(1 / λ1) - (1 / λ2)} …(37)
ここで、第1の周期G1と第2の周期G2との差(G1 - G2)は、第1の波長λ1から第2の波長λ2までの間の低周波成分の干渉縞の数を表す。したがって第1の波長λ1から第2の波長λ2までの間における出力光強度SOUT(λ)のスペクトルの低周波成分による干渉縞の数が分かれば、上記(37)式から、第1測定点91と第2測定点92の高さの差(LT1 - LT2)を算出可能である。
L T1 -L T2 = (G 1 -G 2 ) / {(1 / λ 1 )-(1 / λ 2 )}… (37)
Here, the difference (G 1 -G 2 ) between the first period G 1 and the second period G 2 is the interference of the low frequency component between the first wavelength λ 1 and the second wavelength λ 2 Represents the number of stripes. Therefore, if the number of interference fringes due to the low frequency component of the spectrum of the output light intensity S OUT (λ) between the first wavelength λ 1 and the second wavelength λ 2 is known, the above equation (37) gives the first The difference in height (L T1 −L T2 ) between the measurement point 91 and the second measurement point 92 can be calculated.

以上示した原理を適用する第1の変形例において、図1に示す抽出モジュール310は合成干渉縞の出力光強度SOUT(λ)のスペクトルのデータから、任意の第1の波長λ1と第2の波長λ2の間の低周波成分の極大点を抽出する。なお抽出モジュール310は、合成干渉縞の出力光強度SOUT(λ)のスペクトルの包絡線を計算し、任意の第1の波長λ1と第2の波長λ2の間の包絡線の極大点を抽出してもよい。 In the first modification that applies the principle described above, the extraction module 310 shown in FIG. 1 uses the spectrum data of the output light intensity S OUT (λ) of the combined interference fringes to obtain an arbitrary first wavelength λ 1 and the first wavelength λ 1 . Extract the maximum point of the low frequency component between the two wavelengths λ 2 . The extraction module 310 calculates the envelope of the spectrum of the output light intensity S OUT (λ) of the combined interference fringe, and the maximum point of the envelope between any first wavelength λ 1 and second wavelength λ 2 May be extracted.

算出モジュール330は抽出された極大点の数を数える。また算出モジュール330は、上記(37)式に第1の波長λ1の値、第2の波長λ2の値、及び抽出された極大点の数を代入し、第1測定点91と第2測定点92の高さの差(LT1 - LT2)を算出する。なお第1の変形例においては、干渉縞成分記憶モジュール201は抽出モジュール310で抽出された第1の波長λ1の値、第2の波長λ2の値、及び極大点を保存する。関係記憶モジュール202は、上記(37)式を保存する。 The calculation module 330 counts the number of extracted maximum points. Further, the calculation module 330 substitutes the value of the first wavelength λ 1 , the value of the second wavelength λ 2 , and the number of extracted maximum points into the above equation (37), and the first measurement point 91 and the second measurement point The height difference (L T1 -L T2 ) of the measurement point 92 is calculated. In the first modification, the interference fringe component storage module 201 stores the value of the first wavelength λ 1 , the value of the second wavelength λ 2 , and the maximum point extracted by the extraction module 310. The relationship storage module 202 stores the above equation (37).

次に図13を用いて、第1の実施の形態の第1の変形例に係る光干渉式測定方法について説明する。   Next, an optical interference measurement method according to a first modification of the first embodiment will be described with reference to FIG.

(a) ステップS101乃至ステップS103、ステップS201乃至ステップS203、ステップS301乃至ステップS303、ステップS401、及びステップS402が第1の実施の形態と同様に実施される。ステップS403は省略される。次にステップS404で図1に示す抽出モジュール310は、任意の第1の波長λ1と第2の波長λ2との間における出力光強度SOUT(λ)のスペクトルの低周波成分の極大点を、第1測定光路長F1と第2測定光路長F2との光路差に応じて変動する干渉縞成分として抽出する。抽出モジュール310は、抽出した第1の波長λ1の値、第2の波長λ2の値、及び低周波成分の極大点を干渉縞成分記憶モジュール201に保存する。 (a) Steps S101 to S103, Steps S201 to S203, Steps S301 to S303, Step S401, and Step S402 are performed in the same manner as in the first embodiment. Step S403 is omitted. Next, in step S404, the extraction module 310 shown in FIG. 1 performs the maximum point of the low frequency component of the spectrum of the output light intensity S OUT (λ) between the arbitrary first wavelength λ 1 and the second wavelength λ 2. Are extracted as interference fringe components that vary according to the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 . The extraction module 310 stores the extracted value of the first wavelength λ 1 , the value of the second wavelength λ 2 , and the maximum point of the low frequency component in the interference fringe component storage module 201.

(b) ステップS405で算出モジュール330は、抽出モジュール310によって抽出された第1の波長λ1の値、第2の波長λ2の値、及び低周波成分の極大点を干渉縞成分記憶モジュール201から読み出し、極大点の数を数える。また算出モジュール330は、関係記憶モジュールから上記(37)式を読み出す。次に算出モジュール330は、第1の波長λ1の値、第2の波長λ2の値、及び極大点の数を(37)式に代入することにより、第1測定点91と第2測定点92の高さの差(LT1 - LT2)を算出し、第1の実施の形態の第1の変形例に係る光干渉式測定方法を終了する。 (b) In step S405, the calculation module 330 uses the interference fringe component storage module 201 to calculate the value of the first wavelength λ 1 , the value of the second wavelength λ 2 , and the maximum point of the low frequency component extracted by the extraction module 310. Read from and count the number of local maxima. In addition, the calculation module 330 reads the expression (37) from the relation storage module. Next, the calculation module 330 substitutes the value of the first wavelength λ 1 , the value of the second wavelength λ 2 , and the number of local maximum points into the equation (37), so that the first measurement point 91 and the second measurement point The height difference (L T1 −L T2 ) of the point 92 is calculated, and the optical interference measurement method according to the first modification of the first embodiment is completed.

以上説明した第1の実施の形態の第1の変形例に係る光干渉式測定装置及び光干渉式測定方法によっても、高い精度で第1測定点91と第2測定点92の高さの差(LT1 - LT2)を測定することが可能となる。なお抽出モジュール310は、任意の第1の波長λ1と第2の波長λ2との間における出力光強度SOUT(λ)のスペクトルの低周波成分の極小点の数、あるいは出力光強度SOUT(λ)のスペクトルの包絡線における極小点の数を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出してもよい。 Even with the optical interference measurement apparatus and the optical interference measurement method according to the first modification of the first embodiment described above, the difference in height between the first measurement point 91 and the second measurement point 92 can be achieved with high accuracy. (L T1 -L T2 ) can be measured. It should be noted that the extraction module 310 determines the number of minimum points of the low frequency component of the spectrum of the output light intensity S OUT (λ) between the arbitrary first wavelength λ 1 and the second wavelength λ 2 or the output light intensity S. The number of minimum points in the envelope of the spectrum of OUT (λ) may be extracted as an interference fringe component that varies depending on the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 .

(第1の実施の形態の第2の変形例)
第2の変形例に係る光干渉式測定装置は、図14に示すように、第2光学素子32の端面の配置位置を設定するレール170を備える。第2光学素子32の端面は、レール170に沿って移動する。第1測定面291の垂直方向において、レール170が配置された位置の高さはどこも同じである。したがって第2光学素子32の端面は、第1測定面291に対して平行に移動する。図14に示す光干渉式測定装置のその他の構成要素は、図1と同様であるので説明は省略する。第2の変形例に係る光干渉式測定装置によれば、第2光学素子32の端面をレール170に沿って移動させながら、複数の高さの差(LT1 - LT2)を測定することが可能となる。したがって、第1測定点91を基準とする高さの面内分布を測定することが可能となる。
(Second modification of the first embodiment)
As shown in FIG. 14, the optical interference measurement apparatus according to the second modification includes a rail 170 that sets the arrangement position of the end face of the second optical element 32. The end surface of the second optical element 32 moves along the rail 170. In the vertical direction of the first measurement surface 291, the height of the position where the rail 170 is arranged is the same everywhere. Therefore, the end surface of the second optical element 32 moves in parallel to the first measurement surface 291. Other components of the optical interference measurement apparatus shown in FIG. 14 are the same as those in FIG. According to the optical interference measurement apparatus according to the second modification, measuring the plurality of height differences (L T1 -L T2 ) while moving the end surface of the second optical element 32 along the rail 170. Is possible. Therefore, it is possible to measure the in-plane distribution of height with reference to the first measurement point 91.

(第2の実施の形態)
図1に示す光干渉式測定装置においては、光源114とスプリッタ21の間に、共通光導波路29、分光器3、及び共通光導波路30が配置されている。これに対し第2の実施の形態に係る光干渉式測定装置においては、図15に示すように、光源114とスプリッタ21の間には、共通光導波路34のみが配置されている。但しスプリッタ21と干渉縞検出素子153の間に、共通光導波路35及び分光器3が配置されている。分光器3は例えば図16に示すように、レンズ53及び回折格子54を備える。レンズ53は、共通光導波路35の端部から照射される第1検査光、第1参照光、第2検査光、及び第2参照光を平行光にする。回折格子54は、第1検査光、第1参照光、第2検査光、及び第2参照光を干渉縞検出素子153に向けて反射する。ここで回折格子54は、第1検査光、第1参照光、第2検査光、及び第2参照光のそれぞれの波長成分を、波長毎に異なる方角に反射される。そのため干渉縞検出素子153の複数の画素のそれぞれに、異なる波長成分が入射される。第2の実施の形態に係る光干渉式測定装置のその他の構成要素は、図1又は図12と同様であるので説明は省略する。
(Second embodiment)
In the optical interference measurement apparatus shown in FIG. 1, a common optical waveguide 29, a spectroscope 3, and a common optical waveguide 30 are arranged between a light source 114 and a splitter 21. On the other hand, in the optical interference measurement apparatus according to the second embodiment, only the common optical waveguide 34 is disposed between the light source 114 and the splitter 21 as shown in FIG. However, the common optical waveguide 35 and the spectrometer 3 are arranged between the splitter 21 and the interference fringe detection element 153. For example, as shown in FIG. 16, the spectroscope 3 includes a lens 53 and a diffraction grating. The lens 53 makes the first inspection light, the first reference light, the second inspection light, and the second reference light irradiated from the end of the common optical waveguide 35 into parallel light. The diffraction grating 54 reflects the first inspection light, the first reference light, the second inspection light, and the second reference light toward the interference fringe detection element 153. Here, the diffraction grating 54 reflects the wavelength components of the first inspection light, the first reference light, the second inspection light, and the second reference light in different directions for each wavelength. Therefore, different wavelength components are incident on each of the plurality of pixels of the interference fringe detection element 153. The other components of the optical interference measurement apparatus according to the second embodiment are the same as those in FIG. 1 or FIG.

次に図17を用いて、第2の実施の形態に係る光干渉式測定方法について説明する。   Next, the optical interference measurement method according to the second embodiment will be described with reference to FIG.

(a) ステップS111で図15に示す光源114は、照射光強度S0(λ)のスペクトルを有する照射光を発し、照射光は共通光導波路34でスプリッタ21に伝搬される。その後、ステップS113、ステップS211、ステップS212、ステップS311、及びステップS312が、それぞれ図13のステップS103、ステップS201、ステップS202、ステップS301、及びステップS302と同様に実施される。 (a) In step S 111, the light source 114 shown in FIG. 15 emits irradiation light having a spectrum of irradiation light intensity S 0 (λ), and the irradiation light is propagated to the splitter 21 through the common optical waveguide 34. Thereafter, step S113, step S211, step S212, step S311 and step S312 are performed in the same manner as step S103, step S201, step S202, step S301 and step S302 in FIG. 13, respectively.

(b) 図17のステップS213で、互いに干渉しあう第1参照光及び第1検査光は、図15に示す第1光学素子31及びスプリッタ21を経て、共通光導波路35で分光器3に伝搬される。またステップS313で、互いに干渉しあう第2参照光及び第2検査光は、第2光学素子32及びスプリッタ21を経て、共通光導波路35で分光器3に伝搬される。   (b) In step S213 in FIG. 17, the first reference light and the first inspection light that interfere with each other propagate through the first optical element 31 and the splitter 21 shown in FIG. Is done. In step S313, the second reference light and the second inspection light that interfere with each other are propagated to the spectroscope 3 through the second optical element 32 and the splitter 21 through the common optical waveguide 35.

(c) ステップS410で分光器3は、第1参照光、第1検査光、第2参照光、及び第2検査光のそれぞれの波長成分を干渉縞検出素子153に反射する。その後、図17のステップS411乃至ステップS415が図13のステップS401乃至ステップS405と同様に実施された後、第2の実施の形態に係る光干渉式測定方法を終了する。   (c) In step S410, the spectroscope 3 reflects the wavelength components of the first reference light, the first inspection light, the second reference light, and the second inspection light to the interference fringe detection element 153. Thereafter, steps S411 to S415 in FIG. 17 are performed in the same manner as steps S401 to S405 in FIG. 13, and then the optical interference measurement method according to the second embodiment is terminated.

以上説明した第2の実施の形態に係る光干渉式測定装置及び光干渉式測定方法によれば、分光器3をCPU300の近くに配置することが可能となる。そのため、分光器3の透過波長等を容易に設定可能となる。   According to the optical interference measurement device and the optical interference measurement method according to the second embodiment described above, the spectroscope 3 can be disposed near the CPU 300. Therefore, the transmission wavelength of the spectrometer 3 can be easily set.

(第3の実施の形態)
第3の実施の形態に係る光干渉式測定装置は図15に示す光干渉式測定装置と異なり、図18に示す変調駆動回路115を備える。変調駆動回路115は、図19に示すように、時間tに応じて変動する駆動電流を図18に示す光源114に供給する。時間tに応じて変動する駆動電流が供給されることにより、半導体レーザ共振器等の光源114は、図2に示すように時間tに応じて照射光の波長を変化させる。光源114が照射光の波長を変化させるため、図18に示す光干渉式測定装置は分光器が不要であり、共通光導波路35は干渉縞検出素子153に直接接続されている。図18に示す光干渉式測定装置のその他の構成要素は、図15に示す光干渉式測定装置と同様であるので説明は省略する。
(Third embodiment)
Unlike the optical interference measurement apparatus shown in FIG. 15, the optical interference measurement apparatus according to the third embodiment includes a modulation drive circuit 115 shown in FIG. As shown in FIG. 19, the modulation drive circuit 115 supplies a drive current that varies with time t to the light source 114 shown in FIG. By supplying a drive current that varies according to time t, the light source 114 such as a semiconductor laser resonator changes the wavelength of irradiation light according to time t as shown in FIG. Since the light source 114 changes the wavelength of irradiation light, the optical interference measurement apparatus shown in FIG. 18 does not require a spectroscope, and the common optical waveguide 35 is directly connected to the interference fringe detection element 153. The other components of the optical interference measurement apparatus shown in FIG. 18 are the same as those of the optical interference measurement apparatus shown in FIG.

次に図20を用いて第3の実施の形態に係る光干渉式測定方法について説明する。   Next, an optical interference measurement method according to the third embodiment will be described with reference to FIG.

ステップS101で図18に示す変調駆動回路115は、時間tに応じて変動する駆動電流を光源114に供給する。駆動電流を供給された光源114は、時間tに応じて波長が変化する照射光を発する。照射光は共通光導波路34でスプリッタ21に伝搬される。ステップS103、ステップS201、ステップS202、ステップS301、及びステップS302が図13と同様に実施された後、図20のステップS203で、干渉しあう第1参照光及び第1検査光は、第1光学素子31及びスプリッタ21を経て、共通光導波路35で干渉縞検出素子153に伝搬される。またステップS303で、干渉しあう第2参照光及び第2検査光は、第2光学素子32及びスプリッタ21を経て、共通光導波路35で干渉縞検出素子153に伝搬される。その後、ステップS401乃至ステップS405が図13と同様に実施された後、第3の実施の形態に係る光干渉式測定方法を終了する。   In step S101, the modulation drive circuit 115 shown in FIG. 18 supplies the light source 114 with a drive current that varies according to time t. The light source 114 supplied with the drive current emits irradiation light whose wavelength changes with time t. The irradiation light is propagated to the splitter 21 through the common optical waveguide 34. After step S103, step S201, step S202, step S301, and step S302 are performed in the same manner as in FIG. 13, the first reference light and the first inspection light that interfere with each other in step S203 in FIG. The light is propagated to the interference fringe detecting element 153 through the common optical waveguide 35 via the element 31 and the splitter 21. In step S303, the second reference light and the second inspection light that interfere with each other are propagated to the interference fringe detection element 153 through the second optical element 32 and the splitter 21 through the common optical waveguide 35. Then, after steps S401 to S405 are performed in the same manner as in FIG. 13, the optical interference measurement method according to the third embodiment is terminated.

以上説明した第3の実施の形態に係る光干渉式測定装置及び光干渉式測定方法によれば、分光器による照射光の光強度損失がなくなる。そのため、出力光強度SOUT(λ)の低減を防止することが可能となる。なお変調駆動回路115は、時間tに応じて鋸刃状に駆動電流を変動させてもよい。 According to the optical interference measurement device and the optical interference measurement method according to the third embodiment described above, the light intensity loss of the irradiation light by the spectroscope is eliminated. Therefore, it is possible to prevent the output light intensity S OUT (λ) from being reduced. Note that the modulation drive circuit 115 may vary the drive current in a sawtooth shape according to the time t.

(第4の実施の形態)
第4の実施の形態に係る光干渉式測定装置は、図18に示す光干渉式測定装置と異なり、図21に示すように光源114に共通光導波路34aが接続され、共通光導波路34aにスプリッタ20が接続されている。スプリッタ20には、照射光導波路80aと共通光導波路34bとが接続されている。照射光導波路80aには波長フィルタ85が接続されている。波長フィルタ85は、照射光導波路80aで伝搬された照射光の一部の波長成分を選択的に透過させる。波長フィルタ85は、多層膜干渉フィルタ、ファブリペロフィルタ、あるいはファイバブラッググレーティング等が使用可能である。波長フィルタ85には、波長フィルタ85を透過した照射光を伝搬する照射光導波路80bが接続されている。照射光導波路80bには、照射光を受光する照射光受光素子154が接続されている。波長フィルタ85が配置されているため、光源114から発せられた照射光の波長が波長フィルタ85の透過波長帯域の中心と一致した場合に、照射光受光素子154は最も強い光強度で照射光を受光する。以下、照射光の波長が透過波長帯域の中心と一致するときの駆動電流を、設定駆動電流と呼ぶことにする。
(Fourth embodiment)
Unlike the optical interference measurement device shown in FIG. 18, the optical interference measurement device according to the fourth embodiment has a common optical waveguide 34a connected to the light source 114 as shown in FIG. 21, and a splitter connected to the common optical waveguide 34a. 20 is connected. An irradiation optical waveguide 80a and a common optical waveguide 34b are connected to the splitter 20. A wavelength filter 85 is connected to the irradiation optical waveguide 80a. The wavelength filter 85 selectively transmits a part of the wavelength components of the irradiation light propagated through the irradiation optical waveguide 80a. As the wavelength filter 85, a multilayer interference filter, a Fabry-Perot filter, a fiber Bragg grating, or the like can be used. The wavelength filter 85 is connected to an irradiation optical waveguide 80b that propagates the irradiation light transmitted through the wavelength filter 85. An irradiation light receiving element 154 that receives irradiation light is connected to the irradiation optical waveguide 80b. Since the wavelength filter 85 is disposed, the irradiation light receiving element 154 emits the irradiation light with the strongest light intensity when the wavelength of the irradiation light emitted from the light source 114 coincides with the center of the transmission wavelength band of the wavelength filter 85. Receive light. Hereinafter, the drive current when the wavelength of the irradiation light coincides with the center of the transmission wavelength band is referred to as a set drive current.

光源114に半導体レーザ共振器等を用いると、変調駆動回路115で駆動電流を管理しても、周囲の温度変化により照射光の波長が変化する場合がある。また光源114がファブリペロ構造を有する場合、図22に示すように、温度変化によりモードホッピング(波長跳び)が生じる場合がある。光源114に面発光レーザ(VCSEL : Vertical Cavity Surface Emitting Laser)光源を用いた場合、照射光の波長は駆動電流にほぼ比例して変化する。しかし周囲の温度が変化すれば、駆動電流が同一であっても、図23に示すように照射光の波長が変化してしまう場合がある。   When a semiconductor laser resonator or the like is used as the light source 114, the wavelength of irradiation light may change due to a change in ambient temperature even if the drive current is managed by the modulation drive circuit 115. When the light source 114 has a Fabry-Perot structure, mode hopping (wavelength jump) may occur due to a temperature change as shown in FIG. When a surface emitting laser (VCSEL) light source is used as the light source 114, the wavelength of the irradiation light changes almost in proportion to the drive current. However, if the ambient temperature changes, the wavelength of the irradiated light may change as shown in FIG. 23 even if the drive current is the same.

そこで図21に示す変調駆動回路115及び照射光受光素子154には、フィードバック回路116が接続されている。フィードバック回路116は、変調駆動回路115が光源114に供給した駆動電流と、照射光受光素子154が受光する照射光の光強度を監視する。またフィードバック回路116は、図24に示すように、初期状態における透過波長帯域の中心波長と設定駆動電流とを記憶している。ここで図25に示すように、照射光受光素子154が中心波長の照射光を受光した時の駆動電流が温度変化により設定駆動電流より弱まった場合、フィードバック回路116は変調駆動回路115が光源114に供給する駆動電流の走査範囲をマイナス方向にシフトさせ、光源114が初期状態と同じ波長範囲の照射光を発するよう設定する。また照射光受光素子154が中心波長の照射光を受光した時の駆動電流が温度変化により設定駆動電流から強まった場合、フィードバック回路116は変調駆動回路115が光源114に供給する駆動電流の走査範囲をプラス方向にシフトさせ、光源114が初期状態と同じ波長範囲の照射光を発するよう設定する。   Therefore, a feedback circuit 116 is connected to the modulation driving circuit 115 and the irradiation light receiving element 154 shown in FIG. The feedback circuit 116 monitors the drive current supplied to the light source 114 by the modulation drive circuit 115 and the light intensity of the irradiation light received by the irradiation light receiving element 154. Further, as shown in FIG. 24, the feedback circuit 116 stores the center wavelength of the transmission wavelength band in the initial state and the set drive current. Here, as shown in FIG. 25, when the driving current when the irradiation light receiving element 154 receives the irradiation light of the center wavelength becomes weaker than the setting driving current due to the temperature change, the feedback circuit 116 uses the modulation driving circuit 115 as the light source 114. Is set so that the light source 114 emits irradiation light in the same wavelength range as the initial state. Further, when the driving current when the irradiation light receiving element 154 receives the irradiation light having the center wavelength is increased from the setting driving current due to the temperature change, the feedback circuit 116 scans the driving current supplied to the light source 114 by the modulation driving circuit 115. Is set so that the light source 114 emits irradiation light in the same wavelength range as the initial state.

図21に示す光干渉式測定装置のその他の構成要素は図18と同様であるので、説明は省略する。次に図26を用いて、第4の実施の形態に係る光干渉式測定方法を説明する。   The other components of the optical interference measurement apparatus shown in FIG. 21 are the same as those in FIG. Next, the optical interference measurement method according to the fourth embodiment will be described with reference to FIG.

(a) ステップS51で図21に示す変調駆動回路115は、初期設定で定められた走査範囲で駆動電流を光源114に供給する。またフィードバック回路116は、駆動電流を監視する。ステップS52で光源114は、駆動電流に応じた波長の照射光を発する。照射光は共通光導波路34aで伝搬され、スプリッタ20で照射光導波路80a方向と共通光導波路34b方向に分割される。照射光導波路80a方向に分割された照射光は、照射光導波路80aで波長フィルタ85に伝搬される。   (a) In step S51, the modulation drive circuit 115 shown in FIG. 21 supplies drive current to the light source 114 in the scanning range determined by the initial setting. The feedback circuit 116 monitors the drive current. In step S52, the light source 114 emits irradiation light having a wavelength corresponding to the drive current. The irradiation light propagates through the common optical waveguide 34a, and is split by the splitter 20 in the direction of the irradiation optical waveguide 80a and the direction of the common optical waveguide 34b. The irradiation light divided in the direction of the irradiation optical waveguide 80a is propagated to the wavelength filter 85 through the irradiation optical waveguide 80a.

(b) ステップS53で、波長フィルタ85の透過波長帯域と等しい帯域の照射光の波長成分が、波長フィルタ85を透過する。波長フィルタ85を透過した照射光は照射光導波路80bで伝搬され、ステップS54で照射光受光素子154によって受光される。照射光受光素子154は、受光した照射光の光強度をフィードバック回路116に伝送する。ステップS55でフィードバック回路116は、照射光受光素子154が受光した照射光の光強度が設定駆動電流で最大となっているか否かを監視する。設定駆動電流で最大となっていない場合、ステップS56に進む。設定駆動電流で最大となっている場合、ステップS60に進む。   (b) In step S53, the wavelength component of the irradiation light in the band equal to the transmission wavelength band of the wavelength filter 85 is transmitted through the wavelength filter 85. The irradiation light transmitted through the wavelength filter 85 is propagated through the irradiation optical waveguide 80b and received by the irradiation light receiving element 154 in step S54. The irradiation light receiving element 154 transmits the light intensity of the received irradiation light to the feedback circuit 116. In step S55, the feedback circuit 116 monitors whether or not the light intensity of the irradiation light received by the irradiation light receiving element 154 is maximum at the set drive current. If the set drive current is not the maximum, the process proceeds to step S56. If the set drive current is the maximum, the process proceeds to step S60.

(c) 照射光受光素子154が受光した照射光の光強度が設定駆動電流よりも弱い駆動電流で最大となっている場合、ステップS56でフィードバック回路116は、変調駆動回路115の駆動電流の走査範囲をマイナス方向にシフトさせる。照射光受光素子154が受光した照射光の光強度が設定駆動電流よりも強い駆動電流で最大となっている場合、フィードバック回路116は、変調駆動回路115の駆動電流の走査範囲をプラス方向にシフトさせる。ステップS60で、第3の実施の形態に係る光干渉式測定方法と同様に第1測定点91と第2測定点92の高さの差(LT1 - LT2)を測定し、第4の実施の形態に係る光干渉式測定方法を終了する。 (c) When the light intensity of the irradiation light received by the irradiation light receiving element 154 is maximum at a driving current weaker than the set driving current, the feedback circuit 116 scans the driving current of the modulation driving circuit 115 in step S56. Shift the range in the negative direction. When the light intensity of the irradiating light received by the irradiating light receiving element 154 is maximized at a driving current stronger than the set driving current, the feedback circuit 116 shifts the scanning current scanning range of the modulation driving circuit 115 in the plus direction. Let In step S60, the height difference (L T1 -L T2 ) between the first measurement point 91 and the second measurement point 92 is measured in the same manner as in the optical interference measurement method according to the third embodiment, and the fourth measurement is performed. The optical interference measurement method according to the embodiment is completed.

温度変化に伴い照射光の波長が変調すると、上記(25)式より第1測定点91と第2測定点92の高さの差(LT1 - LT2)を算出する際に誤差が生じる。これに対し、第4の実施の形態に係る光干渉式測定装置及び光干渉式測定方法によれば、フィードバック回路116が温度変化に伴う照射光の波長変調を防止する。そのため、高い精度で第1測定点91と第2測定点92の高さの差(LT1 - LT2)を算出することが可能となる。 When the wavelength of the irradiation light is modulated in accordance with the temperature change, an error occurs when calculating the height difference (L T1 −L T2 ) between the first measurement point 91 and the second measurement point 92 from the above equation (25). On the other hand, according to the optical interference measurement device and the optical interference measurement method according to the fourth embodiment, the feedback circuit 116 prevents the wavelength modulation of the irradiation light accompanying the temperature change. Therefore, the height difference (L T1 −L T2 ) between the first measurement point 91 and the second measurement point 92 can be calculated with high accuracy.

(第5の実施の形態)
第1の実施の形態においては、図1に示すように、段を有する被測定物190の第1測定面291と第2測定面292の高さの差を求めた。これに対し、図27に示すように、被測定物290の平坦な表面に密着して配置された被測定膜390の膜厚を測定することも可能である。この場合、第1半透鏡41は被測定膜390の表面である第1測定面391に対して垂直方向に第1の測定距離LT1をおいて配置される。第1半透鏡41を透過した第1検査光は、第1測定面391上の第1測定点491で反射されて、第1半透鏡41に戻ってくる。また第2半透鏡42は被測定物290の表面である第2測定面292に対して垂直方向に第2の測定距離LT2をおいて配置される。第2半透鏡42を透過した第2検査光は、第2測定面392上の第2測定点492で反射されて、第2半透鏡42に戻ってくる。図27に示すその他の構成要素は図1と同様であるので、説明は省略する。
(Fifth embodiment)
In the first embodiment, as shown in FIG. 1, the difference in height between the first measurement surface 291 and the second measurement surface 292 of the measurement object 190 having a step was obtained. On the other hand, as shown in FIG. 27, it is also possible to measure the film thickness of the film to be measured 390 arranged in close contact with the flat surface of the object to be measured 290. In this case, the first semi-transparent mirror 41 is disposed at a first measurement distance LT 1 in the direction perpendicular to the first measurement surface 391 that is the surface of the film to be measured 390. The first inspection light transmitted through the first semi-transmissive mirror 41 is reflected at the first measurement point 491 on the first measurement surface 391 and returns to the first semi-transmissive mirror 41. The second semi-transparent mirror 42 is disposed at a second measurement distance LT2 in the direction perpendicular to the second measurement surface 292 that is the surface of the object 290 to be measured. The second inspection light transmitted through the second semi-transmissive mirror 42 is reflected at the second measurement point 492 on the second measurement surface 392 and returns to the second semi-transmissive mirror 42. Other components shown in FIG. 27 are the same as those in FIG.

図28は、被測定膜390の膜厚に相当する第1測定点491と第2測定点492の高さの差(LT1 - LT2)が100μmの時の出力光強度SOUT_C(ν)のスペクトルである。図29は高さの差(LT1 - LT2)が80μmの時の出力光強度SOUT_C(ν)のスペクトルであり、図30は高さの差(LT1 - LT2)が60μmの時の出力光強度SOUT_C(ν)のスペクトルであり、図31は高さの差(LT1 - LT2)が40μmの時の出力光強度SOUT_C(ν)のスペクトルである。図32に示すように、被測定膜390の膜厚が薄くなるにつれて、合成干渉縞の低周波成分のピーク間隔Pが広くなる。よって、予め取得された2つの測定点の高さの差(LT1 - LT2)と低周波成分のピーク間隔Pとの関係を用いて、図27に示す抽出モジュール310が抽出した低周波成分のピーク間隔Pから、算出モジュール330は被測定膜390の膜厚(LT1 - LT2)を算出する。なお図12、図14、図15、図18、及び図21のそれぞれに示した光干渉式測定装置によっても、被測定膜390の膜厚を測定可能であることはいうまでもない。 FIG. 28 shows the output light intensity S OUT_C (ν) when the height difference (L T1 -L T2 ) between the first measurement point 491 and the second measurement point 492 corresponding to the film thickness of the measured film 390 is 100 μm. Is the spectrum. Fig. 29 shows the spectrum of output light intensity S OUT_C (ν) when the height difference (L T1 -L T2 ) is 80μm, and Fig. 30 shows the height difference (L T1 -L T2 ) when the height difference (L T1 -L T2 ) is 60μm . a spectrum of the output light intensity S OUT_C (ν), FIG. 31 is the difference in height - a spectrum of (L T1 L T2) output light intensity when of 40μm S OUT_C (ν). As shown in FIG. 32, the peak interval P of the low frequency component of the synthetic interference fringes becomes wider as the film to be measured 390 becomes thinner. Therefore, the low frequency component extracted by the extraction module 310 shown in FIG. 27 using the relationship between the height difference (L T1 -L T2 ) of two measurement points acquired in advance and the peak interval P of the low frequency component. From the peak interval P, the calculation module 330 calculates the film thickness (L T1 -L T2 ) of the film 390 to be measured. Needless to say, the film thickness of the film to be measured 390 can also be measured by the optical interference measuring apparatus shown in FIGS. 12, 14, 15, 18, and 21.

従来、薄膜の膜厚測定の方法としては静電容量法があった。静電容量法によれば、薄膜を電極で挟んで薄膜の静電容量を測定し、測定された静電容量と薄膜の既知の誘電率を用いて薄膜の膜厚を算出していた。しかし静電容量法は薄膜を電極で挟む必要があるため薄膜を傷つけるおそれがあり、また薄膜の誘電率が分からない場合は膜厚を算出できないという問題があった。また静電容量の測定時に、電磁ノイズの影響を受けやすいという問題があった。これに対し第5の実施の形態によれば、被測定膜390の誘電率が不明であっても、非接触かつ高い精度で被測定膜390の膜厚を測定することが可能となる。   Conventionally, there has been a capacitance method as a method for measuring the thickness of a thin film. According to the capacitance method, the thin film is sandwiched between electrodes, the capacitance of the thin film is measured, and the film thickness of the thin film is calculated using the measured capacitance and the known dielectric constant of the thin film. However, since the capacitance method needs to sandwich the thin film between the electrodes, there is a risk of damaging the thin film, and there is a problem that the film thickness cannot be calculated if the dielectric constant of the thin film is not known. In addition, there is a problem that it is easily affected by electromagnetic noise when measuring capacitance. On the other hand, according to the fifth embodiment, even if the dielectric constant of the film to be measured 390 is unknown, the film thickness of the film to be measured 390 can be measured with high accuracy without contact.

(第5の実施の形態の変形例)
図27に示す被測定膜390の材料がガラス、石英、サファイア等からなり、被測定膜390が透明である場合、第1検査光は一部が第1測定面391上で反射され、他の一部が被測定膜390に入射して被測定物290の表面で反射する。被測定膜390の膜厚の2倍がコヒーレンス長LCよりも短い場合、被測定膜390に入射して被測定物290の表面で反射した第1検査光は、被測定膜390表面で反射した第1検査光と干渉する。この場合、照射光の光強度に対する、(7)式で与えられた第1の光強度比RS1に含まれる第1測定面391の反射率R2Raは、下記(38)式で与えられる。:
R2Ra={R3RaMR4Ra-2(ηMR3RaR4Ra)1/2cos2φM}/{1+ηMR3RaR4Ra-2(ηMR3RaR4Ra)1/2cos2φM} …(38)
ここで、R3Raは被測定膜390の表面の反射率、R4Raは被測定膜390の裏面の反射率を表す。ηMは被測定膜390の表面と裏面の間での光損失を表し、下記(39)式で与えられる。またφMは位相を表し、下記(40)式で与えられる。:
ηM= 1 / {1 + (λ×2M) / (2πq2)}2 …(39)
φM= 2πM / λ …(40)
この場合、Hを定数として、第1の光強度比RS1は下記(41)式で簡略化される。
(Modification of the fifth embodiment)
When the material of the measured film 390 shown in FIG. 27 is made of glass, quartz, sapphire, etc., and the measured film 390 is transparent, a part of the first inspection light is reflected on the first measurement surface 391, and the other A part of the light enters the film to be measured 390 and is reflected by the surface of the object to be measured 290. If twice the thickness of the measured film 390 is shorter than the coherence length L C, first inspection light reflected by the surface of the object 290 is incident on the measured film 390 is reflected by the measurement layer 390 surface Interferes with the first inspection light. In this case, the reflectance R 2Ra of the first measurement surface 391 included in the first light intensity ratio R S1 given by the equation (7) with respect to the light intensity of the irradiation light is given by the following equation (38). :
R 2Ra = {R 3Ra + η M R 4Ra -2 (η M R 3Ra R 4Ra ) 1/2 cos2φ M } / {1 + η M R 3Ra R 4Ra -2 (η M R 3Ra R 4Ra ) 1/2 cos2φ M } (38)
Here, R 3Ra represents the reflectance of the surface of the film to be measured 390, and R 4Ra represents the reflectance of the back surface of the film to be measured 390. η M represents the optical loss between the front and back surfaces of the film 390 to be measured, and is given by the following equation (39). Φ M represents a phase and is given by the following equation (40). :
η M = 1 / {1 + (λ × 2M) / (2πq 2 )} 2 … (39)
φ M = 2πM / λ (40)
In this case, H is a constant, and the first light intensity ratio R S1 is simplified by the following equation (41).

RS1 = 1 + (1 + H×cos4Mπ/λ) cos {2π×F1 / λ} …(41)
よって、出力光強度SOUT_C(ν)の低周波成分の包絡線の極大点を与える周波数は、(41)式に含まれる(H×cos4Mπ/λ)によって変調される。しかし極小点を与える周波数は、(H×cos4Mπ/λ)によって変調されない。したがって被測定膜390が透明な場合、抽出モジュール310は、出力光強度SOUT_C(ν)の低周波成分の包絡線の極小点どうしの間隔を低周波成分のピーク間隔Pとして抽出するとよい。
R S1 = 1 + (1 + H × cos4Mπ / λ) cos {2π × F 1 / λ}… (41)
Therefore, the frequency that gives the maximum point of the envelope of the low frequency component of the output light intensity S OUT — C (ν) is modulated by (H × cos 4 Mπ / λ) included in the equation (41). However, the frequency giving the local minimum is not modulated by (H × cos4Mπ / λ). Therefore, when the film to be measured 390 is transparent, the extraction module 310 may extract the interval between the minimum points of the low frequency component envelope of the output light intensity S OUT — C (ν) as the peak interval P of the low frequency component.

従来、透明薄膜の膜厚測定方法としては、薄膜の表面からの反射光と裏面からの反射光とを干渉させ、薄膜の膜厚を分光学的に求める方法があった。しかし分光学的方法では、薄膜の屈折率が既知でない場合には、薄膜の膜厚を算出できないという問題があった。また薄膜に対する不純物のドーピング量や薄膜のひずみにより薄膜の屈折率は変化するため、薄膜の屈折率を膜厚測定前に逐一測定する必要があった。これに対し第5の実施の形態の変形例によれば、透明な被測定膜390の屈折率が不明であっても、非接触かつ高い精度で被測定膜390の膜厚を測定することが可能となる。   Conventionally, as a method for measuring the film thickness of a transparent thin film, there has been a method for spectroscopically obtaining the film thickness of a thin film by causing interference between reflected light from the surface of the thin film and reflected light from the back surface. However, the spectroscopic method has a problem that the thickness of the thin film cannot be calculated when the refractive index of the thin film is not known. In addition, since the refractive index of the thin film varies depending on the doping amount of the impurity to the thin film and the distortion of the thin film, it is necessary to measure the refractive index of the thin film one by one before measuring the film thickness. In contrast, according to the modification of the fifth embodiment, even when the refractive index of the transparent film 390 to be measured is unknown, the film thickness of the film 390 to be measured can be measured without contact and with high accuracy. It becomes possible.

(その他の実施の形態)
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば図33に示す光干渉式測定装置において、第1光学素子31の端面には、図34に示すように第1反射防止膜61が配置されている。したがって第1光学素子31で伝搬された照射光は第1光学素子31の端面で反射されず、第1測定面291に向かって放射される。また図33に示す第2光学素子32の端面には第2反射防止膜62が配置されている。さらに第1反射防止膜61及び第2反射防止膜62と被測定物190の間には、半透鏡基板140が配置されている。半透鏡基板140面151と第1測定面291との間の垂直方向距離を第1の測定距離LT1とし、半透鏡基板140の面151と第2測定面292との間の垂直方向距離を第2の測定距離LT2とする。なお第1測定面291の垂直方向において、半透鏡基板140の面151が配置された位置の高さはどこも同じである。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, in the optical interference measurement apparatus shown in FIG. 33, the first antireflection film 61 is disposed on the end surface of the first optical element 31 as shown in FIG. Therefore, the irradiation light propagated by the first optical element 31 is not reflected by the end face of the first optical element 31, but is emitted toward the first measurement surface 291. A second antireflection film 62 is disposed on the end face of the second optical element 32 shown in FIG. Further, a semi-transparent substrate 140 is disposed between the first antireflection film 61 and the second antireflection film 62 and the measurement object 190. A semi-transparent mirror substrate 140 surface 151 of the vertical distance between the first measuring surface 291 and the first measurement distance L T1, and the surface 151 of the semi-transparent mirror substrate 140 in the vertical direction distance between the second measuring surface 292 The second measurement distance L T2 is assumed. Note that the height of the position where the surface 151 of the semi-transparent substrate 140 is arranged in the direction perpendicular to the first measurement surface 291 is the same everywhere.

半透鏡基板140の第1反射防止膜61及び第2反射防止膜62に対向する面150には、反射防止処理がされている。これに対し半透鏡基板140の被測定物190に対向する面151には、反射防止処理がされていない。したがって第1光学素子31から放射された照明光の一部は半透鏡基板140の面151で第1参照光として反射され、他の一部は第1検査光として半透鏡基板140を透過する。よって半透鏡基板140の面151の第1参照光を反射する部分が第1半透鏡141として機能する。また第2光学素子32から放射された照明光の一部は半透鏡基板140の面151で第2参照光として反射され、他の一部は第2検査光として半透鏡基板140を透過する。よって半透鏡基板140の面151の第2参照光を反射する部分が第2半透鏡142として機能する。   The surface 150 facing the first antireflection film 61 and the second antireflection film 62 of the semi-transparent substrate 140 is subjected to antireflection treatment. On the other hand, the surface 151 of the semi-transparent substrate 140 that faces the object to be measured 190 is not subjected to antireflection treatment. Accordingly, a part of the illumination light emitted from the first optical element 31 is reflected as the first reference light on the surface 151 of the semi-transparent substrate 140, and the other part is transmitted through the semi-transparent substrate 140 as the first inspection light. Therefore, the portion of the surface 151 of the semi-transparent substrate 140 that reflects the first reference light functions as the first semi-transparent 141. A part of the illumination light emitted from the second optical element 32 is reflected as the second reference light on the surface 151 of the semi-transparent substrate 140, and the other part is transmitted through the semi-transparent substrate 140 as the second inspection light. Therefore, the portion of the surface 151 of the semi-transparent substrate 140 that reflects the second reference light functions as the second semi-transparent 142.

半透鏡基板140を透過した第1検査光は第1測定点91で反射されて、半透鏡基板140に戻ってくる。したがって第1検査光は、半透鏡基板140と第1測定点91との間で、第1の測定距離LT1の2倍の長さである上記(6)式で与えられる第1測定光路長F1を進む。また半透鏡基板140を透過した第2検査光は第2測定点92で反射されて、半透鏡基板140に戻ってくる。したがって第2検査光は、半透鏡基板140と第2測定点92との間で、第2の測定距離LT2の2倍の長さである上記(12)式で与えられる第2測定光路長F2を進む。図33に示す光干渉式測定装置のその他の構成要素は、図1と同様であるので説明は省略する。なお第1反射防止膜61と半透鏡基板140の間、及び第2反射防止膜62と半透鏡基板140の間のそれぞれに、レンズを配置してもよい。 The first inspection light transmitted through the semi-transparent substrate 140 is reflected at the first measurement point 91 and returns to the semi-transparent substrate 140. The first inspection light therefore, between the semi-transparent mirror substrate 140 and the first measurement point 91, the first measuring optical path length given by the above equation (6) is a length of two times the first measured distance L T1 Continue on F 1 . The second inspection light transmitted through the semi-transparent substrate 140 is reflected at the second measurement point 92 and returns to the semi-transparent substrate 140. The second inspection light therefore, between the semi-transparent mirror substrate 140 and the second measurement point 92, the second measuring optical path length given by equation (12) is a length of 2 times the second measured distance L T2 Continue on F 2 . The other components of the optical interference measuring apparatus shown in FIG. 33 are the same as those in FIG. A lens may be disposed between the first antireflection film 61 and the semi-transparent substrate 140 and between the second antireflection film 62 and the semi-transparent substrate 140, respectively.

この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。   Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

本発明の第1の実施の形態に係る光干渉式測定装置の第1の模式図である。It is the 1st schematic diagram of the optical interference type measuring device concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る分光器による時間毎の選択波長を示すグラフである。It is a graph which shows the selection wavelength for every time by the spectrometer which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る分光器を示す模式図である。It is a schematic diagram which shows the spectrometer which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る第1光学素子を示す模式図である。It is a schematic diagram which shows the 1st optical element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る合成干渉縞の第1のスペクトルである。It is a 1st spectrum of the synthetic | combination interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る合成干渉縞の第2のスペクトルである。It is a 2nd spectrum of the synthetic | combination interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る移動平均線を示すグラフである。It is a graph which shows the moving average line which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る補正された合成干渉縞のスペクトルの第1の例である。It is a 1st example of the spectrum of the corrected synthetic | combination interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る補正された合成干渉縞のスペクトルの第2の例である。It is a 2nd example of the spectrum of the corrected synthetic | combination interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る補正された合成干渉縞のスペクトルの第3の例である。It is a 3rd example of the spectrum of the corrected synthetic | combination interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る高さの差とピーク間隔との関係を示すグラフである。It is a graph which shows the relationship between the height difference which concerns on the 1st Embodiment of this invention, and a peak space | interval. 本発明の第1の実施の形態に係る光干渉式測定装置の第2の模式図である。It is a 2nd schematic diagram of the optical interference type measuring device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る光干渉式測定方法を示すフローチャートである。It is a flowchart which shows the optical interference type measuring method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態の第2の変形例に係る光干渉式測定装置の模式図である。It is a schematic diagram of the optical interference type measuring apparatus which concerns on the 2nd modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る光干渉式測定装置の模式図である。It is a schematic diagram of the optical interference type measuring apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る分光器を示す模式図である。It is a schematic diagram which shows the spectrometer which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る光干渉式測定方法を示すフローチャートである。It is a flowchart which shows the optical interference type measuring method which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る光干渉式測定装置の模式図である。It is a schematic diagram of the optical interference type measuring apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る変調駆動回路による時間毎の駆動電流を示すグラフである。It is a graph which shows the drive current for every time by the modulation drive circuit which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る光干渉式測定方法を示すフローチャートである。It is a flowchart which shows the optical interference type measuring method which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る光干渉式測定装置の模式図である。It is a schematic diagram of the optical interference type measuring device which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る照射光の波長の温度依存性を示す第1のグラフである。It is a 1st graph which shows the temperature dependence of the wavelength of the irradiation light which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る照射光の波長の温度依存性を示す第2のグラフである。It is a 2nd graph which shows the temperature dependence of the wavelength of the irradiation light which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る照射光の波長と駆動電流との関係を示す第1のグラフである。It is a 1st graph which shows the relationship between the wavelength of the irradiation light which concerns on the 4th Embodiment of this invention, and a drive current. 本発明の第4の実施の形態に係る照射光の波長と駆動電流との関係を示す第2のグラフである。It is a 2nd graph which shows the relationship between the wavelength of the irradiation light which concerns on the 4th Embodiment of this invention, and a drive current. 本発明の第4の実施の形態に係る光干渉式測定方法を示すフローチャートである。It is a flowchart which shows the optical interference type measuring method which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る光干渉式測定装置の模式図である。It is a schematic diagram of the optical interference type measuring device which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る補正された合成干渉縞のスペクトルの第1の例である。It is a 1st example of the spectrum of the corrected synthetic | combination interference fringe which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る補正された合成干渉縞のスペクトルの第2の例である。It is a 2nd example of the spectrum of the corrected synthetic | combination interference fringe which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る補正された合成干渉縞のスペクトルの第3の例である。It is a 3rd example of the spectrum of the corrected synthetic | combination interference fringe which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る補正された合成干渉縞のスペクトルの第4の例である。It is a 4th example of the spectrum of the corrected synthetic | combination interference fringe which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る膜厚とピーク間隔との関係を示すグラフである。It is a graph which shows the relationship between the film thickness which concerns on the 5th Embodiment of this invention, and a peak space | interval. 本発明のその他の実施の形態に係る光干渉式測定装置の模式図である。It is a schematic diagram of the optical interference type measuring apparatus which concerns on other embodiment of this invention. 本発明のその他の実施の形態に係る第1光学素子及び第1反射防止膜を示す模式図である。It is a schematic diagram which shows the 1st optical element and 1st antireflection film which concern on other embodiment of this invention.

符号の説明Explanation of symbols

3…分光器
12…出力側内部筐体
13…入力側内部筐体
14…筐体
20, 21…スプリッタ
29, 30, 33, 34, 34a, 34b, 35…共通光導波路
31…第1光学素子
32…第2光学素子
41…第1半透鏡
42…第2半透鏡
45, 46, 53…レンズ
54…回折格子
61…第1反射防止膜
62…第2反射防止膜
80a, 80b…照射光導波路
85…波長フィルタ
91…第1測定点
92…第2測定点
114…光源
115…変調駆動回路
116…フィードバック回路
124…出力側半透鏡
125…入力側半透鏡
130a…コア
131a…クラッド
140…半透鏡基板
141…第1半透鏡
142…第2半透鏡
150, 151…面
153…干渉縞検出素子
154…照射光受光素子
170…レール
190…被測定物
191, 192…フェルール
200…データ記憶装置
201…干渉縞成分記憶モジュール
202…関係記憶モジュール
203…結果記憶モジュール
290…被測定物
291…第1測定面
292…第2測定面
300…CPU
306…補正モジュール
307…変換モジュール
310…抽出モジュール
330…算出モジュール
390…被測定膜
391…第1測定面
392…第2測定面
491…第1測定点
492…第2測定点
3 Spectrometer
12… Output side internal housing
13… Input side internal housing
14 ... Case
20, 21 ... Splitter
29, 30, 33, 34, 34a, 34b, 35… Common optical waveguide
31 ... First optical element
32 ... Second optical element
41 ... First semi-transparent mirror
42… Second semi-transparent mirror
45, 46, 53… Lens
54 ... Diffraction grating
61. First antireflection film
62… Second antireflection film
80a, 80b ... Irradiation optical waveguide
85… Wavelength filter
91… First measurement point
92… Second measurement point
114 ... Light source
115: Modulation drive circuit
116 ... Feedback circuit
124 ... Output side translucent mirror
125 ... Input side translucent mirror
130a ... Core
131a ... clad
140… Semi-transparent substrate
141… First semi-transparent mirror
142 ... Second semi-transparent mirror
150, 151 ... face
153 ... Interference fringe detector
154 ... Irradiation light receiving element
170 ... Rail
190 ... DUT
191, 192 ... Ferrule
200 ... Data storage device
201 ... Interference fringe component storage module
202 ... Relational memory module
203 ... Result storage module
290 ... DUT
291… First measurement surface
292… Second measuring surface
300 ... CPU
306 ... Correction module
307 ... Conversion module
310 ... Extraction module
330 ... Calculation module
390 ... film to be measured
391… First measurement surface
392… Second measuring surface
491 ... 1st measurement point
492 ... Second measurement point

Claims (10)

照射光を発する光源と、
前記照射光を第1参照光と第1検査光に分割する第1半透鏡と、
前記第1参照光と第1測定点に照射されて第1測定光路長を進んだ前記第1検査光との第1干渉縞を形成させる第1光学素子と、
前記照射光を第2参照光と第2検査光に分割する第2半透鏡と、
前記第2参照光と第2測定点に照射されて第2測定光路長を進んだ前記第2検査光との第2干渉縞を形成させる第2光学素子と、
前記第1干渉縞と前記第2干渉縞の合成干渉縞を検出する干渉縞検出素子と、
前記合成干渉縞から、前記第1測定光路長と前記第2測定光路長との光路差に応じて変動する干渉縞成分を抽出する抽出モジュールと、
前記干渉縞成分から、前記第1測定点と前記第2測定点の高さの差を算出する算出モジュール
とを備えることを特徴とする光干渉式測定装置。
A light source that emits irradiation light;
A first semi-transparent mirror that divides the irradiation light into first reference light and first inspection light;
A first optical element that forms a first interference fringe between the first reference light and the first inspection light that has been irradiated to the first measurement point and traveled the first measurement optical path length;
A second semi-transparent mirror that divides the irradiation light into second reference light and second inspection light;
A second optical element that forms a second interference fringe between the second reference light and the second inspection light that has been irradiated to the second measurement point and traveled the second measurement optical path length;
An interference fringe detecting element for detecting a combined interference fringe of the first interference fringe and the second interference fringe;
An extraction module that extracts an interference fringe component that varies according to an optical path difference between the first measurement optical path length and the second measurement optical path length from the combined interference fringe;
An optical interference measurement apparatus comprising: a calculation module that calculates a difference in height between the first measurement point and the second measurement point from the interference fringe component.
前記第1半透鏡が、前記第1測定点に対して前記照射光のコヒーレンス長の半分よりも短い第1の測定距離をおいて配置されることを特徴とする請求項1に記載の光干渉式測定装置。   2. The optical interference according to claim 1, wherein the first semi-transparent mirror is disposed at a first measurement distance shorter than a half of a coherence length of the irradiation light with respect to the first measurement point. Type measuring device. 前記第2半透鏡が、前記第2測定点に対して前記照射光のコヒーレンス長の半分よりも短い第2の測定距離をおいて配置されることを特徴とする請求項1又は2に記載の光干渉式測定装置。   The second semi-transparent mirror is disposed at a second measurement distance shorter than half of the coherence length of the irradiation light with respect to the second measurement point. Optical interference type measuring device. 前記第1光学素子及び前記第2光学素子が、前記第1検査光と前記第2検査光の干渉、前記第1検査光と前記第2参照光の干渉、前記第1参照光と前記第2検査光の干渉、及び前記第1参照光と前記第2参照光の干渉を妨げることを特徴とする請求項1乃至3のいずれか1項に記載の光干渉式測定装置。   The first optical element and the second optical element are interference between the first inspection light and the second inspection light, interference between the first inspection light and the second reference light, the first reference light and the second 4. The optical interference measurement apparatus according to claim 1, wherein interference with inspection light and interference between the first reference light and the second reference light are prevented. 5. 前記抽出モジュールが、前記合成干渉縞のスペクトルの包絡線を算出することを特徴とする請求項1乃至4のいずれか1項に記載の光干渉式測定装置。   5. The optical interference measurement apparatus according to claim 1, wherein the extraction module calculates an envelope of a spectrum of the combined interference fringe. 前記抽出モジュールが、前記包絡線の極値点の間隔を抽出することを特徴とする請求項5に記載の光干渉式測定装置。   The optical interference measurement apparatus according to claim 5, wherein the extraction module extracts an interval between extreme points of the envelope. 前記照射光の波長成分を選択的に透過させる分光器を更に備えることを特徴とする請求項1乃至6のいずれか1項に記載の光干渉式測定装置。   The optical interference measurement apparatus according to claim 1, further comprising a spectrometer that selectively transmits a wavelength component of the irradiation light. 前記第1検査光、前記第1参照光、前記第2検査光、及び前記第2参照光のそれぞれの波長成分を選択的に透過させる分光器を更に備えることを特徴とする請求項1乃至6のいずれか1項に記載の光干渉式測定装置。   7. A spectroscope that selectively transmits the wavelength components of the first inspection light, the first reference light, the second inspection light, and the second reference light, respectively. The optical interference type measuring apparatus according to any one of the above. 前記光源が、前記照射光の波長を変化させることを特徴とする請求項1乃至6のいずれか1項に記載の光干渉式測定装置。   The optical interference measurement apparatus according to claim 1, wherein the light source changes a wavelength of the irradiation light. 前記合成干渉縞のスペクトル分布から前記照射光のスペクトル分布を除去する補正モジュールを更に備えることを特徴とする請求項1乃至9のいずれか1項に記載の光干渉式測定装置。   The optical interference measurement apparatus according to claim 1, further comprising a correction module that removes the spectrum distribution of the irradiation light from the spectrum distribution of the combined interference fringes.
JP2007114459A 2007-04-24 2007-04-24 Optical interference measurement device Expired - Fee Related JP4892401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114459A JP4892401B2 (en) 2007-04-24 2007-04-24 Optical interference measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114459A JP4892401B2 (en) 2007-04-24 2007-04-24 Optical interference measurement device

Publications (2)

Publication Number Publication Date
JP2008268121A true JP2008268121A (en) 2008-11-06
JP4892401B2 JP4892401B2 (en) 2012-03-07

Family

ID=40047808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114459A Expired - Fee Related JP4892401B2 (en) 2007-04-24 2007-04-24 Optical interference measurement device

Country Status (1)

Country Link
JP (1) JP4892401B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196785A (en) * 2010-03-18 2011-10-06 Disco Corp Measurement apparatus and laser processing machine of to-be-processed object held on chuck table
JP2012047743A (en) * 2010-08-26 2012-03-08 Mitsutoyo Corp Two-beam assembly and operation method of chromatic point sensor apparatus
JP2014035378A (en) * 2012-08-07 2014-02-24 Nippon Telegr & Teleph Corp <Ntt> Mach-zehnder multi-chip module and packaging method of the same
KR101451176B1 (en) 2013-03-05 2014-10-16 한국표준과학연구원 Spectrum Domain Interference Apparatus Using An Fiber-Ferrule Optical Cavity And The Method Of The Same
KR101452931B1 (en) 2012-04-09 2014-10-21 (주)파이버프로 Non contact measuring physical quantity
JP2015137996A (en) * 2014-01-24 2015-07-30 株式会社東京精密 Measurement system, fabry-perot resonator, and measurement method
JP2016521854A (en) * 2013-06-17 2016-07-25 プレシテック オプトロニック ゲーエムベーハーPrecitec Optronik GmbH Optical measuring apparatus and optical measuring method for obtaining distance difference
JP7066075B1 (en) * 2021-04-06 2022-05-12 三菱電機株式会社 Optical measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118452A (en) * 1997-10-09 1999-04-30 Nikon Corp Interferometer and interefrometry
JP2005274550A (en) * 2003-09-03 2005-10-06 Ricoh Co Ltd Laser length measuring machine, and original optical disk exposure device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118452A (en) * 1997-10-09 1999-04-30 Nikon Corp Interferometer and interefrometry
JP2005274550A (en) * 2003-09-03 2005-10-06 Ricoh Co Ltd Laser length measuring machine, and original optical disk exposure device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196785A (en) * 2010-03-18 2011-10-06 Disco Corp Measurement apparatus and laser processing machine of to-be-processed object held on chuck table
JP2012047743A (en) * 2010-08-26 2012-03-08 Mitsutoyo Corp Two-beam assembly and operation method of chromatic point sensor apparatus
KR101452931B1 (en) 2012-04-09 2014-10-21 (주)파이버프로 Non contact measuring physical quantity
JP2014035378A (en) * 2012-08-07 2014-02-24 Nippon Telegr & Teleph Corp <Ntt> Mach-zehnder multi-chip module and packaging method of the same
KR101451176B1 (en) 2013-03-05 2014-10-16 한국표준과학연구원 Spectrum Domain Interference Apparatus Using An Fiber-Ferrule Optical Cavity And The Method Of The Same
JP2016521854A (en) * 2013-06-17 2016-07-25 プレシテック オプトロニック ゲーエムベーハーPrecitec Optronik GmbH Optical measuring apparatus and optical measuring method for obtaining distance difference
KR101882591B1 (en) * 2013-06-17 2018-08-24 프레시텍 옵트로닉 게엠베하 Optical measuring device for recording differences in distance and optical measuring method
JP2015137996A (en) * 2014-01-24 2015-07-30 株式会社東京精密 Measurement system, fabry-perot resonator, and measurement method
JP7066075B1 (en) * 2021-04-06 2022-05-12 三菱電機株式会社 Optical measuring device
WO2022215152A1 (en) * 2021-04-06 2022-10-13 三菱電機株式会社 Optical measurement device
GB2620312A (en) * 2021-04-06 2024-01-03 Mitsubishi Electric Corp Optical measurement device

Also Published As

Publication number Publication date
JP4892401B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4892401B2 (en) Optical interference measurement device
Urrutia et al. A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion
JP4871791B2 (en) Optical coherence tomography system
Park et al. Temperature robust refractive index sensor based on a photonic crystal fiber interferometer
CN102778306A (en) Refractive index and temperature sensor of photonic crystal fiber, manufacturing method and measuring system
Lu et al. Detection of refractive index change from the critical wavelength of an etched few mode fiber
CN117270098A (en) Optical fiber with micro-gratings and methods and apparatus for making and using the same
US7308162B2 (en) Intrinsic Fabry-Perot optical fiber sensors and their multiplexing
Alonso-Murias et al. Hybrid optical fiber Fabry-Perot interferometer for nano-displacement sensing
CN105890799A (en) High-sensitivity temperature sensor based on cascade pi-phase shifting fiber Bragg gratings
Robalinho et al. Nano-displacement measurement using an optical drop-shaped structure
JP3663903B2 (en) Wavelength detector
JP6082320B2 (en) Optical axis adjusting device and process thereof
JP5365594B2 (en) Refractive index measuring apparatus and refractive index measuring method using guided mode resonance grating
JP4027352B2 (en) Optical fiber probe device
CN110243572B (en) Device and method for testing refractive index of optical waveguide group
JP2007121140A (en) System and method for measuring differential pressure
JP4934354B2 (en) Differential pressure measurement system and differential pressure measurement method
JP4769531B2 (en) Differential pressure measurement system and differential pressure measurement method
JP5177566B2 (en) Refractive index measuring method and refractive index measuring apparatus
JP3933881B2 (en) Measuring method using laser beam propagating in solid
JP4965122B2 (en) Differential pressure measurement system and differential pressure measurement method
JP2012018156A (en) Surface shape measurement apparatus and surface shape measurement method
Zornoza Indart et al. Sensitivity magnification of an interferometric optical fiber sensor with a length-linked virtual reference
JP2915636B2 (en) Displacement measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4892401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees