JP2007333414A - Differential pressure measuring system, and differential pressure measuring method - Google Patents

Differential pressure measuring system, and differential pressure measuring method Download PDF

Info

Publication number
JP2007333414A
JP2007333414A JP2006162222A JP2006162222A JP2007333414A JP 2007333414 A JP2007333414 A JP 2007333414A JP 2006162222 A JP2006162222 A JP 2006162222A JP 2006162222 A JP2006162222 A JP 2006162222A JP 2007333414 A JP2007333414 A JP 2007333414A
Authority
JP
Japan
Prior art keywords
measurement
light
differential pressure
interference fringe
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162222A
Other languages
Japanese (ja)
Other versions
JP4934354B2 (en
Inventor
Seiichiro Kinugasa
静一郎 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006162222A priority Critical patent/JP4934354B2/en
Publication of JP2007333414A publication Critical patent/JP2007333414A/en
Application granted granted Critical
Publication of JP4934354B2 publication Critical patent/JP4934354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a differential pressure measuring system capable of accurately optically measuring differential pressure by reducing optical loss of irradiating light. <P>SOLUTION: The system includes: a light source 114 for emitting irradiating light; a first measurement interferometer 5 for dividing the irradiating light into first measurement light and first reference light, and advancing the first measurement light to first measurement optical path length varying in response to first external pressure P<SB>O1</SB>to make the first measurement light interfere with the first reference light; a second measurement interferometer 15 for dividing the irradiating light into second measurement light and second reference light, and advancing the second measurement light to second measurement optical path length varying in response to second external pressure P<SB>O2</SB>to make the second measurement light interfere with the second reference light; an interference fringe detection element 153 for detecting a combined interference fringe of a first interference fringe between the first measurement light and the first reference light, and a second interference fringe between the second measurement light and the second reference light; an extraction module 310 for extracting an interference fringe component changing in response to the optical path difference between the first measurement optical path length and the second measurement optical path length from the combined interference fringe; and a differential pressure calculation module 330 for calculating the differential pressure between the first external pressure P<SB>O1</SB>and the second external pressure P<SB>O2</SB>from the change of the interference fringe component. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は圧力測定技術に関し、特に差圧測定システム及び差圧測定方法に関する。   The present invention relates to a pressure measurement technique, and more particularly to a differential pressure measurement system and a differential pressure measurement method.

石油プラント等を制御する場合、石油プラント内の異なる位置における流体の差圧を測定することが必要な場合がある。従来の差圧測定方法としては、二つのファブリペロ干渉計を配置し、圧力によって生じる二つのファブリペロ干渉計の光路差の変化を干渉縞から読み取る方法が提案されている(例えば、特許文献1参照。)。しかし、2つのファブリペロ干渉計の光路差の変化を読み取るためには、1つ目のファブリペロ干渉計で反射された光を2つ目のファブリペロ干渉計に導く必要があった。そのため光学系が複雑となり、スプリッタ等による光の損失が生じていた。光の損失は干渉縞の光強度の低下をもたらし、測定誤差を上昇させる問題があった。
特開2003-166890号公報
When controlling an oil plant or the like, it may be necessary to measure the differential pressure of the fluid at different locations within the oil plant. As a conventional differential pressure measurement method, a method has been proposed in which two Fabry-Perot interferometers are arranged and a change in optical path difference between the two Fabry-Perot interferometers caused by pressure is read from interference fringes (see, for example, Patent Document 1). ). However, in order to read the change in the optical path difference between the two Fabry-Perot interferometers, it was necessary to guide the light reflected by the first Fabry-Perot interferometer to the second Fabry-Perot interferometer. This complicates the optical system and causes light loss due to a splitter or the like. The loss of light causes a decrease in the light intensity of the interference fringes and raises the problem of increasing the measurement error.
Japanese Patent Laid-Open No. 2003-166890

本発明は、照射光の光損失を低減することにより、高い精度で差圧を光学的に測定可能な差圧測定システム及び差圧測定方法を提供することを目的とする。   An object of the present invention is to provide a differential pressure measuring system and a differential pressure measuring method capable of optically measuring a differential pressure with high accuracy by reducing light loss of irradiation light.

本発明の第1の特徴は、(イ)照射光を発する光源と、(ロ)照射光を第1測定光及び第1参照光に分割し、第1測定光に第1外圧に応じて変動する第1測定光路長を進ませ、第1測定光及び第1参照光を干渉させる第1測定干渉計と、(ハ)照射光を第2測定光及び第2参照光に分割し、第2測定光に第2外圧に応じて変動する第2測定光路長を進ませ、第2測定光及び第2参照光を干渉させる第2測定干渉計と、(ニ)第1測定光及び第1参照光の第1干渉縞、及び第2測定光及び第2参照光の第2干渉縞の合成干渉縞を検出する干渉縞検出素子と、(ホ)合成干渉縞から、第1測定光路長及び第2測定光路長の光路差に応じて変化する干渉縞成分を抽出する抽出モジュールと、(ヘ)干渉縞成分の変化から、第1外圧及び第2外圧の差圧を算出する差圧算出モジュールとを備える差圧測定システムであることを要旨とする。本発明の第1の特徴に係る差圧測定システムによれば、第1測定干渉計で生じる第1測定光及び第1参照光を第2測定干渉計に導く必要がない。そのため光源から干渉縞検出素子に至るまで光学系が単純となり、照射光の損失を低減することが可能となる。   The first feature of the present invention is (a) a light source that emits irradiation light, and (b) the irradiation light is divided into first measurement light and first reference light, and the first measurement light varies according to the first external pressure. A first measurement interferometer for advancing the first measurement optical path length to interfere with the first measurement light and the first reference light; and (c) dividing the irradiation light into the second measurement light and the second reference light; A second measurement interferometer that causes the second measurement light and the second reference light to interfere with each other by advancing the second measurement light path length that varies according to the second external pressure to the measurement light; and (d) the first measurement light and the first reference. An interference fringe detecting element for detecting a first interference fringe of light, and a combined interference fringe of the second interference fringe of the second measurement light and the second reference light; and (e) the first measurement optical path length and the first (2) an extraction module that extracts an interference fringe component that changes according to the optical path difference of the measurement optical path length; and (f) a differential pressure calculation module that calculates a differential pressure between the first external pressure and the second external pressure from the change in the interference fringe component. Be equipped And summarized in that a differential pressure measurement system that. According to the differential pressure measurement system according to the first feature of the present invention, it is not necessary to guide the first measurement light and the first reference light generated in the first measurement interferometer to the second measurement interferometer. Therefore, the optical system is simplified from the light source to the interference fringe detection element, and the loss of irradiation light can be reduced.

本発明の第2の特徴は、(イ)照射光を発するステップと、(ロ)照射光を第1測定光及び第1参照光に分割し、第1測定光に第1外圧に応じて変動する第1測定光路長を進ませ、第1測定光及び第1参照光を干渉させるステップと、(ハ)照射光を第2測定光及び第2参照光に分割し、第2測定光に第2外圧に応じて変動する第2測定光路長を進ませ、第2測定光及び第2参照光を干渉させるステップと、(ニ)第1測定光及び第1参照光の第1干渉縞、及び第2測定光及び第2参照光の第2干渉縞の合成干渉縞を検出するステップと、(ホ)合成干渉縞から、第1測定光路長及び第2測定光路長の光路差に応じて変化する干渉縞成分を抽出するステップと、(ヘ)干渉縞成分の変化から、第1外圧及び第2外圧の差圧を算出するステップとを含む差圧測定方法であることを要旨とする。   The second feature of the present invention is that (b) the step of emitting the irradiation light, and (b) the irradiation light is divided into the first measurement light and the first reference light, and the first measurement light varies according to the first external pressure. Advancing the first measurement optical path length to cause the first measurement light and the first reference light to interfere with each other, and (c) dividing the irradiation light into the second measurement light and the second reference light, (2) advancing the second measurement optical path length that varies according to the external pressure and causing the second measurement light and the second reference light to interfere with each other; (d) the first interference fringes of the first measurement light and the first reference light; and A step of detecting a synthetic interference fringe of the second interference fringes of the second measurement light and the second reference light; and (e) changing from the synthetic interference fringes according to the optical path difference between the first measurement optical path length and the second measurement optical path length. And (f) calculating a differential pressure between the first external pressure and the second external pressure from a change in the interference fringe component. Let ’s do it.

本発明によれば、照射光の光損失を低減することにより、高い精度で差圧を光学的に測定可能な差圧測定システム及び差圧測定方法を提供可能である。   According to the present invention, it is possible to provide a differential pressure measurement system and a differential pressure measurement method capable of optically measuring a differential pressure with high accuracy by reducing the optical loss of irradiation light.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
第1の実施の形態に係る差圧測定システムは、図1に示すように、光源114、第1測定干渉計5、第2測定干渉計15、及び干渉縞検出素子153を備える。光源114は照射光を発する。第1測定干渉計5は、照射光を第1測定光及び第1参照光に分割し、第1測定光に第1外圧PO1に応じて変動する第1測定光路長を進ませ、第1測定光及び第1参照光を干渉させる。第2測定干渉計15は、照射光を第2測定光及び第2参照光に分割し、第2測定光に第2外圧PO2に応じて変動する第2測定光路長を進ませ、第2測定光及び第2参照光を干渉させる。干渉縞検出素子153は、第1測定光及び第1参照光が形成する第1干渉縞と、第2測定光及び第2参照光が形成する第2干渉縞との合成干渉縞を検出する。差圧測定システムはさらに中央演算処理装置(CPU)300を備える。CPU300は、合成干渉縞から第1測定光路長及び第2測定光路長の光路差に応じて変化する干渉縞成分を抽出する抽出モジュール310、及び干渉縞成分の変化から第1外圧PO1及び第2外圧PO2の差圧を算出する差圧算出モジュール330を備える。
(First embodiment)
As shown in FIG. 1, the differential pressure measurement system according to the first embodiment includes a light source 114, a first measurement interferometer 5, a second measurement interferometer 15, and an interference fringe detection element 153. The light source 114 emits irradiation light. The first measurement interferometer 5 divides the irradiation light into the first measurement light and the first reference light, and advances the first measurement optical path length that varies according to the first external pressure PO1 to the first measurement light, The measurement light and the first reference light are caused to interfere with each other. Second measuring interferometer 15 divides the illumination light to the second measuring beam and the second reference light, second Advances the measurement optical path length that varies according to the second external pressure P O2 to the second measuring beam, the second The measurement light and the second reference light are caused to interfere with each other. The interference fringe detection element 153 detects a combined interference fringe of the first interference fringe formed by the first measurement light and the first reference light and the second interference fringe formed by the second measurement light and the second reference light. The differential pressure measurement system further includes a central processing unit (CPU) 300. The CPU 300 extracts an interference fringe component that changes according to the optical path difference between the first measurement optical path length and the second measurement optical path length from the combined interference fringe, and the first external pressure PO1 and the first external pressure PO1 from the change of the interference fringe component. 2 A differential pressure calculation module 330 that calculates the differential pressure of the external pressure PO 2 is provided.

光源114には紫外域から赤外域まで(185nm〜2,000nm)の連続スペクトルに対応可能なキセノンランプ、発光ダイオード、スーパールミネッセントダイオード、あるいはマルチモードレーザダイオード等の多波長光源が使用可能である。照射光の光強度である照射光強度S0(λ)は下記(1)式で表される。また光源114から照射される照射光の可干渉距離LCは下記(2)式で表される。:
S0(λ) = C ×exp{-(λ-λCS / ΔλS)2} …(1)
LC ≒ λCS 2 / ΔλS …(2)
(1)式においてCは定数を表す。また(1)式及び(2)式において、λCSは光源114から照射される照射光の照射光中心波長を示す。ΔλSは、光源114の発光帯域幅を示す。照射光強度S0(λ)のスペクトルは、例えば図2に示すように、1,307nm付近に照射光中心波長λCSを有す。
As the light source 114, a multi-wavelength light source such as a xenon lamp, a light emitting diode, a super luminescent diode, or a multimode laser diode capable of supporting a continuous spectrum from the ultraviolet region to the infrared region (185 nm to 2,000 nm) can be used. . The irradiation light intensity S 0 (λ) that is the light intensity of the irradiation light is expressed by the following equation (1). Further, the coherence distance L C of the irradiation light emitted from the light source 114 is expressed by the following equation (2). :
S 0 (λ) = C × exp {-(λ-λ CS / Δλ S ) 2 }… (1)
L C ≒ λ CS 2 / Δλ S (2)
In the formula (1), C represents a constant. Further, in the equations (1) and (2), λ CS indicates the irradiation light center wavelength of the irradiation light emitted from the light source 114. Δλ S indicates the emission bandwidth of the light source 114. The spectrum of the irradiation light intensity S 0 (λ) has an irradiation light center wavelength λ CS in the vicinity of 1,307 nm, for example, as shown in FIG.

光源114には照射光を伝搬する共通光導波路29が接続されている。共通光導波路29には、分光装置3が接続されている。分光装置3は、図3に示すように、照射光の透過可能な波長成分の波長λを時間tに応じて走査する。分光装置3には、分光装置3を透過した照射光を伝搬する共通光導波路30が接続されている。共通光導波路30には照射光を2方向に分割するスプリッタ21が接続されている。スプリッタ21には、光ファイバカプラ、ハーフミラー、あるいは薄膜導波路分岐装置等が使用可能である。スプリッタ21には、照射光を伝搬する第1測定用光導波路31及び第2測定用光導波路32が接続されている。ここで第2測定用光導波路32は、第1測定用光導波路31よりも、下記(3)式で与えられるように照射光の可干渉距離LCの半分よりも長い距離LINBだけ長い。 A common optical waveguide 29 that propagates the irradiation light is connected to the light source 114. The spectroscopic device 3 is connected to the common optical waveguide 29. As shown in FIG. 3, the spectroscopic device 3 scans the wavelength λ of the wavelength component that can transmit the irradiation light according to the time t. The spectroscopic device 3 is connected to a common optical waveguide 30 that propagates irradiation light transmitted through the spectroscopic device 3. The common optical waveguide 30 is connected to a splitter 21 that divides the irradiated light in two directions. As the splitter 21, an optical fiber coupler, a half mirror, a thin film waveguide branching device, or the like can be used. The splitter 21 is connected to a first measurement optical waveguide 31 and a second measurement optical waveguide 32 that propagate irradiation light. Wherein the second measuring optical waveguide 32, than the first measuring optical waveguide 31, the following (3) longer by long distances L INB than half the coherence length L C of the irradiation light as given by equation.

LINB > (LC / 2) …(3)
第1測定用光導波路31には第1測定干渉計5が接続されている。第1測定干渉計5は、図4及び図4のA-A方向からの断面図である図5に示すように、コア130a及びクラッド131aを有する第1測定用光導波路31が挿入されるホルダ60a、及び挿入された第1測定用光導波路31の端面に配置された第1半透鏡26aを備える。照射光の一部は第1半透鏡26aで第1参照光として反射され、また照射光の一部は第1半透鏡26aを第1測定光として透過する。第1測定干渉計5はさらに、第1半透鏡26aと平行位置に配置され、第1外圧PO1を受ける第1感圧膜50a、第1感圧膜50aの第1半透鏡26aと対向する表面に配置され、第1半透鏡26aを透過した第1測定光を反射する第1反射膜27a、及び第1半透鏡26aと第1反射膜27aとの間隔Laを規定する第1筐体43aを備えるファブリペロ干渉計である。例えば、第1半透鏡26aの反射率は1〜30%であり、第1反射膜27aの反射率は30〜100%である。第1反射膜27aの材料としては、例えば金(Au)等が使用可能である。なお、ファブリペロ干渉計と類似の構造を有するファブリペロ共振器があるが、ここでは干渉信号が正弦波状になるものを「ファブリペロ干渉計」、干渉信号がローレンツ型信号になるものを「ファブリペロ共振器」とする。第1測定干渉計5は、第1感圧膜50a、第1筐体43a、及びホルダ60aで囲まれた領域の第1内圧PI1を調節するためにホルダ60aに設けられた通気孔160a、及び通気孔160aの開閉を制御する開放弁70aを備える。さらに第1感圧膜50aの外部には、表出する第1感圧膜50aの図4に示した半径aを規定する第1基底部40aが配置される。なお、第1感圧膜50a、第1筐体43a、及びホルダ60aで囲まれた領域の屈折率をnaとする。
L INB > (L C / 2)… (3)
The first measurement interferometer 5 is connected to the first measurement optical waveguide 31. The first measurement interferometer 5 includes a holder 60a into which the first measurement optical waveguide 31 having the core 130a and the clad 131a is inserted, as shown in FIG. And a first semi-transparent mirror 26a disposed on the end face of the inserted first measurement optical waveguide 31. Part of the irradiation light is reflected as the first reference light by the first semi-transparent mirror 26a, and part of the irradiation light passes through the first semi-transmission mirror 26a as the first measurement light. First measuring interferometer 5 further disposed on the first half mirror 26a and the parallel position, the first sensitive pressure membrane 50a for receiving a first external pressure P O1, opposite to the first half mirror 26a of the first sensitive pressure membrane 50a A first housing that is disposed on the surface and reflects the first measurement light that has passed through the first semi-transmissive mirror 26a, and a first housing that defines an interval La between the first semi-transmissive mirror 26a and the first reflective film 27a Fabry-Perot interferometer with 43a. For example, the reflectance of the first semi-transparent mirror 26a is 1 to 30%, and the reflectance of the first reflective film 27a is 30 to 100%. As the material of the first reflective film 27a, for example, gold (Au) or the like can be used. There are Fabry-Perot resonators that have a similar structure to Fabry-Perot interferometers. Here, Fabry-Perot interferometers have a sinusoidal interference signal, and Fabry-Perot resonators have a Lorentz signal. And The first measurement interferometer 5 includes a first pressure-sensitive film 50a, a first housing 43a, and a vent hole 160a provided in the holder 60a for adjusting a first internal pressure PI1 in a region surrounded by the holder 60a, And an open valve 70a for controlling the opening and closing of the vent hole 160a. Further, outside the first pressure-sensitive film 50a, a first base 40a that defines the radius a shown in FIG. 4 of the exposed first pressure-sensitive film 50a is disposed. Note that the refractive index of a region surrounded by the first pressure-sensitive film 50a, the first housing 43a, and the holder 60a is denoted by na .

第1測定干渉計5の第1感圧膜50aは、第1内圧PI1と第1外圧PO1が等しい「定常状態」では撓みは生じない。しかし図6に示すように、第1内圧PI1と比較して第1外圧PO1が大きくなったときは、第1感圧膜50aは内部方向に撓む。また図7に示すように、第1内圧PI1と比較して第1外圧PO1が小さくなったときは、第1感圧膜50aは外部方向に撓む。第1反射膜27aの裏面に第1感圧膜50aが配置されているため、第1感圧膜50aにあわせて第1反射膜27aも撓む。第1測定干渉計5は、第1感圧膜50aの撓みをw1として、図6及び図7に示した第1半透鏡26aと第1反射膜27aとの間を往復する間に第1測定光が進む下記(4)式で表される第1測定光路長F1を検出し、第1外圧PO1を測定するために用いられる。なお第1測定光路長F1は、下記(5)式に示すように、照射光の可干渉距離LCよりも短くなるよう設定されている。:
F1 = 2na(La + w1) …(4)
F1 < LC …(5)
図6に示すように第1外圧PO1が加わったときの第1感圧膜50aの撓みw1は、第1感圧膜50aが図4に示すように半径aである場合、下記(6)式で表される。:
w 1 = (PO1 - PI1)× (a2 - r2)2 / (64 ×Z) …(6)
ここでr(r : 0 ≦ r ≦ a)は第1感圧膜50aの中心位置Mから測定位置までの距離である。Zは下記(7)式で与えられる。:
Z = Y ×t3 / {12 × (1 - υ2)} …(7)
(7)式において、Yは第1感圧膜50aのヤング率、tは第1感圧膜50aの厚さ、υは第1感圧膜50aのポアッソン比である。(6)式を用いることにより、第1感圧膜50aの撓みw1から第1外圧PO1を算出することが可能である。
The first pressure-sensitive film 50a of the first measurement interferometer 5 does not bend in a “steady state” where the first internal pressure PI1 and the first external pressure PO1 are equal. However, as shown in FIG. 6, when increased as compared with the first pressure P I1 is first external pressure P O1 is first sensitive pressure membrane 50a is bent in an inward direction. Further, as shown in FIG. 7, first when the external pressure P O1 is smaller as compared with the first pressure P I1, the first sense of the pressure membrane 50a is bent in the outside direction. Since the first pressure sensitive film 50a is disposed on the back surface of the first reflective film 27a, the first reflective film 27a is also bent in accordance with the first pressure sensitive film 50a. The first measuring interferometer 5, first during the deflection of the first sensitive pressure membrane 50a as w 1, reciprocates between the first half mirror 26a and the first reflective film 27a shown in FIGS. 6 and 7 1 first detecting the measured optical path length F 1 of the measuring light is represented by the flow proceeds following formula (4), used to measure the first external pressure P O1. The first measurement optical path length F 1 is set to be shorter than the coherence distance L C of the irradiation light, as shown in the following formula (5). :
F 1 = 2n a (L a + w 1 )… (4)
F 1 <L C (5)
The bending w 1 of the first pressure-sensitive film 50a when the first external pressure PO1 is applied as shown in FIG. 6 is as follows when the first pressure-sensitive film 50a has the radius a as shown in FIG. ) Expression. :
w 1 = (P O1 -P I1 ) × (a 2 -r 2 ) 2 / (64 × Z)… (6)
Here, r (r: 0 ≦ r ≦ a) is a distance from the center position M of the first pressure-sensitive film 50a to the measurement position. Z is given by the following equation (7). :
Z = Y × t 3 / {12 × (1-υ 2 )}… (7)
In equation (7), Y is the Young's modulus of the first pressure-sensitive film 50a, t is the thickness of the first pressure-sensitive film 50a, and υ is the Poisson's ratio of the first pressure-sensitive film 50a. The use of (6), it is possible from the deflection w 1 of the first sensitive pressure membrane 50a calculates a first external pressure P O1.

図5乃至図7に示した第1感圧膜50aの厚さtが50μmの場合における第1外圧PO1と撓みw1の関係をプロットしたグラフが図8である。図8においては、図4に示した第1感圧膜50aの半径aが0.01mm、0.10mm、及び1.00mmの場合のそれぞれについてプロットされている。また第1感圧膜50aの厚さtが1μmの場合における第1外圧PO1と撓みw1の関係をプロットしたグラフが図9である。図9においては、第1感圧膜50aの半径aが0.01mm、0.10mm、及び1.00mmの場合のそれぞれについてプロットされている。図8及び図9に示すように、第1感圧膜50aの半径a及び厚さtを適宜選択することにより、第1外圧PO1に対する第1測定干渉計5の圧力感度を調整することが可能である。 Graph thickness t of the first sensitive pressure membrane 50a is a plot of the first relationship between the external pressure P O1 and deflection w 1 in the case of a 50μm shown in FIGS. 5 to 7 are diagrams 8. In FIG. 8, plots are made for the cases where the radius a of the first pressure-sensitive film 50a shown in FIG. 4 is 0.01 mm, 0.10 mm, and 1.00 mm. The graph thickness t of the first sensitive pressure membrane 50a is a plot of the first relationship between the external pressure P O1 and deflection w 1 in the case of 1μm is FIG. In FIG. 9, plots are made for the cases where the radius a of the first pressure-sensitive film 50a is 0.01 mm, 0.10 mm, and 1.00 mm. As shown in FIGS. 8 and 9, by selecting the radius a and the thickness t of the first sensitive pressure membrane 50a appropriately to adjust the pressure sensitivity of the first measurement interferometer 5 with respect to the first external pressure P O1 Is possible.

図5に示す第1半透鏡26aを透過した第1測定光は第1感圧膜50a上の第1反射膜27a表面で反射し、反射した第1測定光は第1半透鏡26a方向に進行する。この場合、第1測定光の一部は第1半透鏡26aを透過し、コア130aを図1に示したスプリッタ21に向かって進行する。一方、図5に示す第1半透鏡26aを透過しなかった第1測定光は第1半透鏡26a表面で再び第1反射膜27aに向かって反射される。このとき、第1反射膜27aから第1半透鏡26aに進行する第1測定光の波長成分と、第1半透鏡26a表面で反射し第1反射膜27aに進行する第1測定光の波長成分との位相が揃う場合、光強度は減衰しない。しかし、 第1反射膜27aから第1半透鏡26aに進行する第1測定光の波長成分と、第1半透鏡26a表面で反射し第1反射膜27aに進行する第1測定光の波長成分との位相が揃わない場合、光強度は減衰する。したがって、第1測定干渉計5から出力される第1測定光は、内部の多重反射で波長成分の位相が揃わない波長帯域の光強度が減衰している。   The first measurement light transmitted through the first semi-transparent mirror 26a shown in FIG. 5 is reflected by the surface of the first reflective film 27a on the first pressure-sensitive film 50a, and the reflected first measurement light travels in the direction of the first semi-transparent mirror 26a. To do. In this case, a part of the first measurement light passes through the first semi-transparent mirror 26a and travels through the core 130a toward the splitter 21 shown in FIG. On the other hand, the first measurement light that has not passed through the first semi-transparent mirror 26a shown in FIG. 5 is reflected again toward the first reflective film 27a on the surface of the first semi-transparent mirror 26a. At this time, the wavelength component of the first measurement light traveling from the first reflective film 27a to the first semi-transmissive mirror 26a and the wavelength component of the first measurement light reflected from the surface of the first semi-transmissive mirror 26a and proceeding to the first reflective film 27a The light intensity is not attenuated when the phases are aligned. However, the wavelength component of the first measurement light that travels from the first reflective film 27a to the first semi-transmissive mirror 26a, and the wavelength component of the first measurement light that reflects on the surface of the first semi-transmissive mirror 26a and travels to the first reflective film 27a If the phases are not aligned, the light intensity is attenuated. Therefore, the first measurement light output from the first measurement interferometer 5 has attenuated light intensity in a wavelength band in which the phase of the wavelength component is not aligned due to internal multiple reflection.

図10においては、撓みw1が0であり、第1半透鏡26a及び第1反射膜27aの両方の反射率が30%である場合の、第1測定光の波長λと光強度との関係を示している。図10に示すように、第1測定光のうち波長λが0.85μmの波長成分は、第1測定干渉計内部の多重反射により逆転する位相の光どうしで干渉しあい、光強度が0となる。ここで、図6及び図7に示すように第1外圧PO1によって第1感圧膜50aが撓んだ場合、波長成分の光強度が減衰する第1波長帯域は第1感圧膜50aの撓みw1に応じてシフトする。したがって第1感圧膜50aが撓んだ場合、第1波長帯域の中心波長は図11に示すように例えば0.85μmから0.87μmに波長シフトする。このように、光強度が減衰する波長帯域は第1外圧PO1に応じてシフトする。 In FIG. 10, the relationship between the wavelength λ of the first measurement light and the light intensity when the deflection w 1 is 0 and the reflectance of both the first semi-transparent mirror 26a and the first reflective film 27a is 30%. Is shown. As shown in FIG. 10, the wavelength component of the first measurement light having the wavelength λ of 0.85 μm interferes with the light of the phases reversed by the multiple reflection inside the first measurement interferometer, and the light intensity becomes zero. Here, if the flexed first sense pressure membrane 50a by the first external pressure P O1 as shown in FIGS. 6 and 7, the first wavelength band light intensity of the wavelength component is attenuated in the first sense pressure membrane 50a to shift depending on the deflection w 1. Therefore, when the first pressure-sensitive film 50a is bent, the center wavelength of the first wavelength band is shifted from 0.85 μm to 0.87 μm, for example, as shown in FIG. As described above, the wavelength band in which the light intensity is attenuated is shifted according to the first external pressure PO1 .

上記(5)式で示したように、第1測定光路長F1は照射光の可干渉距離LCよりも短い。そのため、図5に示す第1半透鏡26aで反射された第1参照光は、第1反射膜27aで反射され第1半透鏡26aを透過した第1測定光と干渉する。照射光に対する第1測定干渉計5の全体の反射率RS1は、下記(8)式で与えられる。:
RS1={R1RaaR2Ra-2(ηaR1RaR2Ra)1/2cos2φa}/{1+ηaR1RaR2Ra-2(ηaR1RaR2Ra)1/2cos2φa} …
(8)
ここで、R1Raは第1半透鏡26aの反射率、R2Raは第1反射膜27aの反射率を表す。ηaは第1半透鏡26aと第1反射膜27aの間での光損失を表し、下記(9)式で与えられる。またφaは位相を表し、下記(10)式で与えられる。(9)式において、qは第1測定干渉計5に入射する照射光のビーム径を表す。:
ηa= 1 / {1 + (2λ×(La + w1) / (2πna q2))2} …(9)
φa= {2π(La + w1)} / λ …(10)
以下において簡略化のため、Aを第1測定干渉計5における可干渉度を表す定数として、第1測定干渉計5の全体の反射率RS1を下記(11)式で与える。
As shown in the above equation (5), the first measurement optical path length F 1 is shorter than the coherence distance L C of the irradiation light. Therefore, the first reference light reflected by the first semi-transmissive mirror 26a shown in FIG. 5 interferes with the first measurement light reflected by the first reflective film 27a and transmitted through the first semi-transmissive mirror 26a. The overall reflectance R S1 of the first measurement interferometer 5 with respect to the irradiation light is given by the following equation (8). :
R S1 = {R 1Ra + η a R 2Ra -2 (η a R 1Ra R 2Ra ) 1/2 cos2φ a } / {1 + η a R 1Ra R 2Ra -2 (η a R 1Ra R 2Ra ) 1/2 cos2φ a }…
(8)
Here, R 1Ra represents the reflectance of the first semi- transparent mirror 26a, and R 2Ra represents the reflectance of the first reflective film 27a. η a represents the optical loss between the first semi-transparent mirror 26a and the first reflective film 27a, and is given by the following equation (9). Φ a represents a phase and is given by the following equation (10). In equation (9), q represents the beam diameter of the irradiation light incident on the first measurement interferometer 5. :
η a = 1 / {1 + (2λ × (L a + w 1 ) / (2πn a q 2 )) 2 }… (9)
φ a = {2π (L a + w 1 )} / λ… (10)
In the following, for simplification, the overall reflectance R S1 of the first measurement interferometer 5 is given by the following equation (11), where A is a constant representing the coherence degree in the first measurement interferometer 5.

RS1 = 1 + A cos {2π×2(La + w1) / λ} …(11)
第1参照光及び第1測定光は、図1に示す第1測定用光導波路31で伝搬され、スプリッタ21で共通光導波路33に分割される。
R S1 = 1 + A cos {2π × 2 (L a + w 1 ) / λ} (11)
The first reference light and the first measurement light are propagated through the first measurement optical waveguide 31 shown in FIG. 1, and are split into the common optical waveguide 33 by the splitter 21.

第2測定用光導波路32には第2測定干渉計15が接続されている。第2測定干渉計15は、図12に示すようにコア130b及びクラッド131bを有する第2測定用光導波路32が挿入されるホルダ60b、及び挿入された第2測定用光導波路32の端面に配置された第2半透鏡26bを備える。照射光の一部は第2半透鏡26bで第2参照光として反射され、また照射光の一部は第2半透鏡26bを第2測定光として透過する。第2測定干渉計15はさらに、第2半透鏡26bと平行位置に配置され、第2外圧PO2を受ける第2感圧膜50b、第2感圧膜50bの第2半透鏡26bと対向する表面に配置され、第2半透鏡26bを透過した第2測定光を受ける第2反射膜27b、及び第2半透鏡26bと第2反射膜27bとの間隔Lbを規定する第2筐体43bを備えるファブリペロ干渉計である。例えば、第2半透鏡26bの反射率は1〜30%であり、第2反射膜27bの反射率は30〜100%である。なお、第2感圧膜50b、第2筐体43b、及びホルダ60bで囲まれた領域の屈折率をnbとする。 A second measurement interferometer 15 is connected to the second measurement optical waveguide 32. As shown in FIG. 12, the second measurement interferometer 15 is disposed on the end surface of the holder 60b into which the second measurement optical waveguide 32 having the core 130b and the clad 131b is inserted, and the inserted second measurement optical waveguide 32. The second semi-transparent mirror 26b is provided. A part of the irradiation light is reflected as the second reference light by the second semi-transparent mirror 26b, and a part of the irradiation light passes through the second semi-transmission mirror 26b as the second measurement light. Second measuring interferometer 15 further is disposed on the second half mirror 26b and the parallel position, the second sense pressure membrane 50b for receiving a second external pressure P O2, facing the second half mirror 26b of the second sensitive pressure membrane 50b A second reflective film 27b that is disposed on the surface and receives the second measurement light transmitted through the second semi-transmissive mirror 26b, and a second housing 43b that defines a distance L b between the second semi-transmissive mirror 26b and the second reflective film 27b Is a Fabry-Perot interferometer. For example, the reflectance of the second semi-transmissive mirror 26b is 1 to 30%, and the reflectance of the second reflective film 27b is 30 to 100%. Note that the second sensitive pressure membrane 50b, the second housing 43 b, and the refractive index of a region surrounded by the holder 60b and n b.

また第2測定干渉計15は、第2感圧膜50b、第2筐体43b及びホルダ60bで囲まれた領域の第2内圧PI2を調節するためにホルダ60bに設けられた通気孔160b、及び通気孔160bの開閉を制御する開放弁70bを備える。さらに第2感圧膜50bの外部には、表出する第2感圧膜50bの図4に示した半径aを規定する第1基底部40aと同様の第2基底部40bが配置される。第2感圧膜50bは第1感圧膜50aと同じ材料からなり、第2内圧PI2は第1測定干渉計5の第1内圧PI1と同じに設定される。第2反射膜27bの裏面に第2感圧膜50bが配置されているため、第2感圧膜50bにあわせて第2反射膜27bも撓む。第2測定干渉計15は、第2感圧膜50bの撓みをw2として、図12に示した第2半透鏡26bと第2反射膜27bとの間を往復する間に第2測定光が進む下記(12)式で表される第2測定光路長F2を検出し、第2外圧PO2を測定するために用いられる。なお第2測定光路長F2は、下記(13)式に示すように、照射光の可干渉距離LCよりも短くなるよう設定されている。:
F2 = 2nb(Lb + w2) …(12)
F2 < LC …(13)
上記(13)式で示したように、第2測定光路長F2は照射光の可干渉距離LCよりも短い。そのため、図12に示す第2半透鏡26bで反射された第2参照光は、第2反射膜27bで反射され第2半透鏡26bを透過した第2測定光と干渉する。照射光に対する第2測定干渉計15の全体の反射率RS2は、下記(14)式で与えられる。:
RS2={R1RbbR2Rb-2(ηbR1RbR2Rb)1/2cos2φb}/{1+ηbR1RbR2Rb-2(ηbR1RbR2Rb)1/2cos2φb} …
(14)
ここで、R1Rbは第2半透鏡26bの反射率、R2Rbは第2反射膜27bの反射率を表す。ηbは第2半透鏡26bと第2反射膜27bの間での光損失を表し、下記(15)式で与えられる。またφbは位相を表し、下記(16)式で与えられる。(15)式において、qは第2測定干渉計15に入射する照射光のビーム径を表す。:
ηb= 1 / {1 + (2λ×(Lb + w2) / (2πnb q2))2} …(15)
φb= {2π(Lb + w2)} / λ …(16)
以下において簡略化のため、Bを第2測定干渉計15における可干渉度を表す定数として、第2測定干渉計15の全体の反射率RS2を下記(17)式で与える。
Further, the second measurement interferometer 15 includes a vent hole 160b provided in the holder 60b for adjusting the second internal pressure PI2 in a region surrounded by the second pressure-sensitive film 50b, the second housing 43b, and the holder 60b. And an opening valve 70b for controlling the opening and closing of the vent hole 160b. Further, outside the second pressure sensitive film 50b, a second base part 40b similar to the first base part 40a defining the radius a shown in FIG. 4 of the exposed second pressure sensitive film 50b is disposed. The second sensitive pressure membrane 50b made of the same material as the first sensitive pressure membrane 50a, the second pressure P I2 is set to be the same as the first pressure P I1 of the first measuring interferometer 5. Since the second pressure sensitive film 50b is disposed on the back surface of the second reflective film 27b, the second reflective film 27b is also bent in accordance with the second pressure sensitive film 50b. Second measuring interferometer 15, the deflection of the second sensitive pressure membrane 50b as w 2, the second measuring beam while reciprocating between the second half mirror 26b and the second reflecting film 27b shown in FIG. 12 proceeds below (12) the second detects the measurement optical path length F 2 of the formula used to measure the second external pressure P O2. The second measurement optical path length F 2 is set to be shorter than the coherence distance L C of the irradiated light, as shown in the following formula (13). :
F 2 = 2n b (L b + w 2 )… (12)
F 2 <L C (13)
As indicated by the above equation (13), the second measurement optical path length F 2 is shorter than the coherence distance L C of the irradiated light. Therefore, the second reference light reflected by the second semi-transmissive mirror 26b shown in FIG. 12 interferes with the second measurement light reflected by the second reflective film 27b and transmitted through the second semi-transmissive mirror 26b. The overall reflectance R S2 of the second measurement interferometer 15 with respect to the irradiation light is given by the following equation (14). :
R S2 = {R 1Rb + η b R 2Rb -2 (η b R 1Rb R 2Rb ) 1/2 cos2φ b } / {1 + η b R 1Rb R 2Rb -2 (η b R 1Rb R 2Rb ) 1/2 cos2φ b }…
(14)
Here, R 1Rb represents the reflectance of the second semi- transmissive mirror 26b, and R 2Rb represents the reflectance of the second reflective film 27b. η b represents the optical loss between the second semi-transparent mirror 26b and the second reflective film 27b, and is given by the following equation (15). Φ b represents a phase and is given by the following equation (16). In equation (15), q represents the beam diameter of the irradiation light incident on the second measurement interferometer 15. :
η b = 1 / {1 + (2λ × (L b + w 2 ) / (2πn b q 2 )) 2 }… (15)
φ b = {2π (L b + w 2 )} / λ… (16)
In the following, for simplicity, B is a constant representing the coherence degree in the second measurement interferometer 15, and the overall reflectance R S2 of the second measurement interferometer 15 is given by the following equation (17).

RS2 = 1 + B cos {2π×2(Lb + w2) / λ} …(17)
第2参照光及び第2測定光は、図1に示す第2測定用光導波路32で伝搬され、スプリッタ21で共通光導波路33に分割される。共通光導波路33は、第1参照光、第1測定光、第2参照光、及び第2測定光を伝搬する。ここで、第2参照光及び第2測定光が往復する第2測定用光導波路32は、第1参照光及び第1測定光が往復する第1測定用光導波路31よりも距離LINBだけ長い。したがって上記(3)式より、第1参照光及び第1測定光が経由した光路と、第2参照光及び第2測定光が経由した光路との光路差は、距離LINBの2倍以上となる。そのため光路差は照射光の可干渉距離LCより長く、第1参照光は第2参照光及び第2測定光とは干渉しない。また第1測定光は第2参照光及び第2測定光とは干渉しない。なお、共通光導波路29, 30, 33、第1測定用光導波路31、及び第2測定用光導波路32のそれぞれにはシングルモード光ファイバ及びマルチモード光ファイバ等が使用可能である。
R S2 = 1 + B cos {2π × 2 (L b + w 2 ) / λ} (17)
The second reference light and the second measurement light are propagated through the second measurement optical waveguide 32 shown in FIG. 1, and are split into the common optical waveguide 33 by the splitter 21. The common optical waveguide 33 propagates the first reference light, the first measurement light, the second reference light, and the second measurement light. Here, the second measurement optical waveguide 32 in which the second reference light and the second measurement light reciprocate is longer by the distance LINB than the first measurement optical waveguide 31 in which the first reference light and the first measurement light reciprocate. . Therefore, from the above equation (3), the optical path difference between the optical path through which the first reference light and the first measurement light pass and the optical path through which the second reference light and the second measurement light pass is at least twice the distance LINB. Become. Therefore the optical path difference is longer than the coherence length L C of the irradiation light, the first reference light does not interfere with the second reference beam and the second measuring beam. Further, the first measurement light does not interfere with the second reference light and the second measurement light. A single mode optical fiber, a multimode optical fiber, or the like can be used for each of the common optical waveguides 29, 30, 33, the first measurement optical waveguide 31, and the second measurement optical waveguide 32.

共通光導波路33には、第1参照光、第1測定光、第2参照光、及び第2測定光を受光する干渉縞検出素子153が接続されている。干渉縞検出素子153には、CCDイメージセンサ等が使用可能である。ここで、干渉縞検出素子153が受光する第1参照光及び第1測定光が形成する第1干渉縞の光強度である第1測定光強度S1(λ)は下記(18)式で与えられる。 An interference fringe detection element 153 that receives the first reference light, the first measurement light, the second reference light, and the second measurement light is connected to the common optical waveguide 33. As the interference fringe detecting element 153, a CCD image sensor or the like can be used. Here, the first measurement light intensity S 1 (λ), which is the light intensity of the first interference light formed by the first reference light and the first measurement light received by the interference fringe detection element 153, is given by the following equation (18). It is done.

S1(λ) = (1/4) × S0(λ) ×TL1(λ) ×RS1 …(18)
(18)式において照射光強度S0(λ)に係る1/4は、照射光がスプリッタ21を合計2回経由することによる光強度の損失を示している。TL1(λ)は、光源114から発せられ、第1測定干渉計5で第1参照光及び第1測定光として反射された照射光が干渉縞検出素子153に到着するまで経由する共通光導波路29、共通光導波路30、第1測定用光導波路31、及び共通光導波路33等の透過率を示している。
S 1 (λ) = (1/4) × S 0 (λ) × T L1 (λ) × R S1 … (18)
In Equation (18), 1/4 relating to the irradiation light intensity S 0 (λ) indicates a loss of light intensity due to the irradiation light passing through the splitter 21 a total of two times. T L1 (λ) is a common optical waveguide that is emitted from the light source 114 and passes through until the irradiation light reflected as the first reference light and the first measurement light by the first measurement interferometer 5 reaches the interference fringe detection element 153. 29, transmittances of the common optical waveguide 30, the first measurement optical waveguide 31, the common optical waveguide 33, and the like.

また干渉縞検出素子153が受光する第2参照光及び第2測定光が形成する第2干渉縞の光強度である第2測定光強度S2(λ)は下記(19)式で与えられる。 Further, the second measurement light intensity S 2 (λ), which is the light intensity of the second reference light formed by the second reference light and the second measurement light received by the interference fringe detection element 153, is given by the following equation (19).

S2(λ) = (1/4) × S0(λ) ×TL2(λ) ×RS2 …(19)
(19)式においてTL2(λ)は、光源114から発せられ、第2測定干渉計15で第2参照光及び第2測定光として反射された照射光が干渉縞検出素子153に到着するまで経由する共通光導波路29、共通光導波路30、第1測定用光導波路31、及び共通光導波路33等の透過率を示している。(18)式及び(19)式より、第1干渉縞と第2干渉縞の合成干渉縞の光強度である出力光強度SOUT(λ)は、下記(20)式で与えられる。
S 2 (λ) = (1/4) × S 0 (λ) × T L2 (λ) × R S2 … (19)
In Expression (19), T L2 (λ) is emitted from the light source 114 until the irradiation light reflected as the second reference light and the second measurement light by the second measurement interferometer 15 arrives at the interference fringe detection element 153. The transmittances of the common optical waveguide 29, the common optical waveguide 30, the first measurement optical waveguide 31, the common optical waveguide 33, and the like are shown. From the equations (18) and (19), the output light intensity S OUT (λ) that is the light intensity of the combined interference fringe of the first interference fringe and the second interference fringe is given by the following equation (20).

SOUT(λ) = S1(λ) + S2(λ)
= (1/4) × S0(λ) ×{TL1(λ) ×RS1 + TL2(λ) ×RS2}
= (1/4)×S0(λ) [{TL1(λ)+TL2(λ)}+TL1(λ)×A cos{2π×F1 /λ}
+ TL2(λ)×B cos {2π×F2 /λ}] …(20)
ここで下記(21)式及び(22)式で与えられる変数α, βを定義し、屈折率na, nbそれぞれが1であるとすると、(20)式で与えられた出力光強度SOUT(λ)は下記(23)式に変形される。
S OUT (λ) = S 1 (λ) + S 2 (λ)
= (1/4) × S 0 (λ) × {T L1 (λ) × R S1 + T L2 (λ) × R S2 }
= (1/4) × S 0 (λ) [{T L1 (λ) + T L2 (λ)} + T L1 (λ) × A cos {2π × F 1 / λ}
+ T L2 (λ) × B cos {2π × F 2 / λ}] (20)
If the variables α and β given by the following equations (21) and (22) are defined and the refractive indexes n a and n b are 1, respectively, the output light intensity S given by the equation (20) OUT (λ) is transformed into the following equation (23).

α= TL1(λ)×A …(21)
β= TL2(λ)×B …(22)
SOUT(λ)=(1/4)×S0(λ) [{TL1(λ)+TL2(λ)}+
2αcos{(2π/λ)(La+ w1 - Lb - w2)}cos{(2π/λ)(La+Lb+ w1 + w2)}
+(β-α)cos{(2π/λ)×2(Lb+ w2)}]
=(1/4)×S0(λ) [{TL1(λ)+TL2(λ)}+
2αcos{(2π/λ)(La - Lb + w1 - w2)}cos{(2π/λ)(La+Lb+ w1 + w2)}
+(β-α)cos{(2π/λ)×2(Lb+ w2)}] …(23)
(23)式の第2項に含まれるcos{(2π/λ)(La - Lb + w1 - w2)}は、第1測定干渉計5内部の第1測定光路長F1と、第2測定干渉計15内部の第2測定光路長F2の光路差に応じて変動する。第1測定光路長F1と第2測定光路長F2の光路差は、第1外圧PO1と第2外圧PO2の差圧に応じて変動する。
α = T L1 (λ) × A (21)
β = T L2 (λ) × B (22)
S OUT (λ) = (1/4) × S 0 (λ) [{T L1 (λ) + T L2 (λ)} +
2αcos {(2π / λ) (L a + w 1- L b -w 2 )} cos {(2π / λ) (L a + L b + w 1 + w 2 )}
+ (β-α) cos {(2π / λ) × 2 (L b + w 2 )}]
= (1/4) × S 0 (λ) [{T L1 (λ) + T L2 (λ)} +
2αcos {(2π / λ) (L a- L b + w 1 -w 2 )} cos {(2π / λ) (L a + L b + w 1 + w 2 )}
+ (β-α) cos {(2π / λ) × 2 (L b + w 2 )}]… (23)
Cos {(2π / λ) (L a − included in the second term of equation (23) L b + w 1 -w 2 )} depends on the optical path difference between the first measurement optical path length F 1 inside the first measurement interferometer 5 and the second measurement optical path length F 2 inside the second measurement interferometer 15. fluctuate. The optical path difference between the first measured optical path length F 1 and the second measuring optical path length F 2 varies in response to the first external pressure P O1 differential pressure of the second external pressure P O2.

(23)式の第2項cos{(2π/λ)(La - Lb + w1 - w2)}は、出力光強度SOUT(λ)のスペクトルの低周波成分として現れ、図13に示すように周期(2π/λ)(La - Lb + w1 - w2)を有する。第1外圧PO1に応じて第1感圧膜50aの撓みw1が変動すると、出力光強度SOUT(λ)のスペクトルの低周波成分の周期(2π/λ)(La - Lb + w1 - w2)は変動する。第2外圧PO2に応じて第2感圧膜50bの撓みw2が変動しても、出力光強度SOUT(λ)のスペクトルの低周波成分の周期(2π/λ)(La - Lb + w1 - w2)は変動する。ただし、第1外圧PO1及び第2外圧PO2に応じて第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2のそれぞれが変動しても、第1外圧PO1と第2外圧PO2との差圧が一定であり、第1感圧膜50aの撓みw1と第2感圧膜50bの撓みw2との差(La - Lb + w1 - w2)が一定である限りは、出力光強度SOUT(λ)のスペクトルの低周波成分の周期(2π/λ)(La - Lb + w1 - w2)は変動しない。 The second term cos {(2π / λ) (L a L b + w 1 -w 2 )} appears as a low frequency component of the spectrum of the output light intensity S OUT (λ), and the period (2π / λ) (L a L b + w 1 -w 2 ). When the deflection w 1 of the first pressure-sensitive film 50a varies according to the first external pressure P O1 , the period (2π / λ) (L a − of the low frequency component of the spectrum of the output light intensity S OUT (λ) L b + w 1 -w 2 ) varies. Even deflection w 2 varies in the second sense of pressure membrane 50b according to the second external pressure P O2, the period of the low frequency components of the spectrum of the output light intensity S OUT (λ) (2π / λ) (L a - L b + w 1 -w 2 ) varies. However, even if each of the deflection w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a in response to the first external pressure P O1 and the second external pressure P O2 is varied, the first external pressure P O1 When the differential pressure between the second external pressure P O2 is constant, the difference between the deflection w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a (L a - As long as L b + w 1 -w 2 ) is constant, the period of the low frequency component of the spectrum of the output light intensity S OUT (λ) (2π / λ) (L a- L b + w 1 -w 2 ) does not change.

図1に示す干渉縞検出素子153は、合成干渉縞の出力光強度SOUT(λ)をCPU300に伝送する。CPU300の抽出モジュール310は、合成干渉縞の出力光強度SOUT(λ)を常時受信し、出力光強度SOUT(λ)のスペクトルの低周波成分における極値点等を第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出する。ここで、第1外圧PO1と第2外圧PO2との差圧が一定であれば、出力光強度SOUT(λ)のスペクトルの低周波成分の周期(2π/λ)(La - Lb + w1 - w2)は変動しない。そのため、抽出された極値点の波長λは一定である。これに対し、第1外圧PO1と第2外圧PO2との差圧が変動すれば、出力光強度SOUT(λ)のスペクトルの低周波成分の周期(2π/λ)(La - Lb + w1 - w2)も変動する。そのため、抽出された極値点の波長λは、差圧の変動の前後で波長シフトする。 The interference fringe detection element 153 shown in FIG. 1 transmits the output light intensity S OUT (λ) of the combined interference fringe to the CPU 300. Extraction module 310 of the CPU300, the output light intensity S OUT of the composite interference fringes (lambda) was always received, the output light intensity S OUT first measuring optical path length extreme points such as the low-frequency component of the spectrum of (lambda) F It is extracted as the interference fringe component that varies according to the first and second optical path difference of the measuring optical path length F 2. Here, if the differential pressure between the first external pressure P O1 and the second external pressure P O2 is constant, the period of the low frequency component of the spectrum of the output light intensity S OUT (λ) (2π / λ) (L a L b + w 1 -w 2 ) does not change. For this reason, the wavelength λ of the extracted extreme point is constant. In contrast, if the variation differential pressure between the first external pressure P O1 and second external pressure P O2, the period of the low frequency components of the spectrum of the output light intensity S OUT (λ) (2π / λ) (L a - L b + w 1 -w 2 ) also varies. For this reason, the wavelength λ of the extracted extreme point shifts before and after the fluctuation of the differential pressure.

図14は、第1測定光路長F1が2.2mmで第2測定光路長F2が2.0mmの場合、第1測定光路長F1が2.0mmで第2測定光路長F2が1.8mmの場合、第1測定光路長F1が1.8mmで第2測定光路長F2が1.6mmの場合、及び第1測定光路長F1が1.6mmで第2測定光路長F2が1.4mmの場合のそれぞれの出力光強度SOUT(λ)のスペクトルを例示している。第1外圧PO1と第2外圧PO2のそれぞれが変化すると、第1測定光路長F1と第2測定光路長F2のそれぞれも変化する。しかし第1外圧PO1と第2外圧PO2との差圧が一定で、第1測定光路長F1と第2測定光路長F2との光路差が0.2mmで一定であれば、出力光強度SOUT(λ)のスペクトルの低周波成分の極値点の波長λはほぼ一定で波長シフトしない。 FIG. 14 shows that when the first measurement optical path length F 1 is 2.2 mm and the second measurement optical path length F 2 is 2.0 mm, the first measurement optical path length F 1 is 2.0 mm and the second measurement optical path length F 2 is 1.8 mm. When the first measurement optical path length F 1 is 1.8 mm and the second measurement optical path length F 2 is 1.6 mm, and the first measurement optical path length F 1 is 1.6 mm and the second measurement optical path length F 2 is 1.4 mm. The spectrum of each output light intensity S OUT (λ) is illustrated. As each first external pressure P O1 of the second external pressure P O2 is varied, also changes each of the first measuring optical path length F 1 and the second measuring optical path length F 2. However, in the first external pressure P O1 differential pressure between the second external pressure P O2 is constant, the optical path difference between the first measured optical path length F 1 and the second measuring optical path length F 2 is equal constant at 0.2 mm, the output light The wavelength λ of the extreme point of the low frequency component of the spectrum of intensity S OUT (λ) is substantially constant and does not shift in wavelength.

これに対し図15は、第1測定光路長F1が2.0mmで第2測定光路長F2が2.2mmの場合、第1測定光路長F1が2.0mmで第2測定光路長F2が2.1999mmの場合、第1測定光路長F1が2.0mmで第2測定光路長F2が2.1998mmの場合、及び第1測定光路長F1が2.0mmで第2測定光路長F2が2.1997mmの場合のそれぞれの出力光強度SOUT(λ)のスペクトルを例示している。第1外圧PO1が一定のまま第2外圧PO2が変化すると、第1外圧PO1と第2外圧PO2との差圧が変化する。そのため、第1測定光路長F1と第2測定光路長F2との光路差が変化すると、出力光強度SOUT(λ)のスペクトルの低周波成分の極値点の波長λが波長シフトする。 On the other hand, FIG. 15 shows that when the first measurement optical path length F 1 is 2.0 mm and the second measurement optical path length F 2 is 2.2 mm, the first measurement optical path length F 1 is 2.0 mm and the second measurement optical path length F 2 is In the case of 2.1999 mm, the first measurement optical path length F 1 is 2.0 mm and the second measurement optical path length F 2 is 2.1998 mm, and the first measurement optical path length F 1 is 2.0 mm and the second measurement optical path length F 2 is 2.1997. The spectrum of each output light intensity S OUT (λ) in the case of mm is illustrated. When the first external pressure P O1 is the second external pressure P O2 remains constant changes, the differential pressure between the first external pressure P O1 and second external pressure P O2 is varied. Therefore, when the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 changes, the wavelength λ of the extreme point of the low frequency component of the spectrum of the output light intensity S OUT (λ) is wavelength shifted. .

なお図1に示す抽出モジュール310は、図16及び図17に示すように、出力光強度SOUT(λ)のスペクトルの包絡線を算出し、包絡線の極値点等を第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出してもよい。図18は、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)と、抽出された極値点の波長λの初期状態からの波長シフト量との関係を示している。ここで図18においては、撓みw2を0nmで一定とし、撓みw1と撓みw2との差(w1 - w2)を-100nmから100nmの間で変動させた場合と、撓みw2を50nmで一定とし、撓みw1と撓みw2との差(w1 - w2)を-100nmから100nmの間で変動させた場合と、撓みw2を100nmで一定とし、撓みw1と撓みw2との差(w1 - w2)を-100nmから100nmの間で変動させた場合における、抽出された極値点の波長λの初期状態からの波長シフト量がプロットされている。図18に示すように、抽出された極値点の波長λの波長シフト量は、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2のそれぞれの個々の値に依存せず、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)のみに比例する。 Note that the extraction module 310 shown in FIG. 1 calculates the envelope of the spectrum of the output light intensity S OUT (λ) as shown in FIGS. 16 and 17, and determines the extreme points of the envelope as the first measurement optical path length. F 1 and in accordance with the second optical path difference of the measuring optical path length F 2 may be extracted as interference fringes varying components. Figure 18 is a deflection difference w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a - and (w 1 w 2), the extracted extreme point from the initial state of the wavelength λ The relationship with the amount of wavelength shift is shown. Here, in FIG. 18, when the deflection w 2 is constant at 0 nm and the difference (w 1 −w 2 ) between the deflection w 1 and the deflection w 2 is varied between −100 nm and 100 nm, the deflection w 2 Is constant at 50 nm, the difference between the deflection w 1 and the deflection w 2 (w 1 -w 2 ) is varied between -100 nm and 100 nm, and the deflection w 2 is constant at 100 nm, and the deflection w 1 The amount of wavelength shift from the initial state of the wavelength λ of the extracted extreme point when the difference (w 1 −w 2 ) from the deflection w 2 is varied between −100 nm and 100 nm is plotted. As shown in FIG. 18, the wavelength shift amount of the wavelength λ of the extracted extreme point is set to the respective values of the deflection w 1 of the first pressure-sensitive film 50a and the deflection w 2 of the second pressure-sensitive film 50b. independent, difference in deflection w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a (w 1 - w 2) is proportional only.

図1に示すCPU300は、観察モジュール320をさらに備える。観察モジュール320は、抽出された極値点の波長λの波長シフト量を観察する。差圧算出モジュール330は、予め取得された第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)と、極値点の波長シフト量との関係式に、抽出された極値点の波長シフト量を代入し、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)の測定値を算出する。さらに差圧算出モジュール330は、上記(6)式等を用いて、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)の測定値から、第1外圧PO1と第2外圧PO2との差圧の測定値を算出する。 The CPU 300 shown in FIG. 1 further includes an observation module 320. The observation module 320 observes the wavelength shift amount of the wavelength λ of the extracted extreme point. Differential pressure calculation module 330 has been previously obtained differential deflection w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a - and (w 1 w 2), the wavelength shift amount of the extreme point Is substituted for the wavelength shift amount of the extracted extreme point, and the difference (w 1 −w 2 ) between the deflection w 1 of the first pressure-sensitive film 50a and the deflection w 2 of the second pressure-sensitive film 50b. Calculate the measured value. Further, the differential pressure calculation module 330 measures the difference (w 1 −w 2 ) between the deflection w 1 of the first pressure-sensitive film 50a and the deflection w 2 of the second pressure-sensitive film 50b using the above equation (6) and the like. From the value, a measured value of the differential pressure between the first external pressure P O1 and the second external pressure P O2 is calculated.

CPU300にはデータ記憶装置200が接続されている。データ記憶装置200は、観察結果記憶モジュール201、関係記憶モジュール202、及び差圧記憶モジュール203を備える。観察結果記憶モジュール201は、観察モジュール320で観察された極値点の波長シフト量を保存する。関係記憶モジュール202は、予め取得された第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)と、極値点の波長シフト量との関係式を保存する。差圧記憶モジュール203は、差圧算出モジュール330で算出された第1外圧PO1と第2外圧PO2との差圧の測定値を保存する。 A data storage device 200 is connected to the CPU 300. The data storage device 200 includes an observation result storage module 201, a relationship storage module 202, and a differential pressure storage module 203. The observation result storage module 201 stores the wavelength shift amount of the extreme point observed by the observation module 320. Relationship storage module 202 has been previously obtained differential deflection w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a - and (w 1 w 2), the wavelength shift amount of the extreme point Save the relational expression. The differential pressure storage module 203 stores a measurement value of the differential pressure between the first external pressure P O1 and the second external pressure P O2 calculated by the differential pressure calculation module 330.

次に図19を用いて、第1の実施の形態に係る差圧測定方法について説明する。   Next, the differential pressure measurement method according to the first embodiment will be described with reference to FIG.

(a) ステップS101で図1に示す光源114は、図2に示す照射光強度S0(λ)のスペクトルを有する照射光を発する。照射光は図1に示す共通光導波路29で分光装置3に伝搬される。ステップS102で分光装置3は、図3に示すように、時間tに応じて照射光の波長成分を選択的に透過させる。図1に示す分光装置3を透過した照射光は共通光導波路30でスプリッタ21に伝搬される。 (a) In step S101, the light source 114 shown in FIG. 1 emits irradiation light having a spectrum of irradiation light intensity S 0 (λ) shown in FIG. The irradiation light is propagated to the spectroscopic device 3 through the common optical waveguide 29 shown in FIG. In step S102, the spectroscopic device 3 selectively transmits the wavelength component of the irradiation light according to the time t as shown in FIG. The irradiation light transmitted through the spectroscopic device 3 shown in FIG. 1 is propagated to the splitter 21 through the common optical waveguide 30.

(b) ステップS103で照射光は、スプリッタ21で第1測定用光導波路31と第2測定用光導波路32の2方向に分割される。スプリッタ21で第1測定用光導波路31に向かって分割された照射光は、第1測定用光導波路31で第1測定干渉計5に伝搬される。スプリッタ21で第2測定用光導波路32に向かって分割された照射光は、第1測定用光導波路31よりも距離LINBだけ長い第2測定用光導波路32で第2測定干渉計15に伝搬される。 (b) In step S103, the irradiation light is split by the splitter 21 in two directions, ie, the first measurement optical waveguide 31 and the second measurement optical waveguide 32. Irradiation light split toward the first measurement optical waveguide 31 by the splitter 21 is propagated to the first measurement interferometer 5 by the first measurement optical waveguide 31. The irradiation light split toward the second measurement optical waveguide 32 by the splitter 21 propagates to the second measurement interferometer 15 through the second measurement optical waveguide 32 that is longer than the first measurement optical waveguide 31 by the distance LINB. Is done.

(c) ステップS201で、第1測定用光導波路31で伝搬された照射光は、第1測定干渉計5の第1半透鏡26aで一部が第1参照光として反射され、一部が第1半透鏡26aを第1測定光として透過する。ステップS202で第1測定光は第1測定干渉計5内部を進行し、図6に示すように第1感圧膜50aの撓みw1に応じて位置が変動する第1反射膜27aで反射される。その後第1測定光は第1半透鏡26aを再び透過する。第1測定干渉計5の内部を往復する間に、第1測定光は第1測定光路長F1を進む。 (c) In step S201, the irradiation light propagated in the first measurement optical waveguide 31 is partially reflected as the first reference light by the first semi-transparent mirror 26a of the first measurement interferometer 5, and a part is the first reference light. The light passes through the half mirror 26a as the first measurement light. The first measuring beam in step S202 will advances within 5 first measuring interferometer, positioned in accordance with the deflection w 1 of the first sensitive pressure membrane 50a as shown in FIG. 6 is reflected by the first reflective film 27a which varies The Thereafter, the first measurement light is transmitted again through the first semi-transparent mirror 26a. During shuttling the first measurement interferometer 5, the first measuring beam proceeds the first measuring optical path length F 1.

(d) ステップS203で、第1半透鏡26aで反射された第1参照光は、第1測定光路長F1を進んだ第1測定光と干渉する。その後、第1参照光及び第1測定光は、図1に示す第1測定用光導波路31及びスプリッタ21を経て、共通光導波路33で干渉縞検出素子153に伝搬される。 (d) In step S203, the first reference light reflected by the first half mirror 26a interferes with the first first measuring beam advanced measurement optical path length F 1. Thereafter, the first reference light and the first measurement light are propagated to the interference fringe detection element 153 through the first measurement optical waveguide 31 and the splitter 21 shown in FIG.

(e) ステップS301で、第2測定用光導波路32で伝搬された照射光は、第2測定干渉計15の第2半透鏡26bで一部が第2参照光として反射され、一部が第2半透鏡26bを第2測定光として透過する。ステップS302で第2測定光は第2測定干渉計15内部を進行し、第2感圧膜50bの撓みw2に応じて位置が変動する第2反射膜27bで反射される。その後第2測定光は第2半透鏡26bを再び透過する。第2測定干渉計15の内部を往復する間に、第2測定光は第2測定光路長F2を進む。 (e) In step S301, the irradiation light propagated through the second measurement optical waveguide 32 is partially reflected as the second reference light by the second semi-transparent mirror 26b of the second measurement interferometer 15, and a part of the irradiation light. The light passes through the two semi-transparent mirrors 26b as the second measurement light. The second measuring beam in step S302 will proceed within the second measurement interferometer 15, it is reflected by the second reflecting film 27b whose position varies in accordance with the deflection w 2 of the second sensitive pressure membrane 50b. Thereafter, the second measurement light passes through the second semi-transparent mirror 26b again. During the reciprocating inside the second measurement interferometer 15, the second measuring beam proceeds the second measuring optical path length F 2.

(f) ステップS303で、第2半透鏡26bで反射された第2参照光は、第2測定光路長F2を進んだ第2測定光と干渉する。その後、第2参照光及び第2測定光は、第2測定用光導波路32及びスプリッタ21を経て、共通光導波路33で干渉縞検出素子153に伝搬される。なお、ステップS301乃至ステップS303の進行は、ステップS201乃至ステップS203の進行と並行する。また、ステップS103、ステップS201乃至ステップS203、ステップS301乃至ステップS303は、ステップS102で時間tに応じて選択的に透過される照射光の波長成分のそれぞれについて連続的に実施される。 In (f) step S303, the second reference light reflected by the second half mirror 26b interferes with the second measuring beam advanced the second measuring optical path length F 2. Thereafter, the second reference light and the second measurement light are propagated to the interference fringe detection element 153 through the second optical waveguide for measurement 32 and the splitter 21 through the common optical waveguide 33. Note that the progress of steps S301 to S303 is parallel to the progress of steps S201 to S203. Further, Step S103, Step S201 to Step S203, and Step S301 to Step S303 are continuously performed for each wavelength component of the irradiation light that is selectively transmitted according to time t in Step S102.

(g) ステップS401で干渉縞検出素子153は、第1測定光及び第1参照光による第1干渉縞、及び第2測定光及び第2参照光による第2干渉縞の合成干渉縞を検出する。干渉縞検出素子153は、検出した合成干渉縞の上記(23)式で与えられる出力光強度SOUT(λ)をCPU300に伝送する。 (g) In step S401, the interference fringe detection element 153 detects a first interference fringe by the first measurement light and the first reference light, and a combined interference fringe of the second interference fringe by the second measurement light and the second reference light. . The interference fringe detection element 153 transmits the output light intensity S OUT (λ) given by the above equation (23) of the detected combined interference fringe to the CPU 300.

(h) ステップS402でCPU300の抽出モジュール310は、合成干渉縞の出力光強度SOUT(λ)を受信する。次に抽出モジュール310は、合成干渉縞の出力光強度SOUT(λ)のスペクトルの低周波成分の極値点を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出する。ステップS403で観察モジュール320は、抽出モジュール310で抽出された極値点の初期状態からの波長シフト量を観察する。観察モジュール320は、観察した極値点の波長シフト量を、データ記憶装置200の観察結果記憶モジュール201に保存する。 (h) In step S402, the extraction module 310 of the CPU 300 receives the output light intensity S OUT (λ) of the combined interference fringes. Next, the extraction module 310 converts the extreme point of the low frequency component of the spectrum of the output light intensity S OUT (λ) of the combined interference fringes to the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2. Extracted as an interference fringe component that fluctuates accordingly. In step S403, the observation module 320 observes the wavelength shift amount from the initial state of the extreme point extracted by the extraction module 310. The observation module 320 stores the observed wavelength shift amount of the extreme point in the observation result storage module 201 of the data storage device 200.

(i) ステップS404で差圧算出モジュール330は、関係記憶モジュールから、予め取得された第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)と、極値点の波長シフト量との関係式を読み出す。次に差圧算出モジュール330は、観察結果記憶モジュール201から観察された極値点の波長シフト量を読み出す。その後差圧算出モジュール330は、関係式に観察された極値点の波長シフト量を代入し、撓みw1と撓みw2との差(w1 - w2)の測定値を算出する。さらに差圧算出モジュール330は、上記(6)式等を用いて、撓みw1と撓みw2との差(w1 - w2)の測定値から、第1外圧PO1と第2外圧PO2との差圧の測定値を算出する。差圧算出モジュール330は、算出した差圧の測定値を差圧記憶モジュール203に保存し、第1の実施の形態に係る差圧測定方法を終了する。 (i) In step S404, the differential pressure calculation module 330 obtains a difference (w 1 −w) between the deflection w 1 of the first pressure-sensitive film 50a and the deflection w 2 of the second pressure-sensitive film 50b acquired in advance from the relation storage module. 2 ) Read the relational expression between the extreme point wavelength shift amount. Next, the differential pressure calculation module 330 reads the wavelength shift amount of the extreme point observed from the observation result storage module 201. Thereafter, the differential pressure calculation module 330 substitutes the observed wavelength shift amount of the extreme point in the relational expression, and calculates a measured value of the difference (w 1 −w 2 ) between the deflection w 1 and the deflection w 2 . Further, the differential pressure calculation module 330 calculates the first external pressure P O1 and the second external pressure P from the measured value of the difference (w 1 −w 2 ) between the deflection w 1 and the deflection w 2 using the above equation (6) and the like. Calculate the measured pressure difference with O2 . The differential pressure calculation module 330 stores the calculated measurement value of the differential pressure in the differential pressure storage module 203, and ends the differential pressure measurement method according to the first embodiment.

従来の差圧測定システムでは、第1測定光及び第1参照光を第2測定干渉計に導き、第2測定干渉計の半透鏡で反射された第1測定光と、第2外圧で変動する反射膜で反射された第1参照光とを干渉させていた。そのため、第2測定干渉計で反射された第1測定光及び第1参照光を受光素子に導くために、さらにもう1個のスプリッタが必要であった。そのため、従来の差圧測定システムでは、光源から発せられた照射光が受光素子に到達するまでスプリッタを通過する回数が4回あるために照射光の光強度が低下し、差圧の測定精度が低下する要因となっていた。これに対し図1に示した差圧測定システム及び図19に示した差圧測定方法によれば、光源114から発せられた照射光が干渉縞検出素子153に到達するまでスプリッタ21を通過する回数を2回に抑えることが可能となる。そのため、従来の差圧測定システムと比較して照射光の光強度低下を抑制可能であり、測定精度の向上を図ることが可能となる。   In the conventional differential pressure measurement system, the first measurement light and the first reference light are guided to the second measurement interferometer, and fluctuate depending on the first measurement light reflected by the second mirror of the second measurement interferometer and the second external pressure. The first reference light reflected by the reflective film was caused to interfere. Therefore, another splitter is necessary to guide the first measurement light and the first reference light reflected by the second measurement interferometer to the light receiving element. For this reason, in the conventional differential pressure measurement system, the light intensity of the irradiated light is reduced because the irradiation light emitted from the light source passes through the splitter four times until reaching the light receiving element, and the measurement accuracy of the differential pressure is reduced. It was a factor of decline. On the other hand, according to the differential pressure measurement system shown in FIG. 1 and the differential pressure measurement method shown in FIG. 19, the number of times the irradiation light emitted from the light source 114 passes through the splitter 21 until it reaches the interference fringe detection element 153. Can be reduced to twice. Therefore, it is possible to suppress a decrease in the light intensity of the irradiation light as compared with the conventional differential pressure measurement system, and it is possible to improve the measurement accuracy.

次に第2測定用光導波路32を、第1測定用光導波路31よりも上記(3)式で与えられる距離LINBだけ長くした理由について説明する。仮に、光源114の発光帯域幅ΔλSが0.2nmであり、照射光の照射光中心波長λCSが1.3μmである場合、照射光の可干渉距離LCは上記(2)式より8.5mmである。この場合、第2測定用光導波路32と第1測定用光導波路31の長さの差が2mmだと、第1測定光は第2参照光及び第2測定光のそれぞれと干渉してしまい、第1参照光は第2参照光及び第2測定光のそれぞれと干渉してしまう。そのため、図20に示すように、第1外圧PO1と第2外圧PO2との差圧とは無関係な第2測定用光導波路32の光路長と第1測定用光導波路31の光路長との光路差による干渉縞が発生してしまう。よって、図1に示す干渉縞検出素子153が検出する光強度のスペクトルから、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分を抽出するのが困難となる。 Next, the reason why the second measurement optical waveguide 32 is made longer than the first measurement optical waveguide 31 by the distance L INB given by the above equation (3) will be described. If the emission bandwidth Δλ S of the light source 114 is 0.2 nm and the irradiation light center wavelength λ CS of the irradiation light is 1.3 μm, the coherence distance L C of the irradiation light is 8.5 mm from the above equation (2). is there. In this case, if the difference in length between the second measurement optical waveguide 32 and the first measurement optical waveguide 31 is 2 mm, the first measurement light interferes with each of the second reference light and the second measurement light, The first reference light interferes with each of the second reference light and the second measurement light. Therefore, as shown in FIG. 20, the optical path length of the first external pressure P O1 and the optical path length and the first measurement optical waveguide 31 of the second external pressure P O2 independent of the pressure difference between a second measured optical waveguide 32 Interference fringes due to the optical path difference. Therefore, an interference fringe component that varies according to the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 is extracted from the spectrum of the light intensity detected by the interference fringe detection element 153 shown in FIG. It becomes difficult.

これに対し、例えば光源114の発光帯域幅ΔλSが5nmであり、照射光の照射光中心波長λCSが1.3μmである場合、照射光の可干渉距離LCは上記(2)式より0.343mmである。この場合、第2測定用光導波路32と第1測定用光導波路31の長さの差が2mmだと、第1測定光は第2参照光及び第2測定光のどちらとも干渉せず、第1参照光は第2参照光及び第2測定光のどちらとも干渉しない。そのため、図21に示すように、第1外圧PO1と第2外圧PO2との差圧とは無関係な第2測定用光導波路32と第1測定用光導波路31との光路差による干渉縞が発生しない。よって、図1に示す干渉縞検出素子153が検出する光強度のスペクトルから、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分を抽出するのが容易となる。 On the other hand, for example, when the emission bandwidth Δλ S of the light source 114 is 5 nm and the irradiation light center wavelength λ CS of the irradiation light is 1.3 μm, the coherence distance L C of the irradiation light is 0.343 from the above equation (2). mm. In this case, if the difference in length between the second measurement optical waveguide 32 and the first measurement optical waveguide 31 is 2 mm, the first measurement light does not interfere with either the second reference light or the second measurement light, and the first The 1 reference light does not interfere with either the second reference light or the second measurement light. Therefore, as shown in FIG. 21, the interference due to the optical path difference between the first external pressure P O1 and second external pressure P O2 differential pressure and the second measuring optical waveguide 32 independent of the first measuring optical waveguide 31 stripes Does not occur. Therefore, an interference fringe component that varies according to the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 is extracted from the spectrum of the light intensity detected by the interference fringe detection element 153 shown in FIG. Becomes easy.

図22に示す比較例に係る差圧測定システムにおいては、スプリッタ21に光ファイバ231及び光ファイバ232が接続されている。光ファイバ231は第1外圧PO1を受け、光ファイバ232は第2外圧PO2を受ける。光ファイバ231の末端には反射鏡227aが配置され、光ファイバ232の末端には反射鏡227bが配置されている。第1外圧PO1が変動すると光ファイバ231の長さは変動し、第2外圧PO2が変動すると光ファイバ232の長さは変動する。ただし光ファイバ231及び光ファイバ232のそれぞれの長さは、光ファイバ231を往復した照射光の光路長と、光ファイバ232を往復した照射光の光路長との光路差が可干渉距離LC以内となるよう設定されている。したがって光ファイバ231を往復した照射光は、光ファイバ232を往復した照射光と干渉する。 In the differential pressure measurement system according to the comparative example shown in FIG. 22, an optical fiber 231 and an optical fiber 232 are connected to the splitter 21. The optical fiber 231 receives the first external pressure PO1 , and the optical fiber 232 receives the second external pressure PO2 . A reflecting mirror 227 a is disposed at the end of the optical fiber 231, and a reflecting mirror 227 b is disposed at the end of the optical fiber 232. When the first external pressure P O1 varies, the length of the optical fiber 231 varies, and when the second external pressure P O2 varies, the length of the optical fiber 232 varies. However, each length of the optical fiber 231 and the optical fiber 232 is such that the optical path difference between the optical path length of the irradiation light reciprocating the optical fiber 231 and the optical path length of the irradiation light reciprocating the optical fiber 232 is within the coherent distance L C It is set to become. Therefore, the irradiation light reciprocating through the optical fiber 231 interferes with the irradiation light reciprocating through the optical fiber 232.

第1外圧PO1と第2外圧PO2の差圧が変動すると、光ファイバ231を往復した照射光と光ファイバ232を往復した照射光とが形成する干渉縞の周期は変動する。しかし、光ファイバ231を往復した照射光の光路長と、光ファイバ232を往復した照射光の光路長との光路差が可干渉距離LC以内となるよう設定されているため、光ファイバ231の第1外圧PO1を受けない部分や、光ファイバ232の第2外圧PO2を受けない部分が温度変化等により長さが変動した場合も、光ファイバ231を往復した照射光と光ファイバ232を往復した照射光とが形成する干渉縞の周期は変動する。この場合、第1外圧PO1と第2外圧PO2の差圧の変動により生ずる光路差をΔxPとし、温度変化等により生ずる光路差をΔxTとすると、干渉縞検出素子153が検出する干渉縞の光強度SR(λ)は、下記(24)式で与えられる。 When the differential pressure between the first external pressure P O1 and the second external pressure P O2 varies, the period of interference fringes formed by the irradiation light that reciprocates through the optical fiber 231 and the irradiation light that reciprocates through the optical fiber 232 varies. However, since the optical path difference between the optical path length of the irradiation light reciprocating through the optical fiber 231 and the optical path length of the irradiation light reciprocating through the optical fiber 232 is set to be within the coherent distance L C , parts and not subject to first external pressure P O1, even if the second external pressure P O2 receiving no partial length due to a temperature change or the like of the optical fiber 232 is changed, the illumination light and the optical fiber 232 and the optical fiber 231 reciprocates The period of interference fringes formed by the reciprocating irradiation light varies. In this case, if the optical path difference caused by the change in the differential pressure between the first external pressure P O1 and the second external pressure P O2 is Δx P and the optical path difference caused by the temperature change is Δx T , the interference detected by the interference fringe detection element 153 The light intensity S R (λ) of the stripe is given by the following equation (24).

SR(λ) = S0(λ)[1 + A cos{(2π / λ)ΔxP + (2π / λ)ΔxT )}] …(24)
したがって、余弦関数の位相に光路差ΔxPと光路差ΔxTの両方が含まれている。そのため、比較例に係る差圧測定システムで干渉縞の光強度SR(λ)を測定しても、第1外圧PO1と第2外圧PO2の差圧を反映する光路差ΔxPのみの情報を抽出することは不可能である。これに対し、図1に示す差圧測定システムによれば、合成干渉縞の出力光強度SOUT(λ)は上記(23)式で与えられ、第2項に含まれるcos{(2π/λ)(La - Lb + w1 - w2)}は位相に第1測定光路長F1と第2測定光路長F2の光路差以外の光路差を含まない。したがって、第1測定用光導波路31及び第2測定用光導波路32のそれぞれの長さの変動に影響されることなく、高い精度で第1外圧PO1と第2外圧PO2の差圧を測定することが可能となる。
S R (λ) = S 0 (λ) [1 + A cos {(2π / λ) Δx P + (2π / λ) Δx T )}]… (24)
Accordingly, both the optical path difference Δx P and the optical path difference Δx T are included in the phase of the cosine function. Therefore, even if the interference fringe light intensity S R (λ) is measured by the differential pressure measurement system according to the comparative example, only the optical path difference Δx P that reflects the differential pressure between the first external pressure P O1 and the second external pressure P O2 is obtained. It is impossible to extract information. In contrast, according to the differential pressure measurement system shown in FIG. 1, the output light intensity S OUT (λ) of the combined interference fringes is given by the above equation (23), and cos {(2π / λ included in the second term ) (L a- L b + w 1 − w 2 )} does not include an optical path difference other than the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 in the phase. Therefore, the differential pressure between the first external pressure P O1 and the second external pressure P O2 can be measured with high accuracy without being affected by variations in the lengths of the first measurement optical waveguide 31 and the second measurement optical waveguide 32. It becomes possible to do.

また、第1測定用光導波路31の透過率TW1と、第2測定用光導波路32の透過率TW2とは等しいことが好ましい。図23は、第1測定用光導波路31の透過率TW1に対する第2測定用光導波路32の透過率TW2の比が1.0、0.8、0.6、0.4、0.2のそれぞれの場合における、出力光強度SOUT(λ)のスペクトルを示すグラフである。なお図23は、第1感圧膜50aの撓みw1が0μm、第2感圧膜50bの撓みw2が100μm、第1半透鏡26a及び第2半透鏡26bのそれぞれの反射率が3%、及び第1反射膜27a及び第2反射膜27bのそれぞれの反射率が70%の条件で得られたスペクトルのグラフである。図24は、第1測定用光導波路31の透過率TW1に対する第2測定用光導波路32の透過率TW2の比が1.0の場合の、出力光強度SOUT(λ)のスペクトルの包絡線を示すグラフである。図25は、第1測定用光導波路31の透過率TW1に対する第2測定用光導波路32の透過率TW2の比が0.2の場合の、出力光強度SOUT(λ)のスペクトルの包絡線を示すグラフである。図26は、出力光強度SOUT(λ)のスペクトルの包絡線の極大値と極小値との比であるコントラストを、第1測定用光導波路31の透過率TW1に対する第2測定用光導波路32の透過率TW2の比に対してプロットしたグラフである。透過率TW1に対する透過率TW2の比が1.0の場合に、コントラストは最も高くなる。そのため図24に示すように、出力光強度SOUT(λ)のスペクトルの包絡線の極大点及び極小点を同定するのは容易である。しかし、第1測定用光導波路31の透過率TW1に対する第2測定用光導波路32の透過率TW2の比が1.0より減少すると、出力光強度SOUT(λ)のスペクトルにおいて上記(23)式の第3項(β-α)cos{(2π/λ)×2(Lb+ w2)}で与えられる反射光成分の効果が支配的となる。第1測定用光導波路31の透過率TW1に対する第2測定用光導波路32の透過率TW2の比が1.0より増加した場合も同様である。そのため図26に示すように、コントラストが低下し、図25に示すように、出力光強度SOUT(λ)のスペクトルの包絡線の極大点と極小点を判別するのが困難となる。 Further, the transmittance T W1 of the first measurement optical waveguide 31 and the transmittance T W2 of the second measurement optical waveguide 32 are preferably equal. 23, when the ratio of the transmittance T W2 of the second measuring optical waveguide 32 with respect to the transmittance T W1 of the first measuring optical waveguide 31 of each 1.0,0.8,0.6,0.4,0.2, output light intensity It is a graph which shows the spectrum of S OUT (λ). Note that in FIG. 23, the deflection w 1 of the first pressure-sensitive film 50a is 0 μm, the deflection w 2 of the second pressure-sensitive film 50b is 100 μm, and the reflectivity of each of the first and second semi-transmissive mirrors 26a and 26b is 3%. 4 is a graph of spectra obtained under the condition that the reflectance of each of the first reflective film 27a and the second reflective film 27b is 70%. FIG. 24 shows the envelope of the spectrum of the output light intensity S OUT (λ) when the ratio of the transmittance T W2 of the second measurement optical waveguide 32 to the transmittance T W1 of the first measurement optical waveguide 31 is 1.0. It is a graph which shows. FIG. 25 shows the envelope of the spectrum of the output light intensity S OUT (λ) when the ratio of the transmittance T W2 of the second measurement optical waveguide 32 to the transmittance T W1 of the first measurement optical waveguide 31 is 0.2. It is a graph which shows. FIG. 26 shows the contrast, which is the ratio between the maximum value and the minimum value of the envelope of the spectrum of the output light intensity S OUT (λ), and the second measurement optical waveguide with respect to the transmittance T W1 of the first measurement optical waveguide 31. 3 is a graph plotted against the ratio of the transmittance T W2 of 32. The contrast is highest when the ratio of the transmittance T W2 to the transmittance T W1 is 1.0. Therefore, as shown in FIG. 24, it is easy to identify the maximum and minimum points of the envelope of the spectrum of the output light intensity S OUT (λ). However, when the ratio of the transmittance T W2 of the second measurement optical waveguide 32 to the transmittance T W1 of the first measurement optical waveguide 31 is decreased from 1.0, the above (23) in the spectrum of the output light intensity S OUT (λ) The effect of the reflected light component given by the third term (β−α) cos {(2π / λ) × 2 (L b + w 2 )} of the equation becomes dominant. The same applies when the ratio of the transmittance TW2 of the second measurement optical waveguide 32 to the transmittance TW1 of the first measurement optical waveguide 31 is increased from 1.0. Therefore, as shown in FIG. 26, the contrast is lowered, and as shown in FIG. 25, it becomes difficult to discriminate between the maximum point and the minimum point of the envelope of the spectrum of the output light intensity S OUT (λ).

(23)式の第3項(β-α)cos{(2π/λ)×2(Lb+ w2)}で与えられる反射光成分の効果が支配的となっても、図23に示すように合成干渉縞の位相は変化しないため、第1外圧PO1と第2外圧PO2の差圧の測定は可能である。しかし、高い精度で差圧を測定するためには、高い精度で第1測定光路長F1と第2測定光路長F2の光路差を反映する干渉縞成分を抽出することが望ましい。第1測定用光導波路31の透過率TW1と、第2測定用光導波路32の透過率TW2を等しくすれば、出力光強度SOUT(λ)のスペクトルにおいて、(23)式の第2項2αcos{(2π/λ)(La - Lb + w1 - w2)}cos{(2π/λ)(La+Lb+ w1 + w2)}に対する第3項(β-α)cos{(2π/λ)×2(Lb+ w2)}の相対的な重みを減少させることが可能となる。 Even if the effect of the reflected light component given by the third term (β-α) cos {(2π / λ) × 2 (L b + w 2 )} in the equation (23) becomes dominant, it is shown in FIG. As described above, since the phase of the combined interference fringes does not change, the differential pressure between the first external pressure P O1 and the second external pressure P O2 can be measured. However, in order to measure the differential pressure with high accuracy, it is desirable to extract an interference fringe component that reflects the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 with high accuracy. If the transmittance T W1 of the first measurement optical waveguide 31 and the transmittance T W2 of the second measurement optical waveguide 32 are made equal, then in the spectrum of the output light intensity S OUT (λ), the second of the equation (23) The term 2αcos {(2π / λ) (L a- L b + w 1 -w 2 )} cos {(2π / λ) (L a + L b + w 1 + w 2 )} The third term (β-α) cos {(2π / λ) × 2 ( It becomes possible to reduce the relative weight of L b + w 2 )}.

(第1の実施の形態の第1の変形例)
第1の実施の形態の第1の変形例に係る差圧測定システムの構成は、図1と同様である。ここで、第1の実施の形態に係る抽出モジュール310は、出力光強度SOUT(λ)のスペクトルにおける低周波成分の極値点を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出する。これに対し第1の変形例において、抽出モジュール310は、出力光強度SOUT(λ)のスペクトルにおける低周波成分の隣り合う二つの極大点の間隔を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出する。なお抽出モジュール310は、出力光強度SOUT(λ)のスペクトルの包絡線における隣り合う二つの極大点の間隔を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出してもよい。
(First modification of the first embodiment)
The configuration of the differential pressure measurement system according to the first modification of the first embodiment is the same as that shown in FIG. Here, the extraction module 310 according to the first embodiment uses the extreme points of the low frequency component in the spectrum of the output light intensity S OUT (λ) as the first measurement optical path length F 1 and the second measurement optical path length F. It is extracted as an interference fringe component that fluctuates according to the optical path difference between the two . On the other hand, in the first modification example, the extraction module 310 calculates the interval between the two adjacent maximum points of the low frequency component in the spectrum of the output light intensity S OUT (λ) as the first measurement optical path length F 1 and the second measurement point. It is extracted as the interference fringe component which varies as a function of optical path difference between the measurement optical path length F 2. The extraction module 310 determines the interval between two adjacent local maximum points in the envelope of the spectrum of the output light intensity S OUT (λ) according to the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2. It may be extracted as an interference fringe component that fluctuates.

第1外圧PO1と第2外圧PO2との差圧が一定であれば、出力光強度SOUT(λ)のスペクトルの低周波成分の周期(2π/λ)(La - Lb + w1 - w2)は変動しない。そのため、抽出された極大点の間隔は一定である。これに対し、第1外圧PO1と第2外圧PO2との差圧が変動すれば、出力光強度SOUT(λ)のスペクトルの低周波成分の周期(2π/λ)(La - Lb + w1 - w2)も変動する。そのため、抽出された極大点の間隔は、差圧の変動の前後で変動する。図27は、ある初期状態における出力光強度SOUT(λ)のスペクトルの例であり、抽出された極大点の間隔は0.02μmである。ここで初期状態から差圧が変動し、第2感圧膜50bの撓みw2が一定のまま、第1感圧膜50aの撓みw1が22.00μm変位すると、抽出された極大点の間隔は、0.02μmから図28に示すように0.014μmに変動する。 If the differential pressure between the first external pressure P O1 and the second external pressure P O2 is constant, the period of the low frequency component of the spectrum of the output light intensity S OUT (λ) (2π / λ) (L a L b + w 1 -w 2 ) does not change. Therefore, the interval between the extracted maximum points is constant. In contrast, if the variation differential pressure between the first external pressure P O1 and second external pressure P O2, the period of the low frequency components of the spectrum of the output light intensity S OUT (λ) (2π / λ) (L a - L b + w 1 -w 2 ) also varies. Therefore, the interval between the extracted maximum points varies before and after the variation of the differential pressure. FIG. 27 is an example of a spectrum of output light intensity S OUT (λ) in a certain initial state, and the interval between the extracted maximum points is 0.02 μm. Here the differential pressure is changed from the initial state, while the deflection w 2 of the second sensitive pressure membrane 50b is constant, the deflection w 1 of the first sensitive pressure membrane 50a is 22.00μm displacement distance of the extracted maximum point is , From 0.02 μm to 0.014 μm as shown in FIG.

図29は、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差と、抽出された極大点の間隔との関係を示している。ここで図29においては、撓みw2を0μmで一定とし、撓みw1と撓みw2との差(w1 - w2)を0μmから30μmの間で変動させた場合と、撓みw2を5.588μmで一定とし、撓みw1と撓みw2との差(w1 - w2)を0μmから30μmの間で変動させた場合と、撓みw2を8.623μmで一定とし、撓みw1と撓みw2との差(w1 - w2)を0μmから30μmの間で変動させた場合における、抽出された極大点の間隔がプロットされている。図29に示すように、抽出された極大点の間隔は、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2のそれぞれの個々の値に依存せず、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)のみに比例する。 Figure 29 shows the relationship between the deflection difference w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a, extracted intervals maximum point. Here, in FIG. 29, the deflection w 2 is constant at 0 μm, and the difference (w 1 −w 2 ) between the deflection w 1 and the deflection w 2 is varied between 0 μm and 30 μm, and the deflection w 2 is When the difference between the deflection w 1 and the deflection w 2 (w 1 -w 2 ) is varied between 0 μm and 30 μm, and the deflection w 2 is constant at 8.623 μm, and the deflection w 1 The interval between the extracted maximum points when the difference (w 1 −w 2 ) from the deflection w 2 is varied between 0 μm and 30 μm is plotted. As shown in FIG. 29, the interval of the extracted maximum point does not depend on each individual value of the deflection w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a, the first deflection w 1 and the difference between the deflection w 2 of the second sense pressure membrane 50b-sensitive pressure membrane 50a (w 1 - w 2) is proportional only.

第1の変形例においては、観察モジュール320は抽出された極大点の間隔を観察する。差圧算出モジュール330は、予め取得された第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)と、極大点の間隔との関係式に、抽出された極大点の間隔を代入し、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)の測定値を算出する。さらに差圧算出モジュール330は、上記(6)式等を用いて、第1外圧PO1と第2外圧PO2との差圧の測定値を算出する。また第1の変形例においては、観察結果記憶モジュール201は観察モジュール320で観察された極大点の間隔を保存する。関係記憶モジュール202は、予め取得された第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)と、極大点の間隔との関係式を保存する。 In the first modification, the observation module 320 observes the interval between the extracted maximum points. Differential pressure calculation module 330, the deflection difference w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a obtained in advance (w 1 - w 2) and the relationship between the distance of the maximum point in formula, substituting the spacing of the extracted maximum point, the difference between the deflection w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a - calculating the measured value of (w 1 w 2) . Furthermore, the differential pressure calculation module 330 calculates a measured value of the differential pressure between the first external pressure P O1 and the second external pressure P O2 using the above equation (6) and the like. In the first modification, the observation result storage module 201 stores the interval between the maximum points observed by the observation module 320. Relationship storage module 202, the deflection difference w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a obtained in advance (w 1 - w 2) and relational expression between the distance of the maximum point Save.

次に図19を用いて、第1の実施の形態の第1の変形例に係る差圧測定方法について説明する。   Next, a differential pressure measurement method according to a first modification of the first embodiment will be described with reference to FIG.

(a)まず第1の実施の形態と同様に、ステップS101乃至ステップS103、ステップS201乃至ステップS203、ステップS301乃至ステップS303、及びステップS401が実施される。ステップS402で抽出モジュール310は、合成干渉縞の出力光強度SOUT(λ)のスペクトルの低周波成分の隣り合う二つの極大点の間隔を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出する。ステップS403で観察モジュール320は、抽出モジュール310で抽出された極大点の間隔を観察する。観察モジュール320は、観察した極大点の間隔を、データ記憶装置200の観察結果記憶モジュール201に保存する。 (a) First, similarly to the first embodiment, steps S101 to S103, steps S201 to S203, steps S301 to S303, and step S401 are performed. In step S402, the extraction module 310 determines the interval between the two adjacent maximum points of the low frequency component of the spectrum of the output light intensity S OUT (λ) of the combined interference fringes as the first measurement optical path length F 1 and the second measurement optical path length. It is extracted as the interference fringe component which varies as a function of optical path difference F 2. In step S403, the observation module 320 observes the interval between the maximum points extracted by the extraction module 310. The observation module 320 stores the observed interval between the maximum points in the observation result storage module 201 of the data storage device 200.

(b) ステップS404で差圧算出モジュール330は、関係記憶モジュールから、予め取得された第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)と、極大点の間隔との関係式を読み出す。次に差圧算出モジュール330は、観察結果記憶モジュール201から観察された極大点の間隔を読み出す。その後差圧算出モジュール330は、関係式に観察された極大点の間隔を代入し、撓みw1と撓みw2との差(w1 - w2)の測定値を算出する。次に差圧算出モジュール330は、上記(6)式等を用いて、第1外圧PO1と第2外圧PO2との差圧の測定値を算出し、第1の変形例に係る差圧測定方法を終了する。 (b) In step S404, the differential pressure calculation module 330 obtains a difference (w 1 −w) between the deflection w 1 of the first pressure-sensitive film 50a and the deflection w 2 of the second pressure-sensitive film 50b that is acquired in advance from the relation storage module. 2 ) Read the relational expression between the local maximum points. Next, the differential pressure calculation module 330 reads the observed interval between the maximum points from the observation result storage module 201. Thereafter, the differential pressure calculation module 330 substitutes the observed interval between the maximum points in the relational expression, and calculates a measured value of the difference (w 1 −w 2 ) between the deflection w 1 and the deflection w 2 . Then the difference pressure calculation module 330, using the above equation (6) or the like, to calculate a first external pressure P O1 measurements of differential pressure between the second external pressure P O2, differential pressure according to the first modification End the measurement method.

以上説明した第1の実施の形態の第1の変形例に係る差圧測定システム及び差圧測定方法によっても、高い精度で第1外圧PO1と第2外圧PO2との差圧の測定することが可能となる。なお抽出モジュール310は、出力光強度SOUT(λ)のスペクトルにおける低周波成分の隣り合う二つの極小点の間隔、あるいは出力光強度SOUT(λ)のスペクトルの包絡線における隣り合う二つの極小点の間隔を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出してもよい。 Even with the differential pressure measurement system and the differential pressure measurement method according to the first modification of the first embodiment described above, the differential pressure between the first external pressure P O1 and the second external pressure P O2 is measured with high accuracy. It becomes possible. Note extraction module 310, two minima adjacent the envelope of the spectrum spacing of the two minimum points adjacent the low frequency component or the output light intensity S OUT, (lambda) in the spectrum of the output light intensity S OUT (λ) the spacing of the points may be extracted as an interference fringe component which varies as a function of the first optical path difference of the measuring optical path length F 1 and the second measuring optical path length F 2.

(第1の実施の形態の第2の変形例)
上記(23)式の第2項に含まれるcos{(2π/λ)(La - Lb + w1 - w2)}に着目すると、出力光強度SOUT(λ)のスペクトルの低周波成分の任意の第1の波長λ1における第1の周期G1は下記(25)式で与えられ、第1の波長λ1と異なる第2の波長λ2における低周波成分の第2の周期G2は下記(26)式で与えられる。また第1の周期G1と第2の周期G2との差は、下記(27)式で与えられる。さらに(27)式から、間隔La及び第1感圧膜50aの撓みw1と、間隔Lb及び第2感圧膜50bの撓みw2との差(La - Lb + w1 - w2)は下記(28)式で与えられる。
(Second modification of the first embodiment)
Cos {(2π / λ) (L a − included in the second term of the above equation (23) L b + w 1 -w 2 )}, the first period G 1 at an arbitrary first wavelength λ 1 of the low frequency component of the spectrum of the output light intensity S OUT (λ) is expressed by the following equation (25) The second period G 2 of the low frequency component at the second wavelength λ 2 different from the first wavelength λ 1 is given by the following equation (26). The difference between the first period G 1 and the second period G 2 is given by the following equation (27). And (27) from the equation, the deflection w 1 interval L a and the first sense pressure membrane 50a, the difference between the deflection w 2 intervals L b and second sense pressure membrane 50b (L a - L b + w 1 −w 2 ) is given by the following equation (28).

G1 = (La - Lb + w1 - w2) /λ1 …(25)
G2 = (La - Lb + w1 - w2) /λ2 …(26)
G1 - G2 = (La - Lb + w1 - w2)×{(1 /λ1) - (1 /λ2)} …(27)
La - Lb + w1 - w2 = (G1 - G2) / {(1 /λ1) - (1 /λ2)} …(28)
ここで、第1の周期G1と第2の周期G2との差(G1 - G2)は、第1の波長λ1から第2の波長λ2までの間の低周波成分の干渉縞の数を表す。したがって、間隔La、間隔Lb、第1の波長λ1、第2の波長λ2、及び第1の波長λ1から第2の波長λ2までの間における出力光強度SOUT(λ)のスペクトルの低周波成分による干渉縞の数が既知であれば、上記(28)式から、第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)を算出可能である。
G 1 = (L a- L b + w 1 -w 2 ) / λ 1 (25)
G 2 = (L a- L b + w 1 -w 2 ) / λ 2 (26)
G 1 -G 2 = (L a- L b + w 1 -w 2 ) × {(1 / λ 1 )-(1 / λ 2 )}… (27)
L a- L b + w 1 -w 2 = (G 1 -G 2 ) / {(1 / λ 1 )-(1 / λ 2 )}… (28)
Here, the difference (G 1 -G 2 ) between the first period G 1 and the second period G 2 is the interference of the low frequency component between the first wavelength λ 1 and the second wavelength λ 2 Represents the number of stripes. Accordingly, the output light intensity S OUT (λ) between the interval L a , the interval L b , the first wavelength λ 1 , the second wavelength λ 2 , and the first wavelength λ 1 to the second wavelength λ 2. If the number of interference fringes due to the low frequency component of the spectrum is known, the difference between the deflection w 1 of the first pressure-sensitive film 50a and the deflection w 2 of the second pressure-sensitive film 50b (w 1 -w 2 ) can be calculated.

図30に例示する出力光強度SOUT(λ)のスペクトルにおいて、第1の波長λ1を0.848μmと、第2の波長λ2を0.852μmとする。第1の波長λ1と第2の波長λ2との間にはスペクトルの包絡線の極大点が2つあることから、低周波成分の干渉縞の数は2である。この場合、上記(28)式より第1感圧膜50aの撓みw1及び第2感圧膜50bの撓みw2の差(w1 - w2)は400μmであると算出される。 In the spectrum of the output light intensity S OUT (λ) illustrated in FIG. 30, the first wavelength λ 1 is 0.848 μm and the second wavelength λ 2 is 0.852 μm. Since there are two maximum points of the envelope of the spectrum between the first wavelength λ 1 and the second wavelength λ 2 , the number of interference fringes of low frequency components is two. In this case, the (28) deflection difference w 2 of the deflection w 1 and the second sense pressure membrane 50b of the first sensitive pressure membrane 50a from the equation (w 1 - w 2) is calculated to be 400 [mu] m.

以上示した原理を適用する第2の変形例においては、図1に示す抽出モジュール310は合成干渉縞の出力光強度SOUT(λ)のスペクトルのデータから、任意の第1の波長λ1と第2の波長λ2の間の低周波成分の極大点を抽出する。なお抽出モジュール310は、合成干渉縞の出力光強度SOUT(λ)のスペクトルの包絡線を計算し、任意の第1の波長λ1と第2の波長λ2の間の包絡線の極大点を抽出してもよい。観察モジュール320は、抽出された極大点の数を数える。差圧算出モジュール330は、上記(28)式に第1の波長λ1の値、第2の波長λ2の値、及び抽出された極大点の数を代入し、撓みw1と撓みw2との差(w1 - w2)の測定値を算出することにより、第1外圧PO1と第2外圧PO2との差圧の測定値を算出する。また第2の変形例においては、観察結果記憶モジュール201は観察モジュール320で観察された第1の波長λ1の値、第2の波長λ2の値、及び極大点の数を保存する。関係記憶モジュール202は、上記(28)式を保存する。 In the second modification example in which the principle described above is applied, the extraction module 310 shown in FIG. 1 calculates the arbitrary first wavelength λ 1 from the spectrum data of the output light intensity S OUT (λ) of the combined interference fringes. The maximum point of the low frequency component between the second wavelengths λ 2 is extracted. The extraction module 310 calculates the envelope of the spectrum of the output light intensity S OUT (λ) of the combined interference fringe, and the maximum point of the envelope between any first wavelength λ 1 and second wavelength λ 2 May be extracted. The observation module 320 counts the number of extracted maximum points. The differential pressure calculation module 330 substitutes the value of the first wavelength λ 1 , the value of the second wavelength λ 2 , and the number of extracted maximum points into the above equation (28), and the deflection w 1 and the deflection w 2 By calculating the measured value of the difference (w 1 −w 2 ), the measured value of the differential pressure between the first external pressure P O1 and the second external pressure P O2 is calculated. In the second modification, the observation result storage module 201 stores the value of the first wavelength λ 1 , the value of the second wavelength λ 2 , and the number of maximum points observed by the observation module 320. The relationship storage module 202 stores the above equation (28).

次に図19を用いて、第1の実施の形態の第2の変形例に係る差圧測定方法について説明する。   Next, a differential pressure measurement method according to a second modification of the first embodiment will be described with reference to FIG.

(a) ステップS101乃至ステップS103、ステップS201乃至ステップS203、ステップS301乃至ステップS303、及びステップS401が第1の実施の形態と同様に実施される。次にステップS402で図1に示す抽出モジュール310は、任意の第1の波長λ1と第2の波長λ2との間における出力光強度SOUT(λ)のスペクトルの低周波成分の極大点を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出する。 (a) Steps S101 to S103, Steps S201 to S203, Steps S301 to S303, and Step S401 are performed in the same manner as in the first embodiment. Next, in step S402, the extraction module 310 shown in FIG. 1 performs the maximum point of the low frequency component of the spectrum of the output light intensity S OUT (λ) between the arbitrary first wavelength λ 1 and the second wavelength λ 2. Are extracted as interference fringe components that vary according to the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 .

(b) ステップS403で観察モジュール320は、抽出モジュール310で抽出された極大点の数を観察する。観察モジュール320は、第1の波長λ1の値、第2の波長λ2の値、及び観察した極大点の数を、データ記憶装置200の観察結果記憶モジュール201に保存する。 (b) In step S403, the observation module 320 observes the number of maximum points extracted by the extraction module 310. The observation module 320 stores the value of the first wavelength λ 1 , the value of the second wavelength λ 2 , and the number of observed local maximum points in the observation result storage module 201 of the data storage device 200.

(c) ステップS404で差圧算出モジュール330は、関係記憶モジュールから上記(28)式を読み出す。次に差圧算出モジュール330は、観察結果記憶モジュール201から第1の波長λ1の値、第2の波長λ2の値、及び観察された極大点の数を読み出し上記(28)式に代入することにより、撓みw1と撓みw2との差(w1 - w2)の測定値を算出する。その後、差圧算出モジュール330は撓みw1と撓みw2との差(w1 - w2)の測定値に基づいて第1外圧PO1と第2外圧PO2との差圧の測定値を算出し、第1の実施の形態の第2の変形例に係る差圧測定方法を終了する。 (c) In step S404, the differential pressure calculation module 330 reads the equation (28) from the relation storage module. Next, the differential pressure calculation module 330 reads the value of the first wavelength λ 1 , the value of the second wavelength λ 2 , and the number of observed local maximum points from the observation result storage module 201 and substitutes them into the above equation (28). Thus, a measured value of the difference (w 1 −w 2 ) between the deflection w 1 and the deflection w 2 is calculated. After that, the differential pressure calculation module 330 calculates the measured value of the differential pressure between the first external pressure P O1 and the second external pressure P O2 based on the measured value of the difference between the deflection w 1 and the deflection w 2 (w 1 −w 2 ). The differential pressure measurement method according to the second modification of the first embodiment is calculated and finished.

以上説明した第1の実施の形態の第2の変形例に係る差圧測定システム及び差圧測定方法によっても、高い精度で第1外圧PO1と第2外圧PO2との差圧の測定することが可能となる。なお抽出モジュール310は、任意の第1の波長λ1と第2の波長λ2との間における出力光強度SOUT(λ)のスペクトルの低周波成分の極小点の数、あるいは出力光強度SOUT(λ)のスペクトルの包絡線における極小点の数を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出してもよい。 The differential pressure measurement system and the differential pressure measurement method according to the second modification of the first embodiment described above also measure the differential pressure between the first external pressure P O1 and the second external pressure P O2 with high accuracy. It becomes possible. It should be noted that the extraction module 310 determines the number of minimum points of the low frequency component of the spectrum of the output light intensity S OUT (λ) between the arbitrary first wavelength λ 1 and the second wavelength λ 2 or the output light intensity S. The number of minimum points in the envelope of the spectrum of OUT (λ) may be extracted as an interference fringe component that varies depending on the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2 .

(第2の実施の形態)
図1に示す差圧測定システムにおいては、光源114とスプリッタ21の間に、共通光導波路29、分光装置3、及び共通光導波路30が配置されている。これに対し、第2の実施の形態に係る差圧測定システムにおいては、図31に示すように、光源114とスプリッタ21の間には、共通光導波路34のみが配置されている。但し、スプリッタ21と干渉縞検出素子153の間に共通光導波路35、分光装置3、及び干渉縞検出素子153が配置されている。第2の実施の形態に係る差圧測定システムのその他の構成要素は、図1と同様であるので説明は省略する。
(Second embodiment)
In the differential pressure measurement system shown in FIG. 1, the common optical waveguide 29, the spectroscopic device 3, and the common optical waveguide 30 are disposed between the light source 114 and the splitter 21. In contrast, in the differential pressure measurement system according to the second embodiment, only the common optical waveguide 34 is disposed between the light source 114 and the splitter 21, as shown in FIG. However, the common optical waveguide 35, the spectroscopic device 3, and the interference fringe detection element 153 are arranged between the splitter 21 and the interference fringe detection element 153. The other components of the differential pressure measurement system according to the second embodiment are the same as those in FIG.

次に図32を用いて、第2の実施の形態に係る差圧測定方法について説明する。   Next, a differential pressure measurement method according to the second embodiment will be described with reference to FIG.

(a) ステップS111で図31に示す光源114は、図2に示す照射光強度S0(λ)のスペクトルを有する照射光を発し、照射光は図31に示す共通光導波路34でスプリッタ21に伝搬される。その後、ステップS113、ステップS211、ステップS212、ステップS311、及びステップS312が、それぞれ図19のステップS103、ステップS201、ステップS202、ステップS301、及びステップS302と同様に実施される。 (a) In step S111, the light source 114 shown in FIG. 31 emits irradiation light having a spectrum of the irradiation light intensity S 0 (λ) shown in FIG. 2, and the irradiation light is sent to the splitter 21 by the common optical waveguide 34 shown in FIG. Propagated. Thereafter, step S113, step S211, step S212, step S311 and step S312 are performed in the same manner as step S103, step S201, step S202, step S301 and step S302 in FIG. 19, respectively.

(b) 図32のステップS213で、互いに干渉しあう第1参照光及び第1測定光は、図31に示す第1測定用光導波路31及びスプリッタ21を経て、共通光導波路35で分光装置3に伝搬される。またステップS313で、互いに干渉しあう第2参照光及び第2測定光は、第2測定用光導波路32及びスプリッタ21を経て、共通光導波路35で分光装置3に伝搬される。   (b) In step S213 in FIG. 32, the first reference light and the first measurement light that interfere with each other pass through the first measurement optical waveguide 31 and the splitter 21 shown in FIG. Is propagated to. In step S313, the second reference light and the second measurement light that interfere with each other are propagated to the spectroscopic device 3 through the second measurement optical waveguide 32 and the splitter 21 through the common optical waveguide 35.

(c) ステップS410で分光装置3は、図3に示すように、時間tに応じて第1参照光、第1測定光、第2参照光、及び第2測定光のそれぞれの波長成分を選択的に透過させる。図31に示す分光装置3を透過した第1参照光、第1測定光、第2参照光、及び第2測定光は、共通光導波路36で干渉縞検出素子153に伝搬される。その後、ステップS411乃至ステップS414が図19のステップS401乃至ステップS404と同様に実施された後、第2の実施の形態に係る差圧測定方法を終了する。   (c) In step S410, the spectroscopic device 3 selects the respective wavelength components of the first reference light, the first measurement light, the second reference light, and the second measurement light according to the time t as shown in FIG. Transparent. The first reference light, the first measurement light, the second reference light, and the second measurement light transmitted through the spectroscopic device 3 shown in FIG. 31 are propagated to the interference fringe detection element 153 through the common optical waveguide 36. Then, after steps S411 to S414 are performed in the same manner as steps S401 to S404 in FIG. 19, the differential pressure measurement method according to the second embodiment is terminated.

以上説明した第2の実施の形態に係る差圧測定システム及び差圧測定方法によれば、分光装置3をCPU300の近くに配置することが可能となる。そのため、分光装置3の透過波長等を容易に設定可能となる。   According to the differential pressure measurement system and the differential pressure measurement method according to the second embodiment described above, the spectroscopic device 3 can be disposed near the CPU 300. Therefore, the transmission wavelength of the spectroscopic device 3 can be easily set.

(第3の実施の形態)
第3の実施の形態に係る差圧測定システムは図31に示す差圧測定システムと異なり、図33に示す変調駆動回路115を備える。変調駆動回路115は、図34に示すように、時間tに応じて変動する駆動電流を図33に示す光源114に供給する。時間tに応じて変動する駆動電流が供給されることにより、半導体レーザ共振器等の光源114は、図3に示すように、時間tに応じて照射光の波長を変化させる。光源114が照射光の波長を変化させるため、図33に示す差圧測定システムは分光装置が不要であり、共通光導波路35は干渉縞検出素子153に直接接続されている。図33に示す差圧測定システムのその他の構成要素は、図31に示す差圧測定システムと同様であるので説明は省略する。
(Third embodiment)
Unlike the differential pressure measurement system shown in FIG. 31, the differential pressure measurement system according to the third embodiment includes a modulation drive circuit 115 shown in FIG. As shown in FIG. 34, the modulation drive circuit 115 supplies a drive current that varies with time t to the light source 114 shown in FIG. By supplying a drive current that varies according to time t, the light source 114 such as a semiconductor laser resonator changes the wavelength of irradiation light according to time t as shown in FIG. Since the light source 114 changes the wavelength of the irradiation light, the differential pressure measurement system shown in FIG. 33 does not require a spectroscopic device, and the common optical waveguide 35 is directly connected to the interference fringe detection element 153. The other components of the differential pressure measurement system shown in FIG. 33 are the same as those of the differential pressure measurement system shown in FIG.

次に図19を用いて第3の実施の形態に係る差圧測定方法について説明する。   Next, a differential pressure measurement method according to the third embodiment will be described with reference to FIG.

(a) 図33に示す差圧測定システムを用いる場合、ステップS101で図33に示す変調駆動回路115は、時間tに応じて変動する駆動電流を光源114に供給する。駆動電流を供給された光源114は、時間tに応じて波長が変化する照射光を発する。照射光は共通光導波路34でスプリッタ21に伝搬される。なお、第3の実施の形態においては、ステップS102は実施されない。   (a) When the differential pressure measurement system shown in FIG. 33 is used, in step S101, the modulation drive circuit 115 shown in FIG. 33 supplies the light source 114 with a drive current that varies according to time t. The light source 114 supplied with the drive current emits irradiation light whose wavelength changes with time t. The irradiation light is propagated to the splitter 21 through the common optical waveguide 34. Note that step S102 is not performed in the third embodiment.

(b) ステップS103、ステップS201、ステップS202、ステップS301、及びステップS302が第1の実施の形態と同様に実施された後、ステップS203で、干渉しあう第1参照光及び第1測定光は、第1測定用光導波路31及びスプリッタ21を経て、共通光導波路35で干渉縞検出素子153に伝搬される。またステップS303で、干渉しあう第2参照光及び第2測定光は、第2測定用光導波路32及びスプリッタ21を経て、共通光導波路35で干渉縞検出素子153に伝搬される。その後、ステップS401乃至ステップS404が第1の実施の形態と同様に実施された後、第3の実施の形態に係る差圧測定方法を終了する。   (b) After step S103, step S201, step S202, step S301, and step S302 are performed in the same manner as in the first embodiment, in step S203, the first reference light and the first measurement light that interfere with each other are Then, the light is propagated to the interference fringe detection element 153 through the common optical waveguide 35 through the first measurement optical waveguide 31 and the splitter 21. In step S303, the second reference light and the second measurement light that interfere with each other are propagated to the interference fringe detection element 153 through the second optical waveguide for measurement 32 and the splitter 21 through the common optical waveguide. Thereafter, after steps S401 to S404 are performed in the same manner as in the first embodiment, the differential pressure measurement method according to the third embodiment is terminated.

以上説明した第3の実施の形態に係る差圧測定システム及び差圧測定方法によれば、分光装置による照射光の光強度損失がなくなる。そのため、出力光強度SOUT(λ)の低減を防止することが可能となる。なお変調駆動回路115は、時間tに応じて鋸刃状に駆動電流を変動させてもよい。 According to the differential pressure measurement system and the differential pressure measurement method according to the third embodiment described above, the light intensity loss of the irradiation light by the spectroscopic device is eliminated. Therefore, it is possible to prevent the output light intensity S OUT (λ) from being reduced. Note that the modulation drive circuit 115 may vary the drive current in a sawtooth shape according to the time t.

(第4の実施の形態)
第4の実施の形態に係る差圧測定システムは、図1に示す第1の実施の形態に係る差圧システムと異なり、図35に示すように分光装置3に照射光を伝搬する共通光導波路30aが接続されている。共通光導波路30aには、スプリッタ20が接続されている。スプリッタ20には共通光導波路30b及び照射光導波路80が接続されている。共通光導波路30aで伝搬された照射光は、スプリッタ20で共通光導波路30bと照射光導波路80の2方向に分割される。照射光導波路80は、スプリッタ20で分割された照射光を伝搬する。照射光導波路80には、照射光受光素子154が接続されている。照射光受光素子154は照射光を受光し、照射光の照射光強度S0(λ)をCPU300に伝送する。照射光受光素子154には、CCDイメージセンサ等が使用可能である。
(Fourth embodiment)
Unlike the differential pressure system according to the first embodiment shown in FIG. 1, the differential pressure measurement system according to the fourth embodiment is a common optical waveguide that propagates irradiation light to the spectroscopic device 3 as shown in FIG. 30a is connected. A splitter 20 is connected to the common optical waveguide 30a. A common optical waveguide 30b and an irradiation optical waveguide 80 are connected to the splitter 20. Irradiation light propagated through the common optical waveguide 30a is split by the splitter 20 into two directions of the common optical waveguide 30b and the irradiation optical waveguide 80. The irradiation optical waveguide 80 propagates the irradiation light divided by the splitter 20. An irradiation light receiving element 154 is connected to the irradiation optical waveguide 80. The irradiation light receiving element 154 receives the irradiation light and transmits the irradiation light intensity S 0 (λ) of the irradiation light to the CPU 300. As the irradiation light receiving element 154, a CCD image sensor or the like can be used.

第3の実施の形態に係るCPU300は、補正モジュール305をさらに備える。補正モジュール305は、干渉縞検出素子153から図13に示す合成干渉縞の出力光強度SOUT(λ)のスペクトル分布を受信し、照射光受光素子154から図2に示す照射光の照射光強度S0(λ)のスペクトル分布を受信する。さらに図35に示す補正モジュール305は、上記(23)式で与えられる干渉縞の出力光強度SOUT(λ)のスペクトル分布を照射光の照射光強度S0(λ)のスペクトル分布で割り、下記(29)式で与えられる補正された出力光強度SOUT_C(λ)のスペクトル分布を算出する。干渉縞の出力光強度SOUT(λ)のスペクトル分布を照射光の照射光強度S0(λ)のスペクトル分布で割ることにより、図36に示すように、干渉縞の出力光強度SOUT(λ)のスペクトル分布に含まれていた照射光の照射光強度S0(λ)のスペクトル分布が除去される。 The CPU 300 according to the third embodiment further includes a correction module 305. The correction module 305 receives the spectral distribution of the output light intensity S OUT (λ) of the combined interference fringe shown in FIG. 13 from the interference fringe detection element 153, and the irradiation light intensity of the irradiation light shown in FIG. A spectral distribution of S 0 (λ) is received. Furthermore, the correction module 305 shown in FIG. 35 divides the spectral distribution of the output light intensity S OUT (λ) of the interference fringes given by the above equation (23) by the spectral distribution of the irradiation light intensity S 0 (λ) of the irradiation light, The spectrum distribution of the corrected output light intensity S OUT — C (λ) given by the following equation (29) is calculated. By dividing the spectral distribution of the output light intensity S OUT (λ) of the interference fringes by the spectral distribution of the irradiation light intensity S 0 (λ) of the irradiation light, as shown in FIG. 36, the output light intensity S OUT ( The spectral distribution of the irradiation light intensity S 0 (λ) of the irradiation light included in the spectral distribution of λ) is removed.

SOUT_C(λ) = SOUT(λ) / S0(λ)
= (1/4)[{TL1(λ)+TL2(λ)}+
2αcos{(2π/λ)(La - Lb + w1 - w2)}cos{(2π/λ)(La+Lb+ w1 + w2)}
+(β-α)cos{(2π/λ)×2(Lb+ w2)}] …(29)
第4の実施の形態において、図35に示す抽出モジュール310は補正された出力光強度SOUT_C(λ)のスペクトルの低周波成分の極値点を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出する。図35に示す差圧測定システムのその他の構成要素は、図1に示す差圧測定システムと同様であるので、説明は省略する。
S OUT_C (λ) = S OUT (λ) / S 0 (λ)
= (1/4) [{T L1 (λ) + T L2 (λ)} +
2αcos {(2π / λ) (L a- L b + w 1 -w 2 )} cos {(2π / λ) (L a + L b + w 1 + w 2 )}
+ (β-α) cos {(2π / λ) × 2 (L b + w 2 )}]… (29)
In the fourth embodiment, the extraction module 310 shown in FIG. 35 uses the first measurement optical path length F 1 and the second measurement as the extreme points of the low frequency component of the spectrum of the corrected output light intensity S OUT_C (λ). Extracted as an interference fringe component that varies according to the optical path difference of the optical path length F 2 . Other components of the differential pressure measurement system shown in FIG. 35 are the same as those of the differential pressure measurement system shown in FIG.

次に図37を用いて、第4の実施の形態に係る差圧測定方法について説明する。   Next, a differential pressure measurement method according to the fourth embodiment will be described with reference to FIG.

(a) 図19のステップS101と同様に、図37のステップS141が実施される。ステップS142で図35に示す分光装置3を透過した照射光は、共通光導波路30aでスプリッタ20に伝搬される。ステップS143で照射光は、スプリッタ20で照射光導波路80と共通光導波路30bの2方向に分割される。スプリッタ20で照射光導波路80に向かって分割された照射光は、照射光導波路80で照射光受光素子154に伝搬される。スプリッタ20で共通光導波路30bに向かって分割された照射光は、共通光導波路30bでスプリッタ21に伝搬される。   (a) Step S141 in FIG. 37 is performed in the same manner as step S101 in FIG. The irradiation light transmitted through the spectroscopic device 3 shown in FIG. 35 in step S142 is propagated to the splitter 20 through the common optical waveguide 30a. In step S143, the irradiation light is split in the two directions by the splitter 20 into the irradiation optical waveguide 80 and the common optical waveguide 30b. The irradiation light divided toward the irradiation optical waveguide 80 by the splitter 20 is propagated to the irradiation light receiving element 154 through the irradiation optical waveguide 80. Irradiation light split toward the common optical waveguide 30b by the splitter 20 is propagated to the splitter 21 by the common optical waveguide 30b.

(b) ステップS151で照射光受光素子154は、照射光導波路80で伝搬された照射光を受光する。照射光受光素子154は、受光した照射光の照射光強度S0(λ)をCPU300に伝送する。また図19のステップS103と同様に図37のステップS144が実施される。その後、図19と同様に図37のステップS201乃至ステップS203、及びステップS301乃至ステップS303が実施され、図19のステップS401と同様に図37のステップS441が実施される。 (b) In step S151, the irradiation light receiving element 154 receives the irradiation light propagated through the irradiation optical waveguide 80. The irradiation light receiving element 154 transmits the irradiation light intensity S 0 (λ) of the received irradiation light to the CPU 300. Further, step S144 of FIG. 37 is performed in the same manner as step S103 of FIG. After that, steps S201 to S203 and steps S301 to S303 in FIG. 37 are performed as in FIG. 19, and step S441 in FIG. 37 is performed as in step S401 in FIG.

(c) ステップS442で図35に示す補正モジュール305は、照射光の照射光強度S0(λ)及び合成干渉縞の出力光強度SOUT(λ)を受信する。次に補正モジュール305は、上記(29)式に従って干渉縞の出力光強度SOUT(λ)のスペクトル分布を照射光の照射光強度S0(λ)のスペクトル分布で割り、補正された出力光強度SOUT_C(λ)のスペクトル分布を算出する。その後、補正モジュール305は補正された出力光強度SOUT_C(λ)のスペクトル分布を抽出モジュール310に伝送する。 (c) In step S442, the correction module 305 shown in FIG. 35 receives the irradiation light intensity S 0 (λ) of the irradiation light and the output light intensity S OUT (λ) of the combined interference fringe. Next, the correction module 305 divides the spectral distribution of the output light intensity S OUT (λ) of the interference fringes by the spectral distribution of the irradiation light intensity S 0 (λ) of the irradiation light according to the above equation (29), and corrects the output light. The spectral distribution of intensity S OUT_C (λ) is calculated. Thereafter, the correction module 305 transmits the corrected spectral distribution of the output light intensity S OUT — C (λ) to the extraction module 310.

(d)ステップS443で抽出モジュール310は、補正された出力光強度SOUT_C(λ)のスペクトル分布を受信する。次に抽出モジュール310は、補正された出力光強度SOUT_C(λ)のスペクトルの低周波成分の極値点を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出する。その後、図19のステップS403及びステップS404と同様に図37のステップS444及びステップS445が実施された後、第4の実施の形態に係る差圧測定方法を終了する。 (d) In step S443, the extraction module 310 receives the spectral distribution of the corrected output light intensity S OUT — C (λ). Next, the extraction module 310 determines the extreme point of the low frequency component of the spectrum of the corrected output light intensity S OUT_C (λ) according to the optical path difference between the first measurement optical path length F 1 and the second measurement optical path length F 2. As an interference fringe component that fluctuates After that, step S444 and step S445 in FIG. 37 are performed as in step S403 and step S404 in FIG. 19, and then the differential pressure measurement method according to the fourth embodiment is ended.

干渉縞の出力光強度SOUT(λ)のスペクトル分布に照射光強度S0(λ)のスペクトル分布が含まれていると、低周波成分の極値点の同定が困難な場合がある。これに対し、第4の実施の形態に係る差圧測定システム及び差圧測定方法によれば、干渉縞の出力光強度SOUT(λ)のスペクトル分布から照射光強度S0(λ)のスペクトル分布が除去されるため、低周波成分の極値点の同定が容易となる。そのため、高い精度で第1外圧PO1と第2外圧PO2との差圧の測定値を算出することが可能となる。 If the spectral distribution of the irradiation light intensity S 0 (λ) is included in the spectral distribution of the output light intensity S OUT (λ) of the interference fringes, it may be difficult to identify the extreme point of the low frequency component. In contrast, according to the differential pressure measurement system and the differential pressure measurement method according to the fourth embodiment, the spectrum of the irradiation light intensity S 0 (λ) is calculated from the spectrum distribution of the output light intensity S OUT (λ) of the interference fringes. Since the distribution is removed, the extreme point of the low frequency component can be easily identified. Therefore, it is possible to calculate a first external pressure P O1 measurements of differential pressure between the second external pressure P O2 with high accuracy.

(第4の実施の形態の変形例)
変形例に係る差圧測定システムは、図33に示す第3の実施の形態に係る差圧システムと異なり、図38に示すように光源114に照射光を伝搬する共通光導波路34aが接続されている。共通光導波路34aには、スプリッタ20が接続されている。スプリッタ20には共通光導波路34b及び照射光導波路80が接続されている。共通光導波路34aで伝搬された照射光は、スプリッタ20で共通光導波路34bと照射光導波路80の2方向に分割される。照射光導波路80、照射光受光素子154、及びCPU300の補正モジュール305は図35と同様である。図38に示す差圧測定システムを用いても、干渉縞の出力光強度SOUT(λ)のスペクトル分布から照射光強度S0(λ)のスペクトル分布を除去することが可能となる。
(Modification of the fourth embodiment)
Unlike the differential pressure system according to the third embodiment shown in FIG. 33, the differential pressure measurement system according to the modified example is connected to a common optical waveguide 34a that propagates irradiation light to the light source 114 as shown in FIG. Yes. The splitter 20 is connected to the common optical waveguide 34a. A common optical waveguide 34b and an irradiation optical waveguide 80 are connected to the splitter 20. The irradiation light propagated through the common optical waveguide 34a is divided by the splitter 20 into two directions, ie, the common optical waveguide 34b and the irradiation optical waveguide 80. The irradiation optical waveguide 80, the irradiation light receiving element 154, and the correction module 305 of the CPU 300 are the same as those in FIG. Even using the differential pressure measurement system shown in FIG. 38, it is possible to remove the spectral distribution of the irradiation light intensity S 0 (λ) from the spectral distribution of the output light intensity S OUT (λ) of the interference fringes.

(第5の実施の形態)
第5の実施の形態に係る差圧測定システムは、図1に示す第1の実施の形態に係る差圧システムと異なり、図39に示すように補正モジュール306を備える。補正モジュール306は、移動平均法により合成干渉縞の出力光強度SOUT(λ)を補正する。ここで「移動平均法」について説明する。図40に示すように出力光強度SOUT(λ)のスペクトルが得られた場合、図39に示す補正モジュール306は、上記(23)式の第2項に含まれる低周波成分cos{(2π/λ)(La - Lb + w1 - w2)}の1周期以上で照射光強度S0(λ)のスペクトル分布の1周期未満の幅の区間を定義する。さらに補正モジュール306は、定義された区間における出力光強度SOUT(λ)の平均値を算出し、区間の中心にプロットする。次に補正モジュール306は区間を波長方向に移動させ、移動された区間における出力光強度SOUT(λ)の平均値を算出し、区間の中心にプロットする。以後、補正モジュール306は区間の移動と出力光強度SOUT(λ)の平均値の算出を繰り返し、算出された出力光強度SOUT(λ)の平均値の集合である図40に示す移動平均線を算出する。
(Fifth embodiment)
Unlike the differential pressure system according to the first embodiment shown in FIG. 1, the differential pressure measurement system according to the fifth embodiment includes a correction module 306 as shown in FIG. The correction module 306 corrects the output light intensity S OUT (λ) of the combined interference fringe by the moving average method. Here, the “moving average method” will be described. When the spectrum of the output light intensity S OUT (λ) is obtained as shown in FIG. 40, the correction module 306 shown in FIG. 39 performs the low frequency component cos {(2π included in the second term of the above equation (23). / λ) (L a- L b + w 1 − w 2 )} is defined as a section having a width of at least one period and less than one period of the spectral distribution of the irradiation light intensity S 0 (λ). Further, the correction module 306 calculates the average value of the output light intensity S OUT (λ) in the defined section and plots it at the center of the section. Next, the correction module 306 moves the section in the wavelength direction, calculates the average value of the output light intensity S OUT (λ) in the moved section, and plots it at the center of the section. Thereafter, the correction module 306 moving average shown in FIG. 40 is a set of moving and repeatedly calculating the average value of the output light intensity S OUT (λ), the mean value of the calculated output light intensity S OUT (lambda) of the section Calculate the line.

図41に例示する出力光強度SOUT(λ)のスペクトル分布には、照射光強度S0(λ)のスペクトル分布、上記(23)式の第2項に含まれる低周波成分cos{(2π/λ)(La - Lb + w1 - w2)}のスペクトル分布、(23)式の第2項に含まれる高周波成分cos{(2π/λ)(La+Lb+ w1 + w2)}のスペクトル分布、及び(23)式の第3項で与えられる反射光成分(β-α)cos{(2π/λ)×2(Lb+ w2)}のスペクトル分布が重畳している。ここで、低周波成分cos{(2π/λ)(La - Lb + w1 - w2)}の周期以上で、照射光強度S0(λ)のスペクトル分布の周期よりも短い区間を設定して出力光強度SOUT(λ)の移動平均線を算出すると、低周波成分cos{(2π/λ)(La - Lb + w1 - w2)}のスペクトル分布、高周波成分cos{(2π/λ)(La+Lb+ w1 + w2)}のスペクトル分布、及び反射光成分(β-α)cos{(2π/λ)×2(Lb+ w2)}のスペクトル分布が平均化される。そのため、図42に示す出力光強度SOUT(λ)のスペクトル分布の移動平均線は、照射光強度S0(λ)のスペクトル分布のみを反映する。したがって、図41に示す出力光強度SOUT(λ)を図42に示す移動平均線で与えられる光強度で割ることにより、出力光強度SOUT(λ)のスペクトル分布から照射光強度S0(λ)のスペクトル分布を除去し、図43に示す補正された出力光強度SOUT_C(λ)のスペクトル分布を算出することが可能となる。 The spectral distribution of the output light intensity S OUT (λ) illustrated in FIG. 41 includes the spectral distribution of the irradiation light intensity S 0 (λ), the low frequency component cos {(2π included in the second term of the above equation (23). / λ) (L a- L b + w 1 -w 2 )}, the spectrum of the high-frequency component cos {(2π / λ) (L a + L b + w 1 + w 2 )} contained in the second term of equation (23) The distribution and the spectral distribution of the reflected light component (β−α) cos {(2π / λ) × 2 (L b + w 2 )} given by the third term of the equation (23) are superimposed. Where the low frequency component cos {(2π / λ) (L a L b + w 1 -w 2 )} and shorter than the spectral distribution period of the irradiated light intensity S 0 (λ), and calculate the moving average line of the output light intensity S OUT (λ) Then, the low frequency component cos {(2π / λ) (L a L b + w 1 -w 2 )}, high-frequency component cos {(2π / λ) (L a + L b + w 1 + w 2 )}, and reflected light component (β-α) The spectral distribution of cos {(2π / λ) × 2 (L b + w 2 )} is averaged. Therefore, the moving average line of the spectral distribution of the output light intensity S OUT (λ) shown in FIG. 42 reflects only the spectral distribution of the irradiation light intensity S 0 (λ). Therefore, by dividing the light intensity given by the moving average line shown in FIG. 42 the output light intensity S OUT (lambda) shown in FIG. 41, the output light intensity S OUT irradiation light intensity from the spectral distribution of the (λ) S 0 ( It is possible to remove the spectral distribution of λ) and calculate the spectral distribution of the corrected output light intensity S OUT — C (λ) shown in FIG.

第5の実施の形態において、図39に示す抽出モジュール310は補正された出力光強度SOUT_C(λ)のスペクトルの低周波成分の極値点を、第1測定光路長F1及び第2測定光路長F2の光路差に応じて変動する干渉縞成分として抽出する。図39に示す差圧測定システムのその他の構成要素は、図1に示す差圧測定システムと同様であるので、説明は省略する。 In the fifth embodiment, the extraction module 310 shown in FIG. 39 calculates the extreme point of the low frequency component of the spectrum of the corrected output light intensity S OUT_C (λ) as the first measurement optical path length F 1 and the second measurement. Extracted as an interference fringe component that varies according to the optical path difference of the optical path length F 2 . Other components of the differential pressure measurement system shown in FIG. 39 are the same as those of the differential pressure measurement system shown in FIG.

次に図44を用いて、第5の実施の形態に係る差圧測定方法について説明する。   Next, a differential pressure measurement method according to the fifth embodiment will be described with reference to FIG.

(a) 第1の実施の形態と同様に、ステップS101乃至ステップS103、ステップS201乃至ステップS203、及びステップS301乃至ステップS303が実施される。次に図19のステップS401と同様に図44のステップS461が実施される。ステップS462で図39に示す補正モジュール306は、合成干渉縞の出力光強度SOUT(λ)を受信する。次に補正モジュール306は、出力光強度SOUT(λ)のスペクトル分布の移動平均線を算出する。 (a) Step S101 to step S103, step S201 to step S203, and step S301 to step S303 are performed as in the first embodiment. Next, step S461 in FIG. 44 is performed in the same manner as step S401 in FIG. In step S462, the correction module 306 shown in FIG. 39 receives the output light intensity S OUT (λ) of the combined interference fringe. Next, the correction module 306 calculates a moving average line of the spectrum distribution of the output light intensity S OUT (λ).

(b) ステップS463で補正モジュール306は、出力光強度SOUT(λ)を移動平均線で与えられる光強度で割り、補正された出力光強度SOUT_C(λ)を算出する。その後、補正モジュール306は補正された出力光強度SOUT_C(λ)のスペクトル分布を抽出モジュール310に伝送する。その後、図37のステップS443乃至ステップS445と同様に図44のステップS464乃至ステップS466が実施された後、第5の実施の形態に係る差圧測定方法を終了する。 (b) In step S463, the correction module 306 divides the output light intensity S OUT (λ) by the light intensity given by the moving average line, and calculates the corrected output light intensity S OUT — C (λ). Thereafter, the correction module 306 transmits the corrected spectral distribution of the output light intensity S OUT — C (λ) to the extraction module 310. Then, after steps S464 to S466 of FIG. 44 are performed as in steps S443 to S445 of FIG. 37, the differential pressure measurement method according to the fifth embodiment is terminated.

(第6の実施の形態)
第6の実施の形態に係る差圧測定システムは、図33に示す差圧測定システムと異なり、図45に示すように光源114に共通光導波路34aが接続され、共通光導波路34aにスプリッタ20が接続されている。スプリッタ20には、照射光導波路80aと共通光導波路34bとが接続されている。照射光導波路80aには波長フィルタ85が接続されている。波長フィルタ85は、照射光導波路80aで伝搬された照射光の一部の波長成分を選択的に透過させる。波長フィルタ85は、多層膜干渉フィルタ、ファブリペロフィルタ、あるいはファイバブラッググレーティング等が使用可能である。波長フィルタ85には、波長フィルタ85を透過した照射光を伝搬する照射光導波路80bが接続されている。照射光導波路80bには、照射光を受光する照射光受光素子154が接続されている。波長フィルタ85が配置されているため、光源114から発せられた照射光の波長が波長フィルタ85の透過波長帯域の中心と一致した場合に、照射光受光素子154は最も強い光強度で照射光を受光する。以下、照射光の波長が透過波長帯域の中心と一致するときの駆動電流を、設定駆動電流と呼ぶことにする。
(Sixth embodiment)
In the differential pressure measurement system according to the sixth embodiment, unlike the differential pressure measurement system shown in FIG. 33, the common optical waveguide 34a is connected to the light source 114 as shown in FIG. 45, and the splitter 20 is connected to the common optical waveguide 34a. It is connected. An irradiation optical waveguide 80a and a common optical waveguide 34b are connected to the splitter 20. A wavelength filter 85 is connected to the irradiation optical waveguide 80a. The wavelength filter 85 selectively transmits a part of the wavelength components of the irradiation light propagated through the irradiation optical waveguide 80a. As the wavelength filter 85, a multilayer interference filter, a Fabry-Perot filter, a fiber Bragg grating, or the like can be used. The wavelength filter 85 is connected to an irradiation optical waveguide 80b that propagates the irradiation light transmitted through the wavelength filter 85. An irradiation light receiving element 154 that receives irradiation light is connected to the irradiation optical waveguide 80b. Since the wavelength filter 85 is disposed, the irradiation light receiving element 154 emits the irradiation light with the strongest light intensity when the wavelength of the irradiation light emitted from the light source 114 coincides with the center of the transmission wavelength band of the wavelength filter 85. Receive light. Hereinafter, the drive current when the wavelength of the irradiation light coincides with the center of the transmission wavelength band is referred to as a set drive current.

光源114に半導体レーザ共振器等を用いると、変調駆動回路115で駆動電流を管理しても、周囲の温度変化により照射光の波長が変化する場合がある。また光源114がファブリペロ構造を有する場合、図46に示すように、温度変化によりモードホッピング(波長跳び)が生じる場合がある。光源114に面発光レーザ(VCSEL : Vertical Cavity Surface Emitting Laser)光源を用いた場合、照射光の波長は駆動電流にほぼ比例して変化する。しかし周囲の温度が変化すれば、駆動電流が同一であっても、図47に示すように、照射光の波長が変化してしまう場合がある。   When a semiconductor laser resonator or the like is used as the light source 114, the wavelength of irradiation light may change due to a change in ambient temperature even if the drive current is managed by the modulation drive circuit 115. When the light source 114 has a Fabry-Perot structure, mode hopping (wavelength jump) may occur due to a temperature change as shown in FIG. When a surface emitting laser (VCSEL) light source is used as the light source 114, the wavelength of the irradiation light changes almost in proportion to the drive current. However, if the ambient temperature changes, the wavelength of irradiation light may change as shown in FIG. 47 even if the drive current is the same.

そこで図45に示す変調駆動回路115及び照射光受光素子154には、フィードバック回路116が接続されている。フィードバック回路116は、変調駆動回路115が光源114に供給した駆動電流と、照射光受光素子154が受光する照射光の光強度を監視する。またフィードバック回路116は、図48に示すように、初期状態における透過波長帯域の中心波長と設定駆動電流とを記憶している。ここで図49に示すように、照射光受光素子154が中心波長の照射光を受光した時の駆動電流が温度変化により設定駆動電流より弱まった場合、フィードバック回路116は変調駆動回路115が光源114に供給する駆動電流の走査範囲をマイナス方向にシフトさせ、光源114が初期状態と同じ波長範囲の照射光を発するよう設定する。また照射光受光素子154が中心波長の照射光を受光した時の駆動電流が温度変化により設定駆動電流から強まった場合、フィードバック回路116は変調駆動回路115が光源114に供給する駆動電流の走査範囲をプラス方向にシフトさせ、光源114が初期状態と同じ波長範囲の照射光を発するよう設定する。   Therefore, a feedback circuit 116 is connected to the modulation driving circuit 115 and the irradiation light receiving element 154 shown in FIG. The feedback circuit 116 monitors the drive current supplied to the light source 114 by the modulation drive circuit 115 and the light intensity of the irradiation light received by the irradiation light receiving element 154. Further, as shown in FIG. 48, the feedback circuit 116 stores the center wavelength of the transmission wavelength band in the initial state and the set drive current. Here, as shown in FIG. 49, when the driving current when the irradiation light receiving element 154 receives the irradiation light of the center wavelength becomes weaker than the setting driving current due to the temperature change, the feedback driving circuit 116 uses the modulation driving circuit 115 as the light source 114. Is set so that the light source 114 emits irradiation light in the same wavelength range as the initial state. Further, when the driving current when the irradiation light receiving element 154 receives the irradiation light having the center wavelength is increased from the setting driving current due to the temperature change, the feedback circuit 116 scans the driving current supplied to the light source 114 by the modulation driving circuit 115. Is set so that the light source 114 emits irradiation light in the same wavelength range as the initial state.

図45に示す差圧測定システムのその他の構成要素は図33と同様であるので、説明は省略する。次に図50を用いて、第6の実施の形態に係る差圧測定方法を説明する。   Other components of the differential pressure measurement system shown in FIG. 45 are the same as those in FIG. Next, a differential pressure measurement method according to the sixth embodiment will be described with reference to FIG.

(a) ステップS51で図45に示す変調駆動回路115は、初期設定で定められた走査範囲で駆動電流を光源114に供給する。またフィードバック回路116は、駆動電流を監視する。ステップS52で光源114は、駆動電流に応じた波長の照射光を発する。照射光は共通光導波路34aで伝搬され、スプリッタ20で照射光導波路80a方向と共通光導波路34b方向に分割される。照射光導波路80a方向に分割された照射光は、照射光導波路80aで波長フィルタ85に伝搬される。   (a) In step S51, the modulation drive circuit 115 shown in FIG. 45 supplies drive current to the light source 114 in the scanning range determined by the initial setting. The feedback circuit 116 monitors the drive current. In step S52, the light source 114 emits irradiation light having a wavelength corresponding to the drive current. The irradiation light propagates through the common optical waveguide 34a, and is split by the splitter 20 in the direction of the irradiation optical waveguide 80a and the direction of the common optical waveguide 34b. The irradiation light divided in the direction of the irradiation optical waveguide 80a is propagated to the wavelength filter 85 through the irradiation optical waveguide 80a.

(b) ステップS53で、波長フィルタ85の透過波長帯域と等しい帯域の照射光の波長成分が、波長フィルタ85を透過する。波長フィルタ85を透過した照射光は照射光導波路80bで伝搬され、ステップS54で照射光受光素子154によって受光される。照射光受光素子154は、受光した照射光の光強度をフィードバック回路116に伝送する。   (b) In step S53, the wavelength component of the irradiation light in the band equal to the transmission wavelength band of the wavelength filter 85 is transmitted through the wavelength filter 85. The irradiation light transmitted through the wavelength filter 85 is propagated through the irradiation optical waveguide 80b and received by the irradiation light receiving element 154 in step S54. The irradiation light receiving element 154 transmits the light intensity of the received irradiation light to the feedback circuit 116.

(c) ステップS55でフィードバック回路116は、照射光受光素子154が受光した照射光の光強度が設定駆動電流で最大となっているか否かを監視する。設定駆動電流で最大となっていない場合、ステップS56に進む。設定駆動電流で最大となっている場合、ステップS60に進む。   (c) In step S55, the feedback circuit 116 monitors whether or not the light intensity of the irradiation light received by the irradiation light receiving element 154 is maximum at the set drive current. If the set drive current is not the maximum, the process proceeds to step S56. If the set drive current is the maximum, the process proceeds to step S60.

(d) 照射光受光素子154が受光した照射光の光強度が設定駆動電流よりも弱い駆動電流で最大となっている場合、ステップS56でフィードバック回路116は、変調駆動回路115の駆動電流の走査範囲をマイナス方向にシフトさせる。照射光受光素子154が受光した照射光の光強度が設定駆動電流よりも強い駆動電流で最大となっている場合、フィードバック回路116は、変調駆動回路115の駆動電流の走査範囲をプラス方向にシフトさせる。   (d) When the light intensity of the irradiation light received by the irradiation light receiving element 154 is maximum at a driving current weaker than the set driving current, the feedback circuit 116 scans the driving current of the modulation driving circuit 115 in step S56. Shift the range in the negative direction. When the light intensity of the irradiating light received by the irradiating light receiving element 154 is maximized at a driving current stronger than the set driving current, the feedback circuit 116 shifts the scanning current scanning range of the modulation driving circuit 115 in the plus direction. Let

(e) ステップS60で、第3の実施の形態に係る差圧測定方法と同様に第1外圧PO1と第2外圧PO2との差圧を測定し、第6の実施の形態に係る差圧測定方法を終了する。 (e) In step S60, the differential pressure measuring method as well as the first external pressure P O1 according to the third embodiment of the differential pressure between the second external pressure P O2 is measured, the difference according to the sixth embodiment End the pressure measurement method.

温度変化に伴い照射光の波長が変調すると、上記(23)式より第1外圧PO1と第2外圧PO2との差圧を算出する際に誤差が生じる。これに対し、第6の実施の形態に係る差圧測定システム及び差圧測定方法によれば、フィードバック回路116が温度変化に伴う照射光の波長変調を防止する。そのため、高い精度で第1外圧PO1と第2外圧PO2との差圧を算出することが可能となる。 If the wavelength of the irradiation light is modulated in accordance with the temperature change, an error occurs when calculating the differential pressure between the first external pressure P O1 and the second external pressure P O2 from the above equation (23). On the other hand, according to the differential pressure measurement system and the differential pressure measurement method according to the sixth embodiment, the feedback circuit 116 prevents the wavelength modulation of the irradiation light accompanying the temperature change. Therefore, the differential pressure between the first external pressure P O1 and the second external pressure P O2 can be calculated with high accuracy.

(その他の実施の形態)
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば図1に示す第1測定干渉計5の構造は、図5乃至図7に限定されない。図51に示す第1測定干渉計5は、内部に空洞141a及び空洞142aが設けられた第1筐体143a、及び空洞141a及び空洞142aを分離するように第1筐体143a内部に配置された第1感圧膜150aを備える。第1感圧膜150aの厚みは例えば0.2mmであり、直径は20mmである。第1感圧膜150aの材料には、オーステナイト系のステンレス等が使用可能である。第1筐体143aには、空洞141aに向かって第1測定用光導波路31が挿入される。また第1筐体143aには、空洞142aと外部とを結ぶ通気窓144aが設けられている。通気窓144aの外周を覆うように、パッキン145aを第1筐体143aに配置してもよい。通気窓144aを介して、第1感圧膜150aは第1外圧PO1を受ける。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, the structure of the first measurement interferometer 5 shown in FIG. 1 is not limited to FIGS. The first measurement interferometer 5 shown in FIG. 51 is arranged inside the first housing 143a so as to separate the first housing 143a in which the cavity 141a and the cavity 142a are provided, and the cavity 141a and the cavity 142a. A first pressure sensitive film 150a is provided. The thickness of the first pressure-sensitive film 150a is, for example, 0.2 mm and the diameter is 20 mm. As the material of the first pressure-sensitive film 150a, austenitic stainless steel or the like can be used. The first measurement optical waveguide 31 is inserted into the first housing 143a toward the cavity 141a. The first casing 143a is provided with a ventilation window 144a that connects the cavity 142a and the outside. The packing 145a may be disposed in the first housing 143a so as to cover the outer periphery of the ventilation window 144a. Through the vent window 144a, the first sense of the pressure membrane 150a receives the first external pressure P O1.

第1測定用光導波路31で伝搬された照射光は、フレネル反射により第1測定用光導波路31の端部で一部が第1参照光として反射される。第1測定用光導波路31の材料が石英の場合、第1測定用光導波路31の端部でのフレネル反射率は3%である。端部で反射されなかった照射光は、第1測定光として空洞141aの内部を第1感圧膜150aに向かって進行し、第1感圧膜150aで反射される。第1参照光と第1測定光とが干渉する原理は、図5乃至図7に示した場合と同様であるので、説明は省略する。また図1に示す第2測定干渉計15に、図51に示す第1測定干渉計5と同様の構造を採用してもよい。   A part of the irradiation light propagated in the first measurement optical waveguide 31 is reflected as first reference light at the end of the first measurement optical waveguide 31 by Fresnel reflection. When the material of the first measurement optical waveguide 31 is quartz, the Fresnel reflectance at the end of the first measurement optical waveguide 31 is 3%. Irradiation light that has not been reflected at the end portion travels inside the cavity 141a toward the first pressure-sensitive film 150a as first measurement light, and is reflected by the first pressure-sensitive film 150a. The principle of interference between the first reference light and the first measurement light is the same as that shown in FIGS. Further, the second measurement interferometer 15 shown in FIG. 1 may adopt the same structure as the first measurement interferometer 5 shown in FIG.

図52は、図1に示す第1測定干渉計5及び第2測定干渉計15のそれぞれに、図51に示す構造を採用した場合の、合成干渉縞の出力光強度SOUT(λ)のスペクトルを示すグラフである。図52において、第1外圧PO1と第2外圧PO2との差圧が11.2kPa、16.8kPa、22.4kPa、28.0kPa、33.6kPa、及び39.2kPaのそれぞれの場合におけるスペクトルが示されている。図53は、第1外圧PO1及び第2外圧PO2の差圧と、出力光強度SOUT(λ)のスペクトルの包絡線の極大値の間隔との関係を示すグラフである。図29でも説明したように、差圧と極大値の間隔とは比例関係にあるので、予め比例関係を取得しておけば、計測される極大値の間隔から差圧の測定値を算出することが可能となる。図54は、第1外圧PO1と第2外圧PO2の両方が、39.2kPa、33.6kPa、28kPa、及び22.4kPaで差圧がない場合の合成干渉縞の出力光強度SOUT(λ)のスペクトルを示すグラフである。第1外圧PO1と第2外圧PO2の両方が変化しても、差圧がない場合は、図55に示すように極大値の間隔は変化しない。 FIG. 52 shows the spectrum of the output light intensity S OUT (λ) of the combined interference fringes when the structure shown in FIG. 51 is adopted for each of the first measurement interferometer 5 and the second measurement interferometer 15 shown in FIG. It is a graph which shows. In Figure 52, the differential pressure between the first external pressure P O1 and second external pressure P O2 is 11.2kPa, 16.8kPa, 22.4kPa, 28.0kPa, shown 33.6KPa, and spectrum in each case of 39.2kPa is. FIG. 53 is a graph showing the relationship between the differential pressure between the first external pressure P O1 and the second external pressure P O2 and the interval between the maximum values of the envelope of the spectrum of the output light intensity S OUT (λ). As explained in FIG. 29, since the differential pressure and the maximum value interval are in a proportional relationship, if the proportional relationship is acquired in advance, the measured value of the differential pressure can be calculated from the measured maximum value interval. Is possible. FIG. 54 shows the output light intensity S OUT (λ) of the combined interference fringes when both the first external pressure P O1 and the second external pressure P O2 are 39.2 kPa, 33.6 kPa, 28 kPa, and 22.4 kPa and there is no differential pressure. It is a graph which shows a spectrum. Even if both the first external pressure P O1 and the second external pressure P O2 change, if there is no differential pressure, the maximum value interval does not change as shown in FIG.

また図31に示す分光装置3は、図56に示すように、レンズ53及び回折格子54を備えていてもよい。レンズ53は、共通光導波路36の端部から照射される第1測定光、第1参照光、第2測定光、及び第2参照光を平行光にする。回折格子54は、第1測定光、第1参照光、第2測定光、及び第2参照光を干渉縞検出素子153に向けて反射させる。ここで、回折格子54で第1測定光、第1参照光、第2測定光、及び第2参照光は、波長によって異なる方角に反射される。そのため、干渉縞検出素子153の複数の画素のそれぞれに異なる波長成分を入射させることが可能となる。   Further, the spectroscopic device 3 shown in FIG. 31 may include a lens 53 and a diffraction grating 54 as shown in FIG. The lens 53 makes the first measurement light, the first reference light, the second measurement light, and the second reference light emitted from the end of the common optical waveguide 36 into parallel light. The diffraction grating 54 reflects the first measurement light, the first reference light, the second measurement light, and the second reference light toward the interference fringe detection element 153. Here, the first measurement light, the first reference light, the second measurement light, and the second reference light are reflected by the diffraction grating 54 in different directions depending on the wavelength. Therefore, different wavelength components can be incident on each of the plurality of pixels of the interference fringe detection element 153.

あるいは図31に示す分光装置3は、図57に示すようにファブリペロ共振構造を有していてもよい。この場合、分光装置3は内部に空洞が設けられた筐体14を有する。筐体14には外部から内部の空洞に向かって入力側内部筐体13が挿入されている。入力側内部筐体13は共通光導波路35とフェルール192を接続している。フェルール192の端面には入力側半透鏡125が配置されている。また筐体14には外部から内部に向かって入力側内部筐体13と対向する位置に出力側内部筐体12が挿入されている。出力側内部筐体12は共通光導波路36とフェルール191を接続している。フェルール191の端面には出力側半透鏡124が配置されている。筐体14に圧力等を加えると、筐体14に撓みが生じ、入力側半透鏡125と出力側半透鏡124との間隔LOが変化する。 Alternatively, the spectroscopic device 3 shown in FIG. 31 may have a Fabry-Perot resonance structure as shown in FIG. In this case, the spectroscopic device 3 has a casing 14 in which a cavity is provided. An input-side internal housing 13 is inserted into the housing 14 from the outside toward the internal cavity. The input-side inner housing 13 connects the common optical waveguide 35 and the ferrule 192. An input-side semi-transparent mirror 125 is disposed on the end face of the ferrule 192. The output-side internal housing 12 is inserted into the housing 14 at a position facing the input-side internal housing 13 from the outside to the inside. The output-side inner housing 12 connects the common optical waveguide 36 and the ferrule 191. An output-side semi-transparent mirror 124 is disposed on the end face of the ferrule 191. When pressure or the like is applied to the housing 14, the housing 14 is bent, and the distance L O between the input-side semi-transparent mirror 125 and the output-side semi-transparent mirror 124 changes.

共通光導波路35で分光装置3に向かって伝搬された第1測定光、第1参照光、第2測定光、及び第2参照光の一部は入力側半透鏡125で反射され、その他は入力側半透鏡125を透過する。入力側半透鏡125を透過した第1測定光、第1参照光、第2測定光、及び第2参照光の一部は出力側半透鏡124表面で反射され、一部は出力側半透鏡124を透過する。反射された光は入力側半透鏡125方向に進行し、入力側半透鏡125表面で再び出力側半透鏡124に向かって反射される。このとき、光のうち出力側半透鏡124から入力側半透鏡125方向に進行する波長成分と、入力側半透鏡125から出力側半透鏡124方向に進行する波長成分との位相が揃う場合は、光強度は減衰しない。しかし、光のうち出力側半透鏡124から入力側半透鏡125方向に進行する波長成分と、入力側半透鏡125から出力側半透鏡124方向に進行する波長成分との位相が揃わない場合は、光強度が減衰する。したがって、入力側半透鏡125と出力側半透鏡124との間隔LOが変化させることにより、分光装置3を透過する光の波長を選択することが可能となる。 Part of the first measurement light, the first reference light, the second measurement light, and the second reference light propagated toward the spectroscopic device 3 through the common optical waveguide 35 is reflected by the input-side semi-transparent mirror 125, and the others are input. It passes through the side half mirror 125. A part of the first measurement light, the first reference light, the second measurement light, and the second reference light transmitted through the input-side semi-transparent mirror 125 is reflected by the surface of the output-side semi-transparent mirror 124, and a part thereof is the output-side semi-transparent mirror 124. Transparent. The reflected light travels in the direction of the input-side semi-transparent mirror 125 and is reflected again toward the output-side semi-transparent mirror 124 on the input-side semi-transparent mirror 125 surface. At this time, if the phase of the wavelength component traveling in the direction from the output-side semi-transparent mirror 125 to the input-side semi-transparent mirror 125 and the wavelength component traveling from the input-side semi-transparent mirror 125 to the output-side semi-transparent mirror 124 are aligned, The light intensity is not attenuated. However, if the phase of the wavelength component that travels in the direction from the output-side semi-transparent mirror 125 to the input-side semi-transparent mirror 125 and the wavelength component that travels from the input-side semi-transparent mirror 125 to the output-side semi-transparent mirror 124 in the light, The light intensity is attenuated. Therefore, the wavelength of light transmitted through the spectroscopic device 3 can be selected by changing the distance L O between the input-side semi-transparent mirror 125 and the output-side semi-transparent mirror 124.

この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。   Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

本発明の第1の実施の形態に係る差圧測定システムの模式図である。1 is a schematic diagram of a differential pressure measurement system according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る照射光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the irradiation light which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る分光装置による時間毎の選択波長を示すグラフである。It is a graph which shows the selection wavelength for every time by the spectrometer which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る第1測定干渉計の上面図である。It is a top view of the 1st measurement interferometer which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る第1測定干渉計のA−A方向から見た第1の断面図である。It is the 1st sectional view seen from the AA direction of the 1st measurement interferometer concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る第1測定干渉計のA−A方向から見た第2の断面図である。It is the 2nd sectional view seen from the AA direction of the 1st measurement interferometer concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る第1測定干渉計のA−A方向から見た第3の断面図である。It is the 3rd sectional view seen from the AA direction of the 1st measurement interferometer concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る感圧膜に関するグラフ(その1)である。It is a graph (the 1) regarding the pressure-sensitive film which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る感圧膜に関するグラフ(その2)である。It is a graph (the 2) regarding the pressure-sensitive film which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る第1測定光の第1のスペクトルである。It is a 1st spectrum of the 1st measurement light which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る第1測定光の第2のスペクトルである。It is a 2nd spectrum of the 1st measurement light which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る第2測定干渉計の断面図である。It is sectional drawing of the 2nd measurement interferometer which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る出力光強度のスペクトルを示す第1のグラフである。It is a 1st graph which shows the spectrum of the output light intensity which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る出力光強度のスペクトルを示す第2のグラフである。It is a 2nd graph which shows the spectrum of the output light intensity which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る出力光強度のスペクトルを示す第3のグラフである。It is a 3rd graph which shows the spectrum of the output light intensity which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る出力光強度のスペクトルの包絡線を示す第1のグラフである。It is a 1st graph which shows the envelope of the spectrum of the output light intensity which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る出力光強度のスペクトルの包絡線を示す第2のグラフである。It is a 2nd graph which shows the envelope of the spectrum of the output light intensity which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る光路差と極値点の波長シフト量との関係を示すグラフである。It is a graph which shows the relationship between the optical path difference which concerns on the 1st Embodiment of this invention, and the wavelength shift amount of an extreme value point. 本発明の第1の実施の形態に係る差圧測定方法を示すフローチャートである。It is a flowchart which shows the differential pressure | voltage measurement method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る干渉縞の比較例を示す第1のグラフである。It is a 1st graph which shows the comparative example of the interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る干渉縞の比較例を示す第2のグラフである。It is a 2nd graph which shows the comparative example of the interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態の比較例に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on the comparative example of the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る干渉縞の比較例を示す第3のグラフである。It is a 3rd graph which shows the comparative example of the interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る干渉縞の比較例を示す第4のグラフである。It is a 4th graph which shows the comparative example of the interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る干渉縞の比較例を示す第5のグラフである。It is a 5th graph which shows the comparative example of the interference fringe which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る透過率の比とコントラストの関係を示すグラフである。It is a graph which shows the ratio of the transmittance | permeability which concerns on the 1st Embodiment of this invention, and the relationship of contrast. 本発明の第1の実施の形態の第1の変形例に係る出力光強度のスペクトルを示す第1のグラフである。It is a 1st graph which shows the spectrum of the output light intensity which concerns on the 1st modification of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第1の変形例に係る出力光強度のスペクトルを示す第2のグラフである。It is a 2nd graph which shows the spectrum of the output light intensity which concerns on the 1st modification of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第1の変形例に係る光路差と極大点の間隔との関係を示すグラフである。It is a graph which shows the relationship between the optical path difference which concerns on the 1st modification of the 1st Embodiment of this invention, and the space | interval of a maximum point. 本発明の第1の実施の形態の第2の変形例に係る出力光強度のスペクトルを示すグラフである。It is a graph which shows the spectrum of the output light intensity which concerns on the 2nd modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る差圧測定方法を示すフローチャートである。It is a flowchart which shows the differential pressure | voltage measurement method which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る変調駆動回路による時間毎の駆動電流を示すグラフである。It is a graph which shows the drive current for every time by the modulation drive circuit which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る補正された出力光強度のスペクトルを示すグラフである。It is a graph which shows the spectrum of the corrected output light intensity which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る差圧測定方法を示すフローチャートである。It is a flowchart which shows the differential pressure | voltage measurement method which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態の変形例に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on the modification of the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る移動平均法を説明するグラフである。It is a graph explaining the moving average method which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る出力光強度のスペクトルを示すグラフである。It is a graph which shows the spectrum of the output light intensity which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る移動平均線を示すグラフである。It is a graph which shows the moving average line which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る補正された出力光強度のスペクトルを示すグラフである。It is a graph which shows the spectrum of the corrected output light intensity which concerns on the 5th Embodiment of this invention. 本発明の第5の実施の形態に係る差圧測定方法を示すフローチャートである。It is a flowchart which shows the differential pressure | voltage measurement method which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る差圧測定システムの模式図である。It is a schematic diagram of the differential pressure measurement system which concerns on the 6th Embodiment of this invention. 本発明の第6の実施の形態に係る照射光の波長の温度依存性を示す第1のグラフである。It is a 1st graph which shows the temperature dependence of the wavelength of the irradiation light which concerns on the 6th Embodiment of this invention. 本発明の第6の実施の形態に係る照射光の波長の温度依存性を示す第2のグラフである。It is a 2nd graph which shows the temperature dependence of the wavelength of the irradiation light which concerns on the 6th Embodiment of this invention. 本発明の第6の実施の形態に係る照射光の波長と駆動電流との関係を示す第1のグラフである。It is a 1st graph which shows the relationship between the wavelength of irradiated light and the drive current which concerns on the 6th Embodiment of this invention. 本発明の第6の実施の形態に係る照射光の波長と駆動電流との関係を示す第2のグラフである。It is a 2nd graph which shows the relationship between the wavelength of the irradiation light which concerns on the 6th Embodiment of this invention, and a drive current. 本発明の第6の実施の形態に係る差圧測定方法を示すフローチャートである。It is a flowchart which shows the differential pressure | voltage measurement method which concerns on the 6th Embodiment of this invention. 本発明のその他の実施の形態に係る第1測定干渉計の断面図である。It is sectional drawing of the 1st measurement interferometer which concerns on other embodiment of this invention. 本発明のその他の実施の形態に係る出力光強度のスペクトルを示す第1のグラフである。It is a 1st graph which shows the spectrum of the output light intensity which concerns on other embodiment of this invention. 本発明のその他の実施の形態に係る差圧と極大点の間隔との関係を示すグラフである。It is a graph which shows the relationship between the differential pressure | voltage which concerns on other embodiment of this invention, and the space | interval of a maximum point. 本発明のその他の実施の形態に係る出力光強度のスペクトルを示す第2のグラフである。It is a 2nd graph which shows the spectrum of the output light intensity which concerns on other embodiment of this invention. 本発明のその他の実施の形態に係る圧力と極大点の間隔との関係を示すグラフである。It is a graph which shows the relationship between the pressure which concerns on other embodiment of this invention, and the space | interval of a maximum point. 本発明のその他の実施の形態に係る分光装置の第1の模式図である。It is the 1st schematic diagram of the spectroscopic device concerning other embodiments of the present invention. 本発明のその他の実施の形態に係る分光装置の第2の模式図である。It is the 2nd schematic diagram of the spectroscopic device concerning other embodiments of the present invention.

符号の説明Explanation of symbols

3…分光装置
5…第1測定干渉計
12…出力側内部筐体
13…入力側内部筐体
14…筐体
15…第2測定干渉計
20, 21…スプリッタ
26a…第1半透鏡
26b…第2半透鏡
27a…第1反射膜
27b…第2反射膜
29, 30, 30a, 30b, 33, 34, 34a, 34b, 35, 36…共通光導波路
31…第1測定用光導波路
32…第2測定用光導波路
40a…第1基底部
40b…第2基底部
43a, 143a…第1筐体
43b…第2筐体
50a, 150a…第1感圧膜
50b…第2感圧膜
53…レンズ
54…回折格子
60a, 60b…ホルダ
70a, 70b…開放弁
80, 80a, 80b…照射光導波路
85…波長フィルタ
114…光源
115…変調駆動回路
116…フィードバック回路
124…出力側半透鏡
125…入力側半透鏡
130a, 130b…コア
131a, 131b…クラッド
141a, 142a…空洞
144a…通気窓
145a…パッキン
153…干渉縞検出素子
154…照射光受光素子
160a, 160b…通気孔
191, 192…フェルール
200…データ記憶装置
201…観察結果記憶モジュール
202…関係記憶モジュール
203…差圧記憶モジュール
227a, 227b…反射鏡
231, 232…光ファイバ
300…CPU
305, 306…補正モジュール
310…抽出モジュール
320…観察モジュール
330…差圧算出モジュール
3 Spectrometer
5… First measurement interferometer
12… Output side internal housing
13… Input side internal housing
14 ... Case
15 ... Second measurement interferometer
20, 21 ... Splitter
26a… First semi-transparent mirror
26b… The second semi-transparent mirror
27a ... First reflective film
27b… Second reflection film
29, 30, 30a, 30b, 33, 34, 34a, 34b, 35, 36… Common optical waveguide
31 ... First optical waveguide for measurement
32 ... Second optical waveguide for measurement
40a ... First base
40b ... Second base
43a, 143a ... first housing
43b… Second housing
50a, 150a… First pressure sensitive membrane
50b… Second pressure sensitive membrane
53 ... Lens
54 ... Diffraction grating
60a, 60b ... holder
70a, 70b ... Release valve
80, 80a, 80b ... Irradiation optical waveguide
85… Wavelength filter
114 ... Light source
115: Modulation drive circuit
116 ... Feedback circuit
124 ... Output side translucent mirror
125 ... Input side translucent mirror
130a, 130b ... core
131a, 131b ... clad
141a, 142a ... hollow
144a ... Ventilation window
145a ... Packing
153 ... Interference fringe detector
154 ... Irradiation light receiving element
160a, 160b ... vent
191, 192 ... Ferrule
200 ... Data storage device
201 ... Observation result storage module
202 ... Relational memory module
203… Differential pressure memory module
227a, 227b ... Reflector
231, 232… Optical fiber
300 ... CPU
305, 306 ... Correction module
310 ... Extraction module
320 ... Observation module
330… Differential pressure calculation module

Claims (29)

照射光を発する光源と、
前記照射光を第1測定光及び第1参照光に分割し、前記第1測定光に第1外圧に応じて変動する第1測定光路長を進ませ、前記第1測定光及び前記第1参照光を干渉させる第1測定干渉計と、
前記照射光を第2測定光及び第2参照光に分割し、前記第2測定光に第2外圧に応じて変動する第2測定光路長を進ませ、前記第2測定光及び前記第2参照光を干渉させる第2測定干渉計と、
前記第1測定光及び前記第1参照光の第1干渉縞、及び前記第2測定光及び前記第2参照光の第2干渉縞の合成干渉縞を検出する干渉縞検出素子と、
前記合成干渉縞から、前記第1測定光路長及び前記第2測定光路長の光路差に応じて変化する干渉縞成分を抽出する抽出モジュールと、
前記干渉縞成分の変化から、前記第1外圧及び前記第2外圧の差圧を算出する差圧算出モジュール
とを備えることを特徴とする差圧測定システム。
A light source that emits irradiation light;
The irradiation light is divided into first measurement light and first reference light, a first measurement optical path length that varies according to a first external pressure is advanced to the first measurement light, and the first measurement light and the first reference A first measurement interferometer that causes light to interfere;
The irradiation light is divided into second measurement light and second reference light, and a second measurement optical path length that varies according to a second external pressure is advanced to the second measurement light, and the second measurement light and the second reference A second measurement interferometer that causes light to interfere;
An interference fringe detecting element for detecting a first interference fringe of the first measurement light and the first reference light, and a synthetic interference fringe of the second interference fringe of the second measurement light and the second reference light;
An extraction module that extracts an interference fringe component that changes in accordance with an optical path difference between the first measurement optical path length and the second measurement optical path length from the combined interference fringe;
A differential pressure measurement system comprising: a differential pressure calculation module that calculates a differential pressure between the first external pressure and the second external pressure from a change in the interference fringe component.
前記第1測定光及び前記第1参照光を前記干渉縞検出素子に伝搬する第1測定用光導波路を更に備えることを特徴とする請求項1に記載の差圧測定システム。   The differential pressure measurement system according to claim 1, further comprising a first measurement optical waveguide that propagates the first measurement light and the first reference light to the interference fringe detection element. 前記第2測定光及び前記第2参照光を前記干渉縞検出素子に伝搬する第2測定用光導波路を更に備えることを特徴とする請求項2に記載の差圧測定システム。   The differential pressure measurement system according to claim 2, further comprising a second measurement optical waveguide that propagates the second measurement light and the second reference light to the interference fringe detection element. 前記第1測定用光導波路及び前記第2測定用光導波路のそれぞれの長さは、前記第1測定光が前記第2測定光及び前記第2参照光と干渉しないよう、及び前記第1参照光が前記第2測定光及び前記第2参照光と干渉しないよう設定されていることを特徴とする請求項3に記載の差圧測定システム。   The length of each of the first measurement optical waveguide and the second measurement optical waveguide is such that the first measurement light does not interfere with the second measurement light and the second reference light, and the first reference light. The differential pressure measurement system according to claim 3, wherein the differential pressure measurement system is set so as not to interfere with the second measurement light and the second reference light. 前記第1測定用光導波路及び前記第2測定用光導波路のそれぞれの透過率が等しいことを特徴とする請求項3又は4に記載の差圧測定システム。   5. The differential pressure measurement system according to claim 3, wherein transmittances of the first measurement optical waveguide and the second measurement optical waveguide are equal to each other. 前記抽出モジュールが、前記合成干渉縞のスペクトルの包絡線を算出することを特徴とする請求項1乃至5のいずれか1項に記載の差圧測定システム。   The differential pressure measurement system according to any one of claims 1 to 5, wherein the extraction module calculates an envelope of a spectrum of the combined interference fringe. 前記抽出モジュールが、前記包絡線の極値点を抽出することを特徴とする請求項6に記載の差圧測定システム。   The differential pressure measurement system according to claim 6, wherein the extraction module extracts an extreme point of the envelope. 前記抽出モジュールが、前記包絡線の隣り合う極大点の間隔を抽出することを特徴とする請求項7に記載の差圧測定システム。   The differential pressure measurement system according to claim 7, wherein the extraction module extracts an interval between adjacent maximum points of the envelope. 前記抽出モジュールが、前記包絡線の隣り合う極小点の間隔を抽出することを特徴とする請求項7に記載の差圧測定システム。   The differential pressure measurement system according to claim 7, wherein the extraction module extracts an interval between adjacent minimum points of the envelope. 前記照射光の波長成分を選択的に透過させる分光装置を更に備えることを特徴とする請求項1乃至9のいずれか1項に記載の差圧測定システム。   The differential pressure measurement system according to claim 1, further comprising a spectroscopic device that selectively transmits a wavelength component of the irradiation light. 前記第1測定光、前記第1参照光、前記第2測定光、及び前記第2参照光のそれぞれの波長成分を選択的に透過させる分光装置を更に備えることを特徴とする請求項1乃至9のいずれか1項に記載の差圧測定システム。   10. A spectroscopic device that selectively transmits wavelength components of the first measurement light, the first reference light, the second measurement light, and the second reference light, respectively. The differential pressure measurement system according to any one of the above. 前記光源が、前記照射光の波長を変化させることを特徴とする請求項1乃至9のいずれか1項に記載の差圧測定システム。   The differential pressure measurement system according to claim 1, wherein the light source changes a wavelength of the irradiation light. 前記合成干渉縞のスペクトル分布から前記照射光のスペクトル分布を除去する補正モジュールを更に備えることを特徴とする請求項1乃至12のいずれか1項に記載の差圧測定システム。   The differential pressure measurement system according to any one of claims 1 to 12, further comprising a correction module that removes the spectrum distribution of the irradiation light from the spectrum distribution of the combined interference fringes. 前記補正モジュールが、前記合成干渉縞のスペクトル分布を前記照射光のスペクトル分布で割ることを特徴とする請求項13に記載の差圧測定システム。   The differential pressure measurement system according to claim 13, wherein the correction module divides a spectrum distribution of the combined interference fringes by a spectrum distribution of the irradiation light. 前記補正モジュールが、前記合成干渉縞のスペクトル分布の移動平均線を算出することを特徴とする請求項13に記載の差圧測定システム。   The differential pressure measurement system according to claim 13, wherein the correction module calculates a moving average line of a spectrum distribution of the combined interference fringes. 前記補正モジュールが、前記合成干渉縞のスペクトル分布を前記移動平均線で割ることを特徴とする請求項15に記載の差圧測定システム。   The differential pressure measurement system according to claim 15, wherein the correction module divides a spectrum distribution of the combined interference fringes by the moving average line. 照射光を発するステップと、
前記照射光を第1測定光及び第1参照光に分割し、前記第1測定光に第1外圧に応じて変動する第1測定光路長を進ませ、前記第1測定光及び前記第1参照光を干渉させるステップと、
前記照射光を第2測定光及び第2参照光に分割し、前記第2測定光に第2外圧に応じて変動する第2測定光路長を進ませ、前記第2測定光及び前記第2参照光を干渉させるステップと、
前記第1測定光及び前記第1参照光の第1干渉縞、及び前記第2測定光及び前記第2参照光の第2干渉縞の合成干渉縞を検出するステップと、
前記合成干渉縞から、前記第1測定光路長及び前記第2測定光路長の光路差に応じて変化する干渉縞成分を抽出するステップと、
前記干渉縞成分の変化から、前記第1外圧及び前記第2外圧の差圧を算出するステップ
とを含むことを特徴とする差圧測定方法。
Emitting illumination light; and
The irradiation light is divided into first measurement light and first reference light, a first measurement optical path length that varies according to a first external pressure is advanced to the first measurement light, and the first measurement light and the first reference Interfering light, and
The irradiation light is divided into second measurement light and second reference light, and a second measurement optical path length that varies according to a second external pressure is advanced to the second measurement light, and the second measurement light and the second reference Interfering light, and
Detecting a first interference fringe of the first measurement light and the first reference light and a combined interference fringe of the second interference fringe of the second measurement light and the second reference light;
Extracting an interference fringe component that changes in accordance with an optical path difference between the first measurement optical path length and the second measurement optical path length from the combined interference fringe;
Calculating a differential pressure between the first external pressure and the second external pressure from a change in the interference fringe component.
前記第1測定光及び前記第1参照光を第1測定用光導波路で伝搬するステップを更に含むことを特徴とする請求項17に記載の差圧測定方法。   The differential pressure measurement method according to claim 17, further comprising a step of propagating the first measurement light and the first reference light through a first measurement optical waveguide. 前記第2測定光及び前記第2参照光を第2測定用光導波路で伝搬するステップを更に含むことを特徴とする請求項18に記載の差圧測定方法。   The differential pressure measurement method according to claim 18, further comprising a step of propagating the second measurement light and the second reference light through a second measurement optical waveguide. 前記第1測定用光導波路及び前記第2測定用光導波路のそれぞれの長さは、前記第1測定光が前記第2測定光及び前記第2参照光と干渉しないよう、及び前記第1参照光が前記第2測定光及び前記第2参照光と干渉しないよう設定されていることを特徴とする請求項19に記載の差圧測定方法。   The length of each of the first measurement optical waveguide and the second measurement optical waveguide is such that the first measurement light does not interfere with the second measurement light and the second reference light, and the first reference light. 20. The differential pressure measuring method according to claim 19, wherein is set so as not to interfere with the second measuring light and the second reference light. 前記第1測定用光導波路及び前記第2測定用光導波路のそれぞれの透過率が等しいことを特徴とする請求項19又は20に記載の差圧測定方法。   21. The differential pressure measuring method according to claim 19 or 20, wherein the transmittance of each of the first measuring optical waveguide and the second measuring optical waveguide is equal. 前記干渉縞成分を抽出するステップが、前記合成干渉縞のスペクトルの包絡線を算出することを含むことを特徴とする請求項17乃至21のいずれか1項に記載の差圧測定方法。   The differential pressure measuring method according to any one of claims 17 to 21, wherein the step of extracting the interference fringe component includes calculating an envelope of a spectrum of the combined interference fringe. 前記干渉縞成分を抽出するステップが、前記包絡線の極値点を抽出することを含むことを特徴とする請求項17乃至21のいずれか1項に記載の差圧測定方法。   The differential pressure measuring method according to any one of claims 17 to 21, wherein the step of extracting the interference fringe component includes extracting an extreme point of the envelope. 前記干渉縞成分を抽出するステップが、前記包絡線の隣り合う極大点の間隔を抽出することを特徴とする請求項17乃至21のいずれか1項に記載の差圧測定方法。   The differential pressure measuring method according to any one of claims 17 to 21, wherein the step of extracting the interference fringe component extracts an interval between adjacent maximum points of the envelope. 前記干渉縞成分を抽出するステップが、前記包絡線の隣り合う極小点の間隔を抽出することを特徴とする請求項17乃至21のいずれか1項に記載の差圧測定方法。   The differential pressure measuring method according to any one of claims 17 to 21, wherein the step of extracting the interference fringe component extracts an interval between adjacent minimum points of the envelope. 前記合成干渉縞のスペクトル分布から前記照射光のスペクトル分布を除去するステップを更に含むことを特徴とする請求項17乃至25のいずれか1項に記載の差圧測定方法。   The differential pressure measurement method according to any one of claims 17 to 25, further comprising a step of removing the spectrum distribution of the irradiation light from the spectrum distribution of the synthetic interference fringes. 前記合成干渉縞のスペクトル分布を前記照射光のスペクトル分布で割るステップを更に含むことを特徴とする請求項17乃至25のいずれか1項に記載の差圧測定方法。   26. The differential pressure measurement method according to claim 17, further comprising a step of dividing the spectrum distribution of the synthetic interference fringes by the spectrum distribution of the irradiation light. 前記合成干渉縞のスペクトル分布の移動平均線を算出するステップを更に含むことを特徴とする請求項17乃至25のいずれか1項に記載の差圧測定方法。   The differential pressure measurement method according to any one of claims 17 to 25, further comprising a step of calculating a moving average line of a spectrum distribution of the combined interference fringes. 前記合成干渉縞のスペクトル分布を前記移動平均線で割るステップを更に含むことを特徴とする請求項28に記載の差圧測定方法。   29. The differential pressure measurement method according to claim 28, further comprising a step of dividing a spectrum distribution of the synthetic interference fringes by the moving average line.
JP2006162222A 2006-06-12 2006-06-12 Differential pressure measurement system and differential pressure measurement method Expired - Fee Related JP4934354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162222A JP4934354B2 (en) 2006-06-12 2006-06-12 Differential pressure measurement system and differential pressure measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162222A JP4934354B2 (en) 2006-06-12 2006-06-12 Differential pressure measurement system and differential pressure measurement method

Publications (2)

Publication Number Publication Date
JP2007333414A true JP2007333414A (en) 2007-12-27
JP4934354B2 JP4934354B2 (en) 2012-05-16

Family

ID=38933037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162222A Expired - Fee Related JP4934354B2 (en) 2006-06-12 2006-06-12 Differential pressure measurement system and differential pressure measurement method

Country Status (1)

Country Link
JP (1) JP4934354B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115575026A (en) * 2022-10-10 2023-01-06 深圳大学 Optical fiber resonator, preparation method thereof and vacuum degree detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108633A (en) * 1980-10-27 1982-07-06 Rosemount Eng Co Ltd Differential pressure measuring apparatus
JPH04353731A (en) * 1991-05-30 1992-12-08 Yamatake Honeywell Co Ltd Pressure converter
JP2000352524A (en) * 1999-06-10 2000-12-19 Nippon Telegr & Teleph Corp <Ntt> Optical fiber sensor system
JP2005291946A (en) * 2004-03-31 2005-10-20 Masaki Esashi Optical fiber sensor
JP2006058070A (en) * 2004-08-18 2006-03-02 Yamatake Corp Differential pressure measuring system and differential pressure measuring method
JP2006090979A (en) * 2004-09-27 2006-04-06 Yamatake Corp Differential pressure measuring system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108633A (en) * 1980-10-27 1982-07-06 Rosemount Eng Co Ltd Differential pressure measuring apparatus
JPH04353731A (en) * 1991-05-30 1992-12-08 Yamatake Honeywell Co Ltd Pressure converter
JP2000352524A (en) * 1999-06-10 2000-12-19 Nippon Telegr & Teleph Corp <Ntt> Optical fiber sensor system
JP2005291946A (en) * 2004-03-31 2005-10-20 Masaki Esashi Optical fiber sensor
JP2006058070A (en) * 2004-08-18 2006-03-02 Yamatake Corp Differential pressure measuring system and differential pressure measuring method
JP2006090979A (en) * 2004-09-27 2006-04-06 Yamatake Corp Differential pressure measuring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115575026A (en) * 2022-10-10 2023-01-06 深圳大学 Optical fiber resonator, preparation method thereof and vacuum degree detection method
CN115575026B (en) * 2022-10-10 2024-01-30 深圳大学 Optical fiber resonator, preparation method thereof and vacuum degree detection method

Also Published As

Publication number Publication date
JP4934354B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US11346770B2 (en) Optical fiber sensor for salinity and temperature measurement
JP4912504B1 (en) Refractive index measurement method and measurement apparatus
JP4817786B2 (en) Differential pressure measurement system and differential pressure measurement method
JP4892401B2 (en) Optical interference measurement device
EP2137517B1 (en) Waveguide devices using evanescent coupling between waveguides and grooves
JP4871791B2 (en) Optical coherence tomography system
Park et al. Temperature robust refractive index sensor based on a photonic crystal fiber interferometer
JP2003505713A (en) Grating structure and optical device
US11131544B2 (en) Optical fibre curvature sensor and measurement device comprising said sensor
US7184135B2 (en) Refractometer with blazed bragg gratings
Dong et al. Temperature-independent fiber bending sensor based on a superimposed grating
US8665447B2 (en) Enhanced sensitivity interferometric sensors
CN111146687B (en) Optical filter, and laser source and optical transceiver using the same
JP4934354B2 (en) Differential pressure measurement system and differential pressure measurement method
JP6413011B2 (en) Optical bending measuring device and tubular insert
CN117169168A (en) Integrated optical fiber refractive index sensor based on fine core optical fiber vernier effect
JP4769531B2 (en) Differential pressure measurement system and differential pressure measurement method
JP2007121140A (en) System and method for measuring differential pressure
US9863771B2 (en) Optical rotation sensor as well as method of manufacturing an optical rotation sensor
JP5365594B2 (en) Refractive index measuring apparatus and refractive index measuring method using guided mode resonance grating
WO2002044697A1 (en) Refractometer with blazed bragg gratings
JP4615914B2 (en) Differential pressure measurement system and differential pressure measurement method
JP2006029995A (en) Optical method and instrument for measuring physical quantity
US11977254B2 (en) Composed multicore optical fiber device
Torrijos-Morán et al. Subwavelength grating bimodal waveguide for refractive index sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees