JP2006055915A - Small diameter drill for machining printed wiring board - Google Patents

Small diameter drill for machining printed wiring board Download PDF

Info

Publication number
JP2006055915A
JP2006055915A JP2004237322A JP2004237322A JP2006055915A JP 2006055915 A JP2006055915 A JP 2006055915A JP 2004237322 A JP2004237322 A JP 2004237322A JP 2004237322 A JP2004237322 A JP 2004237322A JP 2006055915 A JP2006055915 A JP 2006055915A
Authority
JP
Japan
Prior art keywords
diameter
blade
chip discharge
web
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004237322A
Other languages
Japanese (ja)
Inventor
Toshikazu Nishi
登志和 西
Manabu Mochizuki
望月  学
Takashi Katsuki
崇 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2004237322A priority Critical patent/JP2006055915A/en
Publication of JP2006055915A publication Critical patent/JP2006055915A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small diameter drill which is for use in machining a small-diameter deep hole, and contributes to improvement in hole locational accuracy while preventing degradation of surface roughness on an inner wall surface of the machined hole due to degradation of chip disposal performance. <P>SOLUTION: According to the small diameter drill (1) for use in machining a printed wiring board, the thickness of a web (10) of a blade portion in the range from the tip of the blade portion (2) to a terminal (4a) of a chip discharging groove, is set to an almost predetermined thickness ranging from 32 to 54% of the diameter (D) of a cutting edge. Further, with respect to a blade cross section, provided that two straight lines in parallel with each other, each connecting between a front side edge (4d) and a rear side edge (4c) in a rotating direction (N) of a concave wall surface (4b) constituting the cutting chip discharging groove (4), are horizontally placed, a diameter (A) of a maximally inscribed circle in the concave wall surfaces (4b) is set to a dimension ranging from 30 to 65% of an interval (B) between the two straight lines. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プリント配線板加工用の小径ドリルに関する。 The present invention relates to a small diameter drill for processing a printed wiring board.

プリント配線板(以下「配線板」という。)の軽薄短小化に伴い、加工穴の直径は小径化しており、さらに、加工効率の向上から配線板の重ね枚数を増やす要求が高まってきている。そのため、プリント配線板加工用の小径ドリル(以下「ドリル」という。)は、切れ刃の直径と切りくず排出溝の有効長さとの比、いわゆるアスペクト比が大きくなってきている。一方、加工穴の穴位置精度及び内壁面の表面粗さについても従来どおり高い要求がある。 As the printed wiring board (hereinafter referred to as “wiring board”) becomes lighter, thinner, and smaller, the diameter of the processed hole is reduced, and further, there is an increasing demand for increasing the number of wiring boards to be stacked in order to improve the processing efficiency. Therefore, a small diameter drill for processing a printed wiring board (hereinafter referred to as “drill”) has a large ratio between the diameter of the cutting edge and the effective length of the chip discharge groove, so-called aspect ratio. On the other hand, the hole position accuracy of the processed hole and the surface roughness of the inner wall surface are also in high demand as before.

このような要求に応えるため、心厚、溝幅、ねじれ角といったドリル形状の仕様について、これまでにさまざまな検討がなされてきた。この種の従来ドリルの要部断面図を図7に例示する。この従来ドリルは、心厚部に、心厚比(心厚/切れ刃の直径)が先端で20〜30%、切りくず排出溝の終端部で60〜80%になるテーパー勾配を付け、溝幅比を1.5〜2.5:1とし、ドリル先端部での刃溝(切りくず排出溝)ねじれ角を25°以上にしたものである。そして、ねじれ角を、ドリル後部に向かってドリル径の3〜5倍長さ当り3〜7°の角度ずつ緩くなるように段階的に又は連続的に変化させるという構成を有する。(例えば、特許文献1参照)
実開平2―122712号公報
In order to meet such demands, various studies have been made so far regarding the specifications of drill shapes such as core thickness, groove width, and helix angle. FIG. 7 illustrates a cross-sectional view of a main part of this type of conventional drill. In this conventional drill, a taper gradient is applied to the core thickness portion so that the core thickness ratio (core thickness / cutting blade diameter) is 20 to 30% at the tip and 60 to 80% at the end of the chip discharge groove. The width ratio is 1.5 to 2.5: 1, and the twist angle of the blade groove (chip discharge groove) at the tip of the drill is 25 ° or more. And it has the structure which changes a torsion angle in steps or continuously so that it may become loose | gentle by the angle of 3-7 degrees per 3-5 times length of a drill diameter toward a drill rear part. (For example, see Patent Document 1)
Japanese Utility Model Publication No. 2-122712

しかしながら、上記の従来ドリルでは、ドリル後部に近づくにしたがって心厚比が増加するため切りくず排出溝の断面積も減少してしまう。そのため、深穴加工したときの切りくず排出性が低下し加工穴の内壁面の表面粗さを悪化させる問題があった。 However, in the above-described conventional drill, since the core thickness ratio increases as it approaches the rear part of the drill, the cross-sectional area of the chip discharge groove also decreases. For this reason, there is a problem that chip dischargeability when deep hole machining is reduced and the surface roughness of the inner wall surface of the machining hole is deteriorated.

本発明は、上記の事情に鑑みてなされたものであって、その目的は、深穴加工において、切りくず処理性の悪化による加工穴の内壁面の表面粗さの悪化を防止しつつ、加工穴の穴位置精度を高めたドリルを提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to prevent the deterioration of the surface roughness of the inner wall surface of the processed hole due to the deterioration of chip disposal in deep hole processing. An object of the present invention is to provide a drill with improved hole position accuracy.

上記課題を解決するため、本発明は、略丸棒状をなし、回転軸線(O)方向の先端側に設けられた刃部と、この刃部の後端側に連なるシャンク部とから構成され、前記刃部の外周面に前記軸線(O)を挟んで1対の切りくず排出溝が対向して形成され、この切りくず排出溝と刃部の先端面との交差稜線部に切れ刃が設けられてなるプリント配線板加工用の小径ドリルにおいて、以下の特徴部分を有するものである。 In order to solve the above-mentioned problem, the present invention has a substantially round bar shape, and is constituted by a blade portion provided on the front end side in the rotation axis (O) direction and a shank portion connected to the rear end side of the blade portion, A pair of chip discharge grooves are formed on the outer peripheral surface of the blade part so as to sandwich the axis (O), and a cutting edge is provided at a cross ridge line part between the chip discharge groove and the tip surface of the blade part. The obtained small diameter drill for processing a printed wiring board has the following characteristic portions.

すなわち、第1の発明においては、切れ刃の直径(D)が0.03mm以上且つ1.00mm以下に設定され、刃部の先端から切りくず排出溝の終端部までの範囲において、前記刃部のウェブの厚み(S1)が、前記切れ刃の直径(D)の32%〜54%の範囲の略一定な厚み寸法に設定され、さらに、刃部断面において、それぞれの前記切りくず排出溝を構成する凹壁面の回転方向(N)の前方側端部と後方側端部とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面における最大内接円の直径(A)が、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に設定され、且つ前記刃部の先端から前記切りくず排出溝の終端部までの長さ(L)が、前記切れ刃の直径(D)の8〜25倍の範囲の長さ寸法に設定されていることを特徴とするものである。上記の切りくず排出溝の終端部とは、切りくず排出溝の切れ上がりが始まる部位である。 That is, in the first invention, the diameter (D) of the cutting edge is set to 0.03 mm or more and 1.00 mm or less, and in the range from the tip of the blade part to the terminal part of the chip discharge groove, the blade part The web thickness (S1) is set to a substantially constant thickness dimension in the range of 32% to 54% of the diameter (D) of the cutting edge, and each chip discharge groove is formed on the blade section. When two parallel straight lines connecting the front end and the rear end in the rotational direction (N) of the concave wall surface are horizontal, the diameter of the maximum inscribed circle ( A) is set to a diameter dimension in the range of 30% to 65% of the distance (B) between the two straight lines, and the length (L) from the tip of the blade portion to the end portion of the chip discharge groove Is a length in the range of 8 to 25 times the diameter (D) of the cutting edge And it is characterized in that it is set to law. The terminal portion of the chip discharge groove is a portion where the chip discharge groove starts to be cut up.

また、第2の発明においては、切れ刃の直径(D)が0.03mm以上且つ1.00mm以下に設定され、刃部のウェブは、前記刃部の先端面から前記切りくず排出溝の終端部まで、漸次厚み寸法が増加する一定勾配のテーパー状断面を有し、前記刃部の先端から後端側へ前記切れ刃の直径(D)の100%の距離だけ離間した位置において、ウェブの厚み(S2)が、前記切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に設定され、さらに、前記位置の刃部断面において、それぞれの前記切りくず排出溝を構成する凹壁面の回転方向(N)の前方側端部と後方側端部とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面における最大内接円の直径(A)が、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に設定され、且つ前記刃部の先端から前記切りくず排出溝の終端部までの長さ(L)が、前記切れ刃の直径(D)の8〜25倍の範囲の長さ寸法に設定されていることを特徴とするものである。 Moreover, in 2nd invention, the diameter (D) of a cutting blade is set to 0.03 mm or more and 1.00 mm or less, and the web of a blade part is the terminal end of the said chip discharge groove from the front end surface of the said blade part. A taper-shaped cross-section with a gradually increasing thickness dimension up to a portion, at a position spaced by a distance of 100% of the diameter (D) of the cutting edge from the leading edge to the trailing edge of the blade. The thickness (S2) is set to a thickness dimension in the range of 32% to 54% of the diameter (D) of the cutting edge, and the recesses forming the chip discharge grooves in the blade section at the position are provided. When two parallel lines connecting the front end and the rear end in the rotation direction (N) of the wall surface are horizontal, the diameter (A) of the maximum inscribed circle in each concave wall surface is 30% to 65% of the distance (B) between the two straight lines The length (L) from the tip of the blade portion to the end portion of the chip discharge groove is a length in the range of 8 to 25 times the diameter (D) of the cutting blade. It is characterized by being set to a size.

また、第3の発明においては、切れ刃の直径(D)が0.03mm以上且つ1.00mm以下に設定され、刃部のウェブは、前記刃部の先端面から後端側へ前記切れ刃の直径(D)の2倍〜6倍の範囲にわたって形成された第1ウェブと、この第1ウェブから前記切りくず排出溝の終端部までの範囲にわたって形成された第2ウェブとからなり、前記第1ウェブは先端側から後端側に向かって漸次厚み寸法が増加する一定勾配のテーパー状断面を有し、前記第2ウェブは先端側から後端側に向かって漸次厚み寸法が増加するとともに第1ウェブよりも小さな勾配のテーパー状断面を有し、さらに前記刃部の先端から後端側へ前記切れ刃の直径(D)の100%の距離だけ離間した位置において、ウェブの厚み(S3)が、前記切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に設定され、さらに、前記位置の刃部断面において、それぞれの前記切りくず排出溝を構成する凹壁面の回転方向(N)の前方側端部と後方側端部とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面における最大内接円の直径(A)が、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に設定され、且つ前記刃部の先端から前記切りくず排出溝の終端部までの長さ(L)が前記切れ刃の直径(D)の8〜25倍の範囲の長さ寸法に設定されていることを特徴とするものである。 Moreover, in 3rd invention, the diameter (D) of a cutting blade is set to 0.03 mm or more and 1.00 mm or less, and the web of a blade part is the said cutting blade from the front end surface of the said blade part to a rear-end side. A first web formed over a range of 2 to 6 times the diameter (D) of the first web and a second web formed over a range from the first web to the end of the chip discharge groove, The first web has a constant-gradient tapered cross section in which the thickness dimension gradually increases from the front end side toward the rear end side, and the second web gradually increases in thickness dimension from the front end side toward the rear end side. The thickness of the web (S3) at a position having a tapered cross section with a smaller gradient than the first web and further spaced from the tip of the blade portion to the rear end by a distance of 100% of the diameter (D) of the cutting blade. ) Is the diameter of the cutting edge ( ) And a front end portion in the rotational direction (N) of the concave wall surface forming each of the chip discharge grooves in the blade section at the position. When two parallel straight lines connecting the rear end portions are horizontal, the diameter (A) of the maximum inscribed circle in each concave wall surface is 30% of the separation distance (B) of the two straight lines. The diameter dimension is set to a range of ˜65%, and the length (L) from the tip of the blade portion to the end portion of the chip discharge groove is a range of 8 to 25 times the diameter (D) of the cutting blade. It is characterized by being set to the length dimension.

上記の第1の発明においては、刃部のウェブの厚み(S1)を切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に設定したことから高い刃部剛性が得られる。さらに、刃部断面において、それぞれの前記切りくず排出溝を構成する凹壁面の回転方向(N)の前方側端部と後方側端部とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面における最大内接円の直径(A)を、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に設定したことから、刃部の断面強度がさらに高められるとともに、切りくず排出溝においては切りくずを排出するのに十分な断面積且つ好適な断面形状が得られる。ウェブの厚み(S1)を上記の範囲に限定した理由は、前記厚み(S1)が切れ刃の直径(D)の32%未満の厚み寸法になると刃部の剛性が不足するため加工穴の穴位置精度が悪化するおそれがあり、54%を超える厚み寸法になると切りくず排出性の低下により加工穴の内壁面の表面粗さが悪化するおそれがあるからである。また、前記内接円の直径(A)が前記離間距離(B)の30%未満の厚み寸法になると切りくず排出性が低下するおそれがあり、65%を超える厚み寸法になると刃部の断面強度が低下するおそれがあるからである。以上のように、切りくず排出性を低下させることなく刃部剛性を高めたことから、加工穴の内壁面の表面粗さを悪化させることなく加工穴の穴位置精度を向上することができる。 In said 1st invention, since the thickness (S1) of the web of a blade part was set to the thickness dimension of the range of 32%-54% of the diameter (D) of a cutting blade, high blade part rigidity is obtained. Furthermore, in the blade section, two parallel straight lines connecting the front end and the rear end in the rotational direction (N) of the concave wall surface forming each of the chip discharge grooves are horizontal. Since the diameter (A) of the maximum inscribed circle in each of the concave wall surfaces is set to a diameter dimension in a range of 30% to 65% of the separation distance (B) of the two straight lines, the cross-sectional strength of the blade portion Further, the cross-sectional area sufficient for discharging chips and a suitable cross-sectional shape can be obtained in the chip discharge groove. The reason why the thickness (S1) of the web is limited to the above range is that when the thickness (S1) is less than 32% of the diameter (D) of the cutting edge, the rigidity of the blade portion is insufficient, so that the hole of the processed hole is formed. This is because the positional accuracy may be deteriorated, and when the thickness dimension exceeds 54%, the surface roughness of the inner wall surface of the processed hole may be deteriorated due to the reduction of chip dischargeability. Further, when the diameter (A) of the inscribed circle is less than 30% of the separation distance (B), the chip discharge property may be deteriorated. This is because the strength may decrease. As described above, since the rigidity of the blade portion is increased without reducing the chip discharging property, the hole position accuracy of the processed hole can be improved without deteriorating the surface roughness of the inner wall surface of the processed hole.

上記の第2の発明においては、ウェブを刃部の先端から切りくず排出溝の終端部へ向かって一様に厚みが増加するテーパー状断面とし、さらに、前記刃部の先端から後端側へ切れ刃の直径(D)の100%の距離だけ離間した位置において、ウェブの厚み(S2)を前記切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に限定したことから、高い刃部剛性、特に刃部の根元側において高い剛性が得られる。また、切削抵抗の低い切れ刃形状が得られるため切れ味が良好となる。前記位置の刃部断面において、それぞれの前記切りくず排出溝を構成する凹壁面の回転方向(N)の前方側端部と後方側端部とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面における最大内接円の直径(A)を、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に設定したことから、刃部の断面強度がさらに高められるとともに、切りくず排出溝においては切りくずを排出するのに十分な断面積且つ好適な断面形状が得られる。ウェブの厚み(S2)を上記の範囲に限定した理由は、前記厚み(S2)が切れ刃の直径(D)の32%未満の厚み寸法になると刃部の剛性が不足するため加工穴の穴位置精度が悪化するおそれがあり、54%を超える厚み寸法になると切りくず排出性の低下により加工穴の内壁面の表面粗さが悪化するおそれがあるからである。また、前記内接円の直径(A)が前記離間距離(B)の30%未満の直径寸法になると切りくず排出性が低下するおそれがあり、65%を超える直径寸法になると刃部の断面強度が低下するおそれがあるからである。以上のように、切りくず排出性を低下させることなく刃部剛性、特に刃部の根元側において剛性を大幅に高め、さらに切れ味を高めたことから、加工穴の内壁面の表面粗さを悪化させることなく加工穴の穴位置精度を大幅に向上することができる。 In said 2nd invention, it is set as the taper-shaped cross section which thickness increases uniformly toward the terminal part of a chip discharge | emission groove | channel from the front-end | tip of a blade part, and also from the front-end | tip of the said blade part to the rear end side Since the web thickness (S2) is limited to a thickness dimension in the range of 32% to 54% of the diameter (D) of the cutting edge at a position separated by a distance of 100% of the diameter (D) of the cutting edge, High blade rigidity, particularly high rigidity is obtained on the base side of the blade. Moreover, since the cutting edge shape with low cutting resistance is obtained, the sharpness is improved. In the blade section at the position, two parallel straight lines connecting the front end and the rear end in the rotational direction (N) of the concave wall surfaces forming the chip discharge grooves are horizontal. Since the diameter (A) of the maximum inscribed circle in each of the concave wall surfaces was set to a diameter dimension in a range of 30% to 65% of the two straight line separation distances (B), the cross section of the blade portion The strength is further increased, and a cross-sectional area sufficient for discharging chips in the chip discharge groove and a suitable cross-sectional shape are obtained. The reason why the thickness (S2) of the web is limited to the above range is that when the thickness (S2) is less than 32% of the diameter (D) of the cutting edge, the rigidity of the blade portion is insufficient, so that the hole of the processed hole is formed. This is because the positional accuracy may be deteriorated, and when the thickness dimension exceeds 54%, the surface roughness of the inner wall surface of the processed hole may be deteriorated due to the reduction of chip dischargeability. Further, when the diameter (A) of the inscribed circle is less than 30% of the separation distance (B), the chip discharge property may be deteriorated. This is because the strength may decrease. As described above, the rigidity of the blade part, notably the rigidity on the base side of the blade part, has been greatly increased and the sharpness has been further improved without deteriorating the chip discharge performance. It is possible to greatly improve the hole position accuracy of the processed holes without causing them.

上記の第3の発明においては、刃部の先端から回転軸線(O)方向の所定の位置まで一様に厚みが増加するテーパー状断面をなす第1ウェブと、この第1ウェブから切りくず排出溝の終端部まで前記第1ウェブよりも小さな勾配で一様に厚みが増加するテーパー状断面をなす第2ウェブとを備え、さらに、前記刃部の先端から後端側へ切れ刃の直径(D)の100%の距離だけ離間した位置において、ウェブの厚み(S3)を前記切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に限定したことから、高い刃部剛性、特に刃部の根元側において高い剛性が得られ、また、切削抵抗の低い切れ刃形状が得られるため切れ味が良好となる。さらに、前記位置の刃部断面において、それぞれの前記切りくず排出溝を構成する凹壁面の回転方向(N)の前方側端部と後方側端部とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面における最大内接円の直径(A)を、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に設定したことから、刃部の断面強度がさらに高められるとともに、切りくず排出溝においては切りくずを排出するのに十分な断面積且つ好適な断面形状が得られる。ウェブの厚み(S3)を上記の範囲の厚み寸法に限定した理由は、前記厚み(S3)が切れ刃の直径(D)の32%未満の厚み寸法になると刃部の剛性が不足するため加工穴の穴位置精度が悪化するおそれがあり、54%を超える厚み寸法になると切りくず排出性の低下により加工穴の内壁面の表面粗さが悪化するおそれがあるからである。また、前記内接円の直径(A)が前記離間距離(B)の30%未満の直径寸法になると切りくず排出性が低下するおそれがあり、65%を超える直径寸法になると刃部の断面強度が低下するおそれがあるからである。なお、第1ウェブの前記軸線(O)方向の形成範囲(L1)は、刃部の先端から後端側へ向かって前記切れ刃の直径(D)の2倍〜6倍の範囲に設定されるのが好ましい。これは、2倍未満になると第1ウェブが形成された刃部の先端部の剛性を高める効果が得られなくなるおそれがあり、6倍を超えると切りくず排出溝の終端部における切りくず排出溝の断面積が小さくなるか、又は、刃部の先端部における第1ウェブの厚みが小さくなり、切りくず排出性又は刃部強度のいずれかにおいて問題を生じるおそれがあるからである。以上のように、切りくず排出性を低下させることなく刃部の剛性、特に刃部の根元側において剛性を大幅に高め、さらに切れ味を高めたことから、加工穴の内壁面の表面粗さを悪化させることなく加工穴の穴位置精度を大幅に向上することができる。 In said 3rd invention, the 1st web which makes the taper-shaped cross section which thickness increases uniformly from the front-end | tip of a blade part to the predetermined position of a rotation axis (O) direction, and chip discharge | emission from this 1st web A second web having a tapered cross section whose thickness uniformly increases with a smaller gradient than the first web up to the terminal end of the groove, and further, the diameter of the cutting edge from the tip of the blade to the rear end ( Since the thickness (S3) of the web is limited to a thickness dimension in the range of 32% to 54% of the diameter (D) of the cutting edge at a position separated by a distance of 100% of D), a high blade rigidity, In particular, high rigidity is obtained on the root side of the blade portion, and a cutting edge shape with low cutting resistance is obtained, so that the sharpness is improved. Further, in the cross section of the blade portion at the position, two parallel straight lines connecting the front end and the rear end in the rotation direction (N) of the concave wall surfaces forming the chip discharge grooves become horizontal. When doing so, the diameter (A) of the maximum inscribed circle in each of the concave wall surfaces is set to a diameter dimension in the range of 30% to 65% of the separation distance (B) of the two straight lines. In addition, the cross-sectional strength and the cross-sectional area sufficient for discharging chips are obtained in the chip discharge groove. The reason for limiting the web thickness (S3) to the thickness dimension in the above range is that the rigidity of the blade portion is insufficient when the thickness (S3) is less than 32% of the diameter (D) of the cutting edge. This is because the hole position accuracy of the hole may be deteriorated, and when the thickness dimension exceeds 54%, the surface roughness of the inner wall surface of the processed hole may be deteriorated due to a decrease in chip dischargeability. Further, when the diameter (A) of the inscribed circle is less than 30% of the separation distance (B), the chip discharge property may be deteriorated. This is because the strength may decrease. In addition, the formation range (L1) of the first web in the axis (O) direction is set to a range of 2 to 6 times the diameter (D) of the cutting edge from the front end to the rear end side of the blade portion. It is preferable. If this is less than 2 times, the effect of increasing the rigidity of the tip of the blade portion on which the first web is formed may not be obtained. If it exceeds 6 times, the chip discharge groove at the end of the chip discharge groove This is because the cross-sectional area of the blade becomes small, or the thickness of the first web at the tip of the blade portion becomes small, which may cause a problem in either chip discharge performance or blade strength. As described above, the rigidity of the blade part, particularly the rigidity at the root side of the blade part, has been significantly increased without reducing the chip discharge performance, and the sharpness has been further improved. The hole position accuracy of the processed hole can be greatly improved without deteriorating.

ウェブを断面テーパー状とした第2及び第3の発明では、テーパー勾配を以下の範囲に設定するのが好ましい。すなわち、第2の発明において、ウェブ断面のテーパー勾配は0.005/1〜0.025/1の範囲内で一定の勾配とするのが好ましい。これは、上記のテーパー勾配が0.05/1未満になると、刃部の剛性を向上させる効果が得られないおそれがあり、0.025/1よりも大きくなると、切りくず排出溝の終端部における断面積が不足し切りくず排出性が悪化するおそれがあるからである。また、第3の発明のドリルにおいて、第1ウェブ断面のテーパー勾配は0.025/1〜0.045/1の範囲内で一定の勾配とし、且つ第2ウェブ断面のテーパー勾配は0.005/1〜0.025/1の範囲内で一定の勾配とするのが好ましい。これは、第1ウェブ断面のテーパー勾配が0.025/1未満になると第1ウェブを形成した範囲の刃部の剛性を向上させる効果が得られないか、又は切れ刃の長さが短くなり(チゼルエッジが長くなり)切れ味が悪化するおそれがあり、0.045/1よりも大きくなると、第1ウェブよりも後端側に形成した第2ウェブにおける切りくず排出溝の断面積が不足するおそれがあるからである。また、第2ウェブ断面のテーパー勾配が0.005/1未満になると第2ウェブを形成した範囲の刃部の剛性を向上させる効果が得られず、0.025/1よりも大きくなると切りくず排出溝の終端部における断面積が不足し切りくず排出性が悪化するおそれがあるからである。 In the second and third inventions in which the web has a tapered cross section, the taper gradient is preferably set in the following range. That is, in the second invention, the taper slope of the web section is preferably a constant slope within the range of 0.005 / 1 to 0.025 / 1. If the taper gradient is less than 0.05 / 1, the effect of improving the rigidity of the blade may not be obtained. If the taper gradient is greater than 0.025 / 1, the end portion of the chip discharge groove This is because there is a risk that the cross-sectional area at is insufficient and the chip discharge property is deteriorated. In the drill of the third invention, the taper slope of the first web section is a constant slope within the range of 0.025 / 1 to 0.045 / 1, and the taper slope of the second web section is 0.005. It is preferable to set a constant gradient within the range of / 1 to 0.025 / 1. This is because when the taper slope of the first web section is less than 0.025 / 1, the effect of improving the rigidity of the blade portion in the range where the first web is formed cannot be obtained, or the length of the cutting edge is shortened. (The chisel edge becomes longer) The sharpness may be deteriorated, and when it is larger than 0.045 / 1, the cross-sectional area of the chip discharge groove in the second web formed on the rear end side of the first web may be insufficient. Because there is. Moreover, when the taper gradient of the second web section is less than 0.005 / 1, the effect of improving the rigidity of the blade portion in the range where the second web is formed cannot be obtained, and when the taper gradient is larger than 0.025 / 1, chips are removed. This is because the cross-sectional area at the terminal end of the discharge groove is insufficient and the chip discharge property may be deteriorated.

以上に説明した構成を有する第1〜第3の発明によれば、切れ刃の直径(D)が0.03mm以上且つ1.00mm以下であり、さらに、刃部の先端から切りくず排出溝の終端部までの長さ(L)が切れ刃の直径(D)の8倍〜25倍という高アスペクト比の小径深穴加工用ドリルにおいて、加工穴の穴位置精度を高めるのに好適な特性を発揮することができる。 According to the first to third inventions having the configuration described above, the diameter (D) of the cutting edge is 0.03 mm or more and 1.00 mm or less, and further, the chip discharge groove is formed from the tip of the blade part. For small diameter deep hole drills with a high aspect ratio of 8 to 25 times the diameter (D) of the cutting edge, the length to the end (L) is suitable for increasing the hole position accuracy of the processed holes. It can be demonstrated.

第1〜第3の発明において、切りくず排出性及び加工穴の穴位置精度の点から切りくず排出溝のねじれ角(θ)を38°〜56°の範囲のねじれ角に設定することが好ましい。これは、前記ねじれ角(θ)が38°未満になると切りくず排出性が低下したり切れ味の低下により加工穴の穴位置精度が低下したりするおそれがあり、前記ねじれ角(θ)が56°を超えると刃部の剛性が低下するため加工穴の穴位置精度が低下したりドリル折損が生じたりするおそれがあるからである。 In the first to third inventions, it is preferable to set the twist angle (θ) of the chip discharge groove to a twist angle in the range of 38 ° to 56 ° in terms of chip discharge performance and hole position accuracy of the processed hole. . This is because when the twist angle (θ) is less than 38 °, the chip dischargeability may decrease or the hole position accuracy of the processed hole may decrease due to the decrease in sharpness, and the twist angle (θ) may be 56. This is because if the angle exceeds 60 °, the rigidity of the blade portion is lowered, so that the hole position accuracy of the processed hole may be lowered or the drill may be broken.

また、第1乃至第3の発明において、切りくず排出性及び刃部の剛性の点からドリルの溝幅比を0.8〜1.5の範囲に設定するのが好ましい。これは、溝幅比が0.8未満になると切りくず排出溝の容積を十分確保できなくなり切りくず排出性が悪化するおそれがあるからであり、溝幅比が1.5を超えると刃部の剛性を十分確保できなくなり加工穴の穴位置精度が悪化するおそれがあるからである。 In the first to third aspects of the invention, it is preferable to set the groove width ratio of the drill in the range of 0.8 to 1.5 from the viewpoints of chip dischargeability and blade rigidity. This is because when the groove width ratio is less than 0.8, the volume of the chip discharge groove cannot be secured sufficiently, and the chip discharge property may be deteriorated. When the groove width ratio exceeds 1.5, the blade portion This is because the rigidity of the hole cannot be sufficiently secured, and the hole position accuracy of the processed hole may be deteriorated.

以下に、本発明を適用した実施の形態について、図1〜図3を参照しながら説明する。図1は第1の実施の形態に係るドリルを示す図であり、(a)は正面図、(b)は要部の一部正面断面図である。図2は図1に示すドリルの先端視側面拡大図であり、図3は図1に示すドリルのA−A線断面拡大図であり、(a)は本実施の形態のドリルを示す図であり、(b)及び(c)は本発明の範囲外のドリルを概念的に示す図である。このドリル(1)の基本的な構成について以下に説明する。図1及び図2に示されるように、このドリル(1)は略丸棒状をなし、回転軸線(O)方向の先端側に設けられた刃部(2)と、この刃部(2)の後端側に連なるシャンク部(3)とから構成され、前記刃部(2)の外周面には前記軸線(O)を挟んで1対の切りくず排出溝(4)が対向して形成されている。これら切りくず排出溝(4)と刃部の先端面(2a)との交差稜線部には切れ刃(5)が形成されている。切りくず排出溝(4)の溝底によって形成されたウェブ(10)は刃部の先端から切りくず排出溝の終端部(4a)までの範囲に形成されている。切れ刃の直径(D)は0.03mm以上且つ1.00mm以下に設定され、刃部(2)の先端から切りくず排出溝の終端部(4a)までの長さ(L)が、切れ刃の直径(D)の8〜25倍の範囲の長さを有している。上記の切りくず排出溝の終端部(4a)とは、切りくず排出溝の切れ上がりが始まる部位であり、上記の長さ(L)は、別の表現をすれば切りくず排出溝(4)の有効長さである。 Embodiments to which the present invention is applied will be described below with reference to FIGS. 1A and 1B are diagrams showing a drill according to a first embodiment, wherein FIG. 1A is a front view, and FIG. 1B is a partial front sectional view of an essential part. 2 is an enlarged side view of the drill shown in FIG. 1, FIG. 3 is an enlarged cross-sectional view taken along line AA of the drill shown in FIG. 1, and (a) is a diagram showing the drill of the present embodiment. And (b) and (c) are diagrams conceptually showing a drill outside the scope of the present invention. The basic configuration of the drill (1) will be described below. As shown in FIGS. 1 and 2, the drill (1) has a substantially round bar shape, and has a blade portion (2) provided on the tip side in the direction of the rotation axis (O), and the blade portion (2). The shank portion (3) is connected to the rear end side, and a pair of chip discharge grooves (4) are formed on the outer peripheral surface of the blade portion (2) so as to face each other with the axis (O) interposed therebetween. ing. A cutting blade (5) is formed at the intersecting ridge line portion between the chip discharge groove (4) and the tip end surface (2a) of the blade portion. The web (10) formed by the groove bottom of the chip discharge groove (4) is formed in a range from the tip of the blade part to the terminal part (4a) of the chip discharge groove. The diameter (D) of the cutting edge is set to 0.03 mm or more and 1.00 mm or less, and the length (L) from the tip of the blade part (2) to the terminal end part (4a) of the chip discharge groove is the cutting edge. And a length in the range of 8 to 25 times the diameter (D). The end portion (4a) of the chip discharge groove is a portion where the chip discharge groove starts to be cut, and the length (L) is the chip discharge groove (4) in another expression. Is the effective length.

次に特徴的な構成について以下に説明する。ウェブ(10)の厚み(S1)は、図1の(b)に示されるように、刃部(2)の先端から切りくず排出溝の終端部(4a)までほぼ一定の厚み寸法に形成される。そして、前記厚み(S1)は切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に設定され、刃部(2)の剛性が十分に高められている。前記厚み(S1)を上記の範囲に限定したのは、前記厚み(S1)が切れ刃の直径(D)の32%未満の厚み寸法になると刃部(2)の剛性が不足するため加工穴の穴位置精度が悪化するおそれがあり、54%を超える厚み寸法になると切りくず排出性の低下により加工穴の内壁面の表面粗さが悪化するおそれがあるからである。 Next, a characteristic configuration will be described below. As shown in FIG. 1B, the thickness (S1) of the web (10) is formed to have a substantially constant thickness dimension from the tip of the blade (2) to the end (4a) of the chip discharge groove. The And the said thickness (S1) is set to the thickness dimension of the range of 32%-54% of the diameter (D) of a cutting blade, and the rigidity of a blade part (2) is fully improved. The thickness (S1) is limited to the above range because when the thickness (S1) is less than 32% of the diameter (D) of the cutting edge, the rigidity of the blade (2) is insufficient, so that the processing hole is formed. This is because the hole position accuracy may be deteriorated, and when the thickness exceeds 54%, the surface roughness of the inner wall surface of the processed hole may be deteriorated due to a decrease in chip dischargeability.

さらに、図3の(a)に示されるように、刃部(2)を回転軸線(O)に直交する平面で切断した断面において、前記軸線(O)を中心としそれぞれの切りくず排出溝を構成する凹壁面(4b)に内接する内接円の直径(A)は、それぞれの前記凹壁面における該ドリル(1)の回転方向(N)の前方側端部(4d)と後方側端部(4c)とを結ぶ互いに平行な2直線の離間距離(B)の30%〜65%の範囲の直径寸法に限定される。そうすれば、刃部(2)の断面強度がさらに高められるとともに、切りくず排出溝(4)の断面形状においては切りくずを排出するのに十分な断面積且つ好適な断面形状が得られる。前記内接円の直径(A)が前記離間距離(B)の30%未満の直径寸法になると、図3の(b)の概念図に示されるように、前記凹壁面(4b)における回転方向(N)の前方側端部(4d)と後方側端部(4c)とが互いに接近するため、切りくず排出溝の断面形状は、その断面積が減少し且つ凹壁面(4b)の曲率半径が小さくなるため切りくず排出に好ましくない断面形状となる。一方、前記内接円の直径(A)が前記離間距離(B)の65%を超える直径寸法になると、図3の(c)の概念図に示されるように、ランド部(8)が狭くなり十分な刃部(2)剛性が確保できなくなる。 Further, as shown in FIG. 3 (a), in the cross section obtained by cutting the blade portion (2) along a plane orthogonal to the rotational axis (O), each chip discharge groove is centered on the axis (O). The diameter (A) of the inscribed circle that is inscribed in the concave wall surface (4b) that constitutes the front end portion (4d) and the rear end portion in the rotational direction (N) of the drill (1) in each concave wall surface The diameter is limited to a range of 30% to 65% of the distance (B) between two parallel lines connecting (4c). By doing so, the cross-sectional strength of the blade portion (2) can be further increased, and the cross-sectional shape of the chip discharge groove (4) sufficient for discharging chips can be obtained. When the diameter of the inscribed circle (A) is less than 30% of the distance (B), the rotational direction of the concave wall surface (4b) as shown in the conceptual diagram of FIG. Since the front end part (4d) and the rear end part (4c) of (N) are close to each other, the cross-sectional shape of the chip discharge groove is reduced in cross-sectional area and the radius of curvature of the concave wall surface (4b). Therefore, the cross-sectional shape becomes unfavorable for chip discharge. On the other hand, when the diameter (A) of the inscribed circle exceeds 65% of the separation distance (B), the land portion (8) becomes narrow as shown in the conceptual diagram of FIG. Therefore, sufficient rigidity of the blade (2) cannot be ensured.

しかして、上記の第1の実施の形態に係るドリル(1)によれば、切れ刃の直径(D)を0.03mm以上且つ1.00mm以下に設定し、且つ刃部(2)の先端から切りくず排出溝の終端部(4a)までの長さ(L)を切れ刃の直径(D)の8〜25倍の範囲に設定した高アスペクト比のドリルにおいて、切りくず排出性を低下させることなく刃部(2)剛性が高められることから、加工穴の内壁面の表面粗さを悪化させることなく加工穴の穴位置精度を向上することができる。 Thus, according to the drill (1) according to the first embodiment, the diameter (D) of the cutting edge is set to 0.03 mm or more and 1.00 mm or less, and the tip of the blade part (2) In a high aspect ratio drill in which the length (L) from the tip to the end portion (4a) of the chip discharge groove is set to a range of 8 to 25 times the diameter (D) of the cutting edge, chip discharge performance is reduced. Since the rigidity of the blade part (2) is improved without any problem, the hole position accuracy of the processed hole can be improved without deteriorating the surface roughness of the inner wall surface of the processed hole.

次に、本発明を適用した第2の実施の形態に係るドリルについて、図4、図2及び図3を参照しながら説明する。図4はこのドリルを示す図であり、(a)は正面図、(b)は要部の一部正面断面図である。図4に示すドリルの先端視側面拡大図及びA−A線拡大断面図は第1の実施の形態とほぼ同じであるため図2及び図3を参照する。このドリル(1)の基本的な構成は上述した第1の実施の形態に係るドリル(1)と同様なので省略し、以下に特徴的な構成のみ説明する。 Next, a drill according to a second embodiment to which the present invention is applied will be described with reference to FIGS. 4, 2, and 3. 4A and 4B are views showing the drill, in which FIG. 4A is a front view and FIG. 4B is a partial front sectional view of a main part. 4 and FIG. 3 are substantially the same as those in the first embodiment, and the side view of the drill shown in FIG. Since the basic configuration of the drill (1) is the same as that of the drill (1) according to the first embodiment described above, it will be omitted and only the characteristic configuration will be described below.

刃部(2)のウェブ(10)は、図4の(b)に示されるように、刃部の先端から切りくず排出溝の終端部(4a)まで漸次厚み寸法が均一に増加するテーパー状断面を呈する。具体的には、前記ウェブ(10)断面のテーパー勾配は0.005/1〜0.025/1の範囲内で一定とするのが好ましい。これは、前記テーパー勾配が0.05/1未満になると、刃部(2)の剛性、特に刃部(2)の根元側の剛性を向上させる効果が得られないおそれがあり、0.025/1よりも大きくなると、回転軸線(O)直角断面において切りくず排出溝の終端部(4a)の断面積が不足し切りくず排出性が悪化するおそれがあるからである。そして、刃部(2)の先端から後端側へ切れ刃の直径(D)にほぼ等しい距離だけ離間した位置で回転軸線(O)に直交する平面で切断した刃部(2)断面において、ウェブ(10)の厚み(S2)は切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に形成される。そうすれば、刃部(2)の強度、特に刃部(2)の根元側において高い剛性が得られるほか、図2からわかるように、ウェブの厚みが減少する刃部(2)の先端部においては、回転軸線(O)近傍から切れ刃(5)へ延びるチゼルエッジ(6)の長さが短くなることから、切削抵抗を低減し且つ切れ味を高めた切れ刃形状が得られ加工穴の穴位置精度が大幅に向上する。上記の刃部(2)断面におけるウェブ(10)の厚み(S2)を上記範囲に限定したのは、前記厚み(S2)が切れ刃の直径(D)の32%未満の厚み寸法になると刃部(2)の剛性が不足するため加工穴の穴位置精度が悪化するおそれがあり、54%を超える厚み寸法になると切りくず排出性の低下により加工穴の内壁面の表面粗さが悪化するおそれがあるからである。 As shown in FIG. 4B, the web (10) of the blade part (2) has a tapered shape in which the thickness dimension gradually increases uniformly from the tip of the blade part to the end part (4a) of the chip discharge groove. Presents a cross section. Specifically, the taper gradient of the cross section of the web (10) is preferably constant within a range of 0.005 / 1 to 0.025 / 1. If the taper gradient is less than 0.05 / 1, there is a possibility that the effect of improving the rigidity of the blade part (2), particularly the rigidity of the root part of the blade part (2), may not be obtained. This is because the cross-sectional area of the end portion (4a) of the chip discharge groove is insufficient in the cross section perpendicular to the rotation axis (O), and the chip discharge performance may be deteriorated. Then, in the cross section of the blade part (2) cut by a plane perpendicular to the rotation axis (O) at a position separated by a distance substantially equal to the diameter (D) of the cutting edge from the front end to the rear end side of the blade part (2), The thickness (S2) of the web (10) is formed in a thickness dimension in the range of 32% to 54% of the diameter (D) of the cutting edge. Then, the strength of the blade portion (2), particularly high rigidity on the root side of the blade portion (2) can be obtained, and as can be seen from FIG. 2, the tip portion of the blade portion (2) where the web thickness decreases. In this case, since the length of the chisel edge (6) extending from the vicinity of the rotation axis (O) to the cutting edge (5) is shortened, a cutting edge shape with reduced cutting resistance and improved sharpness is obtained. Position accuracy is greatly improved. The reason why the thickness (S2) of the web (10) in the cross section of the blade part (2) is limited to the above range is that when the thickness (S2) is less than 32% of the diameter (D) of the cutting edge, Since the rigidity of the part (2) is insufficient, the hole position accuracy of the processed hole may be deteriorated. When the thickness dimension exceeds 54%, the surface roughness of the inner wall surface of the processed hole is deteriorated due to the reduction of chip dischargeability. Because there is a fear.

さらに、上記の刃部(2)断面において、図3の(a)に示される断面図を参照すれば、それぞれの切りくず排出溝(4)を構成する凹壁面(4b)における該ドリル(1)の回転方向(N)の前方側端部(4d)と後方側端部(4c)とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面(4b)における最大内接円の直径(A)は、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に限定される。そうすれば、刃部(2)の断面強度がさらに高められるとともに、切りくず排出溝(4)の断面形状において切りくずを排出するのに十分な断面積且つ好適な断面形状が得られる。上記の範囲に限定した理由は、先述した第1の実施の形態と同じである。なお、前記内接円の直径(A)は刃部(2)の先端におけるウェブの厚み、いわゆる心厚のほぼ1.03〜1.06倍の直径寸法に設定されている。 Further, in the cross section of the blade part (2), referring to the cross sectional view shown in FIG. 3A, the drill (1) in the concave wall surface (4b) constituting each chip discharge groove (4). ) In the rotational direction (N) when the two parallel straight lines connecting the front end (4d) and the rear end (4c) are horizontal, the maximum in each concave wall surface (4b) The diameter (A) of the inscribed circle is limited to a diameter dimension in the range of 30% to 65% of the distance (B) between the two straight lines. If it does so, while the cross-sectional intensity | strength of a blade part (2) is further raised, sufficient cross-sectional area and suitable cross-sectional shape to discharge a chip in the cross-sectional shape of a chip discharge groove (4) are obtained. The reason for limiting to the above range is the same as in the first embodiment described above. The diameter (A) of the inscribed circle is set to a diameter of approximately 1.03 to 1.06 times the thickness of the web at the tip of the blade (2), that is, the so-called core thickness.

しかして、上記の第2の実施の形態に係るドリル(1)によれば、小径且つ高アスペクト比のドリルにおいて、切りくず排出性を低下させることなく刃部(2)の剛性、特に刃部(2)の根元側の剛性が高められ、さらに切れ味が高められることから、加工穴の内壁面の表面粗さを悪化させることなく加工穴の穴位置精度を大幅に向上することができる。 Thus, according to the drill (1) according to the second embodiment, in the drill having a small diameter and a high aspect ratio, the rigidity of the blade (2), in particular, the blade, without reducing the chip discharge performance. Since the rigidity of the root side of (2) is increased and the sharpness is further improved, the hole position accuracy of the processed hole can be greatly improved without deteriorating the surface roughness of the inner wall surface of the processed hole.

次に、本発明を適用した第3の実施の形態に係るドリルについて、図5、図2及び図3を参照しながら説明する。図5はこのドリルを示す図であり、(a)は正面図、(b)は要部の一部正面断面図である。図4に示すドリルの先端視側面拡大図及びA−A線拡大断面図は第1の実施の形態とほぼ同じであるため図2及び図3を参照する。このドリル(1)の基本的な構成は上述した第1の実施の形態に係るドリル(1)と同様なので省略し、以下に特徴的な構成のみ説明する。 Next, a drill according to a third embodiment to which the present invention is applied will be described with reference to FIGS. FIG. 5 is a view showing this drill, in which (a) is a front view and (b) is a partial front sectional view of a main part. 4 and FIG. 3 are substantially the same as those in the first embodiment, and the side view of the drill shown in FIG. Since the basic configuration of the drill (1) is the same as that of the drill (1) according to the first embodiment described above, it will be omitted and only the characteristic configuration will be described below.

刃部(2)のウェブ(10)は、図5の(b)に示されるように、刃部(2)の先端から後端側に向かって所定の位置まで漸次厚み寸法が増加する一定勾配のテーパー状断面をなす第1ウェブ(10A)と、この第1ウェブ(10A)から切りくず排出溝の終端部(4a)まで漸次厚み寸法が増加する一定勾配のテーパー状断面をなす第2ウェブ(10B)とから構成される。第1ウェブ(10A)及び第2ウェブ(10B)の断面形状は、互いに異なるテーパー勾配を有し、第2ウェブ(10B)よりも第1ウェブ(10A)のテーパー勾配が大きく設定され、具体的には、第1ウェブ(10A)断面のテーパー勾配は0.025/1〜0.045/1の範囲内で一定とし、且つ第2ウェブ(10B)断面のテーパー勾配は0.005/1〜0.025/1の範囲内で一定とするのが好ましい。これは、第1ウェブ(10A)断面のテーパー勾配が0.025/1未満になると第1ウェブ(10A)を形成した範囲の刃部(2)の剛性を向上させる効果が得られないか、又は、図2に示されるように、第1ウェブの厚みが減少する刃部(2)の先端部においてチゼルエッジ(6)の長さを短くすることによって切れ味を向上させる効果が得られにくくなるからであり、0.045/1よりも大きくなると第2ウェブ(10B)を形成した範囲における切りくず排出溝(4)の断面積が不足するおそれがあるからである。また、第2ウェブ(10B)断面のテーパー勾配が0.005/1未満になると第2ウェブ(10B)を形成した範囲の刃部(2)の剛性、特に刃部(2)の根元側の剛性を向上させる効果が得られず、0.025/1よりも大きくなると切りくず排出溝の終端部(4a)における断面積が不足し切りくず排出性が悪化するおそれがあるからである。そして、前記軸線(O)方向における第1ウェブ(10A)の形成範囲(L1)は、刃部(2)の先端から後端側へ切れ刃の直径(D)の2倍〜6倍の範囲に設定されるのが好ましい。これは、2倍未満になると第1ウェブ(10A)が形成された刃部(2)の先端部の剛性を高める効果が得られなくなるおそれがあり、6倍を超えると切りくず排出溝の終端部(4a)における切りくず排出溝(4)の断面積が小さくなるか、又は、刃部(2)の先端部における第1ウェブ(10A)の厚みが小さくなり、切りくず排出性又は刃部強度のいずれかにおいて問題を生じるおそれがあるからである。 As shown in FIG. 5B, the web (10) of the blade part (2) has a constant gradient in which the thickness dimension gradually increases from the front end of the blade part (2) to a predetermined position toward the rear end side. The first web (10A) having a tapered cross section, and the second web having a taper-shaped cross section having a constant gradient in which the thickness dimension gradually increases from the first web (10A) to the end portion (4a) of the chip discharge groove. (10B). The cross-sectional shapes of the first web (10A) and the second web (10B) have different taper slopes, and the taper slope of the first web (10A) is set to be larger than that of the second web (10B). The taper gradient of the first web (10A) cross section is constant within the range of 0.025 / 1 to 0.045 / 1, and the taper gradient of the second web (10B) cross section is 0.005 / 1 to 0.005 / 1. It is preferable to make it constant within a range of 0.025 / 1. If the taper gradient of the cross section of the first web (10A) is less than 0.025 / 1, the effect of improving the rigidity of the blade portion (2) in the range where the first web (10A) is formed is not obtained. Or, as shown in FIG. 2, it becomes difficult to obtain the effect of improving the sharpness by shortening the length of the chisel edge (6) at the tip of the blade (2) where the thickness of the first web decreases. This is because if it exceeds 0.045 / 1, the cross-sectional area of the chip discharge groove (4) in the range where the second web (10B) is formed may be insufficient. Moreover, when the taper gradient of the cross section of the second web (10B) is less than 0.005 / 1, the rigidity of the blade portion (2) in the range where the second web (10B) is formed, particularly the root side of the blade portion (2). This is because the effect of improving the rigidity cannot be obtained, and if it exceeds 0.025 / 1, the cross-sectional area at the end portion (4a) of the chip discharge groove is insufficient, and the chip discharge property may be deteriorated. And the formation range (L1) of the 1st web (10A) in the said axis (O) direction is the range of 2-6 times the diameter (D) of a cutting blade from the front-end | tip side of a blade part (2) to a rear-end side. Is preferably set. If this is less than twice, there is a risk that the effect of increasing the rigidity of the tip of the blade part (2) on which the first web (10A) is formed may not be obtained. The cross-sectional area of the chip discharge groove (4) in the part (4a) is reduced, or the thickness of the first web (10A) at the tip of the blade part (2) is reduced. This is because a problem may occur in either of the strengths.

さらに、刃部(2)の先端から後端側へ切れ刃の直径(D)にほぼ等しい距離だけ離間した位置で回転軸線(O)に直交する平面で切断した刃部(2)断面において、ウェブ(10)の厚み(S3)は切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に形成される。そうすれば、刃部(2)の強度、特に刃部(2)の根元側において高い剛性が得られるほか、ウェブの厚みが減少する刃部(2)の先端部においては、回転軸線(O)近傍から切れ刃(5)へ延びるチゼルエッジ(6)の長さが短くなることから、切削抵抗を低減し且つ切れ味を高めた切れ刃形状が得られ加工穴の穴位置精度が大幅に向上する。上記の刃部(2)断面におけるウェブ(10)の厚み(S3)を上記範囲に限定したのは、前記厚み(S3)が切れ刃の直径(D)の32%未満の厚み寸法になると刃部(2)の剛性が不足するため加工穴の穴位置精度が悪化するおそれがあり、54%を超える厚み寸法になると切りくず排出性の低下により加工穴の内壁面の表面粗さが悪化するおそれがあるからである。 Furthermore, in the cross section of the blade part (2) cut by a plane perpendicular to the rotation axis (O) at a position separated by a distance substantially equal to the diameter (D) of the cutting edge from the front end to the rear end side of the blade part (2), The thickness (S3) of the web (10) is formed in a thickness dimension ranging from 32% to 54% of the diameter (D) of the cutting edge. Then, the strength of the blade portion (2), in particular, high rigidity is obtained on the root side of the blade portion (2), and at the tip portion of the blade portion (2) where the thickness of the web is reduced, the rotation axis (O ) Since the length of the chisel edge (6) extending from the vicinity to the cutting edge (5) is shortened, a cutting edge shape with reduced cutting resistance and improved sharpness is obtained, and the hole position accuracy of the processed hole is greatly improved. . The reason why the thickness (S3) of the web (10) in the cross section of the blade part (2) is limited to the above range is that when the thickness (S3) is less than 32% of the diameter (D) of the cutting edge. Since the rigidity of the part (2) is insufficient, the hole position accuracy of the processed hole may be deteriorated. When the thickness dimension exceeds 54%, the surface roughness of the inner wall surface of the processed hole is deteriorated due to the reduction of chip dischargeability. Because there is a fear.

さらに、前記刃部(2)断面において、図3に示される断面図を参照すれば、それぞれの切りくず排出溝(4)を構成する凹壁面(4b)における該ドリル(1)の回転方向(N)の前方側端部(4d)と後方側端部(4c)とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面(4b)における最大内接円の直径(A)は、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に限定される。そうすれば、刃部(2)の断面強度がさらに高められるとともに、切りくず排出溝(4)の断面形状においては切りくずを排出するのに十分な断面積且つ好適な断面形状が得られる。上記の範囲に限定した理由は、先述した第1の実施の形態と同じである。なお、前記内接円の直径(A)は刃部(2)の先端におけるウェブの厚み、いわゆる心厚のほぼ1.05〜1.08倍の直径寸法に設定されている。 Furthermore, in the section of the blade part (2), referring to the sectional view shown in FIG. 3, the direction of rotation of the drill (1) on the concave wall surface (4b) constituting each chip discharge groove (4) ( N) When the two parallel straight lines connecting the front end portion (4d) and the rear end portion (4c) are horizontal, the diameter of the maximum inscribed circle in each concave wall surface (4b) (A) is limited to a diameter dimension in the range of 30% to 65% of the distance (B) between the two straight lines. By doing so, the cross-sectional strength of the blade portion (2) can be further increased, and the cross-sectional shape of the chip discharge groove (4) sufficient for discharging chips can be obtained. The reason for limiting to the above range is the same as in the first embodiment described above. The diameter (A) of the inscribed circle is set to a diameter of approximately 1.05 to 1.08 times the thickness of the web at the tip of the blade (2), that is, the so-called core thickness.

しかして、上記の第3の実施の形態に係るドリル(1)によれば、小径且つ高アスペクト比のドリルにおいて、切りくず排出性を低下させることなく刃部(2)の剛性、特に刃部(2)の根元側の剛性が高められ、さらに切れ味が高められることから、加工穴の内壁面の表面粗さを悪化させることなく加工穴の穴位置精度を向上することができる。 Thus, according to the drill (1) according to the third embodiment, in the drill having a small diameter and a high aspect ratio, the rigidity of the blade (2), in particular, the blade, without reducing the chip discharge performance. Since the rigidity on the base side of (2) is increased and the sharpness is further increased, the hole position accuracy of the processed hole can be improved without deteriorating the surface roughness of the inner wall surface of the processed hole.

第1〜第3の実施の形態において、切りくず排出溝のねじれ角(θ)を38°〜56°の範囲に設定するのが好ましい。そうすれば、切りくず排出性を低下させることなく刃部(2)の剛性をいっそう高めることができる。上記の範囲に限定したのは、前記ねじれ角(θ)が38°未満になると、切りくず排出性が低下したり切れ味の低下により加工穴の穴位置精度が低下したりするおそれがあり、前記ねじれ角(θ)が56°を超えると、刃部(2)の剛性が低下するため加工穴の穴位置精度が低下したりドリル折損が生じたりするおそれがあるからである。 In the first to third embodiments, the twist angle (θ) of the chip discharge groove is preferably set in the range of 38 ° to 56 °. If it does so, the rigidity of a blade part (2) can be improved further, without reducing a chip discharge | emission property. The above range is limited because when the twist angle (θ) is less than 38 °, there is a possibility that the chip discharge property may be reduced or the hole position accuracy of the processed hole may be reduced due to a decrease in sharpness. This is because if the twist angle (θ) exceeds 56 °, the rigidity of the blade portion (2) is lowered, so that the hole position accuracy of the processed hole may be lowered or the drill may be broken.

また、同様に刃部(2)剛性を高める点から、溝幅比を0.8〜1.5の範囲に設定するのが好ましい。このように限定した理由は、前記溝幅比が0.8未満になると、切りくず排出溝(4)の容積を十分確保できなくなり切りくず排出性が悪化するおそれがあるからであり、前記溝幅比が1.5を超えると刃部(2)の剛性を十分確保できなくなり加工穴の穴位置精度が悪化するおそれがあるからである。 Similarly, it is preferable to set the groove width ratio in the range of 0.8 to 1.5 from the viewpoint of increasing the rigidity of the blade portion (2). The reason for this limitation is that if the groove width ratio is less than 0.8, the chip discharge groove (4) cannot have a sufficient volume and the chip discharge property may be deteriorated. This is because if the width ratio exceeds 1.5, the rigidity of the blade portion (2) cannot be sufficiently secured, and the hole position accuracy of the processed hole may be deteriorated.

次に、第2の実施の形態に係るドリル(1)を用いた小径深穴加工試験について以下に説明する。試験に用いたドリルの先端視側面図、刃部断面図及び寸法一覧を図6に示す。図6の本発明品とは本発明を適用した第2の実施の形態に係るドリルであり、従来品とは本発明の範囲外のドリルである。本発明品、従来品ともに、刃部(2)及びシャンク部(3)が超硬合金からなり、切れ刃の直径(D)、アスペクト比(L/D)、切りくず排出溝のねじれ角(θ)、切れ刃の先端角(α)、刃部の先端面(2a)の逃げ角を同一とした。従来品は、図6に示される比率A/B、すなわち、刃部(2)の先端から後端側へ切れ刃の直径(D)にほぼ等しい距離だけ離間した位置の刃部(2)断面において、それぞれの切りくず排出溝(4)を構成する凹壁面(4b)における該ドリル(1)の回転方向(N)の前方側端部(4d)と後方側端部(4c)とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面(4b)における最大内接円の直径(A)と、前記2直線の離間距離(B)との比率A/Bを本発明の範囲外とされている。これらのドリルを用いて厚さ0.8mmのプリント配線板を3枚重ねて穴加工を行った。加工条件は表1の(a)に示される2条件である。各条件で3000穴の加工をドリルを変えて3回繰り返した。加工穴の穴位置のずれ量を測定しこの測定値から得られた平均値(Avg)、最大値(Max)及び標準偏差(σ)を表1の(b)に示す。また、3000穴における加工穴の内壁面の表面粗さ(Ry)も同表に示す。 Next, a small diameter deep hole drilling test using the drill (1) according to the second embodiment will be described below. FIG. 6 shows a side view of a drill used for the test, a sectional view of a blade part, and a dimension list. The product of the present invention in FIG. 6 is a drill according to a second embodiment to which the present invention is applied, and the conventional product is a drill outside the scope of the present invention. In both the product of the present invention and the conventional product, the blade part (2) and the shank part (3) are made of cemented carbide, the diameter (D) of the cutting edge, the aspect ratio (L / D), the twist angle of the chip discharge groove ( θ), the leading edge angle (α) of the cutting edge, and the clearance angle of the leading edge surface (2a) of the cutting edge are the same. The conventional product has a ratio A / B shown in FIG. 6, that is, a cross section of the blade part (2) at a position spaced from the tip of the blade part (2) to the rear end side by a distance substantially equal to the diameter (D) of the cutting edge. , The front end portion (4d) and the rear end portion (4c) in the rotational direction (N) of the drill (1) in the concave wall surface (4b) constituting each chip discharge groove (4) are connected. When two straight lines parallel to each other are horizontal, the ratio A / B between the diameter (A) of the maximum inscribed circle in each concave wall surface (4b) and the separation distance (B) of the two straight lines is It is outside the scope of the present invention. Using these drills, three printed wiring boards having a thickness of 0.8 mm were stacked and drilled. The processing conditions are the two conditions shown in (a) of Table 1. Under each condition, the processing of 3000 holes was repeated 3 times with different drills. Table 1 (b) shows the average value (Avg), the maximum value (Max), and the standard deviation (σ) obtained from the measured values of the deviations of the hole positions of the processed holes. Also, the surface roughness (Ry) of the inner wall surface of the processed hole in 3000 holes is shown in the same table.

Figure 2006055915
Figure 2006055915

表1の(b)からわかるように、加工条件(1)と(2)の両条件において、本発明品は従来品に対して加工穴の穴位置精度が大幅に改善した。穴位置のずれ量の平均値(Avg)でおよそ20〜40%の向上、標準偏差(σ)でおよそ10〜20%の向上がみられた。これは、上述したように、ウェブの厚み(S2)及び上記の比率A/Bを本発明の範囲に設定したこと、ウェブをテーパー状断面としたことにより、刃部(2)の剛性が大幅に向上し、切れ味が良好であったからである。しかも、加工穴の内壁面の表面粗さについても悪化することはなく、むしろ従来品よりも良好であった。これは、刃部(2)の高い剛性と良好な切れ味とによって加工穴内の触れ回りが改善されたためである。なお、表1に示さなかったが、ウェブの厚み(S2)及び上記の比率A/Bを本発明の上限値及び下限値としたドリルにおいても、同様な結果が得られた。また、表1に示されない第1及び第3の実施の形態に係るドリルについても、上記の従来品に対して大幅な穴位置精度の改善がみられた。 As can be seen from (b) of Table 1, in both of the processing conditions (1) and (2), the product of the present invention has greatly improved the hole position accuracy of the processed holes over the conventional product. The average value (Avg) of the deviation amount of the hole position was improved by about 20 to 40%, and the standard deviation (σ) was improved by about 10 to 20%. As described above, the rigidity of the blade portion (2) is greatly increased by setting the web thickness (S2) and the ratio A / B within the range of the present invention, and the web having a tapered cross section. This is because the sharpness was good. Moreover, the surface roughness of the inner wall surface of the processed hole is not deteriorated, but rather is better than the conventional product. This is because the contact around the processed hole is improved by the high rigidity and good sharpness of the blade part (2). Although not shown in Table 1, similar results were obtained with a drill having the web thickness (S2) and the above ratio A / B as the upper and lower limits of the present invention. In addition, the drills according to the first and third embodiments not shown in Table 1 also showed a significant improvement in hole position accuracy over the conventional product.

第1の実施の形態に係るドリルを示す図であり、(a)は正面図、(b)は要部の一部正面断面図である。It is a figure which shows the drill which concerns on 1st Embodiment, (a) is a front view, (b) is a partial front sectional view of the principal part. 図1に示すドリルの先端視側面拡大図である。FIG. 2 is an enlarged side view of the drill shown in FIG. 図1におけるA−A線断面拡大図であり、(a)は第1の実施の形態のドリルを示す図であり、(b)及び(c)は本発明の範囲外のドリルを概念的に示す図である。It is the sectional view on the AA line in FIG. 1, (a) is a figure which shows the drill of 1st Embodiment, (b) And (c) is a drill outside the scope of the present invention conceptually. FIG. 第2の実施の形態に係るドリルを示す図であり、(a)は正面図、(b)は要部の一部正面断面図である。It is a figure which shows the drill which concerns on 2nd Embodiment, (a) is a front view, (b) is a partial front sectional view of the principal part. 第3の実施の形態に係るドリルを示す図であり、(a)は正面図、(b)は要部の一部正面断面図である。It is a figure which shows the drill which concerns on 3rd Embodiment, (a) is a front view, (b) is a partial front sectional view of the principal part. 試験に用いたドリルの先端視側面図、刃部断面図及び寸法一覧である。It is a tip view side view, blade part sectional view, and dimension list of the drill used for the test. 従来ドリルの要部断面図である。It is principal part sectional drawing of the conventional drill.

符号の説明Explanation of symbols

1 ドリル
2 刃部
2a 刃部の先端面
3 シャンク部
4 切りくず排出溝
4a 切りくず排出溝の終端部
4b 切りくず排出溝を構成する凹壁面
4c 切りくず排出溝を構成する凹壁面の回転方向(N)後方側の端部
4d 切りくず排出溝を構成する凹壁面の回転方向(N)前方側の端部
5 切れ刃
6 チゼルエッジ
10 ウェブ
10A 第1ウェブ
10B 第2ウェブ
S1、S2、S3 ウェブの厚み
O 回転軸線
N ドリルの回転方向
D 切れ刃の直径
L 刃部の先端から切りくず排出溝の終端部までの長さ(有効長さ)
A 切りくず排出溝を構成する凹壁面に接する最大内接円の直径
B 切りくず排出溝を構成する凹壁面の両端部を結ぶ2直線の離間距離
DESCRIPTION OF SYMBOLS 1 Drill 2 Blade part 2a Tip part surface 3 of a blade part 4 Shank part 4 Chip discharge groove 4a End part 4b of a chip discharge groove Recessed wall surface 4c which comprises a chip discharge groove Rotation direction of the concave wall surface which comprises a chip discharge groove (N) Rear end 4d Rotation direction of concave wall surface constituting chip discharge groove (N) Front end 5 Cutting edge 6 Chisel edge 10 Web 10A First web 10B Second web S1, S2, S3 Web Thickness O Rotation axis N Drill rotation direction D Cutting edge diameter L Length from the tip of the blade to the end of the chip discharge groove (effective length)
A Diameter of the maximum inscribed circle in contact with the concave wall surface constituting the chip discharge groove B Distance between two straight lines connecting both end portions of the concave wall surface constituting the chip discharge groove

Claims (5)

略丸棒状をなし、回転軸線(O)方向の先端側に設けられた刃部と、この刃部の後端側に連なるシャンク部とから構成され、前記刃部の外周面に前記軸線(O)を挟んで1対の切りくず排出溝が対向して形成され、この切りくず排出溝と刃部の先端面との交差稜線部に切れ刃が設けられてなるプリント配線板加工用の小径ドリルであって、前記切れ刃の直径(D)が0.03mm以上且つ1.00mm以下に設定され、前記刃部の先端から前記切りくず排出溝の終端部までの範囲において、前記刃部のウェブの厚み(S1)が、前記切れ刃の直径(D)の32%〜54%の範囲の略一定な厚み寸法に設定され、さらに、刃部断面において、それぞれの前記切りくず排出溝を構成する凹壁面の回転方向(N)の前方側端部と後方側端部とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面における最大内接円の直径(A)が、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に設定され、且つ前記刃部の先端から前記切りくず排出溝の終端部までの長さ(L)が、前記切れ刃の直径(D)の8〜25倍の範囲の長さ寸法に設定されていることを特徴とするプリント配線板加工用の小径ドリル。 It has a substantially round bar shape and is composed of a blade portion provided on the front end side in the rotation axis (O) direction and a shank portion connected to the rear end side of the blade portion, and the axis (O ) With a pair of chip discharge grooves facing each other, and a small-diameter drill for processing a printed wiring board in which a cutting edge is provided at the intersection ridge line portion between the chip discharge groove and the tip end surface of the blade part. The diameter (D) of the cutting edge is set to 0.03 mm or more and 1.00 mm or less, and in the range from the tip of the blade part to the end part of the chip discharge groove, the web of the blade part The thickness (S1) is set to a substantially constant thickness dimension in the range of 32% to 54% of the diameter (D) of the cutting edge, and further, each of the chip discharge grooves is configured in the blade section. Connecting the front end and the rear end in the rotational direction (N) of the concave wall surface When two parallel straight lines are horizontal, the diameter (A) of the maximum inscribed circle in each concave wall surface is in the range of 30% to 65% of the separation distance (B) of the two straight lines. The length (L) from the tip of the blade to the end of the chip discharge groove is set to a diameter of 8 to 25 times the diameter (D) of the cutting blade. A small-diameter drill for processing printed wiring boards characterized by being set. 略丸棒状をなし、回転軸線(O)方向の先端側に設けられた刃部と、この刃部の後端側に連なるシャンク部とから構成され、前記刃部の外周面に前記軸線(O)を挟んで1対の切りくず排出溝が対向して形成され、この切りくず排出溝と刃部の先端面との交差稜線部に切れ刃が設けられてなるプリント配線板加工用の小径ドリルであって、前記切れ刃の直径(D)が0.03mm以上1.00mm以下に設定され、前記刃部のウェブは、前記刃部の先端から前記切りくず排出溝の終端部まで、漸次厚み寸法が増加する一定勾配のテーパー状断面を有し、前記刃部の先端から後端側へ前記切れ刃の直径(D)の100%の距離だけ離間した位置において、ウェブの厚み(S2)が、前記切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に設定され、さらに、前記位置の刃部断面において、それぞれの前記切りくず排出溝を構成する凹壁面の回転方向(N)の前方側端部と後方側端部とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面における最大内接円の直径(A)が、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に設定され、且つ前記刃部の先端から前記切りくず排出溝の終端部までの長さ(L)が、前記切れ刃の直径(D)の8〜25倍の範囲の長さ寸法に設定されていることを特徴とするプリント配線板加工用の小径ドリル。 It has a substantially round bar shape and is composed of a blade portion provided on the front end side in the rotation axis (O) direction and a shank portion connected to the rear end side of the blade portion, and the axis (O ) With a pair of chip discharge grooves facing each other, and a small-diameter drill for processing a printed wiring board in which a cutting edge is provided at the intersection ridge line portion between the chip discharge groove and the tip end surface of the blade part. The diameter (D) of the cutting edge is set to 0.03 mm or more and 1.00 mm or less, and the web of the blade portion gradually increases from the tip of the blade portion to the end portion of the chip discharge groove. The web thickness (S2) is at a position having a taper-shaped cross section with a constant gradient of increasing dimensions and spaced from the tip end to the rear end side by a distance of 100% of the diameter (D) of the cutting edge. The thickness dimension is in the range of 32% to 54% of the diameter (D) of the cutting edge. Furthermore, two parallel straight lines connecting the front end and the rear end in the rotational direction (N) of the concave wall surface forming each chip discharge groove in the cross section of the blade portion at the position are defined. When set to be horizontal, the diameter (A) of the maximum inscribed circle in each concave wall surface is set to a diameter dimension in a range of 30% to 65% of the separation distance (B) of the two straight lines, and The length (L) from the tip of the blade portion to the end portion of the chip discharge groove is set to a length dimension in the range of 8 to 25 times the diameter (D) of the cutting blade. A small diameter drill for processing printed wiring boards. 略丸棒状をなし、回転軸線(O)方向の先端側に設けられた刃部と、この刃部の後端側に連なるシャンク部とから構成され、前記刃部の外周面に前記軸線(O)を挟んで1対の切りくず排出溝が対向して形成され、この切りくず排出溝と刃部の先端面との交差稜線部に切れ刃が設けられてなるプリント配線板加工用の小径ドリルであって、前記切れ刃の直径(D)が0.03mm以上且つ1.00mm以下に設定され、前記刃部のウェブは、前記刃部の先端から後端側へ前記切れ刃の直径(D)の2倍〜6倍の範囲にわたって形成された第1ウェブと、この第1ウェブから前記切りくず排出溝の終端部までの範囲にわたって形成された第2ウェブとからなり、前記第1ウェブは先端側から後端側に向かって漸次厚み寸法が増加する一定勾配のテーパー状断面を有し、前記第2ウェブは先端側から後端側に向かって漸次厚み寸法が増加するとともに前記第1ウェブよりも小さな勾配のテーパー状断面を有し、さらに前記刃部の先端から後端側へ前記切れ刃の直径(D)の100%の距離だけ離間した位置において、ウェブの厚み(S3)が、前記切れ刃の直径(D)の32%〜54%の範囲の厚み寸法に設定され、さらに、前記位置の刃部断面において、それぞれの前記切りくず排出溝を構成する凹壁面の回転方向(N)の前方側端部と後方側端部とを結ぶ互いに平行な2直線が水平になるようにしたとき、それぞれの前記凹壁面における最大内接円の直径(A)が、前記2直線の離間距離(B)の30%〜65%の範囲の直径寸法に設定され、且つ前記刃部の先端から前記切りくず排出溝の終端部までの長さ(L)が前記切れ刃の直径(D)の8〜25倍の範囲の長さ寸法に設定されていることを特徴とするプリント配線板加工用の小径ドリル。 It has a substantially round bar shape and is composed of a blade portion provided on the front end side in the rotation axis (O) direction and a shank portion connected to the rear end side of the blade portion, and the axis (O ) With a pair of chip discharge grooves facing each other, and a small-diameter drill for processing a printed wiring board in which a cutting edge is provided at the intersection ridge line portion between the chip discharge groove and the tip end surface of the blade part. The diameter (D) of the cutting edge is set to 0.03 mm or more and 1.00 mm or less, and the web of the cutting edge is formed from the leading edge of the cutting edge to the rear end side. ) And a second web formed over a range from the first web to the end portion of the chip discharge groove, the first web comprising: A constant gradient in which the thickness dimension gradually increases from the front end to the rear end The second web has a taper-shaped cross section with a gradually increasing thickness dimension from the front end side toward the rear end side and a smaller gradient than the first web, and further, the tip of the blade portion The web thickness (S3) is in the range of 32% to 54% of the diameter (D) of the cutting edge at a position separated from the rear edge by a distance of 100% of the diameter (D) of the cutting edge. 2 in parallel to each other connecting the front end and the rear end in the rotational direction (N) of the concave wall surface constituting each chip discharge groove in the blade section at the position. When the straight line is horizontal, the diameter (A) of the maximum inscribed circle in each of the concave wall surfaces is set to a diameter dimension in a range of 30% to 65% of the separation distance (B) of the two straight lines. And the chip from the tip of the blade portion. A small-diameter drill for processing printed wiring boards, characterized in that the length (L) to the end portion of the exit groove is set to a length dimension in the range of 8 to 25 times the diameter (D) of the cutting edge. . 前記切りくず排出溝のねじれ角(θ)が38°〜56°の範囲にあることを特徴とする請求項1〜3のいずれか1項に記載のプリント配線板加工用の小径ドリル。 The small-diameter drill for processing a printed wiring board according to any one of claims 1 to 3, wherein a twist angle (θ) of the chip discharge groove is in a range of 38 ° to 56 °. 溝幅比が0.8〜1.3の範囲にあることを特徴とする請求項1〜4のいずれか1項に記載のプリント配線板加工用の小径ドリル。 The groove diameter ratio is in a range of 0.8 to 1.3, and the small-diameter drill for processing a printed wiring board according to any one of claims 1 to 4.
JP2004237322A 2004-08-17 2004-08-17 Small diameter drill for machining printed wiring board Pending JP2006055915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237322A JP2006055915A (en) 2004-08-17 2004-08-17 Small diameter drill for machining printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237322A JP2006055915A (en) 2004-08-17 2004-08-17 Small diameter drill for machining printed wiring board

Publications (1)

Publication Number Publication Date
JP2006055915A true JP2006055915A (en) 2006-03-02

Family

ID=36103822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237322A Pending JP2006055915A (en) 2004-08-17 2004-08-17 Small diameter drill for machining printed wiring board

Country Status (1)

Country Link
JP (1) JP2006055915A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296300A (en) * 2007-05-30 2008-12-11 Tungaloy Corp Drill for printed circuit board
JP2009018354A (en) * 2007-07-10 2009-01-29 Toshiba Mach Co Ltd Cutting tool, machine tool, and cutting method
JP2009113177A (en) * 2007-11-08 2009-05-28 Union Tool Co Drilling tool
CN102653011A (en) * 2011-03-04 2012-09-05 创国精密股份有限公司 Single-cutting drill point structure
JP2015039745A (en) * 2013-08-22 2015-03-02 三菱マテリアル株式会社 Drill
CN112262009A (en) * 2018-06-13 2021-01-22 博泰克精密钻孔技术有限公司 Deep hole drill and drilling tool with one or more depressions in cutting surface
CN114888337A (en) * 2022-05-24 2022-08-12 广东鼎泰高科技术股份有限公司 Drilling tool and method for designing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213910A (en) * 1986-03-12 1987-09-19 Mitsubishi Metal Corp Drill
JPH06344212A (en) * 1993-06-04 1994-12-20 Toshiba Tungaloy Co Ltd Drill of super-small diameter for printed circuit board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213910A (en) * 1986-03-12 1987-09-19 Mitsubishi Metal Corp Drill
JPH06344212A (en) * 1993-06-04 1994-12-20 Toshiba Tungaloy Co Ltd Drill of super-small diameter for printed circuit board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296300A (en) * 2007-05-30 2008-12-11 Tungaloy Corp Drill for printed circuit board
JP2009018354A (en) * 2007-07-10 2009-01-29 Toshiba Mach Co Ltd Cutting tool, machine tool, and cutting method
JP2009113177A (en) * 2007-11-08 2009-05-28 Union Tool Co Drilling tool
JP4505007B2 (en) * 2007-11-08 2010-07-14 ユニオンツール株式会社 Drilling tool
CN102653011A (en) * 2011-03-04 2012-09-05 创国精密股份有限公司 Single-cutting drill point structure
JP2015039745A (en) * 2013-08-22 2015-03-02 三菱マテリアル株式会社 Drill
CN112262009A (en) * 2018-06-13 2021-01-22 博泰克精密钻孔技术有限公司 Deep hole drill and drilling tool with one or more depressions in cutting surface
CN114888337A (en) * 2022-05-24 2022-08-12 广东鼎泰高科技术股份有限公司 Drilling tool and method for designing the same
CN114888337B (en) * 2022-05-24 2024-06-04 广东鼎泰高科技术股份有限公司 Drilling tool and design method thereof

Similar Documents

Publication Publication Date Title
JP6086173B2 (en) drill
JP2007307642A (en) Drill
JP5800477B2 (en) drill
JP4324211B2 (en) Drilling tool
EP3034214A1 (en) Drill and drill insert with chipbreaker protrusions
KR20110109831A (en) Reamer
TW201601862A (en) Drilling tool
JP4723599B2 (en) Drilling tool
TWI617379B (en) Drill structure
CN204934687U (en) Drill bit structure
JP2006055915A (en) Small diameter drill for machining printed wiring board
JP3186747U (en) Drill structure
CN204053023U (en) Drill bit structure
JP2010162645A (en) Drill
JP2009178787A (en) Drill, cutting insert for drill, and cutting method
JP3539227B2 (en) Drilling tool
JP2008296300A (en) Drill for printed circuit board
JP2002205212A (en) Drill
JPH07108409A (en) Varnishing drill
JP2004230514A (en) Twist drill for deep hole
JP4235001B2 (en) Twist drill
CN113843438B (en) PCD drill bit
CN219445350U (en) Drilling tool
CN218656969U (en) Drilling tool
CN221697173U (en) PCB drill point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A131 Notification of reasons for refusal

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20100520

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928