JP2006055528A - Support tool for probe for measuring in vivo component and head device for measuring in vivo component - Google Patents

Support tool for probe for measuring in vivo component and head device for measuring in vivo component Download PDF

Info

Publication number
JP2006055528A
JP2006055528A JP2004242811A JP2004242811A JP2006055528A JP 2006055528 A JP2006055528 A JP 2006055528A JP 2004242811 A JP2004242811 A JP 2004242811A JP 2004242811 A JP2004242811 A JP 2004242811A JP 2006055528 A JP2006055528 A JP 2006055528A
Authority
JP
Japan
Prior art keywords
arm
probe
measuring
measurement
vivo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004242811A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Tsuruki
充啓 鶴来
Katsuhiko Maruo
勝彦 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004242811A priority Critical patent/JP2006055528A/en
Publication of JP2006055528A publication Critical patent/JP2006055528A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support tool for a probe for measuring an in vivo component and a head device for measuring the in vivo component capable of acquiring a stability and reproducibility with time in every measurement of an absorption spectrum by suppressing the condition fluctuation of a living body and a measuring probe. <P>SOLUTION: An arm fixing part 30 of the support tool for the probe for measuring the in vivo component determines the position of the wrist 141 of an examinee and is mounted along the forearm 140. A positioner 31 is disposed at a prescribed position in the longitudinal direction of the forearm 140 in the arm fixing part 30, has a hole part 310 for guiding the measuring probe 8 to the front face of the forearm 140, and is mounted by pressing it to the front face of the forearm 140 by means of a pressurizing belt 32. A drive part 33 for moving the measuring probe 8 in the front face direction of the forearm 140 of the examinee is equipped with a connector 300 for connection with the positioner 31, and is held on a stand 42 which is a weight via a joint tool 39 and a free arm 38. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非侵襲で生体内成分を計測する生体内成分測定装置に用いられる生体内成分測定用プローブを支持する生体内成分測定用プローブ支持具及びそれを用いた生体内成分測定用ヘッド装置に関する。   The present invention relates to an in vivo component measuring probe support for supporting an in vivo component measuring probe used in an in vivo component measuring device that measures in vivo components in a non-invasive manner, and an in vivo component measuring head device using the same. About.

生体の表面に測定用の近赤外光を照射し、生体から受ける測定光の反射光を受光し、この反射光成分から生体信号を測定することによって、生体内の種々の情報を得る生体内成分測定装置が提供されている(例えば特許文献1)。   By irradiating the surface of the living body with near-infrared light for measurement, receiving the reflected light of the measuring light received from the living body, and measuring the biological signal from this reflected light component, various information in the living body is obtained. A component measuring device is provided (for example, Patent Document 1).

これら装置は近赤外光の吸収強度がグルコースの存在により大きな影響を受けることを利用したもので、受光された反射光の吸光度スペクトルを生体信号として測定することによって、光吸収強度を検知し、生体内のグルコース濃度を検出して血糖値を測定するようになっている。このような装置を用いれば被測定者から採血する必要が無くなるので、被測定者に大きな負担を強いることなく血糖値の測定を行うことができるという利点がある。   These devices are based on the fact that the absorption intensity of near-infrared light is greatly affected by the presence of glucose. By measuring the absorbance spectrum of the received reflected light as a biological signal, the light absorption intensity is detected, The blood glucose level is measured by detecting the glucose concentration in the living body. If such a device is used, there is no need to collect blood from the measurement subject, and thus there is an advantage that blood glucose level can be measured without imposing a heavy burden on the measurement subject.

ところで特許文献1に示される生体内成分測定装置に用いられるような測定用プローブは、図15に示すように皮膚に接触させ、近赤外スペクトルを測定する測定用プローブ8の受光部と発光部の間隔L、すなわち、測定用プローブ8に設けた発光側ファイバ6の先端と受光側ファイバ10の先端との間隔Lが2mm以下に設定されている。ここで人間を含む生物の皮膚組織は通常、図示するように角質層を含む表皮層22、真皮層23、皮下組織層24の3層から形成されている。尚、表皮層22の厚みは約0.2〜0.4mm、真皮層23の厚みは約0.5〜2mm、皮下組織層24の厚みは約1〜3mmである。真皮層23は毛細血管等が発達しており、血中の生体成分に応じた物質移動が速やかに起こる。   By the way, the measuring probe used in the in-vivo component measuring apparatus disclosed in Patent Document 1 is brought into contact with the skin as shown in FIG. 15, and the light receiving unit and the light emitting unit of the measuring probe 8 for measuring the near infrared spectrum. , That is, the distance L between the tip of the light-emitting side fiber 6 and the tip of the light-receiving side fiber 10 provided in the measurement probe 8 is set to 2 mm or less. Here, the skin tissue of a living organism including human beings is usually formed of three layers including an epidermis layer 22 including a stratum corneum, a dermis layer 23 and a subcutaneous tissue layer 24 as shown in the figure. The epidermal layer 22 has a thickness of about 0.2 to 0.4 mm, the dermis layer 23 has a thickness of about 0.5 to 2 mm, and the subcutaneous tissue layer 24 has a thickness of about 1 to 3 mm. Capillaries and the like are developed in the dermis layer 23, and mass transfer according to biological components in the blood occurs rapidly.

特に血中グルコース濃度(血糖値)に対して真皮層23(真皮組織)中のグルコース濃度は追随して変化すると考えられている。皮下組織層24は脂肪組織が中心であり、グルコース等の水溶性の生体成分は、皮下組織層24(皮下組織)中に均一に存在しにくい。従って、血中グルコース濃度(血糖値)を精度良く測定するには、真皮層23の近赤外スペクトルを選択的に測定する必要がある。そこで上述のように真皮層23の近赤外スペクトルを選択的に測定する手法として、2mm以下に受光部と発光部の間隔Lを設定した測定用プローブ8を使用する方法が用いられる。   In particular, it is considered that the glucose concentration in the dermis layer 23 (dermis tissue) changes following the blood glucose concentration (blood glucose level). The subcutaneous tissue layer 24 is mainly adipose tissue, and water-soluble biological components such as glucose are unlikely to exist uniformly in the subcutaneous tissue layer 24 (subcutaneous tissue). Therefore, in order to accurately measure the blood glucose concentration (blood glucose level), it is necessary to selectively measure the near-infrared spectrum of the dermis layer 23. Therefore, as described above, as a method for selectively measuring the near-infrared spectrum of the dermis layer 23, a method using the measurement probe 8 in which the distance L between the light receiving portion and the light emitting portion is set to 2 mm or less is used.

図16は、X軸が波長で、Y軸が吸光度で、生体の波長1300nm〜1900nmの近赤外領域における吸光度スペクトルを示している。また、吸光度スペクトルの形状及び大きさの指標として、指標(1)、指標(2)、指標(3)を示してある。この波長領域は、生体内成分である水分やグルコース、脂肪、アルブミンといった生体成分のピークが混在する領域である。指標(1)は、1650nmの吸光度値であり、吸光度スペクトルのベースラインを表す指標である。指標(2)は、1450nmの吸光度値と指標(1)の1650nmの吸光度値の差で、水の吸光度スペクトルのベースラインからの高低差を示すものある。指標(3)は1720nmの吸光度値と指標(1)の1650nmの吸光度値の差で、脂肪の吸光度スペクトルのベースラインからの高低差を示すものである。指標(2)、指標(3)は、スペクトルの形状の変動を確認する指標としている。   FIG. 16 shows an absorbance spectrum in the near-infrared region of the living body at wavelengths of 1300 nm to 1900 nm, with the X axis being the wavelength and the Y axis being the absorbance. In addition, index (1), index (2), and index (3) are shown as indices of the shape and size of the absorbance spectrum. This wavelength region is a region where peaks of biological components such as moisture, glucose, fat, and albumin, which are in vivo components, are mixed. The index (1) is an absorbance value of 1650 nm and is an index representing the baseline of the absorbance spectrum. The index (2) is the difference between the absorbance value of 1450 nm and the absorbance value of 1650 nm of the index (1) and indicates the difference in height from the baseline of the water absorbance spectrum. The index (3) is the difference between the absorbance value of 1720 nm and the absorbance value of 1650 nm of the index (1), and indicates the difference in height from the baseline of the fat absorbance spectrum. The indices (2) and (3) are indices for confirming changes in the shape of the spectrum.

-指標(1)は、皮膚と測定用プローブ8の間に介在するスペクトル変動要因全般から影響を受け、スペクトル全体が上下にシフトする。   The index (1) is affected by all the spectrum fluctuation factors interposed between the skin and the measurement probe 8, and the whole spectrum shifts up and down.

指標(2)は主に水の吸光度スペクトルの形状を反映しており、生休表面の水分(汗、角質水分など)、及び表皮層22、真皮層23に存在する水分量の変化によって変動する。真皮層23の水分も層の上端部に多く存在することから、指標(2)は皮膚の表面に近い部分(表皮層−真皮層)の情報の生体成分変動を主に現していると考えられる。   The index (2) mainly reflects the shape of the absorbance spectrum of water, and varies depending on the moisture on the surface of life (sweat, keratinous moisture, etc.) and the amount of moisture present in the epidermis layer 22 and dermis layer 23. . Since a large amount of moisture in the dermis layer 23 is also present at the upper end of the layer, it is considered that the index (2) mainly represents biological component fluctuations in information on the portion close to the surface of the skin (skin layer-dermis layer). .

指標(3)は、主に脂質スペクトルの形状を反映している。この脂質スペクトルは血中に存在する中性脂肪の変動よりむしろ真皮層23の下の皮下組織層24に存在する皮下脂肪の情報がスペクトルとなって現れている。   The index (3) mainly reflects the shape of the lipid spectrum. In this lipid spectrum, information on the subcutaneous fat existing in the subcutaneous tissue layer 24 below the dermis layer 23 appears as a spectrum rather than a change in neutral fat present in the blood.

真皮層23の厚みが薄い人が、厚い人と比べてこの指標(3)の絶対値が大きい傾向があるのは、照射した光(図15でAと示す)が真皮層23を通り過ぎて皮下組織層24にまで到達しやすく、反射してきた光Aに多<の脂肪情報が含まれているからと考えられる。 また、同じ人でも真皮層23の脂肪境界面が凹凸形状をしており、真皮層23の厚みも厚いところと薄いところが存在し、測定用プローブ8の当たる場所によっては、指標(3)の大きさが異なる場合がある。このことから、指標(3)は、皮膚の深い部分(真皮層−皮下組織層)の情報の生体成分変動を主に現していると考えられる。   A person with a thin dermis layer 23 tends to have a larger absolute value of this index (3) than a thicker person because the irradiated light (shown as A in FIG. 15) passes through the dermis layer 23 and is subcutaneous. This is presumably because a lot of fat information is included in the reflected light A that easily reaches the tissue layer 24. Further, even in the same person, the fat boundary surface of the dermis layer 23 has an uneven shape, and the dermis layer 23 has a thick portion and a thin portion, and the index (3) is large depending on the place where the measurement probe 8 hits. May vary. From this, it is considered that the index (3) mainly represents biological component fluctuations in information on a deep part of the skin (dermis layer-subcutaneous tissue layer).

一方周囲の環境温度の変動や光学部品の位置関係などによって、照射光が変動をきたし、測定される反射光のスペクトルに影響を与える(形の変化、大きさレベルの変化)恐れがあるので、この変動を補正する必要がある。このために特許文献3に示される装置ではセラミック板などからなる基準板で反射させたリファレンス光を測定し、これを基準光として補正を行うようにしている。つまりリファレンス光を測定することによって、これを基準光として、周囲の環境温度や光学部品の位置関係などによる変動を補正することができるようになっている。   On the other hand, irradiation light may fluctuate due to fluctuations in the surrounding environmental temperature and the positional relationship of optical components, etc., which may affect the spectrum of reflected light being measured (change in shape, change in size level). It is necessary to correct this variation. For this reason, the apparatus disclosed in Patent Document 3 measures the reference light reflected by a reference plate made of a ceramic plate or the like, and corrects it using this as the reference light. In other words, by measuring the reference light, it is possible to correct variations due to the ambient temperature, the positional relationship of the optical components, and the like using this as the reference light.

また連続的にスペクトルを測定する場合、上記のような装置側変動要因に加えて、測定用プローブ8と皮膚の関係における変動要因もある。   When the spectrum is continuously measured, in addition to the above-described apparatus-side variation factors, there are also variation factors in the relationship between the measurement probe 8 and the skin.

皮膚(表皮層22)の表面には図15のように角質層で構成される皮膚・皮丘22aが存在し凹凸形状を形成している。この表面に測定用プローブ8を接触させると、接触させた皮膚部位の立体形状により測定用プローブ8の先端表面と皮膚との間に空気層、皮脂、汗などが存在し、近赤外光の屈折率が変わるためスペクトル形状及び大きさが変動してしまう。先に示したスペクトル指標においては、空気層等の存在により光の屈折率が変化し、スペクトル全体の大きさ指標(1)が大きく変動したり、発汗などの影響で指標(2)が急に大きくなったりする。この現象をできるだけ軽減するため、所定の,圧力で測定用プローブ8を皮膚に接触させて、皮丘部分と測定用プローブ8の接触面積を増加させる。つまり密着性を増加させ、測定用プローブ8と皮膚表面に介在する空気層、皮脂、汗などの影響を極力低減し、スペクトル変動を抑えて測定することが必要である。   On the surface of the skin (skin layer 22), there is a skin / skin 22a composed of a stratum corneum as shown in FIG. When the measurement probe 8 is brought into contact with this surface, an air layer, sebum, sweat, or the like exists between the tip surface of the measurement probe 8 and the skin due to the three-dimensional shape of the contacted skin part, and the near infrared light Since the refractive index changes, the spectrum shape and size change. In the spectrum index shown above, the refractive index of light changes due to the presence of an air layer or the like, and the index (1) of the entire spectrum greatly fluctuates, or the index (2) suddenly changes due to the influence of sweating or the like. It gets bigger. In order to reduce this phenomenon as much as possible, the measurement probe 8 is brought into contact with the skin at a predetermined pressure, thereby increasing the contact area between the dermis and the measurement probe 8. In other words, it is necessary to increase the adhesion, reduce the influence of the measurement probe 8 and the air layer, sebum, sweat, etc. intervening on the skin surface as much as possible, and suppress the spectral fluctuation.

しかしながら密着性を確保するとしてもプローブ位置が約200μmずれるとスペクトル指標が変化する。近赤外光が皮膚の中に進入し生体情報を多く拾ってくる真皮層23は、コラーゲンの繊維状物質の網目構造の間に、これらの間を埋めるISF(Interstitial Fluid<間質液>)など水分をたっぷり含む基質が存在し、加圧により非常に動きやすい状態になっている。この基質には毛細血管から透過してくるグルコースなど、生体情報関連物質が多く存在し、吸光度スペクトルの形状に大きい影響を与える。また、コラーゲンなど結合線維が密に網目状に並んでおり、皮膚の運動を司る重要な役割を果たしている網状層も光路に存在する物質であり、測定用プローブ8の皮膚への接触位置や測定用プローブ8の皮膚への接触角度によって光路の微妙な変化が生じ、それにより吸光度スペクトルの形状に大きい影響を与えることになる。   However, even if the adhesion is ensured, the spectral index changes when the probe position is shifted by about 200 μm. The dermis layer 23 in which near-infrared light enters the skin and picks up a lot of biological information is filled with interstitial fluid (interstitial fluid) between the fibrous structures of collagenous fibers. There is a substrate that contains a lot of moisture, and it is very easy to move by pressurization. This substrate contains a large amount of biological information-related substances such as glucose that permeates from capillaries, and greatly affects the shape of the absorbance spectrum. In addition, connective fibers such as collagen are densely arranged in a mesh pattern, and the mesh layer that plays an important role in controlling the movement of the skin is also a substance present in the optical path. Depending on the contact angle of the probe 8 to the skin, a subtle change in the optical path occurs, thereby greatly affecting the shape of the absorbance spectrum.

その他に図17及び図18のように、測定部位たる腕部14の構成は複数の筋肉25、腱26及び骨27からなり、測定用プローブ8を所定の圧力で皮膚に接触させた際、筋肉25などに皮膚が支持される形として測定用プローブ8が皮膚を押さえつけ、吸光度スペクトルを測定することになる。   In addition, as shown in FIGS. 17 and 18, the configuration of the arm portion 14 serving as a measurement site includes a plurality of muscles 25, tendons 26 and bones 27, and the muscles when the measurement probe 8 is brought into contact with the skin with a predetermined pressure. The measurement probe 8 presses the skin so that the skin is supported by 25 or the like, and the absorbance spectrum is measured.

その際手首をはじめとする測定部位周辺の生体の動きがあった場合、筋肉25や腱26などの皮膚を支持する部分の形状が大きく変化する。このように皮膚に測定用プローブ8を接触させことで測定を行う場合、測定毎のスペクトルの安定性及び経時的再現性に問題があった。   At that time, when there is a movement of the living body around the measurement site including the wrist, the shape of the part supporting the skin such as the muscle 25 and the tendon 26 changes greatly. When the measurement is performed by bringing the measurement probe 8 into contact with the skin as described above, there is a problem in the stability and reproducibility of the spectrum over time for each measurement.

つまり被測定者の生体(腕部)に測定用プローブ8を押し当てて吸光度スペクトルを測定する場合、測定される吸光度スペクトルが、生体内の成分濃度の変化とは無関係に、測定の過程でばらついたり、経時的に変動を起こしてしまうため、これら変動したスペクトルを用いて多変量解析にて成分濃度の定量をする,際に定量精度が低くなってしまうという問題があった。   That is, when measuring the absorbance spectrum by pressing the measurement probe 8 against the living body (arm part) of the measurement subject, the measured absorbance spectrum varies in the measurement process regardless of the change in the component concentration in the living body. In other words, the concentration of components is quantified by multivariate analysis using these varied spectra, and there is a problem that the quantification accuracy is lowered.

そこで、肘の位置を決めて、肘の位置から一定距離離れた場所に腕部(前腕)を傾けた状態で載せる支持部を設け、この支持部に測定用プローブを出没自在に装着し、腕部を安定した状態で測定ができるようにした装置も提供されている(特許文献2)
特開2004−45096号公報(段落番号0011〜0024、図1) 特開平11−244266号公報(図1、段落番号0021〜0022)
Therefore, the position of the elbow is determined, and a support part is placed on the arm part (forearm) in a tilted position at a distance from the elbow position. There is also provided an apparatus that enables measurement in a stable state (Patent Document 2).
JP-A-2004-45096 (paragraph numbers 0011 to 0024, FIG. 1) JP-A-11-244266 (FIG. 1, paragraph numbers 0021 to 0022)

ところで特許文献2に示された装置は、腕部を安定させる効果があるものの、ベッドに寝ている患者(被測定者)に対して連続的に測定を行う場合には、長時間の間そのままの状態でいることが苦痛で大きな負担を掛けるという問題がある。また無意識で腕部を動かしてしまい測定位置が変動してしまうという問題があった。   By the way, although the apparatus shown by patent document 2 has an effect which stabilizes an arm part, when measuring continuously with respect to the patient (person to be measured) sleeping on the bed, it remains as it is for a long time. There is a problem that being in this state is painful and places a heavy burden. In addition, there is a problem that the measurement position fluctuates because the arm is moved unconsciously.

つまり計測においても被測定者である患者に負担を掛けず且つ経時的な変動を抑えるため、極力測定部位を同じ状態で保ちつつ、皮膚に所定圧力で且つ一定時間間隔でプローブを皮膚に接触させなければならないという課題があった。   In other words, in order to keep the measurement site in the same state as much as possible, the probe is brought into contact with the skin at a predetermined pressure and at regular time intervals so as not to place a burden on the patient who is the subject in measurement and to suppress fluctuations over time. There was a problem that had to be done.

本発明は、上記の点に鑑みて為されたものであって、その目的とするところは、生体及び測定用プローブの状態変動を抑えて、吸光度スペクトルの測定毎の安定性と経時的再現性とを得ることができる生体内成分測定用プローブ支持具及び生体内成分測定用ヘッド装置を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to suppress changes in the state of the living body and the probe for measurement, and to provide stability and reproducibility over time for each absorbance spectrum. It is an object to provide a probe support for in vivo component measurement and a head device for in vivo component measurement.

上述の目的を達成するために、請求項1の生体内成分測定用プローブ支持具の発明では、生体表面に近赤外光を出射するとともに、生体からの反射光を入射する生体内成分測定用プローブを支持するものであって、被測定者の手首位置を定めるとともに腕に沿って装着される腕固定部と、この腕固定部の腕方向の所定位置に設けられ、前記腕の表面に前記生体内成分測定用プローブを案内するガイド部を有する位置決め部と、該位置決め部を前記腕に押し付ける加圧部とを備えるとともに、重量物に連結するための接続部を有していることを特徴とする。   In order to achieve the above object, in the invention of the probe support for measuring in vivo components according to claim 1, for measuring in vivo components that emits near-infrared light to the surface of the living body and enters reflected light from the living body. A probe is supported, and is provided at a predetermined position in the arm direction of the arm fixing portion that determines the wrist position of the measurement subject and is mounted along the arm, and is provided on the surface of the arm. A positioning unit having a guide unit for guiding the in vivo component measurement probe, a pressurizing unit for pressing the positioning unit against the arm, and a connection unit for connecting to a heavy object. And

請求項1の生体内成分測定用プローブ支持具の発明によれば、測定用プローブを生体表面に押し当て連続的に測定する際に、生体及び測定用プローブの状態変動を位置決め部により抑えることができ、吸光度スペクトルの測定毎の安定性や経時的再現性を得ることができ、その結果生体成分測定装置において測定する生体成分濃度の定量精度を高めることができ、特に支持具自体が重量物に連結されることで、測定部位となる腕の動きを抑止することができ、定量精度を高めるのに大きく寄与することができる。   According to the invention of the biological component measuring probe support tool of claim 1, when the measurement probe is pressed against the surface of the living body and continuously measured, the state variation of the living body and the measuring probe can be suppressed by the positioning unit. It is possible to obtain stability and reproducibility over time for each measurement of the absorbance spectrum, and as a result, it is possible to improve the quantification accuracy of the biological component concentration measured by the biological component measuring device, and in particular, the support itself becomes a heavy object. By being connected, the movement of the arm serving as the measurement site can be suppressed, which can greatly contribute to improving the quantitative accuracy.

請求項2の生体内成分測定用プローブ支持具の発明では、請求項1の発明において、前記腕固定部が、腕方向の長さを調節する調節手段を有していることを特徴とする。   According to a second aspect of the present invention, there is provided the probe support for measuring in-vivo components according to the first aspect, wherein the arm fixing portion has adjusting means for adjusting the length in the arm direction.

請求項2の生体内成分測定用プローブ支持具の発明によれば、被測定者の腕の長さの相違に対応することができ、被測定者の腕の長さが違っても、測定部位の筋肉、腱、骨が比較的同じ状態で存在する部位を測定部位とすることが可能となり、被測定者の個体差を抑えることができる。   According to the biological support component measuring probe support device of claim 2, it is possible to cope with the difference in the length of the arm of the measurement subject, and the measurement site even if the length of the arm of the measurement subject is different It is possible to set a site where the muscles, tendons, and bones of the subject are relatively in the same state as the measurement site, and to suppress individual differences among the persons to be measured.

請求項3の生体内成分測定用プローブ支持具の発明では、請求項1又は2の何れかの発明において、前記加圧部は、腕の周囲に巻回締結するベルトにより構成され、腕の周囲長に応じて定まる追加締め付け位置を表示する表示部を備えていることを特徴とする。   According to a third aspect of the present invention, there is provided a probe support for measuring a component in a living body. In the first or second aspect of the invention, the pressurizing portion is constituted by a belt that is wound and fastened around the arm. A display unit for displaying an additional tightening position determined according to the length is provided.

請求項3の生体内成分測定用プローブ支持具の発明によれば、圧力調整で位置測定部を被測定者の腕表面に隙間無く押し付けることができ、その結果生体内成分測定用プローブの接触状態からの解放時にも位置決め部が動いてガイド部の位置ずれすることを無くすことができ、スペクトルの再現性を良好とし、また脈動による影響を受けることなく正確なスペクトル測定が可能となり、特に簡単な操作で被測定者の腕の周囲に合わせた適正な圧力に調整することができ、例え加圧部を装着しなおす場合にあっても再現良く適正な圧力を得ることができる。   According to the third aspect of the invention, the position measuring unit can be pressed against the arm surface of the person to be measured without any gap, and as a result, the contact state of the in vivo component measuring probe. Even when released from the center, the positioning part can be moved and the position of the guide part can be prevented from shifting, the spectral reproducibility is good, and accurate spectral measurement is possible without being affected by pulsation. The operation can be adjusted to an appropriate pressure according to the circumference of the arm of the person to be measured, and an appropriate pressure can be obtained with good reproducibility even when the pressure unit is remounted.

請求項4の生体内成分測定用ヘッド装置の発明では、請求項1乃至3の何れかの生体内成分測定用プローブ支持具と、生体内成分測定用プローブ支持具の接続部と重量物との中間部に設けられ、生体内成分測定用プローブ支持具のガイド部の案内方向に生体内成分測定用プローブを移動させる駆動部及び該駆動部を制御する制御部とを備え、該制御部は前記生体内成分測定用プローブを前記腕の表面に接触させた状態と前記腕の表面から離した状態とを所定の時間間隔で繰り返すように駆動部を制御することを特徴とする。   According to a fourth aspect of the present invention, there is provided an in vivo component measuring head device comprising: a living body component measuring probe support device according to any one of claims 1 to 3; a connecting portion of the in vivo component measuring probe support device; A drive unit that is provided in the middle part and moves the in vivo component measurement probe in the guide direction of the guide unit of the in vivo component measurement probe support; and a control unit that controls the drive unit, The driving unit is controlled to repeat a state in which the in-vivo component measurement probe is in contact with the surface of the arm and a state in which the probe is separated from the surface of the arm at predetermined time intervals.

請求項4の生体内成分測定用ヘッド装置の発明によれば、生体内成分測定用プローブ支持具による作用効果に加えて、生体内成分測定用プローブの腕表面への圧迫による血流の変化を抑えつつ、連続して生体内成分の計測が可能となる。   According to the biological component measuring head device of the fourth aspect of the invention, in addition to the effects of the biological component measuring probe support, the blood flow change due to the pressure on the arm surface of the biological component measuring probe is detected. It is possible to continuously measure in-vivo components while suppressing.

請求項5の生体内成分測定用ヘッド装置では、請求項4の発明において、前記中間部には前記生体内成分測定用プローブの先端方向の、肘の屈伸方向に対応する角度又は腕の軸を中心とした回転方向に対応する角度若しくは両角度を調整する角度調整手段を有していることを特徴とする。   In the in vivo component measuring head device according to claim 5, in the invention according to claim 4, an angle corresponding to an elbow bending direction or an arm axis in the distal direction of the in vivo component measuring probe is provided in the intermediate portion. It has an angle adjustment means for adjusting an angle corresponding to the rotation direction as the center or both angles.

請求項5の生体内成分測定用ヘッド装置の発明では、請求項4の発明において、前記接続部が、肘の屈伸方向角度又は腕の軸を中心とした回転角度若しくは両角度を調整する角度調整手段を有することを特徴とする。   According to a fifth aspect of the present invention, there is provided an in vivo component measuring head device according to the fourth aspect of the present invention, wherein the connecting portion adjusts an angle in the bending direction of the elbow, a rotation angle around the arm axis, or both angles. It has the means.

請求項5の生体内成分測定用ヘッド装置の発明によれば、被測定者の腕の状態に応じて生体内成分測定用プローブと位置決め部との位置関係を調整することができ、被測定者に負担がかからない状態での測定を可能とする。   According to the invention of the in vivo component measuring head device of claim 5, the positional relationship between the in vivo component measuring probe and the positioning unit can be adjusted according to the state of the arm of the to-be-measured person. Measurement in a state where no burden is applied.

本発明の生体内成分測定用プローブ支持具は、測定用プローブを生体表面に押し当て連続的に測定する際に、生体及び測定用プローブの状態変動を位置決め部により抑えることができ、吸光度スペクトルの測定毎の安定性や経時的再現性を得ることができ、その結果生体成分測定装置において測定する生体成分濃度の定量精度を高めることができ、特に支持具自体が重量物に連結されることで、測定部位となる腕の動きを抑止することができ、定量精度を高めるのに大きく寄与することができるという効果がある。   The probe support for measuring in vivo components of the present invention can suppress fluctuations in the state of the living body and the measurement probe by the positioning portion when the measurement probe is continuously pressed against the surface of the living body, and the absorbance spectrum Stability and reproducibility over time can be obtained for each measurement, and as a result, the quantitative accuracy of the biological component concentration measured by the biological component measuring device can be increased. Especially, the support itself is connected to a heavy object. The movement of the arm serving as the measurement site can be suppressed, and there is an effect that it can greatly contribute to increase the quantitative accuracy.

本発明の生体内成分測定用ヘッド装置は、生体内成分測定用プローブ支持具による作用効果に加えて、生体内成分測定用プローブの腕表面への圧迫による血流の変化を抑えつつ、連続して生体内成分の計測が可能となるという効果がある。   The in vivo component measurement head device according to the present invention continuously suppresses a change in blood flow due to the pressure on the arm surface of the in vivo component measurement probe in addition to the effect of the in vivo component measurement probe support. Thus, there is an effect that it is possible to measure in-vivo components.

以下、本発明を実施形態により説明する。
(実施形態1)
本実施形態に係る生体内成分測定用プローブ支持具は、図1乃至図4に示すように被測定者の手首141の位置を定めるとともに生体の測定部位となる前腕140を固定する腕固定部30と、前腕140の前面の所定位置に配置され、測定用プローブ8の位置決めを行う位置決め体(位置決め部)31と、該位置決め体31を前腕140の前面(表面)に押し付ける加圧部を構成する加圧用ベルト32と、後述する重量物に連結するために位置決め体31に設けた凸部311からなる接続部とで構成され、この生体内成分測定用プローブ支持具と、測定用プローブ8を被測定者の前腕140の前面方向に対して移動させて接触させたり、接触状態を解放したりするための機構部たる駆動部33とこの駆動部33を制御する制御部(図示せず)と、駆動部33及び制御部を加えることで、生体内成分測定用ヘッド装置を構成し、この生体内成分測定用プローブ支持具以外の駆動部33及び制御部を含めた機構部は自在アーム38を介して重量物たるスタンド42に保持されている。
Hereinafter, the present invention will be described with reference to embodiments.
(Embodiment 1)
As shown in FIGS. 1 to 4, the probe support for in-vivo component measurement according to the present embodiment determines the position of the wrist 141 of the measurement subject and fixes the forearm 140 serving as a measurement site of the living body. And a positioning body (positioning portion) 31 that is disposed at a predetermined position on the front surface of the forearm 140 and positions the measurement probe 8, and a pressurizing portion that presses the positioning body 31 against the front surface (front surface) of the forearm 140. It is composed of a pressure belt 32 and a connecting portion made up of a convex portion 311 provided on the positioning body 31 for connection to a heavy object to be described later. The living body component measuring probe support and the measuring probe 8 are covered. A drive unit 33 that is a mechanism unit for moving the front side of the forearm 140 of the measurer in contact with the front surface and releasing the contact state, and a control unit (not shown) that controls the drive unit 33. In addition, the drive unit 33 and the control unit are added to form a living body component measurement head device, and the mechanism unit including the drive unit 33 and the control unit other than the living body component measurement probe support has a free arm 38. And is held by a stand 42 which is a heavy object.

腕固定部30は、前腕140の後面を載せる形で専用クッション40を介してベッド41上に配置されるもので、前腕長手方向に伸縮自在となったホルダー300と、このホルダー300の先端部から前方へ延長させた支持体301に取り付けられた把持部302と、ホルダー300の上面に前腕140の後面(背面)を載せた被測定者が手142で把持部302を握ることで位置が定まった手首141をホルダー300に固定するための固定用テープ303とで構成され、ホルダー300の後部が加圧用ベルト32を装着する装着部となっている。   The arm fixing portion 30 is disposed on the bed 41 via the dedicated cushion 40 in a manner that the rear surface of the forearm 140 is placed, and a holder 300 that can be extended and contracted in the longitudinal direction of the forearm and a front end portion of the holder 300. The position is determined by the gripper 302 attached to the support body 301 extended forward and the measured person holding the rear surface (rear surface) of the forearm 140 on the upper surface of the holder 300 holding the gripper 302 with the hand 142. It is composed of a fixing tape 303 for fixing the wrist 141 to the holder 300, and the rear part of the holder 300 is a mounting part for mounting the pressure belt 32.

ホルダー300は専用クッション40上に載置する基部300aと、この基部300aの前部において両端方向(前腕140の長手方向)にスライド自在に取り付けられ、ホルダー300の長さを伸縮自在とするスライド部300bと、基部300aの後部に設けられた腕載置部300cとからなり、把持部301の支持体301がスライド部300bの前部に、また固定用テープ303がスライド部300bの後部に装着されている。   The holder 300 is slidably mounted in both end directions (longitudinal direction of the forearm 140) at the front portion of the base portion 300a to be placed on the dedicated cushion 40, and the length of the holder 300 can be expanded and contracted. 300b and an arm placing part 300c provided at the rear part of the base part 300a. The support 301 of the grip part 301 is attached to the front part of the slide part 300b, and the fixing tape 303 is attached to the rear part of the slide part 300b. ing.

固定用テープ303は一端がスライド部300bの一側部に固定され、他端部に設けた面ファスナー(図示せず)をスライド部300bの他側部に設けられた面ファスナーの被接合部(図示せず)に着脱自在に接合するようになっている。   One end of the fixing tape 303 is fixed to one side portion of the slide portion 300b, and a hook-and-loop fastener (not shown) provided at the other end portion is joined to the hook-and-loop fastener portion provided at the other side portion of the slide portion 300b ( (Not shown) is detachably joined.

位置決め体31は腕載置部300cに載置した前腕140の部位に配置されるもので、上面が矩形で下面が前腕140の前面の湾曲形状に沿うように湾曲面に形成され、また後述する測定用プローブ8の先部に設けた変更治具36を前腕140の前面に向けて直線的にガイドするガイド部たる上下貫通の孔部310を中央に設け、更に上面には後述する駆動部33に設けられた連結体330の下面に形成した複数の凹部330aに下方から凹凸嵌合して連結体330と接続されることで位置決め体31を自在アーム39を含む中間部材を介して重量物であるスタンド42と接続する複数の凸部311を設けている。   The positioning body 31 is disposed at a portion of the forearm 140 placed on the arm placement portion 300c, and is formed in a curved surface so that the upper surface is rectangular and the lower surface is along the curved shape of the front surface of the forearm 140, and will be described later. An upper and lower through hole 310 serving as a guide for linearly guiding the change jig 36 provided at the tip of the measurement probe 8 toward the front surface of the forearm 140 is provided in the center, and a drive unit 33 described later is further provided on the upper surface. A plurality of recesses 330a formed on the lower surface of the coupling body 330 provided on the lower surface of the coupling body 330 are connected to the coupling body 330 by being concavo-convex from below, so that the positioning body 31 is a heavy object via an intermediate member including the free arm 39. A plurality of convex portions 311 connected to a certain stand 42 are provided.

加圧用ベルト32は例えば弾性材料から構成され、位置決め体31を被測定者の前腕140の前面に押し付けるための加圧部を構成し、図3(b)に示すように両端を位置決め体31の両側部の下端に固定して位置決め体31を含めて環状部を構成し、前腕140に装着しない状態では加圧用ベルト32の弾性により環状部の孔径が前腕140の径より小さく縮径した状態にある。従って加圧用ベルト32の縮径方向の付勢に抗して環状部内に上記ホルダー300の腕載置部300cとともに前腕140を挿入して前腕140の前面に位置決めた体15を装着した状態では加圧用ベルト32の縮径方向の力により位置決め体31が前腕140の前面に押し付けられることになる。   The pressure belt 32 is made of an elastic material, for example, and constitutes a pressure portion for pressing the positioning body 31 against the front surface of the forearm 140 of the person to be measured. Both ends of the positioning body 31 of the positioning body 31 are shown in FIG. The annular portion including the positioning body 31 is fixed to the lower ends of the both side portions, and the hole diameter of the annular portion is reduced to be smaller than the diameter of the forearm 140 due to the elasticity of the pressure belt 32 when not attached to the forearm 140. is there. Therefore, in a state where the body 15 positioned on the front surface of the forearm 140 is mounted by inserting the forearm 140 together with the arm placement portion 300c of the holder 300 into the annular portion against the urging of the pressure belt 32 in the diameter reducing direction. The positioning body 31 is pressed against the front surface of the forearm 140 by the force in the direction of diameter reduction of the pressure belt 32.

駆動部33は自在アーム38の先端部にジョイント治具39を介して取り付けられ、ステッピングモータ(図示せず)により上下方向(Z軸方向)にステージ部331を移動させるZ軸ステージ装置332から構成され、前記ステージ部331にはL字状の支持体333を前面に取り付け、更に支持体333の前端面にはロードセル334とロードセル334の受圧部に設けられたプローブ保持体335とを備え、またZ軸ステージ装置332の下部には一端部をプローブ保持体335の下方に配置した前記連結体330の他端部を固定してある。またZ軸ステージ装置332は内部にステッピングモータを制御する制御部(図示せず)を内蔵している。   The drive unit 33 is attached to the distal end of the free arm 38 via a joint jig 39, and includes a Z-axis stage device 332 that moves the stage unit 331 in the vertical direction (Z-axis direction) by a stepping motor (not shown). In addition, an L-shaped support 333 is attached to the front surface of the stage portion 331, and a load cell 334 and a probe holder 335 provided at a pressure receiving portion of the load cell 334 are provided on the front end surface of the support 333, and The other end of the coupling body 330 having one end disposed below the probe holder 335 is fixed to the lower portion of the Z-axis stage device 332. The Z-axis stage device 332 includes a control unit (not shown) that controls the stepping motor.

ジョイント治具39はZ軸ステージ装置332を取り付けている正面側からみて垂直方向に回転自在になっており、この回転により駆動部33及び連結体330を肘の屈伸方向の角度に合わせることができるようになっている。   The joint jig 39 is rotatable in the vertical direction when viewed from the front side to which the Z-axis stage device 332 is attached. By this rotation, the drive unit 33 and the coupling body 330 can be adjusted to the angle of the elbow bending direction. It is like that.

測定用プローブ8はフレキシブルチューブ35内に入った発光側及び受光側の各光ファイバ(図示せず)の先端が一端に接続されているもので、実施形態では例えばφ4のものを用い、その先部はプローブ保持体335に上下に貫通する形で保持され、更に先端にはプローブ径を例えばφ18に変更する変更治具36が接続されている。   The probe 8 for measurement has a light emitting side and a light receiving side optical fiber (not shown) in the flexible tube 35 connected to one end, and in the embodiment, for example, a φ4 one is used. The part is held by the probe holder 335 so as to penetrate vertically, and a change jig 36 for changing the probe diameter to φ18, for example, is connected to the tip.

一方連結体330には変更治具36の軸心と同心で且つ変更治具36の外径(φ18)と略同じ内径の孔部330bを上下面に貫通させ、この孔部330b内を変更治具36が上下移動できるようにしている。そして位置決め体31の孔部310の内径も孔部330bと同じ径とし、連結体330の下面と位置決め体31の上面とが凹凸嵌合により位置決めされた状態で重なったときに孔部330bと孔部310とが連通するようになっている。   On the other hand, a hole 330b that is concentric with the axis of the change jig 36 and has an inner diameter substantially the same as the outer diameter (φ18) of the change jig 36 is passed through the upper and lower surfaces of the connecting body 330, and the inside of the hole 330b is changed. The tool 36 can be moved up and down. The inner diameter of the hole 310 of the positioning body 31 is the same as that of the hole 330b. When the lower surface of the coupling body 330 and the upper surface of the positioning body 31 overlap with each other in a state of being positioned by uneven fitting, the hole 330b and the hole The unit 310 communicates with the unit 310.

自在アーム38は、被測定者の測定部位たる前腕部41に測定用プローブ8を含む駆動部35の重量がかからないように重量を支えるためと、測定用プローブ8及び制御部を含む駆動部35を被測定部位に対して最適な向きに設定するためのものであり、図1(a),(b)に示すようにベッド41の傍らに配置された重量物たるスタンド42により支持される。   The universal arm 38 supports the weight so that the weight of the drive unit 35 including the measurement probe 8 is not applied to the forearm 41 that is the measurement site of the measurement subject, and the drive unit 35 including the measurement probe 8 and the control unit. This is for setting an optimum orientation with respect to the part to be measured, and is supported by a heavy stand 42 arranged beside the bed 41 as shown in FIGS. 1 (a) and 1 (b).

ここで本実施形態に用いている自在アーム38は図示するように2つのアーム部38a、38bの一端同士を互いに垂直方向に回転自在に連結したもので、重量物であるスタンド42に対してアーム部38aの他端を水平方向に回動自在に支持され、またアーム部38bの他端に、駆動部33と接続する接続部たるジョイント治具39を垂直方向に回動自在に取り付け、また回動状態を保持するために各回動部位(関節部位)には固定レバー38cを備えている。   Here, the universal arm 38 used in the present embodiment is one in which one ends of two arm portions 38a and 38b are connected to each other so as to be rotatable in the vertical direction as shown in the figure. The other end of the portion 38a is supported so as to be rotatable in the horizontal direction, and a joint jig 39 as a connecting portion connected to the drive portion 33 is attached to the other end of the arm portion 38b so as to be rotatable in the vertical direction. In order to maintain the moving state, each rotating part (joint part) is provided with a fixing lever 38c.

而して本実施形態の生体内成分測定用プローブ支持具は、自在アーム38に取り付けられ、測定用プローブ8をプローブ保持体335により保持した駆動部35と、腕固定部30と、位置決め体31とで構成される。この生体内成分測定用プローブ支持具を用いる生体内成分測定装置は駆動部33を構成するZ軸ステージ装置332に電源供給を行うための電源や測定用プローブ8に発光側光ファイバを介して近赤外光を送るための光源、更に反射光を、受光側光ファイバー、シャッタ、光学レンズを通して回折格子に入射し、回折格子で分光した後、検出手段である受光素子で受光されて電気信号に変換され、更にAD変換された後、パーソナルコンピュータ等の演算装置に入力され、検出された光信号中の生体信号であるスペクトルを解析することによって、血糖値等を算出するようになっており、図1(a),(b)中43は生体内成分測定装置のキャスター付きの装置本体であり、44はパーソナルコンピュータからなる演算装置を兼ねた操作部である。そして測定用プローブ8と一端が接続され、フレキシブルチューブ35により被覆され、下に垂れ下がらないように一部が自在アーム38に固定されている発光側及び受光側光ファイバを装置本体43内に導入し、またZ軸ステージ装置332への電源線等も下に垂れ下がらないように一部を自在アーム38に固定して装置本体43内に導入している。   Thus, the in-vivo component measurement probe support of the present embodiment is attached to the free arm 38, the drive unit 35 holding the measurement probe 8 by the probe holder 335, the arm fixing unit 30, and the positioning body 31. It consists of. The in-vivo component measuring apparatus using the in-vivo component measuring probe support is close to the power source for supplying power to the Z-axis stage device 332 constituting the driving unit 33 and the measuring probe 8 through the light-emitting side optical fiber. A light source for sending infrared light, and reflected light is incident on the diffraction grating through the optical fiber on the receiving side, shutter, and optical lens, and after being dispersed by the diffraction grating, it is received by the light receiving element as the detection means and converted into an electrical signal. Further, after AD conversion, it is input to a computing device such as a personal computer, and a blood sugar level is calculated by analyzing a spectrum that is a biological signal in the detected optical signal. 1 (a) and 1 (b), 43 is a body of the in-vivo component measuring apparatus with a caster, and 44 is an operation unit that also serves as an arithmetic unit composed of a personal computer. That. The measuring probe 8 and one end are connected, covered with a flexible tube 35, and a light emitting side and a light receiving side optical fiber partially fixed to the free arm 38 so as not to hang down are introduced into the apparatus main body 43. In addition, a part of the power line to the Z-axis stage device 332 is fixed to the free arm 38 so as not to hang down and is introduced into the device main body 43.

次に本実施形態の生体内成分測定用プローブ支持具の使用方法について説明する。   Next, the usage method of the probe support for in-vivo component measurement of this embodiment is demonstrated.

まず図1(b)に示すようにベッド41上に仰臥している被測定者の例えば左腕の前腕140に対応するようにベッド41上に専用クッション40を介して腕固定部30を載置する。専用クッション40は腕固定部30の底部部分とほぼ同じ形状の凹部を載置面側に形成したもの或いは腕固定部30に固定される前腕140や腕固定部30の重さに合わせて載置面が凹形に変形して形を固定するものであり、被測定者の体動に対して、前腕140の動きを抑えてスペクトルの再現性を確保する役割を持つ。   First, as shown in FIG. 1B, the arm fixing portion 30 is placed on the bed 41 via the dedicated cushion 40 so as to correspond to the forearm 140 of the left arm of the person who is supine on the bed 41. . The dedicated cushion 40 has a concave portion having substantially the same shape as the bottom portion of the arm fixing portion 30 on the mounting surface side, or is placed according to the weight of the forearm 140 or the arm fixing portion 30 fixed to the arm fixing portion 30. The surface is deformed into a concave shape to fix the shape, and has the role of ensuring the reproducibility of the spectrum by suppressing the movement of the forearm 140 against the body movement of the measurement subject.

さて次に被測定者の前腕140を加圧用ベルト32と位置決め体31からなる環状部に加圧用ベルト32の弾性を利用して挿入して肘部近傍の前腕140の前面上に位置決め体31を載せる。この状態では加圧用ベルト32の弾性により環状部の内径が縮径されるため位置決め体31の下面は前腕140の前面に押し付けられることになる。   Next, the forearm 140 of the person to be measured is inserted into the annular portion composed of the pressure belt 32 and the positioning body 31 using the elasticity of the pressure belt 32, and the positioning body 31 is placed on the front surface of the forearm 140 near the elbow. Put it on. In this state, since the inner diameter of the annular portion is reduced by the elasticity of the pressure belt 32, the lower surface of the positioning body 31 is pressed against the front surface of the forearm 140.

この状態で腕固定部30のホルダー300上に被測定者の前腕140を載せるとともに、腕固定部30の先方の把持部302を手142で握らせて手首141の角度及び位置を固定し、この固定した状態で手首141をスライド部300b上に固定用テープ303で固定する。尚把持部302の位置はスライド部300bをスライドさせることで調整することができる。これによって、前腕140の長さが違っても手首141から測定位置までの長さを例えば前腕140の長さの割合で規定することによって、筋肉、腱、骨が比較的同じ状態で存在する場所を測定部位とすることができ、結果被測定者の個体差を抑えることができる。   In this state, the forearm 140 of the person to be measured is placed on the holder 300 of the arm fixing unit 30, and the angle and position of the wrist 141 are fixed by holding the grip part 302 at the tip of the arm fixing unit 30 with the hand 142. In the fixed state, the wrist 141 is fixed on the slide portion 300b with the fixing tape 303. Note that the position of the grip portion 302 can be adjusted by sliding the slide portion 300b. Thereby, even if the length of the forearm 140 is different, by defining the length from the wrist 141 to the measurement position by the ratio of the length of the forearm 140, for example, the place where the muscles, tendons and bones exist in the relatively same state Can be used as a measurement site, and as a result, individual differences among measurement subjects can be suppressed.

ところで生体内成分測定位置としては、測定用プローブ8の先部(変更治具36の先部)を前腕140の前面に押し当てた際に体毛の影響を受けにくく、更に皮膚厚さ及び皮膚の表面状態の安定性が良い点、また測定のし易さなどから、前腕140の前面の中心部領域に定めるのがより良い。このことから上述のように把持部302を手142で握らせることで、手首141の角度及び手首141の位置を定めるようにしている。そして手首141の角度を定めることにより、前腕140の前面部位の筋肉の状態が安定して測定毎に再現でき、それによって測定用プローブ8と皮膚の接触状態(接触角度、接触圧力等)が再現され、スペクトル再現性が向上する。   By the way, as the in-vivo component measurement position, when the front part of the measurement probe 8 (the front part of the changing jig 36) is pressed against the front surface of the forearm 140, it is not easily affected by body hair, and further, the skin thickness and the skin It is better to set the center region of the front surface of the forearm 140 in view of the stability of the surface state and the ease of measurement. Therefore, the angle of the wrist 141 and the position of the wrist 141 are determined by gripping the grip portion 302 with the hand 142 as described above. By determining the angle of the wrist 141, the state of the muscle in the front part of the forearm 140 can be stably reproduced for each measurement, thereby reproducing the contact state (contact angle, contact pressure, etc.) between the measurement probe 8 and the skin. Thus, the spectral reproducibility is improved.

また手首141を固定用テープ303で固定することで、手首141の微小な動きさえも押さえ込むことができ、その結果吸光度スペクトルの再現性が向上する。更にまた、手首141の位置を定めることにより、位置決め体31は腕固定部30の所定位置に配置されることになり、前腕140の前面の定められた位置に測定用プローブ8を当てることができる。   Further, by fixing the wrist 141 with the fixing tape 303, even a minute movement of the wrist 141 can be suppressed, and as a result, the reproducibility of the absorbance spectrum is improved. Furthermore, by determining the position of the wrist 141, the positioning body 31 is arranged at a predetermined position of the arm fixing portion 30, and the measurement probe 8 can be applied to a predetermined position on the front surface of the forearm 140. .

更にまた吸光度スペクトルの再現性阻害の影響は、測定用プローブ8の接触状態の変化、測定位置のずれの要因が非常に大きいが、本実施形態の生体内成分測定用プローブ支持具を用いることにより、生体内成分を精度良連続的に計測することができることになる。   Furthermore, the influence of the reproducibility inhibition of the absorbance spectrum is greatly caused by the change of the contact state of the measurement probe 8 and the shift of the measurement position, but by using the in vivo component measurement probe support of this embodiment. Thus, it is possible to continuously measure in-vivo components with high accuracy.

さて、腕固定部30への前腕140の固定が終了した状態で、測定を開始させるのであるが、この際自在アーム38を動かし、またジョイント治具39を動かして駆動部30の連結体330の下面を図5(a)に示すように位置決め体31の上面に対向する位置に移動させ、この位置で駆動部30の位置を下げて連結体330の下面の凹部330aに位置決め体31の上面の凸部311を嵌合させる。これにより連結体330の孔部330bと位置決め体31の孔部310とが連通することになる。この状態を保持するために自在アーム38の各回動部位に設けた固定レバー38cによって回動状態を固定する。この固定によって自在アーム38から前腕140までの動きをほぼ固定できることになる。   Now, the measurement is started in a state where the fixing of the forearm 140 to the arm fixing portion 30 is completed. At this time, the universal arm 38 is moved, and the joint jig 39 is moved to move the connection body 330 of the driving portion 30. As shown in FIG. 5A, the lower surface is moved to a position facing the upper surface of the positioning body 31, and the position of the drive unit 30 is lowered at this position, so that the concave portion 330 a on the lower surface of the coupling body 330 is placed on the upper surface of the positioning body 31. The convex part 311 is fitted. As a result, the hole 330b of the coupling body 330 and the hole 310 of the positioning body 31 communicate with each other. In order to maintain this state, the rotation state is fixed by a fixing lever 38 c provided at each rotation portion of the free arm 38. By this fixing, the movement from the free arm 38 to the forearm 140 can be substantially fixed.

次に生体内成分測定装置を動作させ、測定を開始すると、装置本体43内の電源部から駆動部30を構成するZ軸ステージ装置332に電源が供給され、Z軸ステージ装置332に内蔵している制御部によってステッピングモータが駆動制御されてステージ部331が上下方向に移動することになる。これによって測定用プローブ8の先部も上下移動し、図5(b)に示すように変更治具36が連結体330の孔部330bより抜けて上に移動している解放状態と、図5(c)に示すように変更治具36が孔部330b及び位置決め体31の孔部310にガイドされながら下方に移動してその先端を前腕140の前面に所定の接触圧で接触させている状態とを所定時間間隔で繰り返し、接触している状態でスペクトル測定を行う。   Next, when the in-vivo component measuring device is operated and measurement is started, power is supplied from the power supply unit in the device main body 43 to the Z-axis stage device 332 that constitutes the drive unit 30, and is built in the Z-axis stage device 332. The stepping motor is driven and controlled by the control unit, and the stage unit 331 moves up and down. As a result, the tip portion of the measurement probe 8 also moves up and down, and as shown in FIG. 5B, the changing jig 36 moves out of the hole 330b of the coupling body 330 and moves upward, and FIG. As shown in (c), the changing jig 36 moves downward while being guided by the hole 330b and the hole 310 of the positioning body 31, and the tip is brought into contact with the front surface of the forearm 140 with a predetermined contact pressure. Are repeated at predetermined time intervals, and the spectrum is measured while in contact.

ところで測定用プローブ8を前腕140の前面に接触させている状態では、連結体300と位置決め体31の結合と、測定用プローブ8が位置決め体31の孔部310に挿入されていることで、腕固定部30,位置決め体31は測定用プローブ8及び連結体33と駆動部30(及び制御部)と自在アーム38とを通じて重力物であるスタンド42に接続されることなって、測定中に被測定者が腕を動かそうとしても抑止されることになり、測定用プローブ8と前腕140の接触状態に変動をきたすことはない。   By the way, in a state where the measurement probe 8 is in contact with the front surface of the forearm 140, the coupling of the coupling body 300 and the positioning body 31, and the measurement probe 8 is inserted into the hole 310 of the positioning body 31, The fixed part 30 and the positioning body 31 are connected to the stand 42 which is a gravitational object through the measurement probe 8 and the connecting body 33, the drive part 30 (and the control part), and the universal arm 38, so that the measurement object is measured during the measurement. Even if the person tries to move the arm, the contact state between the measurement probe 8 and the forearm 140 is not changed.

尚測定用プローブ8を測定するときだけ、その先部を前腕140の前面に所定の接触圧で接触させ、測定時以外は、前腕140の前面から離れた状態にしておく理由は次の通りである。   Only when measuring the measurement probe 8, the tip is brought into contact with the front surface of the forearm 140 with a predetermined contact pressure, and the reason for keeping it away from the front surface of the forearm 140 except during measurement is as follows. is there.

つまり生体信号のS/N比を高く保って測定するためには、測定用プローブ8を生体表面に所定範囲の圧力で皮膚に接触させる必要があるが、一方常に測定用プローブ8を所定の圧力で接触させると、皮膚の測定部分の血液と組織液(体液)との間の成分交換が阻害されるため、全身の生体成分の量と測定部の量とで差が生じる。そこで上述のように、測定の数秒間のみ接触させ、それ以外のときは解放させることで、測定用プローブ8の前腕140への圧迫による血流などの変化を抑えながら連続して生体内成分の計測を行うことを可能としている。また、所定の圧力で測定部位を加圧すること、それを解放することとを繰り返すことによって、皮膚組織内の血液交換が促進され、血液中と組織液中の成分濃度の追随性が向上する効果もある。   In other words, in order to perform measurement while keeping the S / N ratio of the biological signal high, it is necessary to bring the measurement probe 8 into contact with the skin at a predetermined range of pressure on the surface of the living body. When the contact is made, the exchange of components between the blood and the tissue fluid (body fluid) in the measurement part of the skin is hindered, resulting in a difference between the amount of biological components in the whole body and the amount of the measurement part. Therefore, as described above, contact is made only for a few seconds of measurement, and release is performed at other times, so that a change in blood flow due to compression on the forearm 140 of the measurement probe 8 can be continuously suppressed while suppressing the change in the in vivo components. It is possible to measure. In addition, by repeatedly pressurizing the measurement site with a predetermined pressure and releasing it, the blood exchange in the skin tissue is promoted, and the effect of improving the followability of the component concentration in the blood and the tissue fluid is also achieved. is there.

ところで上記のステージ部331の下方移動により測定用プローブ8の先部が前腕140の前面に押し付けられたときの圧力はロードセル334で検知しており、この検知した圧力は検知信号線(図示せず)を介してZ軸ステージ装置332内の制御部へ送られ、制御部はこの検知圧力が一定圧力となるようにステッピングモータをフィードバック制御して測定用プローブ8が前腕140の前面に対して所定の圧力で接触するようにステージ部331の移動量を調整する。   By the way, the pressure when the tip of the measurement probe 8 is pressed against the front surface of the forearm 140 by the downward movement of the stage portion 331 is detected by the load cell 334, and the detected pressure is detected signal lines (not shown). ) To the control unit in the Z-axis stage device 332, and the control unit feedback-controls the stepping motor so that the detected pressure becomes a constant pressure, so that the measurement probe 8 is predetermined with respect to the front surface of the forearm 140. The amount of movement of the stage portion 331 is adjusted so as to make contact with the pressure.

以上のように本実施形態の生体内成分測定用プローブ支持具を用いることで、吸光度スペクトルの再現性が良く、生体内成分を精度良連続的に計測することができることになる。
特に測定用プローブ8による測定部位の接触を一定時間間隔で行うことで、血流などの変化を抑えて連続して生体内成分の計測を可能としている。
As described above, by using the in-vivo component measurement probe support of the present embodiment, the absorbance spectrum is reproducible and the in-vivo components can be continuously measured with high accuracy.
In particular, by making contact with the measurement site by the measurement probe 8 at regular time intervals, it is possible to continuously measure in-vivo components while suppressing changes in blood flow and the like.

尚本実施形態では自在アーム38の一端を上述したように重量物たるスタンド42に支持させているが、この場合装置本体43とベッド41上の被測定者との間の距離がある場合に有効である。しかしスタンド42を用いずにベッドや机等の重量物に自在アーム38の一端を支持させるようにしても良い。また装置本体43が大きく重量がある場合には図6に示すように装置本体43の側面に支持台42’を設け、この支持台42’に自在アーム38の一端を支持させても良い。この場合装置本体43のキャスター43aを利用して装置本体43を動かすことで駆動部33の位置を調整することも可能となる。また測定時以外には、測定用プローブ8と駆動部33を装置本体43内に収納することもできる。
(実施形態2)
実施形態1ではZ軸ステージ装置332のステージ部331の移動量を調整するために接触圧を検知する手段としてロードセル334を用いているが、本実施形態は図7(a)(b)に示すようにロードセルの代わりに測定用プローブ8の先部の変更治具36に圧力検知センサ45を設けたもので、図7(b)に示すように変更治具36が前腕140の前面に所定圧力で接触しているときに圧力検知センサ45の圧力検知信号は信号線46を通して、Z軸ステージ装置332内の制御部に送られ、制御部は検知圧力に基づいてステッピングモータをフィードバック制御してステージ部331の移動量を調整し、前腕140の前面への接触圧を調整するようにしている。尚本実施形態ではプローブ保持体335をステージ部331の前面に固定してある。また測定用プローブ8に接続している発光側光ファイバと受光側光ファイバは別個のフレキシブルチューブ35a、35bにより被覆されている。
In this embodiment, one end of the free arm 38 is supported by the heavy stand 42 as described above, but in this case, it is effective when there is a distance between the apparatus main body 43 and the person to be measured on the bed 41. It is. However, one end of the free arm 38 may be supported by a heavy object such as a bed or a desk without using the stand 42. Further, when the apparatus main body 43 is large and heavy, as shown in FIG. 6, a support base 42 ′ may be provided on the side surface of the apparatus main body 43, and one end of the free arm 38 may be supported on the support base 42 ′. In this case, it is also possible to adjust the position of the drive unit 33 by moving the apparatus main body 43 using the casters 43a of the apparatus main body 43. In addition to the measurement, the measurement probe 8 and the drive unit 33 can be housed in the apparatus main body 43.
(Embodiment 2)
In the first embodiment, the load cell 334 is used as means for detecting the contact pressure in order to adjust the amount of movement of the stage unit 331 of the Z-axis stage device 332. This embodiment is shown in FIGS. 7 (a) and 7 (b). In this way, instead of the load cell, the pressure detection sensor 45 is provided in the change jig 36 at the tip of the measurement probe 8, and the change jig 36 has a predetermined pressure on the front surface of the forearm 140 as shown in FIG. The pressure detection signal of the pressure detection sensor 45 is sent through the signal line 46 to the control unit in the Z-axis stage device 332 when the contact is made at the stage. The amount of movement of the portion 331 is adjusted to adjust the contact pressure to the front surface of the forearm 140. In this embodiment, the probe holder 335 is fixed to the front surface of the stage portion 331. The light emitting side optical fiber and the light receiving side optical fiber connected to the measurement probe 8 are covered with separate flexible tubes 35a and 35b.

尚腕固定部30などその他の構成は実施形態1と同じであるので、図示及び説明は省略し、また図7において同じ構成要素には同じ符号を付す。
(実施形態3)
本実施形態は図8(a),(b)に示すように駆動部33を構成するZ軸ステージ装置332のステージ部331に錘支持台50を取り付け、この錘支持第50上にプローブ保持体335付きの鐘51aをまず鍾支持棒52を通して載置し、更に測定用プローブ8が前腕140の前面に接触するのに必要な鐘51b,51cを、錘支持体52を通して上乗せし、Z軸ステージ装置332のステージ部331が所定の量以上下降した段階(図8(b))で測定用プローブ8も含めて錘51a…による荷重の全てが前腕140の前面への接触圧として加わるようにした点に特徴がある。
Since other configurations such as the arm fixing portion 30 are the same as those in the first embodiment, illustration and description are omitted, and the same components are denoted by the same reference numerals in FIG.
(Embodiment 3)
In this embodiment, as shown in FIGS. 8A and 8B, a weight support base 50 is attached to the stage portion 331 of the Z-axis stage device 332 constituting the drive portion 33, and a probe holder is placed on the weight support 50th. The bell 51a with 335 is first placed through the rod support rod 52, and the bells 51b and 51c necessary for the measurement probe 8 to come into contact with the front surface of the forearm 140 are placed through the weight support body 52, and the Z-axis stage. When the stage portion 331 of the device 332 is lowered by a predetermined amount or more (FIG. 8B), all of the load due to the weights 51a, including the measurement probe 8, is applied as contact pressure to the front surface of the forearm 140. There is a feature in the point.

このようにして本実施形態では上述のようなフィードバック制御によらずに錘51a…の数によって接触圧を調整することができるのである。   Thus, in this embodiment, the contact pressure can be adjusted by the number of weights 51a... Without using the feedback control as described above.

尚腕固定部30などその他の構成は実施形態1と同じであるので、図示及び説明は省略し、また図8において上記各実施形態の構成要素と同じ構成要素には同じ符号を付す。
(実施形態4)
本実施形態は図9(a),(b)に示すように有底の筐体60と、この筐体60内に上下移動自在に配置され、筐体60の天井部に上端を貫通させたアクチュエータ62と、アクチュエータ62を中止透孔に挿通させて筐体60の天井部とアクチュエータ62の下端部のフランジ61の上面との間に配置したコイルばね63とからなるアクチュエータ装置64を、保持具336によりZ軸ステージ装置332のステージ部331に取り付け、アクチュエータ62の中心透孔に測定用プローブ8を挿通して固定させるとともに筐体60の底部に設けた孔60aから下方に測定用プローブ8の先部を突出させ、その突出先部に変更治具36を設けた点に特徴があり、駆動部33を構成するZ軸ステージ装置332のステージ部331が下降して、図9(b)に示すように測定用プローブ8の先部(変更治具36)が前腕140の前面に接触すると、測定用プローブ8を固定したアクチュエータ62のフランジ61と筐体6の天井部との間でコイルばね63が圧縮され、更にステージ部331が下降すると、測定用プローブ8の所定位置(変更治具36)に取り付けられた接触感知センサ65が筐体60の底部との接触を検知してその出力をZ軸ステージ装置332内の制御部へ信号線(図示せず)を介して送り、ステッピングモータを停止させてステージ部331の移動を止める点に特徴があり、コイルばね64が所定量圧縮されて所定のばね力となる位置でアクチュエータ62の移動を停止させることで、測定用プローブ8の先部と前腕140の上面との接触圧を必要量に制御することができるのである。
In addition, since other structures, such as the arm fixing | fixed part 30, are the same as Embodiment 1, illustration and description are abbreviate | omitted and the same code | symbol is attached | subjected to the same component as the component of each said embodiment in FIG.
(Embodiment 4)
In the present embodiment, as shown in FIGS. 9A and 9B, a bottomed housing 60 and a vertically movable body 60 are arranged in the housing 60, and the upper end is passed through the ceiling portion of the housing 60. An actuator device 64 comprising an actuator 62 and a coil spring 63 that is disposed between the ceiling portion of the housing 60 and the upper surface of the flange 61 at the lower end portion of the actuator 62 by inserting the actuator 62 into the stop through hole. 336 is attached to the stage portion 331 of the Z-axis stage device 332, and the measurement probe 8 is inserted into and fixed to the central through hole of the actuator 62, and the measurement probe 8 is lowered downward from the hole 60 a provided at the bottom of the housing 60. It is characterized in that the tip part is protruded and the changing jig 36 is provided at the protrusion tip part. The stage part 331 of the Z-axis stage device 332 constituting the drive part 33 is lowered, When the tip of the measurement probe 8 (change jig 36) contacts the front surface of the forearm 140 as shown in FIG. 9B, the flange 61 of the actuator 62 to which the measurement probe 8 is fixed and the ceiling of the housing 6 When the coil spring 63 is compressed and the stage portion 331 is further lowered, the contact detection sensor 65 attached to a predetermined position (the changing jig 36) of the measurement probe 8 detects contact with the bottom portion of the housing 60. The output is sent to a control unit in the Z-axis stage device 332 via a signal line (not shown), and the stepping motor is stopped to stop the movement of the stage unit 331. By stopping the movement of the actuator 62 at a position where it is compressed by a predetermined amount and becomes a predetermined spring force, the contact pressure between the tip of the measurement probe 8 and the upper surface of the forearm 140 is controlled to a required amount. But they can.

尚接触感知センサ65の位置は実施形態の位置に限定されるものではなく、筐体60側に設けても良い。   The position of the contact detection sensor 65 is not limited to the position in the embodiment, and may be provided on the housing 60 side.

尚腕固定部30などその他の構成は実施形態1と同じであるので、図示及び説明は省略し、また図9において上記各実施形態の構成要素と同じ構成要素には同じ符号を付す。
(実施形態5)
本実施形態は図10(a),(b)に示すように、駆動部33を構成するZ軸ステージ装置332のステージ部331に取り付けられた保持具336に電磁ソレノイド装置71を取り付け、電磁ソレノイド装置71の外郭ヨーク72内に配置した励磁コイル部73の透孔内のプランジャー74に測定用プローブ8を上下方向に貫挿固定するとともに測定用プローブ8の先端を電磁ソレノイド装置71の底部より下方に突出させ、その突出先端に変更治具36を設けた点に特徴があり、Z軸ステージ装置332のステージ部331を図10(a)の位置から図10(b)に示す所定位置まで下降させた後に電磁ソレノイド装置71を装置本体43による制御によって励磁駆動させてプランジャー74を下方に移動させ、これにより測定用プローブ8の先部を前腕140の前面に接触させるようになっている。そしてこのプランジャー73の移動距離と加える励磁電流値との関係から前腕140の前面への接触圧を制御することができることになる。
In addition, since other structures, such as the arm fixing | fixed part 30, are the same as Embodiment 1, illustration and description are abbreviate | omitted and the same code | symbol is attached | subjected to the same component as the component of each said embodiment in FIG.
(Embodiment 5)
In this embodiment, as shown in FIGS. 10A and 10B, an electromagnetic solenoid device 71 is attached to a holder 336 attached to a stage portion 331 of a Z-axis stage device 332 constituting the drive unit 33, and the electromagnetic solenoid The measuring probe 8 is vertically inserted and fixed to the plunger 74 in the through hole of the exciting coil portion 73 disposed in the outer yoke 72 of the device 71, and the tip of the measuring probe 8 is connected to the bottom of the electromagnetic solenoid device 71. It is characterized in that it is projected downward and a changing jig 36 is provided at the protruding tip, and the stage portion 331 of the Z-axis stage device 332 is moved from the position shown in FIG. 10 (a) to the predetermined position shown in FIG. 10 (b). After being lowered, the electromagnetic solenoid device 71 is driven to be excited by the control of the device main body 43 to move the plunger 74 downward. And it is adapted to contact the front surface of forearm 140 a front portion of the 8. The contact pressure to the front surface of the forearm 140 can be controlled from the relationship between the moving distance of the plunger 73 and the excitation current value to be applied.

尚腕固定部30などその他の構成は実施形態1と同じであるので、図示及び説明は省略し、また図10において上記各実施形態の構成要素と同じ構成要素には同じ符号を付す。
(実施形態6)
上記実施形態1では加圧用ベルト32の弾性を利用して位置決め体31を測定部位である前腕140の前面に測定位置に適した圧力で押し付けるように固定しているが、前記圧力が適正範囲を下回った場合、測定用プローブ8を前腕140の前面に押し付けた際に、位置決め体31と前腕140の前面との間に隙間が生じてしまい、測定用プローブ8の接触が解放されたときに位置決め体31の孔部310が前回の測定位置に比べて、位置ずれを起こす可能性があり、吸光度スペクトルの再現性を損なう場合もあり得る。
In addition, since other structures, such as the arm fixing | fixed part 30, are the same as Embodiment 1, illustration and description are abbreviate | omitted and the same code | symbol is attached | subjected to the same component as the component of each said embodiment in FIG.
(Embodiment 6)
In the first embodiment, the positioning body 31 is fixed to the front surface of the forearm 140, which is a measurement site, by using the elasticity of the pressurizing belt 32 so as to be pressed with a pressure suitable for the measurement position. When the measurement probe 8 is pressed below, the measurement probe 8 is pressed against the front surface of the forearm 140, so that a gap is generated between the positioning body 31 and the front surface of the forearm 140. The hole 310 of the body 31 may be displaced as compared with the previous measurement position, and the reproducibility of the absorbance spectrum may be impaired.

また、逆に圧力が適正範囲を超えると脈動がスペクトル測定時にかかってくるため、正確なスペクトル測定が困難となる。測定位置とその圧力は、被測定者によって異なるため、圧力の調整を可能とした加圧用ベルト32を用いたのが本実施形態である。   On the other hand, if the pressure exceeds the appropriate range, pulsation is applied during spectrum measurement, making accurate spectrum measurement difficult. Since the measurement position and its pressure differ depending on the person to be measured, the present embodiment uses the pressurizing belt 32 that can adjust the pressure.

本実施形態の加圧用ベルト32は図11(a)〜(c)に示すように一端を位置決め体31の一側部側に固定し、自由端である他端に締め付け具320を取り付けた短尺のベルト部321aと、一端を位置決め体31の他側部に固定した長尺のベルト部321bとで構成され、位置決め体31を前腕140の前面に装着するに際しては、図11(b)に示すようにベルト部321bの他端部側をホルダー300の腕載置部300cの下面側を通してベルト部321a側にもってきて、ベルト部321aの締め付け具320に通して締め付けを行うことで、位置決め体31を前腕140の前面の測定部位に押し付けて固定することができるようになっているもので、図11(c)に示すように締め付けの腕周囲の基本長を測定する外側メジャーbと、測定した長さに対する追加締め付け位置を示す内側メジャーaとをベルト部321bに設けてある。尚αは外側メジャーaに対応する基準線である。尚追加締め付けは約20%増が望ましい。   As shown in FIGS. 11A to 11C, the pressurizing belt 32 according to the present embodiment has a short end in which one end is fixed to one side of the positioning body 31 and a fastening tool 320 is attached to the other end which is a free end. 11B and a long belt portion 321b having one end fixed to the other side of the positioning body 31. When the positioning body 31 is mounted on the front surface of the forearm 140, as shown in FIG. In this way, the other end side of the belt portion 321b is brought to the belt portion 321a side through the lower surface side of the arm placement portion 300c of the holder 300, and tightened through the fastening tool 320 of the belt portion 321a. 31 can be pressed against the measurement site on the front surface of the forearm 140 and fixed, and as shown in FIG. 11 (c), an outer measure for measuring the basic length around the tightening arm. When, it is provided an inner major a diagram illustrating additional clamping position relative length measured in the belt portion 321b. Α is a reference line corresponding to the outer major a. The additional tightening is preferably about 20% increase.

而して本実施形態では、測定した腕周囲の基本長に合わせた締め付け位置でベルト部321bを固定することによって簡単な操作で計測に適正な圧力で位置決め体15を前腕140の前面の測定部位に押し付けることができる。これにより例え測定日が変わり、位置決め体31を装着し直したとしても再現良前腕140の測定部位に与えることが可能となる。尚締め付け具320の代わりに面ファスナーを用いて固定位置を簡単に調整できるようにすれば使用勝手が向上する。   Thus, in this embodiment, the positioning unit 15 is measured on the front surface of the forearm 140 with a pressure suitable for measurement by a simple operation by fixing the belt portion 321b at the tightening position according to the measured basic length of the circumference of the arm. Can be pressed against. As a result, even if the measurement date is changed and the positioning body 31 is remounted, the measurement site of the reproducible forearm 140 can be given. If the fixing position can be easily adjusted by using a hook-and-loop fastener instead of the fastening tool 320, the usability is improved.

尚その他の構成は上述した何れの実施形態の構成でも良いので、図示及び説明は省略し、また図11において上記各実施形態の構成要素と同じ構成要素には同じ符号を付す。
(実施形態7)
上記実施形態6では締め付け具320を用いて加圧用ベルト32の締め付け具合を調整することができるようになっているが、本実施形態では図12(a),(b)に加圧用ベルト32としてカフ帯を用いて、加圧空気を空気送出部80からカフ322内に送ってカフ322を膨張させ、巻き付けている前腕140を図12(b)に示すように適正圧力で矢印方向に加圧することができる点に特徴がある。
Since other configurations may be the configurations of any of the above-described embodiments, illustration and description thereof are omitted, and in FIG. 11, the same components as those of the above-described embodiments are denoted by the same reference numerals.
(Embodiment 7)
In the sixth embodiment, the tightening degree of the pressurizing belt 32 can be adjusted using the tightening tool 320. In the present embodiment, the pressurizing belt 32 is shown in FIGS. 12 (a) and 12 (b). Using the cuff belt, pressurized air is sent from the air delivery unit 80 into the cuff 322 to expand the cuff 322, and the wound forearm 140 is pressurized with an appropriate pressure in the direction of the arrow as shown in FIG. There is a feature in that it can.

これによって、本実施形態では加圧バンド32の締め付けが加減でも、カフ320を膨らまして位置決め体31を押し付ける圧力を適正な圧力に調整することで、位置決め体31のずれや脈動の心配が無<なる。   Thereby, in this embodiment, even if the pressure band 32 is tightened, the cuff 320 is inflated and the pressure for pressing the positioning body 31 is adjusted to an appropriate pressure, so that there is no fear of displacement or pulsation of the positioning body 31 < Become.

また圧力は空気送出部80からの空気送り量を調節し、調節後は栓81を締めることにより連続測定の間一定に保つことができる。図12中82は圧力計である。   Further, the pressure can be kept constant during continuous measurement by adjusting the air feed amount from the air delivery section 80 and tightening the plug 81 after the adjustment. In FIG. 12, 82 is a pressure gauge.

尚その他の構成は上述した何れの実施形態の構成でも良いので、図示及び説明は省略し、また図12において上記各実施形態の構成要素と同じ構成要素には同じ符号を付す。
(実施形態8)
実施形態1で説明したように測定に当たっては被測定者が仰臥している状態で行うのであるが、前腕140の前面中央付近に位置決め体31を装着し、その前面を水平にするためには、図13(a)に示すように腕を開き気味にして且つ上腕143及び肘144付近にクッションを詰めることによって水平にできる、しかしながら、この体勢は関節の腱が伸ばされた状態であり、連続測定において長時間被測定者に身体的負担を強いるものであり、腱が血管を圧迫して脈動が乗りやすく、スペクトルの再現性に影響を与える。更に腕を開き気味にしているのも自然に体が内側を向く傾向を持つことから、長時間の計測において経時的に体の微動且つスペクトルの変動につながる。
Since other configurations may be the configurations of any of the above-described embodiments, illustration and description are omitted. In FIG. 12, the same components as those of the above-described embodiments are denoted by the same reference numerals.
(Embodiment 8)
As described in the first embodiment, the measurement is performed in a state where the person to be measured is in a supine position. In order to mount the positioning body 31 near the center of the front surface of the forearm 140 and make the front surface horizontal, As shown in FIG. 13 (a), the arm can be leveled by opening the arm and stuffing a cushion in the vicinity of the upper arm 143 and elbow 144. However, this posture is a state in which the tendon of the joint is stretched, and continuous measurement In this case, a physical burden is imposed on the person to be measured for a long time, and tendons tend to press the blood vessels to easily pulsate, affecting the reproducibility of the spectrum. Furthermore, the fact that the arms are opened and the body tends to naturally face the inside, which leads to fine movement of the body and fluctuation of the spectrum over time in long-time measurement.

そこで、図13(b)のようにできるだけ被測定者たる患者の負担を減らし、且つ体の自然な状態で腕を固定するために手首141の付近にクッション47を介在させて上腕143に対して前腕1402を斜めとした場合においても測定ができるように、本実施形態で肘144の屈伸方向の角度や腕の軸を中心とした回転角度によって傾いた位置決め体31に合わせて駆動部33側に取り付けられた連結体330の角度を調整できる角度調整手段を自在アーム38とZ軸ステージ装置332とを結合するジョイント治具39に設けた点に特徴がある。つまり図14に示すようにジョイント治具39を前後二つ2分けて、互いに連結し、その連結部を腕の軸を中心とした回転角度の動きに回動自在な軸部390により行い、更に正面から見て垂直方向の回転ステージ部391によって肘144の屈伸方向の角度に対して調整することができるようになっている。尚391aは回転ステージ部391を動かして回転角度を調整するレバーである。   Therefore, as shown in FIG. 13B, in order to reduce the burden on the patient who is the subject to be measured as much as possible and to fix the arm in the natural state of the body, a cushion 47 is interposed in the vicinity of the wrist 141 to In this embodiment, in order to enable measurement even when the forearm 1402 is slanted, the drive unit 33 side is aligned with the positioning body 31 tilted by the angle of the elbow 144 in the bending direction and the rotation angle around the arm axis. There is a feature in that an angle adjusting means that can adjust the angle of the attached coupling body 330 is provided in the joint jig 39 that couples the free arm 38 and the Z-axis stage device 332. That is, as shown in FIG. 14, the joint jig 39 is divided into two parts, front and rear, connected to each other, and the connecting part is performed by a shaft part 390 that is rotatable about a rotation angle about the axis of the arm, It can adjust with respect to the angle of the bending direction of the elbow 144 by the rotation stage part 391 of the perpendicular direction seeing from the front. Reference numeral 391a is a lever that moves the rotary stage unit 391 to adjust the rotation angle.

従って本実施形態では図13に示すように位置決め体31と連結体330の互いの角度を合わせて凸部311と凹部330aとを嵌合させることができることになる。   Therefore, in this embodiment, as shown in FIG. 13, the convex part 311 and the concave part 330a can be fitted to each other by matching the angles of the positioning body 31 and the coupling body 330.

この角度の合わせ方は位置決め体31と連結体330に取り付けられた角度探知機48(或いは基準角度計)等によって角度を合わせた後に嵌合することで容易に行えことになる。   This method of adjusting the angle can be easily performed by fitting after the angle is adjusted by an angle detector 48 (or a reference angle meter) attached to the positioning body 31 and the coupling body 330.

ところで、本実施形態のように肘屈伸角度、腕軸回転角度に対応した駆動部33と自在アーム38を重量物であるスタンド742に支持させた構成において、実施形態6のように加圧用ベルト32の締め付け具合を調整することができる加圧部を用い、腕固定部30の有無と、加圧部の締め付け強度、肘屈伸角度、腕軸回転角度の違いによるベクトルの安定性比較及び水準に対して生体成分濃度推定精度比較を行った。   By the way, in the configuration in which the drive unit 33 and the free arm 38 corresponding to the elbow flexion / extension angle and the arm axis rotation angle are supported by the heavy weight stand 742 as in the present embodiment, the pressure belt 32 as in the sixth embodiment. Using a pressure unit that can adjust the degree of tightening of the arm, comparing the stability of the vector according to the presence or absence of the arm fixing unit 30 and the difference in tightening strength, elbow flexion extension angle, arm axis rotation angle of the pressure unit and the level The biological component concentration estimation accuracy was compared.

ここでベクトルは無グルコース負荷の状態で5分毎に測定し、2時間で24ポイントのデータを得た後、グルコースを負荷して血糖を変動させ、同様に5分毎に測定し、血糖値が下がりきるまで計測を実施した。尚プローブ径はφ18を使用し、1.2kgfで生体へ押し付けた。また測定用プローブ8は35℃に温度調整した。尚腕固定部30が無い場合は、位置決め体31を加圧用ベルト32で固定しただけの簡単な構造とした。加圧用ベルト32による締め付け強度の調整は、長さで調整して、締め込み割合別に比較した。   Here, the vector is measured every 5 minutes in the state of no glucose load, and after obtaining 24 points of data in 2 hours, glucose is loaded to vary blood glucose, and the blood glucose level is measured in the same manner every 5 minutes. The measurement was carried out until the value dropped. The probe diameter was 18 mm and was pressed against the living body at 1.2 kgf. The temperature of the measurement probe 8 was adjusted to 35 ° C. In addition, when there is no arm fixing | fixed part 30, it was set as the simple structure which fixed the positioning body 31 with the belt 32 for a pressurization. Adjustment of the tightening strength by the pressurizing belt 32 was adjusted by the length and compared by tightening ratio.

比較する指標として、上述した指標(1)〜(3)及び指標(1)のSD値を比較した。また、血糖値の推定精度に関しては糖負荷、無糖負荷のデータを全て含めて、1400nm〜1800nmの吸光度値をX変量とし、採血値をY変数にして、PLS解析を行い、推定精度を算出した。これら各例のプローブの構成条件及びスペクトル指標安定性の結果及び血糖値推定精度を表1に示す。   As indices to be compared, the SD values of the indices (1) to (3) and the index (1) described above were compared. In addition, regarding the estimation accuracy of blood sugar level, including all sugar load and non-sugar load data, the absorbance value from 1400 nm to 1800 nm is X variable, the blood sampling value is Y variable, and PLS analysis is performed to calculate the estimation accuracy did. Table 1 shows the configuration conditions, the spectral index stability results, and the blood sugar level estimation accuracy of the probes in these examples.

表1の結果から、腕固定部30が無いと指標が大きく変化することがわかる。また、腕固定部30があれば、指標が安定して、それによって、推定精度が高い精度で確保できることがわかる。一方、加圧用ベルト32の締め付けが30%を越えると、脈動のため、SD値が大きくなりそれによって推定精度が大きくダウンしたことがわかる。また肘や腕の角度を10°レベルで調整することによって、指標の変化が少なく精度が高く確保できることがわかる。これは、被験者の体勢が楽に保たれるため、常に同じ体勢が確保できるからである。   From the results of Table 1, it can be seen that the index changes greatly if there is no arm fixing portion 30. Further, it can be seen that if the arm fixing portion 30 is provided, the index is stable, and thereby the estimation accuracy can be ensured with high accuracy. On the other hand, when the tightening of the pressurizing belt 32 exceeds 30%, it can be seen that due to pulsation, the SD value increases and the estimation accuracy greatly decreases. It can also be seen that by adjusting the elbow and arm angles at the 10 ° level, there is little change in the index and high accuracy can be secured. This is because the subject's posture can be maintained easily, so that the same posture can always be secured.

これら結果から例1〜4のように腕固定部30があって、加圧用ベルト32による加圧が過小、過大にならないように使用すれば、良好な測定結果が得られることがわかり、本発明の生体内成分測定用プローブ支持具の有効性が実証された。   From these results, it can be seen that when the arm fixing portion 30 is provided as in Examples 1 to 4 and the pressure applied by the pressure belt 32 is not excessively small or excessively large, good measurement results can be obtained. The effectiveness of the probe support for measuring in vivo components was demonstrated.

(a)は実施形態1を用いた生体内成分測定装置全体の使用状態での一部省略せる斜視図、(b)は実施形態1を用いた生体内成分測定装置の使用状態の説明図である。(A) is the perspective view which can be abbreviate | omitted in the use condition of the whole in-vivo component measuring apparatus using Embodiment 1, (b) is explanatory drawing of the use condition of the in-vivo component measuring apparatus using Embodiment 1. FIG. is there. 実施形態1の使用状態での要部の正面図である。FIG. 3 is a front view of a main part in the usage state of the first embodiment. 実施形態1の腕固定部の使用状態を示す図であって、(a)は一部破断せる斜視図、(b)は要部の側断面図である。It is a figure which shows the use condition of the arm fixing | fixed part of Embodiment 1, Comprising: (a) is a perspective view which fractures | ruptures partially, (b) is a sectional side view of the principal part. 実施形態1の使用状態での一部破断省略せる側断面図である。It is a sectional side view which can abbreviate | omit a partial fracture | rupture in the use condition of Embodiment 1. FIG. 実施形態1の使用説明図である。FIG. 3 is a usage explanatory diagram of Embodiment 1. 実施形態1で使用する自在アームの別の取り付け例を示す斜視図である。FIG. 6 is a perspective view showing another example of attaching the free arm used in the first embodiment. 実施形態2の使用説明図である。FIG. 10 is a usage explanatory diagram of Embodiment 2. 実施形態3の使用説明図である。FIG. 10 is an explanatory diagram of use of Embodiment 3. 実施形態4の使用説明図である。FIG. 10 is a diagram illustrating use of the fourth embodiment. 実施形態5の使用説明図である。FIG. 10 is a usage explanatory diagram of Embodiment 5. 実施形態6の加圧用ベルトと位置決め体との使用状態を示す図であって、(a)は一部破断せる斜視図、(b)は側断面図、(c)は加圧用ベルトの締め付け状態を示す一部省略せる下面図である。It is a figure which shows the use condition of the belt for pressurization of Embodiment 6, and a positioning body, Comprising: (a) is a perspective view which fractures | ruptures partially, (b) is a sectional side view, (c) is the clamped state of the pressurization belt FIG. 実施形態7の加圧用ベルトの使用説明図である。FIG. 10 is an explanatory diagram of use of a pressure belt according to a seventh embodiment. 実施形態8の説明図である。FIG. 10 is an explanatory diagram of an eighth embodiment. 実施形態8の使用状態での一部破断省略せる側断面図である。FIG. 10 is a side cross-sectional view that can omit a partial break in the usage state of an eighth embodiment. 生体(皮膚組織)における近赤外光の入射と反射の説明図である。It is explanatory drawing of incidence | injection and reflection of the near infrared light in a biological body (skin tissue). 生体内成分測定での吸光度スペクトルと近赤外光の波長との関係説明図である。It is explanatory drawing of the relationship between the light absorbency spectrum in the in-vivo component measurement, and the wavelength of near-infrared light. 腕部の構造説明図である。It is structure explanatory drawing of an arm part. 腕部の断面図である。It is sectional drawing of an arm part.

符号の説明Explanation of symbols

8 測定用プローブ
30 腕固定部
300 ホルダー
301 支持体
302 把持部
303 固定用テープ
31 位置決め体
32 加圧用ベルト
33 駆動部
330 連結体
35 フレキシブルチューブ
140 前腕
141 手首
142 手
38 自在アーム
39 ジョイント治具
41 ベッド
42 スタンド
43 制御盤
8 Measuring Probe 30 Arm Fixing Unit 300 Holder 301 Supporting Body 302 Gripping Unit 303 Fixing Tape 31 Positioning Body 32 Pressurizing Belt 33 Driving Unit 330 Linkage 35 Flexible Tube 140 Forearm 141 Wrist 142 Hand 38 Free Arm 39 Joint Jig 41 Bed 42 Stand 43 Control panel

Claims (5)

生体表面に近赤外光を出射するとともに、生体からの反射光を入射する生体内成分測定用プローブを支持するものであって、被測定者の手首位置を定めるとともに腕に沿って装着される腕固定部と、この腕固定部の腕方向の所定位置に設けられ、前記腕の表面に前記生体内成分測定用プローブを案内するガイド部を有する位置決め部と、該位置決め部を前記腕に押し付ける加圧部とを備えるとともに、重量物に連結するための接続部を有していることを特徴とする生体内成分測定用プローブ支持具。 Supports an in-vivo component measuring probe that emits near-infrared light to the surface of the living body and receives reflected light from the living body, and determines the wrist position of the measurement subject and is worn along the arm An arm fixing portion; a positioning portion provided at a predetermined position in the arm direction of the arm fixing portion; and a guide portion for guiding the in vivo component measurement probe to the surface of the arm; and pressing the positioning portion against the arm A probe support for measuring a component in a living body, comprising a pressurizing unit and a connection unit for coupling to a heavy object. 前記腕固定部は、腕方向の長さを調節する調節手段を有していることを特徴とする請求項1記載の生体内成分測定用プローブ支持具。 The in-vivo component measuring probe support according to claim 1, wherein the arm fixing portion has an adjusting means for adjusting a length in an arm direction. 前記加圧部は、腕の周囲に巻回締結するベルトにより構成され、腕の周囲長に応じて定まる追加締め付け位置を表示する表示部を備えていることを特徴とする請求項1又は2記載の生体内成分測定用プローブ支持具。 The said pressurizing part is comprised by the belt wound and fastened around the arm, and is provided with the display part which displays the additional tightening position decided according to the circumference of an arm. Probe support for measuring in vivo components. 請求項1乃至3の何れかの生体内成分測定用プローブ支持具と、生体内成分測定用プローブ支持具の接続部と重量物との中間部に設けられ、生体内成分測定用プローブ支持具のガイド部の案内方向に生体内成分測定用プローブを移動させる駆動部及び該駆動部を制御する制御部とを備え、該制御部は前記生体内成分測定用プローブを前記腕の表面に接触させた状態と前記腕の表面から離した状態とを所定の時間間隔で繰り返すように駆動部を制御することを特徴とする生体内成分測定用ヘッド装置。 A probe support for measuring in vivo components according to any one of claims 1 to 3, and a connecting portion of the probe support for measuring in vivo components and an intermediate portion of a heavy article, A drive unit that moves the in-vivo component measurement probe in the guide direction of the guide unit, and a control unit that controls the drive unit, the control unit brought the in-vivo component measurement probe into contact with the surface of the arm An in-vivo component measuring head device, wherein the driving unit is controlled to repeat a state and a state separated from the surface of the arm at predetermined time intervals. 前記中間部には前記生体内成分測定用プローブの先端方向の、肘の屈伸方向に対応する角度又は腕の軸を中心とした回転方向に対応する角度若しくは両角度を調整する角度調整手段を有していることを特徴とする請求項4記載の生体内成分測定用ヘッド装置。 The intermediate portion has an angle adjustment means for adjusting an angle corresponding to the bending direction of the elbow, an angle corresponding to the rotation direction about the arm axis, or both angles in the distal direction of the in-vivo component measurement probe. The in vivo component measuring head device according to claim 4, wherein the in vivo component measuring head device is provided.
JP2004242811A 2004-08-23 2004-08-23 Support tool for probe for measuring in vivo component and head device for measuring in vivo component Pending JP2006055528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004242811A JP2006055528A (en) 2004-08-23 2004-08-23 Support tool for probe for measuring in vivo component and head device for measuring in vivo component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004242811A JP2006055528A (en) 2004-08-23 2004-08-23 Support tool for probe for measuring in vivo component and head device for measuring in vivo component

Publications (1)

Publication Number Publication Date
JP2006055528A true JP2006055528A (en) 2006-03-02

Family

ID=36103478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242811A Pending JP2006055528A (en) 2004-08-23 2004-08-23 Support tool for probe for measuring in vivo component and head device for measuring in vivo component

Country Status (1)

Country Link
JP (1) JP2006055528A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061698A (en) * 2006-09-05 2008-03-21 Ushio Inc Blood sugar level measuring instrument
JP2008245741A (en) * 2007-03-29 2008-10-16 Sysmex Corp Biological component measuring device
JP2012200277A (en) * 2011-03-23 2012-10-22 Seiko Epson Corp Concentration measurement method and concentration measurement device
KR101204219B1 (en) * 2010-11-30 2012-11-26 아주대학교산학협력단 Arm and probe fixing apparatus for measuring blood vessel diameter
US11255729B2 (en) 2016-10-18 2022-02-22 Samsung Electronics Co., Ltd. Apparatus and method for monitoring stability of spectrum

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183741A (en) * 1986-02-07 1987-08-12 松下電器産業株式会社 Human body fixing tool for measuring pulse wave
JPH0724305U (en) * 1993-10-15 1995-05-09 日本コーリン株式会社 Compression band for blood pressure measurement
JP2001037741A (en) * 1999-07-27 2001-02-13 Matsushita Electric Works Ltd Noninvasive blood glucose measurement method and noninvasive glycemic meter
JP2003310578A (en) * 2002-04-23 2003-11-05 Matsushita Electric Works Ltd Biological signal measuring method and biological signal measuring apparatus
JP2004113811A (en) * 1997-03-25 2004-04-15 Seiko Epson Corp Pressure detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183741A (en) * 1986-02-07 1987-08-12 松下電器産業株式会社 Human body fixing tool for measuring pulse wave
JPH0724305U (en) * 1993-10-15 1995-05-09 日本コーリン株式会社 Compression band for blood pressure measurement
JP2004113811A (en) * 1997-03-25 2004-04-15 Seiko Epson Corp Pressure detector
JP2001037741A (en) * 1999-07-27 2001-02-13 Matsushita Electric Works Ltd Noninvasive blood glucose measurement method and noninvasive glycemic meter
JP2003310578A (en) * 2002-04-23 2003-11-05 Matsushita Electric Works Ltd Biological signal measuring method and biological signal measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061698A (en) * 2006-09-05 2008-03-21 Ushio Inc Blood sugar level measuring instrument
JP2008245741A (en) * 2007-03-29 2008-10-16 Sysmex Corp Biological component measuring device
KR101204219B1 (en) * 2010-11-30 2012-11-26 아주대학교산학협력단 Arm and probe fixing apparatus for measuring blood vessel diameter
JP2012200277A (en) * 2011-03-23 2012-10-22 Seiko Epson Corp Concentration measurement method and concentration measurement device
US11255729B2 (en) 2016-10-18 2022-02-22 Samsung Electronics Co., Ltd. Apparatus and method for monitoring stability of spectrum

Similar Documents

Publication Publication Date Title
US6213952B1 (en) Optical device for non-invasive measurement of blood related signals utilizing a finger holder
JP3575025B2 (en) Pulse wave detector and pulsation detector
US5503162A (en) Arthroscopic cartilage evaluator and method for using the same
EP2462864B1 (en) Optical vital sign detection method and measurement device
JP5045476B2 (en) Detection unit for blood pressure information measuring device and blood pressure information measuring device
CN102014737B (en) Contactless respiration monitoring of a patient and optical sensor for a photoplethysmography measurement
EP1618839B1 (en) Method for non-invasive measurements of blood related parameters
US7734321B2 (en) Apparatus for non-invasive spectroscopic measurement of analytes, and method of using the same
US20050203359A1 (en) Optical sampling interface system for in-vivo measurement of tissue
JP2004504905A (en) Apparatus and method for reproducibly correcting local absorption and scattering coefficients at a tissue measurement site during optical sampling
JP2006239114A (en) Cuff-less electronic blood pressure monitor
CA2168792A1 (en) Apparatus and method for monitoring intraocular and blood pressure by non-contact contour measurement
EP2211703A4 (en) Apparatus and methods for non-invasively measuring a patient&#39;s arterial blood pressure
WO2009113346A1 (en) Blood pressure information measurement device allowing precise measurement using optical method
Kumar et al. Fiber Bragg grating-based pulse monitoring device for real-time non-invasive blood pressure measurement—A feasibility study
JP2006055528A (en) Support tool for probe for measuring in vivo component and head device for measuring in vivo component
KR20150050523A (en) Noninvasive measurement of analyte concentration using a fiberless transflectance probe
JP5589789B2 (en) Biological component measuring apparatus and biological component measuring method
JP2008061698A (en) Blood sugar level measuring instrument
JP5095468B2 (en) Blood component measuring device
JP2007000543A (en) Biological component measuring probe supporter and biological component measuring device using the same
JP4363130B2 (en) Optical blood glucose level pickup
JP2005334281A (en) Method and apparatus for measuring biological signal
JP2004113811A (en) Pressure detector
JPH10314151A (en) Measuring probe for absorption matter density measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727