JP4363130B2 - Optical blood glucose level pickup - Google Patents

Optical blood glucose level pickup Download PDF

Info

Publication number
JP4363130B2
JP4363130B2 JP2003313164A JP2003313164A JP4363130B2 JP 4363130 B2 JP4363130 B2 JP 4363130B2 JP 2003313164 A JP2003313164 A JP 2003313164A JP 2003313164 A JP2003313164 A JP 2003313164A JP 4363130 B2 JP4363130 B2 JP 4363130B2
Authority
JP
Japan
Prior art keywords
probe
nail
measurement
guide
blood glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003313164A
Other languages
Japanese (ja)
Other versions
JP2005080710A (en
Inventor
勝彦 丸尾
充啓 鶴来
武大 中川
幸生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003313164A priority Critical patent/JP4363130B2/en
Publication of JP2005080710A publication Critical patent/JP2005080710A/en
Application granted granted Critical
Publication of JP4363130B2 publication Critical patent/JP4363130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、皮膚組織に近赤外光を照射するとともに皮膚組織からの拡散反射光を受光し、得られた受光信号から血糖値を測定する非侵襲血糖値測定に用いる血糖値測定用ピックアップ関するものである。 The invention receives the diffuse reflection light from the skin tissue irradiates near infrared light on the skin tissue, the blood glucose level measurement pickup for use in non-invasive blood glucose measurement for measuring the blood glucose level from the obtained received signal It is related.

生体組織に近赤外光を照射し、生体組織内を拡散反射した光を測定して得られるスペクトル信号から生体組織を定性・定量分析を行う近赤外分光法は、生体内の種々の情報を非侵襲的に且つ試薬無しに且つその場で即時に得ることができるために、多くの生体分析用途で注目されており、たとえば近赤外光のある特異波長での吸収強度はグルコースの存在によって変化することから、上記特異波長の生体組織からの拡散反射光のスペクトルを測定して多変量解析することで生体内のグルコース濃度を検出するものが、特開昭60−236631号公報(特許文献1)や、特公平3−47099号公報(特許文献2)、特開平11−70101号公報(特許文献3)などに示されている。   Near-infrared spectroscopy, which qualitatively and quantitatively analyzes biological tissue from spectral signals obtained by irradiating biological tissue with near-infrared light and measuring diffusely reflected light within biological tissue, Has been attracting attention in many bioanalytical applications, for example, the absorption intensity at a specific wavelength of near-infrared light is the presence of glucose. Japanese Patent Application Laid-Open No. 60-236631 (patent No. 60-236631) detects a glucose concentration in a living body by measuring a spectrum of diffuse reflected light from a living tissue having a specific wavelength and performing multivariate analysis. Document 1), Japanese Patent Publication No. 3-47099 (Patent Document 2), Japanese Patent Application Laid-Open No. 11-70101 (Patent Document 3), and the like.

ここにおいて、生体組織への近赤外光の照射を行うとともに、生体組織からの拡散反射光のスペクトル測定用に拡散反射光を受光する手段としては、上記特許文献3などにも示されているように、光ファイバーを利用したプローブが一般的である。   Here, as means for irradiating a living tissue with near-infrared light and receiving diffuse reflection light for spectrum measurement of diffuse reflection light from the living tissue, the above-mentioned Patent Document 3 also shows. As described above, a probe using an optical fiber is common.

上記プローブは、近赤外光を導いて先端面より射出させる照射用光ファイバーと、生体組織からの拡散反射光を先端面より入射させて受光手段に導く受光用光ファイバーとを備えたもので、両種光ファイバーの先端面をプローブ先端面に位置させており、プローブ先端面を生体組織(たとえば人体の前腕)に所定の圧力で接触させた状態で投受光を行うことで、生体組織への近赤外光の照射と拡散反射光を受光素子に導くこととを行う。   The probe includes an irradiating optical fiber that guides near-infrared light and emits it from the tip surface, and a light-receiving optical fiber that makes diffuse reflected light from a living tissue incident from the tip surface and guides it to a light receiving means. The tip of the seed optical fiber is positioned on the probe tip, and light is projected and received in a state where the probe tip is in contact with the living tissue (for example, the forearm of the human body) with a predetermined pressure. Irradiation of outside light and diffused reflected light are guided to the light receiving element.

しかし、人体の前腕部などは、プローブを押し付けた時に組織変形を起こしやすく、しかも汗腺や皮脂腺が存在するために汗や皮脂がプローブとの間に介在しやすいものであり、これらは近赤外吸収スペクトルに基づくグルコース濃度測定の誤差要因として働くことになるために、測定する度に検出結果がばらついてしまい、高い再現性を得ることができない。また、通常の皮膚組織は柔軟であるためにプローブが振動しやすく、体動等に伴うアーキファクトの影響も受けやすい。
特開昭60−236631号公報 特公平3−47099号公報 特開平11−70101号公報
However, the forearm of the human body is prone to tissue deformation when the probe is pressed, and because sweat and sebaceous glands are present, sweat and sebum tend to intervene between the probe and these are near infrared. Since it acts as an error factor in measuring the glucose concentration based on the absorption spectrum, the detection result varies every measurement, and high reproducibility cannot be obtained. In addition, since normal skin tissue is flexible, the probe is likely to vibrate, and is susceptible to artifacts associated with body movements.
JP 60-236631 A Japanese Examined Patent Publication No. 3-47099 Japanese Patent Laid-Open No. 11-70101

本発明は上記の従来の問題点に鑑みて発明したものであって、皮膚組織変形や汗・皮脂による皮膚表面の状態変化の影響を受けることなく測定を行うことができる血糖値測定用ピックアップ提供することを課題とするものである。 The present invention was invented in view of the conventional problems described above, the blood glucose level measurement pickup capable of measuring without being affected by the state change of the skin surface by skin tissue deformation and sweat sebum The issue is to provide.

上記課題を解決するために本発明に係る光学的血糖値測定用ピックアップは、近赤外光を利用した光学的血糖値測定のための生体スペクトル測定用ピックアップであり、照射用光ファイバーと受光用光ファイバーとがその先端面の中心間距離0.2〜2mmで配置されているプローブと、該プローブ先端を人体の爪の表面に接触させた状態に保つガイドとを備え、上記ガイドは、爪の表面に設けたマークとの間で位置合わせを行う位置合わせ手段を備えているとともに、上記マークが爪の表面に形成した凹所であり、上記位置合わせ手段が上記凹所に先端が嵌る位置決めピンであることに特徴を有している。 In order to solve the above problems, an optical blood glucose level measurement pickup according to the present invention is a biological spectrum measurement pickup for optical blood glucose level measurement using near-infrared light, and an optical fiber for irradiation and an optical fiber for light reception And a guide that keeps the tip of the probe in contact with the surface of the nail of the human body, and the guide is a surface of the nail. Positioning means for positioning with the mark provided on the mark, and the mark is a recess formed on the surface of the nail, and the positioning means is a positioning pin whose tip fits into the recess. there are particularly characterized.

プローブを押し当てても組織変形を起こさない上に汗腺や皮脂腺の無い爪の部分で測定を行うために外乱の少ない測定を行うことができるものであり、しかも爪の部分で測定するとはいえ、照射用光ファイバーと受光用光ファイバーとをその先端面の中心間距離0.2〜2mmで配置しているために、爪の下の真皮組織での拡散反射光を確実に得ることができる。しかもガイドが爪の表面に設けたマークとの間で位置合わせを行う位置合わせ手段を備えているために、爪の一定位置にプローブを接触させた状態での測定を行うことができ、時間間隔を置いて複数回の測定を行う時、条件を同じに保つことができて、精度の高い測定が可能となるものであり、殊に爪の表面に設けたマークが爪の表面に形成した凹所であり、位置合わせ手段が該凹所に先端が嵌る位置決めピンであるために、爪の一定位置にプローブを接触させた状態での測定を長期にわたって行うことができるEven if the probe is pressed, tissue deformation does not occur and measurement is performed on the nail part without sweat glands and sebaceous glands. Since the irradiation optical fiber and the light receiving optical fiber are arranged at a center-to-center distance of 0.2 to 2 mm, the diffuse reflected light in the dermis tissue under the nail can be obtained with certainty. In addition, since the guide is provided with alignment means for alignment with the mark provided on the surface of the nail, measurement can be performed with the probe in contact with a certain position of the nail, and the time interval When a plurality of measurements are taken with the, the conditions can be kept the same and high-precision measurements can be made. In particular, the concaves formed on the surface of the nail are marks provided on the surface of the nail. Since the positioning means is a positioning pin whose tip fits into the recess, measurement can be performed over a long period of time with the probe in contact with a certain position of the nail .

ガイドはプローブを爪表面に向けて付勢する付勢手段を備えたものであってもよい。所定の接触圧でプローブを爪に接触させておくことができるために、接触圧変動による測定精度の低下を排除することができる。   The guide may include a biasing unit that biases the probe toward the surface of the nail. Since the probe can be kept in contact with the nail at a predetermined contact pressure, it is possible to eliminate a decrease in measurement accuracy due to contact pressure fluctuation.

本発明は、プローブを押し当てても組織変形を起こさない上に汗腺や皮脂腺の無い爪の部分で測定を行うことから、組織変形による外乱のない測定を行うことができるとともに汗や皮脂の影響を受けることがない測定を行うことができるほか、プローブを接触させている時間が長くても組織のダメージは殆どないことから、長期的な連続測定も可能であり、しかも爪の部分で測定するとはいえ、照射用光ファイバーと受光用光ファイバーとをその先端面の中心間距離0.2〜2mmで配置して、爪の下の真皮組織での拡散反射光を確実に得ることができるようにしているために、爪が測定の邪魔になったりすることはなく、加えるに侵襲式測定と併用する場合、侵襲式で採血を行う指先とほぼ同じ箇所での測定を行うことから、両測定の間に時間的なずれが出ることはなく、結果として正確な血糖値の予測を行うことができるものである。加えるに、ガイドが爪の表面に設けたマークとの間で位置合わせを行う位置合わせ手段を備えているとともに、上記マークが爪の表面に形成した凹所であり、位置合わせ手段が該凹所に先端が嵌る位置決めピンであるために、爪の一定位置にプローブを接触させた状態での測定を長期にわたって行うことができ、長い時間間隔を置いて複数回の測定を行う時にも、条件を同じに保つことができて、精度の高い測定が可能である。 The present invention does not cause tissue deformation even when the probe is pressed, and performs measurement at the nail portion without sweat glands or sebaceous glands, so that measurement without disturbance due to tissue deformation can be performed and the influence of sweat and sebum In addition to being able to perform measurements without being damaged, there is almost no tissue damage even if the probe is in contact for a long time, so long-term continuous measurement is also possible, and when measuring at the nail part However, the optical fiber for irradiation and the optical fiber for light reception are arranged at a center-to-center distance of 0.2 to 2 mm so that diffuse reflected light in the dermal tissue under the nail can be reliably obtained. Therefore, the nail does not interfere with the measurement.In addition, when used in combination with the invasive measurement, the measurement is performed at almost the same location as the fingertip that performs invasive blood collection. In It never between lag exits, is capable of performing accurate predictions of blood glucose levels as a result. In addition, the guide is provided with alignment means for aligning with the mark provided on the surface of the nail, and the mark is a recess formed on the surface of the nail, and the alignment means is the recess. This is a positioning pin that fits the tip of the pin, so that measurement can be performed over a long period of time with the probe in contact with a certain position on the nail, and even when multiple measurements are taken at long intervals, It can be kept the same and measurement with high accuracy is possible.

以下、本発明を添付図面に示す実施形態に基いて説明すると、図1は本発明に係る近赤外光を用いた血糖値測定用のピックアップの一例を示しており、プローブ9と該プローブ9を保持するガイド23とからなるピックアップにおけるプローブ9は、前述のように、近赤外光を導いて先端面より射出させる照射用光ファイバー20と、生体組織からの拡散反射光を先端面より入射させて受光手段に導く受光用光ファイバー19との束である光ファイバー群5が後端より導出されたもので、その先端面には図1(b)に示すように、受光用光ファイバー19及び照射用光ファイバー20の端面が位置している。   Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings. FIG. 1 shows an example of a blood glucose level measurement pickup using near-infrared light according to the present invention. As described above, the probe 9 in the pickup composed of the guide 23 that holds the light guides the irradiation optical fiber 20 that guides near-infrared light and emits it from the front end surface, and causes diffuse reflected light from the living tissue to enter from the front end surface. The optical fiber group 5 which is a bundle with the light receiving optical fiber 19 guided to the light receiving means is led out from the rear end, and as shown in FIG. 20 end faces are located.

なお、ここではプローブ9の上記先端面の中央位置に受光用光ファイバー19が位置し、受光用光ファイバー19を取り巻く円上に複数本の照射用光ファイバー20が等間隔で並ぶ配置となるようにしているととともに、受光用光ファイバー19と照射用光ファイバー20との間の距離Lが0.2〜2mmとなるようにしている。   Here, the light receiving optical fiber 19 is positioned at the center position of the tip surface of the probe 9, and a plurality of irradiation optical fibers 20 are arranged at equal intervals on a circle surrounding the light receiving optical fiber 19. In addition, the distance L between the light receiving optical fiber 19 and the irradiation optical fiber 20 is set to 0.2 to 2 mm.

上記ガイド23はリング状のもので、中央貫通孔にプローブ9が軸方向スライド自在に挿通されるとともに、ガイド23の側面からのねじ止めによってプローブ9の固定を行うことができるようにされたものであり、該ガイド23は人体の指25の爪24上にたとえば接着剤で固定される。なお、爪24への固定を可能とするために、プローブ9は外径D1が4mmほど、長さH1が6mmほど、ガイド23は外径D2が6mmほど、長さH2が3mmほどのものとして形成している。また、プローブ9における光ファイバー19,20の端面が接触する爪24の表面は、予め研磨紙を用いた研磨処理により平面化しておくことで、爪24による外乱を少なくする。 The guide 23 is ring-shaped, and the probe 9 is inserted into the central through hole so as to be slidable in the axial direction, and the probe 9 can be fixed by screwing from the side surface of the guide 23. The guide 23 is fixed on the nail 24 of the human finger 25 with an adhesive, for example. In order to enable fixing to the claw 24, the probe 9 has an outer diameter D1 of about 4 mm, a length H1 of about 6 mm , and the guide 23 has an outer diameter D2 of about 6 mm and a length H2 of about 3 mm. Forming. Further, the surface of the claw 24 with which the end faces of the optical fibers 19 and 20 in the probe 9 come into contact is planarized by a polishing process using a polishing paper in advance, thereby reducing disturbance caused by the claw 24.

血糖値測定にあたっては、上記ガイド23を爪24の表面に接着剤(エポキシ系接着剤が好ましい)で接着固定し、さらにガイド23に通したプローブ9の先端面を爪24の表面に所定の圧力で接触させて、この状態でガイド23によるプローブ9のねじ止め固定を行う。   In measuring the blood glucose level, the guide 23 is bonded and fixed to the surface of the nail 24 with an adhesive (preferably an epoxy adhesive), and the tip surface of the probe 9 passed through the guide 23 is applied to the surface of the nail 24 with a predetermined pressure. In this state, the probe 9 is screwed and fixed.

そして、上記照射用光ファイバー20を通じて近赤外光を爪24の下の皮下組織(真皮組織)に照射し、皮下組織からの拡散反射光を受光用光ファイバー19で受光手段に導いて吸光度スペクトル測定を行い、この測定結果から血糖値を算出(真皮組織中のグルコース濃度を血糖値の代用特性として測定して血糖値を推定)する。より正確には、多数の測定データや生体に関する変数と侵襲式による測定結果とのデータベースを多変量解析することで得た検量式にスペクトルの計測値を代入演算して血糖値を算出する。これは現在米国等で実用化されている逆イオントフォレーシスを用いた微侵襲血糖計グルコウォッチ(米国シグナス社製)で用いられている細胞間質駅(ISF)と血糖値との相関を利用した血糖計測と類似のものである。   Then, near-infrared light is irradiated to the subcutaneous tissue (dermis tissue) under the nail 24 through the irradiation optical fiber 20, and diffuse reflection light from the subcutaneous tissue is guided to the light receiving means by the light-receiving optical fiber 19 to measure the absorbance spectrum. The blood glucose level is calculated from the measurement result (the glucose level in the dermal tissue is measured as a substitute characteristic of the blood glucose level to estimate the blood glucose level). More precisely, the blood glucose level is calculated by substituting the measured value of the spectrum into a calibration formula obtained by multivariate analysis of a database of a large number of measurement data and variables related to the living body and the measurement result by the invasive formula. This is the correlation between the blood cell level and the interstitial cell station (ISF) used in the glucowatch (by Cygnus, USA), a microinvasive blood glucose meter using reverse iontophoresis that is currently in practical use in the United States. It is similar to the blood glucose measurement used.

ところで、光学的手法による血糖測定は、測定対象のグルコース濃度に起因する信号がきわめて微小で外乱による影響を受けやすいために、外乱はできるだけ取り除かなくてはなくてはならない。この時、プローブ9を保持しているガイド23を爪24に接着固定してしまうことは、振動等によるアーキファクトを減らして体動などによる影響を排除するという点で有効であり、しかも爪24は接着剤によるガイド23の固定でダメージを受けたりすることもない。   By the way, in blood glucose measurement by an optical method, since the signal resulting from the glucose concentration of the measurement target is extremely small and easily affected by the disturbance, the disturbance must be removed as much as possible. At this time, adhesively fixing the guide 23 holding the probe 9 to the claw 24 is effective in reducing the artifacts due to vibrations and the like and eliminating the influence of body movement and the like. Is not damaged by fixing the guide 23 with an adhesive.

また、人体における爪組織は、通常0.2〜0.5mm程度の厚さで存在し、その直下に真皮組織があり、この真皮組織中のグルコース濃度は血糖値と相関して変動するが、爪組織中のグルコース濃度と血糖値との間に相関関係は存在しない。従って、爪24はピックアップの固定という点で好ましい存在であるが、爪組織そのものは外乱として作用とする。   In addition, nail tissue in the human body is usually present in a thickness of about 0.2 to 0.5 mm, and there is a dermis tissue immediately below, and the glucose concentration in this dermis tissue varies in correlation with the blood glucose level, There is no correlation between the glucose concentration in the nail tissue and the blood glucose level. Therefore, the nail 24 is preferable in terms of fixing the pickup, but the nail tissue itself acts as a disturbance.

しかし、プローブ9の先端面に照射用光ファイバー20の光射出部である端面と受光用光ファイバー19の光入射面である端面とが並んでいる場合、第1倍音領域の近赤外スペクトル測定を行うと、弓なり状の透過経路をとって生体組織中を透過する近赤外光の拡散反射光を受光することができるものであり、しかも生体組織中を弓なり状経路で透過する近赤外光の生体組織中の到達深さは、照射用光ファイバー20と受光用光ファイバー19との間隔Lによって変化させることができるために、爪組織より深い位置に到達深さを設定することで、爪組織下の真皮組織のスペクトル測定が可能となる。前記間隔Lを0.2〜2mmとしているのは、この理由による。ちなみに、0.2mmより小さくすると、真皮組織まで光が到達しなくなってしまい、2mm以上とすると、受光できる拡散反射光の光量が小さくなりすぎて、測定が困難となる。   However, when the end face that is the light emitting portion of the irradiation optical fiber 20 and the end face that is the light incident face of the light receiving optical fiber 19 are aligned on the distal end face of the probe 9, the near-infrared spectrum measurement of the first overtone region is performed. In addition, it is possible to receive diffuse reflected light of near-infrared light that passes through a living tissue through an arcuate transmission path, and also transmits near-infrared light that passes through the living tissue through an arcuate path. Since the reaching depth in the living tissue can be changed by the distance L between the irradiation optical fiber 20 and the light receiving optical fiber 19, the reaching depth is set at a position deeper than the nail tissue. It is possible to measure the spectrum of the dermis tissue. This is why the distance L is set to 0.2 to 2 mm. Incidentally, if it is smaller than 0.2 mm, the light does not reach the dermis tissue, and if it is 2 mm or more, the amount of diffusely reflected light that can be received becomes too small and measurement becomes difficult.

前記間隔Lが0.65mmであるプローブ9を用いた場合の近赤外スペクトルの一例を図2に示す。図中イは親指の爪にプローブ9を当てて測定した場合を、ロは小指の爪にプローブ9を当てて測定した場合を示しており、これらから爪の部位での測定においても良好なスペクトル測定が可能なことがわかる。   An example of the near-infrared spectrum when the probe 9 having the distance L of 0.65 mm is used is shown in FIG. In the figure, (a) shows the case where the probe 9 is applied to the nail of the thumb, and (b) shows the case where the probe 9 is applied to the nail of the little finger. It can be seen that measurement is possible.

プローブ9を爪24に一定の接触圧で固定するために、接着剤で爪24に固定するガイド23を用いた例を示したが、ガイド23の爪24への固定手段はこれに限定されるものではなく、クリップを用いたり、バンドを用いたりしてもよいものである。   In order to fix the probe 9 to the claw 24 with a constant contact pressure, an example using the guide 23 fixed to the claw 24 with an adhesive has been shown, but the means for fixing the guide 23 to the claw 24 is limited to this. Instead of a clip, a clip or a band may be used.

前述のように、爪24の表面は研磨により平滑化しておくことが外乱除去に有効であるが、爪24の表面が曲面であるために、上記研磨に際しては、できるだけ平面化も図るようにしておくことがプローブ9先端面と爪24との接触及び密着性の向上の点で好ましい。もっとも、研磨するのは光ファイバー19,20が接触する範囲、すなわち直径2mm程度の円内で十分である。   As described above, smoothing the surface of the claw 24 by polishing is effective for disturbance removal. However, since the surface of the claw 24 is a curved surface, the surface should be as flat as possible during the above polishing. It is preferable to keep the tip of the probe 9 and the claw 24 in contact with each other and improve adhesion. However, polishing is sufficient within the range where the optical fibers 19 and 20 are in contact, that is, within a circle having a diameter of about 2 mm.

さらにはプローブ9と爪24との間に空気層が位置することを避けるとともに、光ファイバー19,20と爪24との界面での反射を抑えるために、爪24の屈折率と光ファイバー19,20の屈折率との間のマッチングを行う媒体をプローブ9と爪24との間に配置するとよい。この媒体としては、たとえば水や生理食塩水を好適に用いることができる。しかも、爪24に媒体が浸透して外乱として働くようになってしまうことがない上に、通常の皮膚には刺激が大である媒体を使用することもできる。図3中のロは小指の爪24にプローブ9を媒体無しで当てて測定した場合を、ハは小指の爪24とプローブ9との間に前記媒体として重水を介在させて測定した場合を示している。媒体を介在させることで、爪24と光ファイバー19,20との間での反射が少なくなって、吸光度が上昇し、良好なスペクトルが得られていることがわかる。   Furthermore, in order to avoid an air layer being positioned between the probe 9 and the claw 24 and to suppress reflection at the interface between the optical fibers 19 and 20 and the claw 24, the refractive index of the claw 24 and the optical fibers 19 and 20 are reduced. A medium for matching the refractive index may be disposed between the probe 9 and the claw 24. As this medium, for example, water or physiological saline can be preferably used. In addition, the medium does not penetrate into the nail 24 to act as a disturbance, and a medium that is highly irritating can be used for normal skin. In FIG. 3, (b) shows the measurement when the probe 9 is applied to the nail 24 of the little finger without a medium, and (c) shows the case where measurement is performed with heavy water interposed as the medium between the nail 24 of the little finger and the probe 9. ing. By interposing the medium, it can be seen that reflection between the claw 24 and the optical fibers 19 and 20 is reduced, the absorbance is increased, and a good spectrum is obtained.

図4に他例を示す。これはガイド23に人体の指25の先端部を嵌め込むための治具26を付設し、指25を治具26内に差し込んだ後、ガイド23に対してプローブ9をスライドさせてねじ止めすることで、プローブ9先端を爪24に所定の圧力で押し当てるようにしたものである。この場合、プローブ9の爪24への固定が簡単である上に、指25の先端部が治具26で覆われるために、迷光の影響を排除することができる。   FIG. 4 shows another example. This is provided with a jig 26 for fitting the tip of a human finger 25 to the guide 23, and after inserting the finger 25 into the jig 26, the probe 9 is slid with respect to the guide 23 and screwed. Thus, the tip of the probe 9 is pressed against the claw 24 with a predetermined pressure. In this case, it is easy to fix the probe 9 to the claw 24 and the tip of the finger 25 is covered with the jig 26, so that the influence of stray light can be eliminated.

図5に更に他例を示す。ガイド23に指25の先端部を覆う治具26を付設した点は上記のものと同じであるが、ここではプローブ9を爪23に所定の圧力で押し当てることを自動化することができるようにしている。すなわち、ガイド23の内部に軸方向に並ぶ2つのコイル32a,32bを配置するとともにその内周側に円筒状のヨーク33を配置し、このヨーク33内に配した磁性体からなる可動鉄心28における筒状軸部29内にプローブ9を配している。   FIG. 5 shows still another example. The point that the jig 26 for covering the tip of the finger 25 is attached to the guide 23 is the same as the above, but here, the pressing of the probe 9 against the nail 23 with a predetermined pressure can be automated. ing. That is, two coils 32 a and 32 b arranged in the axial direction are arranged inside the guide 23, and a cylindrical yoke 33 is arranged on the inner peripheral side thereof. In the movable iron core 28 made of a magnetic material arranged in the yoke 33. The probe 9 is disposed in the cylindrical shaft portion 29.

上記一対のコイル32a,32bとヨーク33と可動鉄心28とで双方向プランジャー型ソレノイドを形成して、コイル32aを励磁した時には図5(a)に示すようにプローブ9が引き上げられ、コイル32bを励磁した時には図5(b)に示すようにプローブ9が引き下げられてプローブ9先端が爪23に押し当てられるようにしているわけであり、この時のプローブ9と爪23との接触圧はコイル32bに給電する電力に応じた値となる。   The pair of coils 32a, 32b, the yoke 33, and the movable iron core 28 form a bidirectional plunger type solenoid. When the coil 32a is excited, the probe 9 is pulled up as shown in FIG. As shown in FIG. 5B, the probe 9 is pulled down so that the tip of the probe 9 is pressed against the claw 23, and the contact pressure between the probe 9 and the claw 23 at this time is as follows. It becomes a value corresponding to the power supplied to the coil 32b.

所定の時間間隔で測定を何度も繰り返したい場合は、爪23におけるプローブ9が接触する点をより厳格に定められるようにしておくと、高い再現性が得られるために、正確な血糖測定を連続的に行うことができることになる。図6はこの点に対処したものを示しており、プローブ9をねじ固定したガイド23にプローブ9を囲む円上に3個の貫通孔37を等間隔に設けて、これら貫通孔37に夫々位置決めピン36をスライド自在に挿通してある。   When it is desired to repeat the measurement at a predetermined time interval many times, if the point where the probe 9 contacts the nail 23 is determined more strictly, high reproducibility can be obtained. It can be performed continuously. FIG. 6 shows what copes with this point. In the guide 23 to which the probe 9 is screwed, three through holes 37 are provided at equal intervals on a circle surrounding the probe 9 and are positioned in the through holes 37 respectively. The pin 36 is slidably inserted.

このピックアップを用いて測定を行うにあたっては、図6(a)に示すように、爪24の表面における上記3本の位置決めピン36を当てる3点にマーク35を施す。このマーク35は油性サインペンやけがき針で形成してもよいが、浅い穴として形成してもよい。そして測定に際しては、上記3本の位置決めピン36を各マーク35に突き当てた状態でこれら位置決めピン36に対してガイド23をスライドさせることで、ガイド23で保持しているプローブ9の先端を爪24の表面に押し当て、接触圧を一定に保った状態で測定を行う。この時、プローブ9は傾いたりせずに常に爪24と正対する。   When performing measurement using this pickup, as shown in FIG. 6A, marks 35 are applied to three points on the surface of the claw 24 where the three positioning pins 36 are applied. The mark 35 may be formed with an oil-based sign pen or a scribing needle, but may be formed as a shallow hole. In the measurement, the tip of the probe 9 held by the guide 23 is nailed by sliding the guide 23 with respect to the positioning pins 36 with the three positioning pins 36 being in contact with the marks 35. Measurement is performed with the contact pressure kept constant by pressing against the surface of 24. At this time, the probe 9 always faces the claw 24 without tilting.

時間間隔を置いて測定を繰り返す時にも、マーク35と位置決めピン36とによって爪24上のプローブ9が接触する箇所を一定にすることができるものであり、プローブ9が接触する箇所が変動することによる再現性の低下を無くすことができるものである。   Even when the measurement is repeated with a time interval, the location where the probe 9 contacts the claw 24 can be made constant by the mark 35 and the positioning pin 36, and the location where the probe 9 contacts varies. It is possible to eliminate a decrease in reproducibility due to the above.

爪24では発汗のような生理作用がないためにマーク35が消えてしまう可能性は低く、特に浅い穴を設けてこれをマーク35とした時には、数日から数十日間、マーク35が消えないことから、この間の測定位置の再現性を高く保つことができ、血糖値測定精度を向上させることができる。なお、マーク35として各位置決めピン36に対応する点となるものを示したが、線状や曲線状(円状)のマーク35を用いてもよく、要はプローブ9が接触するところが常に同じにできるものであればよいものである。   Since there is no physiological action such as sweating on the nail 24, the mark 35 is unlikely to disappear. Especially when a shallow hole is provided and used as the mark 35, the mark 35 does not disappear for several days to several tens of days. Therefore, the reproducibility of the measurement position during this period can be kept high, and the blood glucose level measurement accuracy can be improved. In addition, although what becomes a point corresponding to each positioning pin 36 was shown as the mark 35, a linear or curved (circular) mark 35 may be used, and the point where the probe 9 contacts is always the same. Anything is possible.

また、位置決めピン36に対し、プローブ9を保持しているガイド23をスライド自在にしたものを示したが、ガイド23に位置決めピン36が固定であり、ガイド23に対してプローブ9がスライド自在であってもよいものである。   Further, although the guide 23 holding the probe 9 is slidable with respect to the positioning pin 36, the positioning pin 36 is fixed to the guide 23, and the probe 9 is slidable with respect to the guide 23. It may be.

本発明の実施の形態の一例を示すもので、(a)は斜視図、(b)は底面図、(c)は正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an example of an embodiment of the present invention, where (a) is a perspective view, (b) is a bottom view, and (c) is a front view. 同上のピックアップを用いて測定したスペクトルの一例の説明図である。It is explanatory drawing of an example of the spectrum measured using the pickup same as the above. 同上のピックアップを用いて測定したスペクトルの他例の説明図である。It is explanatory drawing of the other example of the spectrum measured using the pickup same as the above. 他例の断面図である。It is sectional drawing of another example. (a)(b)は別の例の断面図である。(a) (b) is sectional drawing of another example. 更に他の例を示すもので、(a)は爪に施すマークの説明図、(b)は斜視図である。Further, another example is shown, in which (a) is an explanatory view of a mark applied to a nail, and (b) is a perspective view.

符号の説明Explanation of symbols

9 プローブ
23 ガイド
24 爪
9 Probe 23 Guide 24 Claw

Claims (2)

近赤外光を利用した光学的血糖値測定のための生体スペクトル測定用ピックアップであり、照射用光ファイバーと受光用光ファイバーとがその先端面の中心間距離0.2〜2mmで配置されているプローブと、該プローブ先端を人体の爪の表面に接触させた状態に保つガイドとを備え、上記ガイドは、爪の表面に設けたマークとの間で位置合わせを行う位置合わせ手段を備えているとともに、上記マークが爪の表面に形成した凹所であり、上記位置合わせ手段が上記凹所に先端が嵌る位置決めピンであることを特徴とする光学的血糖値測定用ピックアップ。   A probe for measuring a biological spectrum for optical blood glucose level measurement using near-infrared light, in which an optical fiber for irradiation and an optical fiber for light reception are disposed at a center-to-center distance of 0.2 to 2 mm. And a guide that keeps the tip of the probe in contact with the surface of the nail of the human body, and the guide includes alignment means for performing alignment with a mark provided on the surface of the nail. The optical blood sugar level measuring pick-up characterized in that the mark is a recess formed on the surface of the nail, and the positioning means is a positioning pin whose tip is fitted in the recess. ガイドはプローブを爪表面に向けて付勢する付勢手段を備えていることを特徴とする請求項1記載の光学的血糖値測定用ピックアップ。 2. The optical blood sugar level measuring pickup according to claim 1, wherein the guide includes biasing means for biasing the probe toward the nail surface .
JP2003313164A 2003-09-04 2003-09-04 Optical blood glucose level pickup Expired - Fee Related JP4363130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313164A JP4363130B2 (en) 2003-09-04 2003-09-04 Optical blood glucose level pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313164A JP4363130B2 (en) 2003-09-04 2003-09-04 Optical blood glucose level pickup

Publications (2)

Publication Number Publication Date
JP2005080710A JP2005080710A (en) 2005-03-31
JP4363130B2 true JP4363130B2 (en) 2009-11-11

Family

ID=34414206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313164A Expired - Fee Related JP4363130B2 (en) 2003-09-04 2003-09-04 Optical blood glucose level pickup

Country Status (1)

Country Link
JP (1) JP4363130B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG130951A1 (en) * 2005-09-13 2007-04-26 Glucostats System Pte Ltd An arrangement for providing a constant contact pressure for a probe
JP5095986B2 (en) * 2005-11-30 2012-12-12 学校法人慶應義塾 Non-nail invasive blood substance measuring device and nail plate transpiration device
US10806385B2 (en) 2015-01-21 2020-10-20 National Institutes For Quantum And Radiological Science And Technology Device for measuring concentration of substance in blood, and method for measuring concentration of substance in blood
EP3426153B1 (en) * 2016-03-06 2024-01-24 Universiteit Gent Direct infrared analysis of post-translational modification of proteins
WO2019181267A1 (en) 2018-03-20 2019-09-26 Dynamic Brain Lab合同会社 Biological information measurement device
CN108324285A (en) * 2018-04-16 2018-07-27 中南光子科技宿迁有限公司 A kind of photon diabetes therapeutic instrument for monitoring blood glucose and treating postprandial hyperglycemia

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018673A (en) * 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
JP3994588B2 (en) * 1999-07-27 2007-10-24 松下電工株式会社 Noninvasive blood glucose meter
US6213952B1 (en) * 1999-09-28 2001-04-10 Orsense Ltd. Optical device for non-invasive measurement of blood related signals utilizing a finger holder
EP1256315A4 (en) * 2000-02-03 2004-07-28 Hamamatsu Photonics Kk Noninvasion biological optical measuring instrument, measured portion holding device, and method for manufacturing the same
JP3601782B2 (en) * 2000-10-30 2004-12-15 澁谷工業株式会社 Blood glucose detector
JP2003245265A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Noninvasive blood sugar measuring instrument

Also Published As

Publication number Publication date
JP2005080710A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US7976477B2 (en) Precision depth control lancing tip
JP5420246B2 (en) Test element and test system for testing body fluids
EP1635699B1 (en) Integrated test element for a one-time drawing and analyzing of a sample to be analyzed
US8868147B2 (en) Method and apparatus for controlling positioning of a noninvasive analyzer sample probe
US7333186B2 (en) Method and device for measuring biological information
US7327463B2 (en) Low coherence interferometry utilizing magnitude
AU749033B2 (en) Apparatus and method for noninvasive glucose measurement
JP2018199080A (en) Blood substance concentration measuring device and light guide part
US20080269575A1 (en) Method and Apparatus for Monitoring Bodily Analytes
JP3994588B2 (en) Noninvasive blood glucose meter
JP2008531133A (en) Non-invasive targeting system method and apparatus
JP4152532B2 (en) Optical measurement probe
US20090088615A1 (en) Indwelling Fiber Optic Probe for Blood Glucose Measurements
JP2007083028A (en) Noninvasive inspecting apparatus
WO2009136311A2 (en) Contact pressure control for probe for material analysis
JP4363130B2 (en) Optical blood glucose level pickup
KR20150050523A (en) Noninvasive measurement of analyte concentration using a fiberless transflectance probe
JP2008289807A (en) Sensing apparatus for biological surface tissue
EP1931256B1 (en) An arrangement for providing a constant contact pressure for a probe
JP5674094B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5095468B2 (en) Blood component measuring device
JP2013017612A (en) Probe for measuring living body
JP2012034824A (en) Interface member and interface member peeling mechanism
JP2011110084A (en) Skin tissue measuring probe
EP4230131A1 (en) Wearable device and method for detecting an analyte in tissue of a human or animal subject

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees