JP5674094B2 - Concentration determination apparatus, concentration determination method, and program - Google Patents

Concentration determination apparatus, concentration determination method, and program Download PDF

Info

Publication number
JP5674094B2
JP5674094B2 JP2010158099A JP2010158099A JP5674094B2 JP 5674094 B2 JP5674094 B2 JP 5674094B2 JP 2010158099 A JP2010158099 A JP 2010158099A JP 2010158099 A JP2010158099 A JP 2010158099A JP 5674094 B2 JP5674094 B2 JP 5674094B2
Authority
JP
Japan
Prior art keywords
light
concentration
temperature
layer
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010158099A
Other languages
Japanese (ja)
Other versions
JP2012021812A (en
Inventor
天野 和彦
和彦 天野
孝一 清水
孝一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Seiko Epson Corp
Original Assignee
Hokkaido University NUC
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Seiko Epson Corp filed Critical Hokkaido University NUC
Priority to JP2010158099A priority Critical patent/JP5674094B2/en
Priority to US13/176,422 priority patent/US9464983B2/en
Publication of JP2012021812A publication Critical patent/JP2012021812A/en
Application granted granted Critical
Publication of JP5674094B2 publication Critical patent/JP5674094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を、非侵襲的に定量する濃度定量装置及び濃度定量方法並びにプログラムに関するものである。   The present invention relates to a concentration quantification apparatus, a concentration quantification method, and a program for non-invasively quantifying the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of light scattering medium layers.

近年、我が国は飽食の時代にあって、糖尿病の患者が毎年増加し続けている。そのために、糖尿病性腎炎の患者も毎年増加し続けることとなり、その結果、慢性腎不全の患者も毎年1万人もの増加を続け、患者数は28万人を超えるようになってきている。
一方、高齢化社会の到来により、予防医学に対する要求の高まりを受けて、個人における代謝量管理の重要性が急速に増大している。中でも、血糖値は、糖尿病の極初期の段階での糖代謝の反応を測定することで、糖尿病の早期診断に基づく早期治療を行うことができる。
In recent years, Japan is in the age of satiety, and the number of diabetic patients continues to increase every year. For this reason, the number of patients with diabetic nephritis will continue to increase every year. As a result, the number of patients with chronic renal failure continues to increase by 10,000 each year, and the number of patients exceeds 280,000.
On the other hand, with the arrival of an aging society, the importance of metabolic rate management in individuals is rapidly increasing in response to increasing demand for preventive medicine. Among them, the blood glucose level can be measured based on the reaction of glucose metabolism at the very early stage of diabetes, whereby early treatment based on early diagnosis of diabetes can be performed.

従来、血糖値の測定は、腕あるいは指先等の静脈から採血を行い、この血液中のグルコースに対する酵素活性を測定することで行っているが、このような血糖値の測定方法では、採血が煩雑であり、しかも採血に痛みを伴い、さらには感染症の危険性を伴う等の様々な問題がある。
また、血糖値を連続的に測定する方法としては、静脈に注射針を刺した状態で連続的に血糖値相応のグルコースの定量を行う機器が米国にて開発されており、現在臨床試験中であるが、静脈に注射針を刺したままにしているために、血糖値の測定中に針が抜ける危険性や感染症の危険性がある。
そこで、採血無しに頻繁に血糖値を測定することができ、しかも感染症の危険性が無い血糖値の測定装置の開発が求められている。さらには、簡単にかつ常時装着可能であり、小型化可能な血糖値の測定装置の開発が求められている。
Conventionally, blood sugar levels are measured by collecting blood from a vein such as an arm or fingertip, and measuring enzyme activity for glucose in the blood. However, in such a blood sugar level measuring method, blood sampling is complicated. In addition, there are various problems such as blood collection with pain and further risk of infection.
In addition, as a method for continuously measuring blood glucose level, an instrument that continuously measures glucose corresponding to blood glucose level with a needle inserted into a vein has been developed in the United States. However, since the needle is stuck in the vein, there is a risk that the needle may come off during the measurement of blood glucose level and there is a risk of infection.
Therefore, development of a blood glucose level measuring apparatus that can measure blood glucose level frequently without blood collection and that is free from the risk of infectious diseases is demanded. Furthermore, there is a demand for the development of a blood glucose level measuring device that can be easily and always worn and can be miniaturized.

そこで、血糖値の測定装置に分子吸光の原理を用いた分光分析装置を適用することにより、非侵襲的に血糖値を測定する装置が提案されている(例えば、特許文献1参照)。
この装置は、皮膚に近赤外の連続光を照射し、その光吸収量からグルコースの濃度を算出する装置であり、具体的には、予めグルコース濃度と照射する近赤外光の波長と光の吸収量との関係を示す検量線を作成しておき、皮膚に近赤外の連続光を照射し、この皮膚からの戻り光をモノクロメーター等を用いてある波長域を走査し、その波長域の各波長に対する光の吸収量を求め、この各波長における光の吸収量と検量線とを比較することで、血液中のグルコース濃度、すなわち血糖値を算出している。
In view of this, an apparatus that non-invasively measures blood glucose levels has been proposed by applying a spectroscopic analyzer that uses the principle of molecular absorption to a blood glucose level measuring apparatus (see, for example, Patent Document 1).
This device irradiates the skin with near-infrared continuous light and calculates the glucose concentration from the amount of light absorption. Specifically, the glucose concentration and the wavelength and light of the near-infrared light to be irradiated in advance. A calibration curve showing the relationship with the amount of absorption of light, irradiating the skin with near-infrared continuous light, scanning the wavelength of the return light from the skin with a monochromator, etc. The amount of light absorbed for each wavelength in the region is obtained, and the amount of light absorbed at each wavelength is compared with a calibration curve to calculate the glucose concentration in blood, that is, the blood sugar level.

一般に、水溶液や含水率の高い試料の近赤外分光分析を行う場合、それらのスペクトルは、水のスペクトルと同様、温度変化に伴うスペクトルのシフト等の変動が大きく、したがって、近赤外分光を用いて定量分析をする場合、水溶液や試料の温度の影響を無視することができない。
そこで、生体表面近傍の組織中のグルコース濃度を近赤外領域における光の吸収を利用して測定する場合に、近赤外光受発光用の光ファイババンドルのプロ−ブ先端の測定面と生体の表面近傍組織との接触部分の温度を、ヒータ及び表面温度検知手段を用いて一定にする装置も提案されている(特許文献2参照)。
In general, when performing near-infrared spectroscopic analysis of an aqueous solution or a sample with a high water content, their spectra, like the spectrum of water, have large fluctuations such as a shift of the spectrum accompanying a temperature change. When used for quantitative analysis, the effect of the temperature of the aqueous solution or sample cannot be ignored.
Therefore, when measuring the glucose concentration in the tissue near the surface of the living body using light absorption in the near-infrared region, the measurement surface of the probe tip of the optical fiber bundle for near-infrared light reception and emission and the living body There has also been proposed an apparatus for making the temperature of the contact portion with the tissue in the vicinity of the surface constant by using a heater and a surface temperature detecting means (see Patent Document 2).

特許第3931638号公報Japanese Patent No. 3931638 特開2001−299727号公報JP 2001-299727 A

しかしながら、従来の近赤外光の吸収量から血液中あるいは生体の表面近傍組織のグルコース濃度を測定する方法においては、血液中あるいは生体中に含まれる水の近赤外光に対する吸収係数の温度変化率が大きく、血液中あるいは生体中のグルコース濃度を精度よく測定することが難しいという問題点があった。
例えば、近赤外光受発光用の光ファイババンドルのプロ−ブ先端の測定面と生体の表面近傍組織との接触部分の温度を、ヒータ及び表面温度検知手段を用いて一定にすれば、確かに、接触部分の温度は一定になるが、生体自体の温度が変化した場合、この生体の表面近傍組織の温度も変化して近赤外光に対する吸収係数が変化してしまい、やはり、生体中のグルコース濃度を精度よく測定することは難しい。
However, in the conventional method of measuring glucose concentration in blood or tissue near the surface of a living body from the amount of absorption of near-infrared light, the temperature change of the absorption coefficient with respect to the near-infrared light of water contained in the blood or living body There is a problem that the rate is high and it is difficult to accurately measure the glucose concentration in blood or in the living body.
For example, if the temperature of the contact portion between the measurement surface of the probe tip of the optical fiber bundle for near-infrared light receiving and emitting and the tissue near the surface of the living body is made constant by using a heater and surface temperature detection means, it is certain. In addition, although the temperature of the contact portion is constant, if the temperature of the living body itself changes, the temperature of the tissue near the surface of the living body also changes, and the absorption coefficient for near infrared light also changes. It is difficult to accurately measure the glucose concentration.

本発明は、上記の課題を解決するためになされたものであって、皮膚等の被測定物である観測対象自体の温度が変化した場合においても、この観測対象の温度変化を、この観測対象に含まれる水の近赤外光に対する吸収係数の温度変化率を基に補正することで、この観測対象に含まれる目的成分の濃度を、非侵襲的に精度良く測定することが可能な濃度定量装置及び濃度定量方法並びにプログラムを提供することを目的とする。   The present invention has been made to solve the above-described problem, and even when the temperature of the observation target itself, which is an object to be measured such as skin, changes, the temperature change of the observation target Concentration quantification that can measure the concentration of the target component contained in this observation target non-invasively and accurately by correcting the temperature based on the rate of change in the absorption coefficient of water in the near-infrared light An object is to provide an apparatus, a concentration determination method, and a program.

上記の課題を解決するために、本発明は以下の濃度定量装置及び濃度定量方法並びにプログラムを採用した。
すなわち、本発明の濃度定量装置は、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記観測対象に光を照射する照射手段と、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択する光散乱媒質層選択手段と、前記任意の層から放射される後方散乱光を受光する受光手段と、前記観測対象のうち前記任意の層の温度を測定する温度測定手段と、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得する光強度取得手段と、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、前記濃度算出手段が算出した前記目的成分の濃度を、前記温度測定手段により測定した前記温度に基づいて補正する濃度補正手段と、を備え、前記温度測定手段により測定された前記任意の層の温度と、前記温度測定手段の周囲の温度との差に基づいて前記濃度補正手段が前記目的成分の濃度の補正を行うことを特徴とする。
すなわち、本発明の濃度定量装置は、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、
前記観測対象に光を照射する照射手段と、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手段と、前記任意の層から放射される後方散乱光を受光する受光手段と、前記観測対象のうち前記任意の層の温度を測定する温度測定手段と、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得する光強度取得手段と、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、前記濃度算出手段が算出した前記目的成分の濃度を、前記温度測定手段により測定した前記温度に基づいて補正する濃度補正手段と、を備えてなることを特徴とする。
In order to solve the above problems, the present invention employs the following concentration determination apparatus, concentration determination method, and program.
That is, the concentration quantification device according to the present invention is a concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of layers of light scattering media, and irradiates the observation target with light. Irradiating means for irradiating, and a light scattering medium layer for selecting time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating the light A selecting unit; a light receiving unit that receives backscattered light emitted from the arbitrary layer; a temperature measuring unit that measures a temperature of the arbitrary layer among the observation targets; and the arbitrary unit received by the light receiving unit. Light intensity acquisition means for acquiring the intensity of backscattered light emitted from the layer, and light absorption coefficient calculation means for calculating the light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquisition means; The light Based on the light absorption coefficient calculated by the yield coefficient calculating means, a concentration calculating means for calculating the concentration of the target component in the arbitrary layer, and the temperature measuring means for calculating the concentration of the target component calculated by the concentration calculating means. Density correction means for correcting based on the temperature measured by the temperature measurement means, the density based on the difference between the temperature of the arbitrary layer measured by the temperature measurement means and the ambient temperature of the temperature measurement means The correcting means corrects the density of the target component.
That is, the concentration quantification device of the present invention is a concentration quantification device that quantifies the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of light scattering medium layers,
Irradiation means for irradiating the observation target with light, and a light scattering medium for selecting backscattered light radiated from the arbitrary layer from a plurality of types of backscattered light radiated from the observation target by irradiating the light A layer selecting unit; a light receiving unit that receives backscattered light radiated from the arbitrary layer; a temperature measuring unit that measures a temperature of the arbitrary layer among the observation targets; and the arbitrary light received by the light receiving unit. Light intensity acquisition means for acquiring the intensity of backscattered light emitted from the layer, and light absorption coefficient calculation means for calculating the light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquisition means And, based on the light absorption coefficient calculated by the light absorption coefficient calculation means, a concentration calculation means for calculating the concentration of the target component in the arbitrary layer, and the concentration of the target component calculated by the concentration calculation means, Above A degree measuring unit density correcting means for correcting, based on the temperature measured by, and characterized in that it comprises a.

本発明の濃度定量装置では、受光手段により任意の層から放射される後方散乱光を受光する際に、温度測定手段により、任意の層の温度を測定する。また、濃度算出手段により算出した任意の層における目的成分の濃度を、濃度補正手段により、温度測定手段により測定した温度に基づいて補正する。
このように、濃度算出手段が算出した目的成分の濃度を、温度測定手段により測定した任意の層の温度に基づいて補正することで、この後方散乱光を基に算出される観測対象の任意の層における目的成分の濃度に対する温度の影響を小さくすることができる。したがって、目的成分の濃度における任意の層の温度の影響を小さくすることができ、目的成分の濃度を、非侵襲的に精度良く測定することができる。
In the concentration determination apparatus of the present invention, when the backscattered light radiated from an arbitrary layer is received by the light receiving means, the temperature of the arbitrary layer is measured by the temperature measuring means. Further, the concentration of the target component in an arbitrary layer calculated by the concentration calculating unit is corrected based on the temperature measured by the temperature measuring unit by the concentration correcting unit.
In this way, by correcting the concentration of the target component calculated by the concentration calculation means based on the temperature of an arbitrary layer measured by the temperature measurement means, any arbitrary observation target calculated based on the backscattered light is corrected. The influence of temperature on the concentration of the target component in the layer can be reduced. Therefore, the influence of the temperature of an arbitrary layer on the concentration of the target component can be reduced, and the concentration of the target component can be accurately measured noninvasively.

本発明の濃度定量装置は、前記光を短時間パルス光とし、さらに、前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、前記任意の層の複数の時刻t〜tにおける光強度を取得し、前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(1)

Figure 0005674094
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形の無吸収モデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出することを特徴とする。 The concentration quantification device according to the present invention uses the light as a short-time pulse light, and further propagates the optical path length of each of the layers of the plurality of light scattering media of the short-time pulse light irradiated onto the observation target. From the optical path length distribution storage means for storing the model of distribution, the time-resolved waveform storage means for storing the model of the time-resolved waveform of the short-time pulse light irradiated to the observation object, and the optical path length distribution storage means, From the optical path length acquisition means for acquiring the optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution, and the short-time pulse from the time-resolved waveform storage means A light intensity model acquisition means for acquiring the light intensity at the predetermined time of the model of the time-resolved waveform of light,
The light intensity acquisition unit acquires the light intensity of the arbitrary layer at a plurality of times t 1 to t m , and the light absorption coefficient calculation unit calculates the light absorption coefficient of the arbitrary layer by the following formula (1 )
Figure 0005674094
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the non-absorption model of the time-resolved waveform of the short-time pulsed light, and Li (t) Is the optical path length of the i-th layer at time t of the propagation optical path length distribution model in each layer of the plurality of light scattering media, and μ i is the light absorption coefficient of the i-th layer)
It is characterized by calculating from.

本発明の濃度定量装置では、光強度取得手段が、任意の層の複数の時刻t〜tにおける光強度を取得し、光吸収係数算出手段が、任意の層の光吸収係数を、上記の式(1)から算出する。
このように、後方散乱光を時間分解計測することで、任意の層以外の層からの後方散乱光をノイズとして低減することができ、目的成分の濃度における温度の影響を小さくすることができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration determination apparatus of the present invention, the light intensity acquisition unit acquires the light intensity at a plurality of times t 1 to t m of an arbitrary layer, and the light absorption coefficient calculation unit calculates the light absorption coefficient of the arbitrary layer as described above. Is calculated from the equation (1).
Thus, by measuring the time-resolved backscattered light, it is possible to reduce the backscattered light from a layer other than an arbitrary layer as noise, and to reduce the influence of temperature on the concentration of the target component. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記光を短時間パルス光とし、さらに、前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、所定の時刻から少なくとも所定の時刻τまでの間の光強度の経時的変化を取得し、前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(2)

Figure 0005674094
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形の無吸収モデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の層各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは前記観測対象となる層の数、μiは第i層の光吸収係数である)
から算出することを特徴とする。 The concentration quantification device according to the present invention uses the light as a short-time pulse light, and further propagates the optical path length of each of the layers of the plurality of light scattering media of the short-time pulse light irradiated onto the observation target. From the optical path length distribution storage means for storing the model of distribution, the time-resolved waveform storage means for storing the model of the time-resolved waveform of the short-time pulse light irradiated to the observation object, and the optical path length distribution storage means, From the optical path length acquisition means for acquiring the optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution, and the short-time pulse from the time-resolved waveform storage means A light intensity model acquisition means for acquiring the light intensity at the predetermined time of the model of the time-resolved waveform of light,
The light intensity acquisition means acquires a temporal change in light intensity between a predetermined time and at least a predetermined time τ, and the light absorption coefficient calculation means calculates the light absorption coefficient of the arbitrary layer as follows: Formula (2)
Figure 0005674094
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the non-absorption model of the time-resolved waveform of the short-time pulsed light, and Li (t) Is the optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, n is the number of layers to be observed, μi is the light absorption coefficient of the i-th layer Is)
It is characterized by calculating from.

本発明の濃度定量装置では、光強度取得手段が、所定の時刻から少なくとも所定の時刻τまでの間の光強度を取得し、光吸収係数算出手段が、任意の層の光吸収係数を、上記の式(2)から算出する。
このように、後方散乱光を時間分解計測することで、任意の層以外の層からの後方散乱光をノイズとして低減することができ、目的成分の濃度における温度の影響を小さくすることができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration quantification device of the present invention, the light intensity acquisition means acquires light intensity between a predetermined time and at least a predetermined time τ, and the light absorption coefficient calculation means calculates the light absorption coefficient of an arbitrary layer as described above. (2) is calculated.
Thus, by measuring the time-resolved backscattered light, it is possible to reduce the backscattered light from a layer other than an arbitrary layer as noise, and to reduce the influence of temperature on the concentration of the target component. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記濃度算出手段は、前記任意の層における前記目的成分の濃度を、下記の式(3)

Figure 0005674094
(但し、μaは前記任意の層である第a層における光吸収係数、gjは前記観測対象を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは前記観測対象を構成する主成分の個数、qは前記短時間パルス光の種類数である)
から算出することを特徴とする。 In the concentration quantification apparatus of the present invention, the concentration calculation means calculates the concentration of the target component in the arbitrary layer by the following equation (3):
Figure 0005674094
(Where μa is the light absorption coefficient in the a-th layer which is the arbitrary layer, gj is the molar concentration of the j-th component constituting the observation object, εj is the light absorption coefficient of the j-th component, and p is the observation object. (The number of constituent main components, q is the number of types of short-time pulsed light)
It is characterized by calculating from.

本発明の濃度定量装置では、濃度算出手段が、任意の層における目的成分の濃度を、上記の式(3)から算出する。
このように、時間分解計測した後方散乱光を用いて任意の層における目的成分の濃度を算出することで、目的成分の濃度における温度の影響を小さくすることができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration determination apparatus of the present invention, the concentration calculation means calculates the concentration of the target component in an arbitrary layer from the above equation (3).
Thus, by calculating the concentration of the target component in an arbitrary layer using the backscattered light that has been time-resolved, the influence of temperature on the concentration of the target component can be reduced. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記温度測定手段は、前記観測対象の表面近傍の温度を測定する表面温度測定手段と、前記表面温度測定手段近傍の温度を測定する内部温度測定手段とを備え、前記濃度補正手段は、前記濃度算出手段が算出した前記目的成分の濃度を、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記内部温度測定手段が測定した前記表面温度測定手段近傍の温度との差に基づいて補正する濃度補正手段であることを特徴とする。   In the concentration quantification device of the present invention, the temperature measuring means includes a surface temperature measuring means for measuring the temperature near the surface of the observation target, and an internal temperature measuring means for measuring the temperature near the surface temperature measuring means, The concentration correction unit is configured to measure the concentration of the target component calculated by the concentration calculation unit, the temperature near the surface of the observation target measured by the surface temperature measurement unit, and the surface temperature measurement measured by the internal temperature measurement unit. It is a density correction means for correcting based on the difference from the temperature in the vicinity of the means.

本発明の濃度定量装置では、表面温度測定手段により観測対象の表面近傍の温度を測定し、内部温度測定手段により前記表面温度測定手段近傍の温度を測定する。
また、濃度補正手段により、濃度算出手段が算出した目的成分の濃度を、表面温度測定手段が測定した観測対象の表面近傍の温度と、内部温度測定手段が測定した表面温度測定手段近傍の温度との差に基づいて補正する。
このように、濃度算出手段が算出した目的成分の濃度を、濃度補正手段により、表面温度測定手段が測定した観測対象の表面近傍の温度と、内部温度測定手段が測定した表面温度測定手段近傍の温度との差に基づいて補正することで、この後方散乱光を基に算出される観測対象の任意の層における目的成分の濃度に対する温度の影響を極めて小さくすることができる。したがって、目的成分の濃度における任意の層の温度の影響を極めて小さくすることができ、目的成分の濃度を、非侵襲的に精度良く測定することができる。
In the concentration determination apparatus of the present invention, the temperature in the vicinity of the surface to be observed is measured by the surface temperature measuring means, and the temperature in the vicinity of the surface temperature measuring means is measured by the internal temperature measuring means.
Further, the concentration correction means calculates the concentration of the target component calculated by the concentration calculation means, the temperature near the surface of the observation target measured by the surface temperature measurement means, and the temperature near the surface temperature measurement means measured by the internal temperature measurement means. It corrects based on the difference.
As described above, the concentration of the target component calculated by the concentration calculating unit is calculated by using the concentration correcting unit to measure the temperature near the surface of the observation target measured by the surface temperature measuring unit and the vicinity of the surface temperature measuring unit measured by the internal temperature measuring unit. By correcting based on the difference from the temperature, the influence of the temperature on the concentration of the target component in any layer to be observed calculated based on the backscattered light can be made extremely small. Therefore, the influence of the temperature of an arbitrary layer on the concentration of the target component can be made extremely small, and the concentration of the target component can be accurately measured noninvasively.

本発明の濃度定量装置は、前記温度測定手段に、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記内部温度測定手段が測定した前記表面温度測定手段近傍の温度との差を、単位時間当たりの温度変化率として算出する表面・内部温度変化率算出手段を設けてなることを特徴とする。   The concentration quantification apparatus according to the present invention provides the temperature measuring unit with a temperature near the surface of the observation target measured by the surface temperature measuring unit and a temperature near the surface temperature measuring unit measured by the internal temperature measuring unit. A surface / internal temperature change rate calculating means for calculating the difference as a temperature change rate per unit time is provided.

本発明の濃度定量装置では、表面・内部温度変化率算出手段により、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記内部温度測定手段が測定した表面温度測定手段近傍の温度との差を、単位時間当たりの温度変化率として算出する。
このように、濃度算出手段が算出した目的成分の濃度を、表面温度測定手段が測定した観測対象の表面近傍の温度と、内部温度測定手段が測定した表面温度測定手段近傍の温度との差から算出した単位時間当たりの温度変化率に基づいて補正することで、この後方散乱光を基に算出される観測対象の任意の層における目的成分の濃度に対する温度の影響を極めて小さくすることができる。したがって、目的成分の濃度を、非侵襲的に精度良く測定することができる。
In the concentration quantification device of the present invention, the surface / internal temperature change rate calculating means calculates the temperature near the surface of the observation target measured by the surface temperature measuring means and the vicinity of the surface temperature measuring means measured by the internal temperature measuring means. The difference from the temperature is calculated as the rate of temperature change per unit time.
In this way, the concentration of the target component calculated by the concentration calculating means is determined from the difference between the temperature near the surface of the observation target measured by the surface temperature measuring means and the temperature near the surface temperature measuring means measured by the internal temperature measuring means. By correcting based on the calculated temperature change rate per unit time, the influence of the temperature on the concentration of the target component in an arbitrary observation target layer calculated based on the backscattered light can be extremely reduced. Therefore, the concentration of the target component can be accurately measured noninvasively.

本発明の濃度定量装置は、前記温度測定手段に温度調整手段を設けたことを特徴とする。
本発明の濃度定量装置では、温度調整手段により温度測定手段を所定の温度、例えば36.0℃に温度調整し、保持する。
これにより、温度測定手段における温度の変動が無くなり、温度測定手段の測定精度が向上する。
The concentration determination apparatus of the present invention is characterized in that a temperature adjusting means is provided in the temperature measuring means.
In the concentration determination apparatus of the present invention, the temperature measuring means is adjusted to a predetermined temperature, for example, 36.0 ° C. by the temperature adjusting means, and held.
This eliminates temperature fluctuations in the temperature measuring means and improves the measurement accuracy of the temperature measuring means.

本発明の濃度定量方法は、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量方法であって、照射手段により、前記観測対象に光を照射し、次いで、温度測定手段により、前記観測対象のうち前記任意の層の温度を測定し、次いで、光散乱媒質層選択手段により、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択し、次いで、受光手段により、前記任意の層から放射される後方散乱光を受光し、次いで、光強度取得手段により、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得し、次いで、光吸収係数算出手段により、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出し、次いで、濃度算出手段により、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出し、次いで、濃度補正手段により、前記濃度算出手段が算出した前記目的成分の濃度を、前記温度測定手段により測定した前記温度に基づいて補正する、ことを含み、前記温度測定手段で測定した前記任意の層の温度と、前記温度測定手段の周囲の温度との差に基づいて前記濃度補正手段が前記目的成分の濃度の補正を行うことを特徴とする。
本発明の濃度定量方法は、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量方法であって、
照射手段により、前記観測対象に光を照射し、次いで、温度測定手段により、前記観測対象のうち前記任意の層の温度を測定し、次いで、光散乱媒質層選択手段により、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択し、次いで、受光手段により、前記任意の層から放射される後方散乱光を受光し、次いで、光強度取得手段により、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得し、次いで、光吸収係数算出手段により、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出し、次いで、濃度算出手段により、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出し、次いで、濃度補正手段により、前記濃度算出手段が算出した前記目的成分の濃度を、前記温度測定手段により測定した前記温度に基づいて補正する、ことを特徴とする。
The concentration quantification method of the present invention is a concentration quantification method for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of layers of light scattering media, wherein the concentration is determined by the irradiation means. Irradiate light, then measure the temperature of the arbitrary layer among the observation objects by the temperature measurement means, and then radiate from the observation object by irradiating the light by the light scattering medium layer selection means. Time-resolved measurement and selection of backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light, and then receiving backscattered light emitted from the arbitrary layer by the light receiving means; The light intensity acquisition means acquires the intensity of the backscattered light emitted from the arbitrary layer received by the light receiving means, and then the light intensity acquired by the light intensity acquisition means by the light absorption coefficient calculation means. Based on the light absorption coefficient of the arbitrary layer, and then the concentration calculating means calculates the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means. And then correcting the concentration of the target component calculated by the concentration calculation means based on the temperature measured by the temperature measurement means, and measuring the temperature measurement means by the concentration correction means. The density correction unit corrects the density of the target component based on the difference between the temperature of the arbitrary layer and the ambient temperature of the temperature measurement unit.
The concentration quantification method of the present invention is a concentration quantification method for quantifying the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of light scattering medium layers,
The irradiation unit irradiates the observation target with light, then the temperature measurement unit measures the temperature of the arbitrary layer of the observation target, and then the light scattering medium layer selection unit irradiates the light. Thus, the back scattered light emitted from the arbitrary layer is selected from a plurality of types of back scattered light emitted from the observation target, and then the back scattered light emitted from the arbitrary layer is received by the light receiving means. Then, the light intensity acquisition means acquires the intensity of the backscattered light emitted from the arbitrary layer received by the light receiving means, and then the light intensity acquisition means acquires the light intensity acquisition means. Based on the light intensity, the light absorption coefficient of the arbitrary layer is calculated, and then the concentration calculation unit calculates the light absorption coefficient calculated by the light absorption coefficient calculation unit based on the light absorption coefficient. Calculating the concentration of the components, followed by density correcting means, the concentration of the target component the concentration calculating means is calculated, is corrected based on the temperature measured by said temperature measuring means, characterized in that.

本発明の濃度定量方法では、温度測定手段により、観測対象のうち任意の層の温度を測定し、濃度算出手段により、光吸収係数算出手段が算出した光吸収係数に基づいて任意の層における目的成分の濃度を算出し、濃度補正手段により、濃度算出手段が算出した目的成分の濃度を、温度測定手段により測定した温度に基づいて補正する。
このように、濃度算出手段により算出した任意の層における目的成分の濃度を、濃度補正手段により、温度測定手段により測定した温度に基づいて補正することで、観測対象の任意の層における目的成分の濃度においても、その濃度における任意の層の温度の影響を小さくすることができる。したがって、目的成分の濃度における任意の層の温度の影響を小さくすることができ、目的成分の濃度を、非侵襲的に精度良くかつ効率良く測定することができる。
In the concentration determination method of the present invention, the temperature measurement unit measures the temperature of an arbitrary layer of the observation target, and the concentration calculation unit calculates the purpose of the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculation unit. The component concentration is calculated, and the concentration correction unit corrects the target component concentration calculated by the concentration calculation unit based on the temperature measured by the temperature measurement unit.
In this way, by correcting the concentration of the target component in an arbitrary layer calculated by the concentration calculation unit based on the temperature measured by the temperature measurement unit by the concentration correction unit, the target component in the arbitrary layer to be observed is corrected. Also in the concentration, the influence of the temperature of an arbitrary layer on the concentration can be reduced. Therefore, the influence of the temperature of an arbitrary layer on the concentration of the target component can be reduced, and the concentration of the target component can be measured noninvasively with high accuracy and efficiency.

本発明のプログラムは、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置のコンピュータに、前記観測対象に光を照射する照射手順、前記観測対象のうち前記任意の層の温度を測定する温度測定手順、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択する光散乱媒質層選択手順、前記任意の層から放射される後方散乱光を受光する受光手順、前記受光手順にて得られた前記任意の層から放射される後方散乱光の強度を取得する光強度取得手順、前記光強度取得手順にて取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手順、前記光吸収係数算出手順にて算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手順、前記濃度算出手順により算出した前記目的成分の濃度を、前記温度測定手順にて得られた前記温度に基づいて補正する濃度補正手順、を実行させ、前記温度測定手順で測定した前記任意の層の温度と、前記温度測定手順にて前記任意の層の温度を測定する手段の周囲の温度と、の差に基づいて、前記濃度補正手順において前記目的成分の濃度の補正を行わせることを特徴とする。
本発明のプログラムは、複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置のコンピュータに、前記観測対象に光を照射する照射手順、前記観測対象のうち前記任意の層の温度を測定する温度測定手順、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手順、前記任意の層から放射される後方散乱光を受光する受光手順、前記受光手順にて得られた前記任意の層から放射される後方散乱光の強度を取得する光強度取得手順、前記光強度取得手順にて取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手順、前記光吸収係数算出手順にて算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手順、前記濃度算出手順により算出した前記目的成分の濃度を、前記温度測定手順にて得られた前記温度に基づいて補正する濃度補正手順、を実行させることを特徴とする。
The program of the present invention is an irradiation procedure for irradiating the observation target with light on a computer of a concentration quantification apparatus that quantifies the concentration of a target component in an arbitrary layer among the observation targets configured by a plurality of light scattering medium layers. , A temperature measurement procedure for measuring the temperature of the arbitrary layer among the observation objects, backscattering radiated from the arbitrary layer from a plurality of types of backscattered light radiated from the observation object by irradiating the light Light scattering medium layer selection procedure for selecting light by time-resolved measurement, light receiving procedure for receiving backscattered light radiated from the arbitrary layer, and the rear radiated from the arbitrary layer obtained in the light receiving procedure Light intensity acquisition procedure for acquiring the intensity of scattered light, light absorption coefficient calculation procedure for calculating the light absorption coefficient of the arbitrary layer based on the light intensity acquired in the light intensity acquisition procedure, calculation of the light absorption coefficient Based on the light absorption coefficient calculated in order, a concentration calculation procedure for calculating the concentration of the target component in the arbitrary layer, and the concentration of the target component calculated by the concentration calculation procedure can be obtained by the temperature measurement procedure. A density correction procedure for correcting the temperature based on the temperature, and the temperature of the arbitrary layer measured by the temperature measurement procedure and the surroundings of the means for measuring the temperature of the arbitrary layer by the temperature measurement procedure. Based on the difference between the temperature and the temperature, the density correction procedure corrects the density of the target component.
The program of the present invention is an irradiation procedure for irradiating the observation target with light on a computer of a concentration quantification apparatus that quantifies the concentration of a target component in an arbitrary layer among the observation targets configured by a plurality of light scattering medium layers. , A temperature measurement procedure for measuring the temperature of the arbitrary layer among the observation objects, backscattering radiated from the arbitrary layer from a plurality of types of backscattered light radiated from the observation object by irradiating the light Light scattering medium layer selection procedure for selecting light, light receiving procedure for receiving backscattered light emitted from the arbitrary layer, intensity of backscattered light emitted from the arbitrary layer obtained in the light receiving procedure Based on the light intensity acquisition procedure to be acquired, the light intensity acquired in the light intensity acquisition procedure, the light absorption coefficient calculation procedure for calculating the light absorption coefficient of the arbitrary layer, and the light absorption coefficient calculation procedure. Based on the absorption coefficient, the concentration calculation procedure for calculating the concentration of the target component in the arbitrary layer, the concentration of the target component calculated by the concentration calculation procedure is based on the temperature obtained by the temperature measurement procedure And a density correction procedure for correcting the density.

本発明のプログラムでは、濃度定量装置のコンピュータに、観測対象のうち任意の層の温度を測定する温度測定手順、及び濃度算出手順により算出した目的成分の濃度を、温度測定手順にて得られた温度に基づいて補正する濃度補正手順、を実行させる。
このように、観測対象のうち任意の層の温度を測定する温度測定手順、及び濃度算出手順により算出した目的成分の濃度を、温度測定手順にて得られた温度に基づいて補正する濃度補正手順、を実行することで、任意の層から放射された後方散乱光における温度の影響を小さくすることができ、この後方散乱光を基に算出された観測対象の任意の層における目的成分の濃度においても、任意の層の温度の影響を小さくすることができる。したがって、目的成分の濃度における任意の層の温度の影響を小さくすることができ、目的成分の濃度を、非侵襲的に精度良くかつ効率良く測定することができる。
In the program of the present invention, the temperature measurement procedure for measuring the temperature of an arbitrary layer of the observation target and the concentration of the target component calculated by the concentration calculation procedure were obtained by the temperature measurement procedure in the computer of the concentration determination device. A density correction procedure for correcting based on the temperature is executed.
In this way, a temperature measurement procedure for measuring the temperature of any layer of the observation target, and a concentration correction procedure for correcting the concentration of the target component calculated by the concentration calculation procedure based on the temperature obtained by the temperature measurement procedure , The influence of temperature in the backscattered light emitted from any layer can be reduced, and the concentration of the target component in any layer to be observed calculated based on this backscattered light can be reduced. In addition, the influence of the temperature of any layer can be reduced. Therefore, the influence of the temperature of an arbitrary layer on the concentration of the target component can be reduced, and the concentration of the target component can be measured noninvasively with high accuracy and efficiency.

本発明の第1の実施形態の血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の血糖値測定装置の導光部の構成を示す断面図である。It is sectional drawing which shows the structure of the light guide part of the blood glucose level measuring apparatus of the 1st Embodiment of this invention. 皮膚の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of skin. シミュレーション部が算出した各層の伝搬光路長分布を示す図である。It is a figure which shows the propagation optical path length distribution of each layer which the simulation part computed. シミュレーション部が算出した時間分解波形を示す図である。It is a figure which shows the time-resolved waveform which the simulation part computed. 水による光吸収波長特性を示す図である。It is a figure which shows the light absorption wavelength characteristic by water. 皮膚の主成分の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the main component of skin. 皮膚の表皮層、真皮層及び皮下組織各々に照射される光の波長と吸収係数との関係を示す図である。It is a figure which shows the relationship between the wavelength of the light irradiated to each of the epidermis layer of a skin, a dermis layer, and subcutaneous tissue, and an absorption coefficient. 水の吸光度スペクトルの温度依存性を示す図である。It is a figure which shows the temperature dependence of the absorbance spectrum of water. 水の吸光度スペクトル差の温度依存性を示す図である。It is a figure which shows the temperature dependence of the light absorption spectrum difference. グルコース水溶液の吸光度スペクトルの一例を示す図である。It is a figure which shows an example of the absorbance spectrum of glucose aqueous solution. 本発明の第1の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 1st Embodiment of this invention. 本発明の第2の実施形態の血糖値測定装置の導光部の構成を示す断面図である。It is sectional drawing which shows the structure of the light guide part of the blood glucose level measuring apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 2nd Embodiment of this invention. 本発明の第3の実施形態の血糖値測定装置の導光部の構成を示す断面図である。It is sectional drawing which shows the structure of the light guide part of the blood glucose level measuring apparatus of the 3rd Embodiment of this invention. 本発明の第3の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 3rd Embodiment of this invention. 本発明の第4の実施形態の血糖値測定装置の導光部の構成を示す断面図である。It is sectional drawing which shows the structure of the light guide part of the blood glucose level measuring apparatus of the 4th Embodiment of this invention. 本発明の第4の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 4th Embodiment of this invention. 本発明の第5の実施形態の血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus of the 5th Embodiment of this invention. 本発明の第5の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 5th Embodiment of this invention.

本発明の濃度定量装置及び濃度定量方法並びにプログラムを実施するための形態について説明する。
本発明では、濃度定量装置として血糖値測定装置を、観測対象として人の手のひらの皮膚を、目的成分としてグルコースを、特定波長の光として特定波長の短時間パルス光を、それぞれ例に取り説明する。
An embodiment for carrying out a concentration determination apparatus, a concentration determination method, and a program according to the present invention will be described.
In the present invention, a blood glucose level measuring device will be described as an example of a concentration determination device, the skin of a human palm as an observation target, glucose as a target component, and short-time pulsed light of a specific wavelength as light of a specific wavelength will be described as examples. .

[第1の実施形態]
図1は、本発明の第1の実施形態の血糖値測定装置の構成を示す概略ブロック図、図2は、同血糖値測定装置の導光部の構成の概略を示す断面図である。
この血糖値測定装置1は、手のひら等の皮膚(観測対象)を構成する複数層のうちの真皮層(任意の層)に含まれるグルコース(目的成分)の濃度を非侵襲にて定量する装置であり、シミュレーション部2と、光路長分布記憶部(光路長分布記憶手段)3と、時間分解波形記憶部(時間分解波形記憶手段)4と、照射部(照射手段)5と、導光部6と、光散乱媒質層選択部(光散乱媒質層選択手段)7と、受光部(受光手段)8と、光強度取得部(光強度取得手段)9と、光路長取得部(光路長取得手段)10と、無吸収時光強度取得部(光強度モデル取得手段)11と、光吸収係数算出部(光吸収係数算出手段)12と、濃度算出部(濃度算出手段)13と、濃度補正部(濃度補正手段)14とを備えている。
[First Embodiment]
FIG. 1 is a schematic block diagram showing a configuration of a blood glucose level measuring apparatus according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an outline of a configuration of a light guide unit of the blood glucose level measuring apparatus.
This blood glucose level measuring device 1 is a device that non-invasively quantifies the concentration of glucose (target component) contained in a dermis layer (arbitrary layer) of a plurality of layers constituting skin (observation target) such as a palm. Yes, a simulation unit 2, an optical path length distribution storage unit (optical path length distribution storage unit) 3, a time-resolved waveform storage unit (time-resolved waveform storage unit) 4, an irradiation unit (irradiation unit) 5, and a light guide unit 6 A light scattering medium layer selection unit (light scattering medium layer selection unit) 7, a light receiving unit (light receiving unit) 8, a light intensity acquisition unit (light intensity acquisition unit) 9, and an optical path length acquisition unit (optical path length acquisition unit). ) 10, a non-absorption light intensity acquisition unit (light intensity model acquisition unit) 11, a light absorption coefficient calculation unit (light absorption coefficient calculation unit) 12, a concentration calculation unit (concentration calculation unit) 13, and a density correction unit ( Density correction means) 14.

シミュレーション部2は、光吸収係数がゼロの皮膚モデルに対して光を照射するシミュレーションを行う。
光路長分布記憶部3は、皮膚に対して照射する短時間パルス光の、この皮膚を構成する各々の層における伝搬光路長分布のモデルを記憶する。ここでは、光吸収係数がゼロの皮膚モデルの伝搬光路長分布を記憶する。
時間分解波形記憶部4は、皮膚に対して照射する短時間パルス光の時間分解波形のモデルを記憶する。ここでは、光吸収係数がゼロの皮膚モデルの時間分解波形を記憶する。
照射部5は、皮膚に短時間パルス光を照射する。ここで、短時間パルス光とは、パルス幅が100psec程度かそれ以下のパルス光を意味する。なお、短時間パルス光として0.1psecから数psecの範囲のパルス幅を持つパルス光を用いても良い。
The simulation unit 2 performs a simulation of irradiating light to a skin model having a light absorption coefficient of zero.
The optical path length distribution storage unit 3 stores a model of a propagation optical path length distribution in each layer constituting the skin of short-time pulse light irradiated to the skin. Here, the propagation optical path length distribution of the skin model having zero light absorption coefficient is stored.
The time-resolved waveform storage unit 4 stores a model of a time-resolved waveform of short-time pulse light that is applied to the skin. Here, the time-resolved waveform of the skin model having zero light absorption coefficient is stored.
The irradiation unit 5 irradiates the skin with pulsed light for a short time. Here, the short-time pulsed light means pulsed light having a pulse width of about 100 psec or less. Note that pulse light having a pulse width in the range of 0.1 psec to several psec may be used as the short-time pulse light.

導光部6は、図2に示すように、皮膚31に密着して照射部5から発せられた短時間パルス光を皮膚31に向かって導光させる照射導光路21と、この照射導光路21の外側に一体に設けられ、この皮膚31から放射される複数種の後方散乱光を集光して光散乱媒質層選択部7へ導光する受光導光路22と、一体化された照射導光路21及び受光導光路22の外側に設けられた断熱材23と、断熱材23の皮膚側の表面に設けられ皮膚31を構成する複数層のうちの真皮層の温度を測定する温度センサ(温度測定手段)24と、これら照射導光路21、受光導光路22及び断熱材23を固定する基台25とにより構成されている。   As shown in FIG. 2, the light guide 6 is in close contact with the skin 31 and guides short-time pulsed light emitted from the irradiation unit 5 toward the skin 31, and the irradiation light guide 21. A light receiving light guide 22 that is integrally provided outside the light source and collects a plurality of types of backscattered light radiated from the skin 31 and guides it to the light scattering medium layer selector 7, and an integrated irradiation light guide 21 and a heat sensor 23 provided on the outer side of the light receiving light guide 22 and a temperature sensor (temperature measurement) that measures the temperature of the dermis layer among a plurality of layers that are provided on the skin side surface of the heat insulator 23 and constitute the skin 31. Means) 24 and a base 25 for fixing the irradiation light guide 21, the light receiving light guide 22, and the heat insulating material 23.

照射導光路21及び受光導光路22は、導光する短時間パルス光の吸収損失が小さい材料であればよく、例えば、石英ガラス、ポリメチルメタアクリレート(PMMA)やポリエチレン等のプラスチックが好適に用いられる。
断熱材23は、皮膚31の温度変化に影響しない範囲で熱容量が十分大きい断熱性を有する材料であればよい。この断熱材23と皮膚31との間隔は、この皮膚31の温度変化を断熱材23が直接受けない程度に離れていることが好ましく、0.5mm〜1.0mmが好ましい。この断熱材23では、熱容量を皮膚31の温度変化に影響しない程度に十分小さくすることで、温度到達値の90%に達するまでの熱応答時間を0.2秒以内に抑えることができる。
温度センサ24は、皮膚31の表面から0.3mmないし1.5mmの深さにある真皮層の温度を非接触で測定する。
The irradiation light guide path 21 and the light receiving light guide path 22 may be made of a material that has a small absorption loss of short-time pulsed light to be guided. For example, quartz glass, plastic such as polymethyl methacrylate (PMMA) or polyethylene is preferably used. It is done.
The heat insulating material 23 may be a material having a heat insulating property with a sufficiently large heat capacity within a range not affecting the temperature change of the skin 31. It is preferable that the space | interval of this heat insulating material 23 and the skin 31 is separated so that the heat insulating material 23 may not receive the temperature change of this skin 31 directly, and 0.5 mm-1.0 mm are preferable. With this heat insulating material 23, by making the heat capacity sufficiently small so as not to affect the temperature change of the skin 31, the thermal response time until it reaches 90% of the temperature arrival value can be suppressed within 0.2 seconds.
The temperature sensor 24 measures the temperature of the dermis layer at a depth of 0.3 mm to 1.5 mm from the surface of the skin 31 in a non-contact manner.

この導光部6では、照射導光路21が、照射部5が照射した短時間パルス光を導光して皮膚31に向かって照射する。この場合、この短時間パルス光が皮膚31に照射されることにより、この皮膚31からは複数種の後方散乱光が放射させることとなる。これら複数種の後方散乱光は、受光導光路22により光散乱媒質層選択部7へ導光される。この短時間パルス光の照射の後に、温度センサ24が皮膚を構成する複数層のうちの真皮層の温度を測定する。
この温度センサ24は、周囲が断熱材23により覆われているので、照射導光路21及び受光導光路22の温度の影響を受ける虞がなく、皮膚を構成する複数層のうちの真皮層付近の温度を測定することができる。
In the light guide section 6, the irradiation light guide path 21 guides the short-time pulse light irradiated by the irradiation section 5 and irradiates the skin 31. In this case, a plurality of types of backscattered light are emitted from the skin 31 by irradiating the skin 31 with the short-time pulsed light. These multiple types of backscattered light are guided to the light scattering medium layer selection unit 7 by the light receiving light guide path 22. After the irradiation with the short-time pulse light, the temperature sensor 24 measures the temperature of the dermis layer among the plurality of layers constituting the skin.
Since the temperature sensor 24 is covered with the heat insulating material 23, the temperature sensor 24 is not affected by the temperature of the irradiation light guide path 21 and the light reception light guide path 22, and is near the dermis layer of the plurality of layers constituting the skin. The temperature can be measured.

光散乱媒質層選択部7は、導光部6により集光されかつ導光された皮膚から放射される複数種の後方散乱光から、真皮層により放射される後方散乱光を選択する。
受光部8は、短時間パルス光が皮膚によって後方散乱した光を受光する。
The light scattering medium layer selection unit 7 selects the backscattered light emitted by the dermis layer from a plurality of types of backscattered light emitted from the skin condensed and guided by the light guide unit 6.
The light receiving unit 8 receives light obtained by backscattering the short-time pulsed light by the skin.

光強度取得部9は、受光部8が受光した真皮層から放射される後方散乱光の異なる複数の時刻の受光強度を取得する。
ここで、この複数の時刻は、皮膚を構成する各々の層の伝搬光路長分布のピーク時間を含むことが好ましい。
このように、各々の層の伝搬光路長分布のピーク時間を含むことで、皮膚の複数の層から任意の層、例えば真皮層を効率的に選択することができる。
The light intensity acquisition unit 9 acquires the light reception intensities at different times of the backscattered light emitted from the dermis layer received by the light receiving unit 8.
Here, it is preferable that the plurality of times include the peak time of the propagation optical path length distribution of each layer constituting the skin.
As described above, by including the peak time of the propagation optical path length distribution of each layer, an arbitrary layer, for example, the dermis layer can be efficiently selected from a plurality of skin layers.

光路長取得部10は、光路長分布記憶部3から、伝搬光路長分布のモデルの所定の時刻における、皮膚の各々の層の光路長を取得する。ここでは、光路長分布記憶部3からある時刻における光路長を取得する。
無吸収時光強度取得部11は、時間分解波形記憶部4から、短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度を取得する。ここでは、時間分解波形記憶部4からある時刻における光強度を取得する。
光吸収係数算出部12は、短時間パルス光を照射した皮膚の真皮層における光吸収係数を算出する。
The optical path length acquisition unit 10 acquires from the optical path length distribution storage unit 3 the optical path length of each layer of the skin at a predetermined time of the model of the propagation optical path length distribution. Here, the optical path length at a certain time is acquired from the optical path length distribution storage unit 3.
The non-absorption light intensity acquisition unit 11 acquires the light intensity at a predetermined time of the model of the time-resolved waveform of the short-time pulsed light from the time-resolved waveform storage unit 4. Here, the light intensity at a certain time is acquired from the time-resolved waveform storage unit 4.
The light absorption coefficient calculation unit 12 calculates the light absorption coefficient in the dermis layer of the skin irradiated with the short-time pulse light.

この光吸収係数算出部12では、皮膚における任意の層の光吸収係数を、下記の式(4)

Figure 0005674094
(但し、I(t)は受光部8が時刻tにて受光した光強度、N(t)は短時間パルス光の時間分解波形の無吸収モデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出する。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 In the light absorption coefficient calculation unit 12, the light absorption coefficient of an arbitrary layer in the skin is expressed by the following equation (4).
Figure 0005674094
(Where I (t) is the light intensity received by the light receiving unit 8 at time t, N (t) is the light intensity at time t of the non-absorption model of the time-resolved waveform of the short-time pulse light, and Li (t) is (The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the skin, μ i is the light absorption coefficient of the i-th layer)
Calculate from
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

濃度算出部13は、真皮層における光吸収係数から、真皮層に含まれるグルコースの濃度を算出する。
この濃度算出部13では、皮膚の任意の層におけるグルコースの濃度を、下記の式(5)

Figure 0005674094
(但し、μaは皮膚の任意の層である第a層における光吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは皮膚を構成する主成分の個数、qは特定波長の種類数である)
から算出する。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 The concentration calculation unit 13 calculates the concentration of glucose contained in the dermis layer from the light absorption coefficient in the dermis layer.
In the concentration calculation unit 13, the glucose concentration in an arbitrary layer of the skin is expressed by the following equation (5).
Figure 0005674094
(Where μa is the light absorption coefficient in the a layer, which is an arbitrary layer of the skin, gj is the molar concentration of the jth component constituting the skin, εj is the light absorption coefficient of the jth component, and p is the main component constituting the skin. The number of components, q is the number of types of specific wavelengths)
Calculate from
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

濃度補正部14は、濃度算出部13で算出された真皮層のグルコースの濃度を、温度センサ24にて測定した真皮層の温度を用いて補正する。
この濃度補正部14では、濃度算出部13で算出された真皮層のグルコースの濃度を、温度センサ24にて測定された真皮層の温度と基準温度との差を用いて補正することで、この真皮層のグルコースの濃度に対する真皮層の温度の影響を抑えることが可能である。これにより、真皮層のグルコースの濃度における真皮層の温度の影響を抑制することが可能になり、グルコースの濃度を、非侵襲的に精度良く測定することが可能である。
The concentration correction unit 14 corrects the glucose concentration of the dermis layer calculated by the concentration calculation unit 13 using the temperature of the dermis layer measured by the temperature sensor 24.
The concentration correction unit 14 corrects the glucose concentration of the dermis layer calculated by the concentration calculation unit 13 by using the difference between the temperature of the dermis layer measured by the temperature sensor 24 and the reference temperature. It is possible to suppress the influence of the temperature of the dermis layer on the concentration of glucose in the dermis layer. Thereby, it becomes possible to suppress the influence of the temperature of the dermis layer on the concentration of glucose in the dermis layer, and it is possible to measure the concentration of glucose noninvasively with high accuracy.

このように構成された血糖値測定装置1では、照射部5から放射された連続波長あるいは特定の波長の短時間パルス光は、皮膚31に照射導光路21を介して照射される。皮膚31からは複数種の後方散乱光が放射されるが、これらの後方散乱光は受光導光路22により集光されて光散乱媒質層選択部7へ導光される。
また、これらの後方散乱光の集光と前後して、温度センサ24が皮膚31を構成する複数層のうちの真皮層の温度を測定する。
光散乱媒質層選択部7は、皮膚31から放射される複数種の後方散乱光から、真皮層により放射される後方散乱光のみを選択する。受光部8は、真皮層から放射される後方散乱光のみを受光する。
In the blood glucose level measuring apparatus 1 configured as described above, the short-time pulse light having a continuous wavelength or a specific wavelength emitted from the irradiation unit 5 is irradiated to the skin 31 via the irradiation light guide 21. A plurality of types of backscattered light is radiated from the skin 31, and these backscattered light are collected by the light receiving light guide path 22 and guided to the light scattering medium layer selection unit 7.
Further, the temperature sensor 24 measures the temperature of the dermis layer of the plurality of layers constituting the skin 31 before and after the collection of the backscattered light.
The light scattering medium layer selection unit 7 selects only the backscattered light emitted from the dermis layer from the multiple types of backscattered light emitted from the skin 31. The light receiving unit 8 receives only the backscattered light emitted from the dermis layer.

さらに、光強度取得部9は、時刻tにおいて受光部8が受光した真皮層から放射される後方散乱光の光強度を取得する。
一方、光路長取得部10は、光路長分布記憶部3から、皮膚モデルにおける伝搬光路長分布の時刻tにおける皮膚31の各層の光路長を取得し、無吸収時光強度取得部11は、時間分解波形記憶部4から、皮膚モデルにおける短時間パルス光の時間分解波形の時刻tにおける光の強度を取得する。
Furthermore, the light intensity acquisition unit 9 acquires the light intensity of the backscattered light emitted from the dermis layer received by the light receiving unit 8 at time t.
On the other hand, the optical path length acquisition unit 10 acquires the optical path length of each layer of the skin 31 at the time t of the propagation optical path length distribution in the skin model from the optical path length distribution storage unit 3, and the non-absorbing light intensity acquisition unit 11 The light intensity at time t of the time-resolved waveform of the short-time pulse light in the skin model is acquired from the waveform storage unit 4.

次いで、光吸収係数算出部12は、光強度取得部9が取得した光強度と、光路長取得部10が取得した皮膚の各層の光路長と、無吸収時光強度取得部11が取得した光強度とに基づいて、皮膚の真皮層の光吸収係数を算出する。
次いで、濃度算出部13は、光吸収係数算出部12が算出した光吸収係数に基づいて、皮膚20の真皮層に含まれるグルコースの濃度を、上記の式(5)に基づき算出する。
このようにして、真皮層に含まれるグルコースの濃度が算出される。
Next, the light absorption coefficient calculation unit 12 includes the light intensity acquired by the light intensity acquisition unit 9, the optical path length of each layer of the skin acquired by the optical path length acquisition unit 10, and the light intensity acquired by the non-absorption light intensity acquisition unit 11. Based on the above, the light absorption coefficient of the dermis layer of the skin is calculated.
Next, the concentration calculation unit 13 calculates the concentration of glucose contained in the dermis layer of the skin 20 based on the equation (5) based on the light absorption coefficient calculated by the light absorption coefficient calculation unit 12.
In this way, the concentration of glucose contained in the dermis layer is calculated.

次いで、濃度補正部14は、濃度算出部13で算出された真皮層のグルコースの濃度を、温度センサ24にて測定した真皮層の温度を用いて補正する。
このように、任意の温度における真皮層のグルコースの濃度を、温度センサ24にて測定した真皮層の温度を用いて補正することにより、真皮層のグルコースの濃度に対する温度の影響を小さくすることができる。
Next, the concentration correction unit 14 corrects the glucose concentration of the dermis layer calculated by the concentration calculation unit 13 using the temperature of the dermis layer measured by the temperature sensor 24.
Thus, by correcting the dermal layer glucose concentration at an arbitrary temperature using the dermal layer temperature measured by the temperature sensor 24, the influence of the temperature on the dermal layer glucose concentration can be reduced. it can.

以上により、真皮層から放射される後方散乱光を基に算出される真皮層に含まれるグルコースの濃度を、温度センサ24にて測定した真皮層の温度を用いて補正することで、真皮層に含まれるグルコースの濃度における真皮層の温度の影響を抑えることができる。したがって、真皮層に含まれるグルコース濃度を、非侵襲的に精度良く測定することができる。   As described above, the concentration of glucose contained in the dermis layer calculated based on the backscattered light radiated from the dermis layer is corrected using the temperature of the dermis layer measured by the temperature sensor 24. The influence of the temperature of the dermis layer on the concentration of glucose contained can be suppressed. Therefore, the glucose concentration contained in the dermis layer can be accurately measured noninvasively.

次に、血糖値測定装置1の動作を説明する。
血糖値測定装置1は、血糖値を測定する前に、予め皮膚モデルの各層における伝搬光路長分布と時間分解波形とを算出しておく必要がある。
図3は、人の皮膚組織の断面を示す模式図であり、皮膚31は、概ね水を20%程度含み、残部が蛋白質からなる厚み0.3mm程度の表皮層32と、表皮層32下に形成され、概ね水を60%程度、蛋白質、脂質及びグルコースを含有する厚み1.2mm程度の真皮層(任意の層)33と、真皮層33下に形成され、概ね脂質を90%以上含み、残部が水からなる厚み3.0mm程度の皮下組織34とにより構成されている。
Next, the operation of the blood sugar level measuring apparatus 1 will be described.
The blood glucose level measuring apparatus 1 needs to calculate the propagation optical path length distribution and the time-resolved waveform in each layer of the skin model before measuring the blood glucose level.
FIG. 3 is a schematic diagram showing a cross-section of human skin tissue. The skin 31 includes approximately 20% of water and the rest is made of protein and has a skin layer 32 having a thickness of approximately 0.3 mm and a skin layer 32 below the skin layer 32. A dermis layer (arbitrary layer) 33 having a thickness of about 1.2 mm containing approximately 60% water and containing proteins, lipids and glucose, and formed under the dermis layer 33, and generally containing 90% or more of lipids; The remaining part is composed of water and a subcutaneous tissue 34 having a thickness of about 3.0 mm.

ここで、皮膚モデルの伝搬光路長分布及び時間分解波形の算出方法を説明する。
初めに、シミュレーション部2は、皮膚モデルを生成する。皮膚モデルの生成は、皮膚の各層の光散乱係数、光吸収係数及び厚みを決定することで行う。ここで、皮膚の各層の散乱係数及び厚みは、個体による差が少ないので、予めサンプルを取ることなどによって決定すると良い。
また、ここで用いる皮膚モデルの光吸収係数はゼロとする。その理由は、この皮膚モデルを用いて光吸収量を算出するからである。
Here, a method of calculating the propagation optical path length distribution and time-resolved waveform of the skin model will be described.
First, the simulation unit 2 generates a skin model. The skin model is generated by determining the light scattering coefficient, light absorption coefficient, and thickness of each layer of the skin. Here, since the scattering coefficient and thickness of each layer of the skin have little difference between individuals, it is preferable to determine by taking a sample in advance.
The light absorption coefficient of the skin model used here is zero. The reason is that the amount of light absorption is calculated using this skin model.

シミュレーション部2は、皮膚モデルを生成すると、この皮膚モデルに光を照射するシミュレーションを行う。このとき、照射部5の位置と受光部8の位置との間の距離を決定しておく必要がある。シミュレーションは、モンテカルロ法を用いて行うと良い。モンテカルロ法によるシミュレーションは、例えば以下のように行われる。   When the simulation unit 2 generates a skin model, the simulation unit 2 performs a simulation of irradiating the skin model with light. At this time, it is necessary to determine the distance between the position of the irradiation unit 5 and the position of the light receiving unit 8. The simulation is preferably performed using the Monte Carlo method. The simulation by the Monte Carlo method is performed as follows, for example.

まず、シミュレーション部2は、照射する光のモデルを光子(光束)とし、この光子を皮膚モデルに照射する計算を行う。皮膚モデルに照射された光子は、皮膚モデル内を移動する。このとき、光子は、次に進む点までの距離L及び方向θを乱数Rによって決定する。シミュレーション部2は、光子が次に進む点までの距離Lの計算を、式(6)により行う。

Figure 0005674094
ただし、μsは、皮膚モデルの第s層(表皮層、真皮層、皮下組織層の何れか)の散乱係数を示す。 First, the simulation unit 2 performs calculation for irradiating the skin model with a photon (light beam) as a model of light to be irradiated. Photons irradiated to the skin model move in the skin model. At this time, the photon determines the distance L and the direction θ to the next advancing point by the random number R. The simulation unit 2 calculates the distance L to the point at which the photon advances next using Equation (6).
Figure 0005674094
Here, μs represents the scattering coefficient of the s-th layer (any one of the epidermis layer, dermis layer, and subcutaneous tissue layer) of the skin model.

また、シミュレーション部2は、光子が次に進む点までの方向θの計算を、式(7)により行う。

Figure 0005674094
ただし、gは、散乱角度の余弦(cos)の平均である非等方性パラメータを示し、皮膚の非等方性パラメータは、略0.9である。 In addition, the simulation unit 2 calculates the direction θ up to the point where the photon advances next by Expression (7).
Figure 0005674094
However, g shows the anisotropic parameter which is the average of the cosine (cos) of a scattering angle, and the anisotropic parameter of skin is about 0.9.

シミュレーション部2は、上記式(6)及び式(7)の計算を単位時間毎に繰り返すことにより、照射部5から受光部8までの光子の移動経路を算出することができる。シミュレーション部2は、複数の光子について移動距離の算出を行う。例えば、シミュレーション部2は、108個の光子について移動距離を算出する。   The simulation unit 2 can calculate the movement path of photons from the irradiation unit 5 to the light receiving unit 8 by repeating the calculations of the above formulas (6) and (7) every unit time. The simulation unit 2 calculates the movement distance for a plurality of photons. For example, the simulation unit 2 calculates the movement distance for 108 photons.

図4は、シミュレーション部が算出した各層の伝搬光路長分布を示す図である。
図4では、横軸を光子の照射からの経過時間とし、縦軸を光路長の対数表示としている。
シミュレーション部2は、受光部8に到達した光子の各々の移動経路を、移動経路が通過する層毎に分類する。そして、シミュレーション部2は、単位時間毎に到達した光子の移動経路の平均長を分類された層毎に算出することで、図4に示すような皮膚の各層の伝搬光路長分布を算出する。
FIG. 4 is a diagram illustrating the propagation optical path length distribution of each layer calculated by the simulation unit.
In FIG. 4, the horizontal axis represents the elapsed time from the photon irradiation, and the vertical axis represents the logarithm of the optical path length.
The simulation unit 2 classifies each movement path of the photons that have reached the light receiving unit 8 for each layer through which the movement path passes. And the simulation part 2 calculates the propagation | transmission optical path length distribution of each layer of skin as shown in FIG. 4 by calculating the average length of the movement path | route of the photon which arrived for every unit time for every classified layer.

図5は、シミュレーション部が算出した時間分解波形を示す図である。
図5では、横軸を光子の照射からの経過時間とし、縦軸を受光部8が検出した光子数としている。
シミュレーション部2は、単位時間毎に受光部8に到達した光子の個数を算出することで、図5に示すような皮膚モデルの時間分解波形を算出する。
上述したような処理により、シミュレーション部2は、複数の波長に対して、皮膚モデルの伝搬光路長分布及び時間分解波形を算出する。このとき、シミュレーション部2は、皮膚の主成分(水、たんぱく質、脂質、グルコース等)の吸収スペクトルの差が大きくなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 5 is a diagram illustrating a time-resolved waveform calculated by the simulation unit.
In FIG. 5, the horizontal axis represents the elapsed time from photon irradiation, and the vertical axis represents the number of photons detected by the light receiving unit 8.
The simulation unit 2 calculates the time-resolved waveform of the skin model as shown in FIG. 5 by calculating the number of photons that have reached the light receiving unit 8 per unit time.
Through the processing described above, the simulation unit 2 calculates the propagation optical path length distribution and time-resolved waveform of the skin model for a plurality of wavelengths. At this time, the simulation unit 2 may calculate the propagation optical path length distribution and the time-resolved waveform for a wavelength at which the difference in absorption spectrum of the skin main components (water, protein, lipid, glucose, etc.) becomes large.

図6は、水による光吸収波長特性を示す図である(久保宇市著、「医用レーザ入門」、第1版、オーム社、昭和60年6月25日発行、第70頁、ISBN4−274−03065−2)。
図6では、横軸を照射する光の波長(μm)とし、縦軸を照射する光の皮膚への浸透深さ(cm)とし、水に向かって光を入射した場合、入射時の光強度が1/10に減少するまでに進む浸透深さを赤外域の各波長の光に対して示している。
例えば、3.0μm付近の波長帯域の光では、浸透深さが2×10−3cm程度と浅く、水に吸収され易く、また、2.0μm以下の波長帯域の光では、浸透深さが10−2cmより深く、水に吸収され難いことが分かる。
FIG. 6 is a diagram showing the light absorption wavelength characteristics of water (by Kubo City, “Introduction to Medical Lasers”, 1st edition, Ohmsha, published on June 25, 1985, page 70, ISBN4-274. -03065-2).
In FIG. 6, the horizontal axis represents the wavelength of light (μm), the vertical axis represents the penetration depth of the light to the skin (cm), and the light intensity at the time of incidence when entering the water. Shows the penetration depth that advances until it decreases to 1/10 for light of each wavelength in the infrared region.
For example, light having a wavelength band near 3.0 μm has a penetration depth as shallow as about 2 × 10 −3 cm and is easily absorbed by water, and light having a wavelength band of 2.0 μm or less has a penetration depth of about 2 × 10 −3 cm. It can be seen that it is deeper than 10 −2 cm and is hardly absorbed by water.

図7は、皮膚の主成分の吸収スペクトルを示す図である。この図7では、横軸を照射する光の波長とし、縦軸を吸収係数としている。
図7によれば、グルコースの吸収係数は波長が1600nmのときに極大となり、水の吸収係数は波長が1450nmのときに極大となることがわかる。
したがって、シミュレーション部2は、例えば1400nm、1450nm、1500nm、1600nm、1680nm、1720nm、1740nmというように皮膚の主成分の吸収スペクトルの差が大きくなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 7 is a diagram showing an absorption spectrum of the main component of the skin. In FIG. 7, the horizontal axis represents the wavelength of light to be irradiated, and the vertical axis represents the absorption coefficient.
FIG. 7 shows that the absorption coefficient of glucose is maximized when the wavelength is 1600 nm, and the absorption coefficient of water is maximized when the wavelength is 1450 nm.
Therefore, the simulation unit 2 may calculate the propagation optical path length distribution and the time-resolved waveform for wavelengths where the difference in the absorption spectrum of the main component of the skin becomes large, such as 1400 nm, 1450 nm, 1500 nm, 1600 nm, 1680 nm, 1720 nm, and 1740 nm. .

シミュレーション部2は、複数の波長に対する皮膚モデルの伝搬光路長分布及び時間分解波形を算出すると、伝搬光路長分布の情報を光路長分布記憶部3に記憶させ、時間分解波形の情報を時間分解波形記憶部4に記憶させる。   When the simulation unit 2 calculates the propagation optical path length distribution and the time-resolved waveform of the skin model for a plurality of wavelengths, the simulation unit 2 stores the information on the propagation optical path length distribution in the optical path length distribution storage unit 3 and the time-resolved waveform information as the time-resolved waveform. Store in the storage unit 4.

図8は、皮膚31の表皮層32、真皮層33及び皮下組織34各々に照射される光の波長と吸収係数との関係を示す図であり、図中、Aは表皮層32の吸収係数を、Bは真皮層33の吸収係数を、Cは皮下組織34の吸収係数を、それぞれ示している。
この図によれば、真皮層33の吸収スペクトルには、波長1450nm付近に極大値があり、その吸収係数値は水の吸収係数の60%程度の値なので、真皮層33の吸収の60%は水分によるものと考えられる。また、表皮層32の吸収スペクトルにおいても、波長1450nm付近に真皮層23の1/3程度の大きさの極大値があり、その吸収係数値は水の吸収係数の20%程度の値なので、表皮層32の吸収の20%は水分によるものと考えられる。一方、皮下組織34の吸収スペクトルでは、波長1450nm付近に真皮層23の1/10程度の大きさの極大値しかなく、その吸収係数値は水の吸収係数の数%程度の値なので、皮下組織34の吸収の数%程度が水分によるものと考えられる。
FIG. 8 is a diagram showing the relationship between the wavelength of light applied to each of the epidermis layer 32, the dermis layer 33 and the subcutaneous tissue 34 of the skin 31 and the absorption coefficient. In the figure, A represents the absorption coefficient of the epidermis layer 32. , B indicates the absorption coefficient of the dermis layer 33, and C indicates the absorption coefficient of the subcutaneous tissue 34, respectively.
According to this figure, the absorption spectrum of the dermis layer 33 has a maximum value near the wavelength of 1450 nm, and its absorption coefficient value is about 60% of the absorption coefficient of water, so that 60% of the absorption of the dermis layer 33 is It is thought to be due to moisture. Also in the absorption spectrum of the skin layer 32, there is a maximum value of about 1/3 the size of the dermis layer 23 near the wavelength of 1450 nm, and the absorption coefficient value is about 20% of the absorption coefficient of water. It is believed that 20% of the absorption of layer 32 is due to moisture. On the other hand, in the absorption spectrum of the subcutaneous tissue 34, there is only a maximum value of about 1/10 the size of the dermis layer 23 near the wavelength of 1450 nm, and the absorption coefficient value is about several percent of the absorption coefficient of water. It is thought that about several percent of absorption of 34 is due to moisture.

以上により、真皮層33の吸収の60%は水分によるものと考えられ、また、表皮層32の吸収の20%は水分によるものと考えられるが、皮下組織34では、その吸収の数%程度が水分によるものと考えられる。したがって、皮膚から血糖値を非侵襲的に測定するには、測定対象としてグルコースを含んでいる真皮層33を選択し、この真皮層33に含まれるグルコース量を測定すればよいことが分かる。   From the above, 60% of the absorption of the dermis layer 33 is considered to be due to moisture, and 20% of the absorption of the epidermis layer 32 is considered to be due to moisture. It is thought to be due to moisture. Therefore, it can be understood that in order to non-invasively measure the blood glucose level from the skin, it is only necessary to select the dermis layer 33 containing glucose as a measurement target and measure the amount of glucose contained in the dermis layer 33.

ところで、水の吸収係数には温度依存性があることが知られている。
図9は、水の吸光度スペクトルの温度依存性を示す図であり、図中、Aは41℃における水の吸光度スペクトル、Bは21℃における水の吸光度スペクトルである。
ここでは、セル長が1mmの光学セルを用い、光学セルホルダとして温調ユニットタイプのものを用い、恒温循環槽を用いて±0.1℃の範囲で温度調節を行い、紫外可視近赤外分光光度計 Lambda 900S(パーキンエルマー社製)を用いて41℃及び21℃各々における水の吸光度スペクトルを測定した。
図9によれば、水の吸光度スペクトルの極大値は、21℃では波長1450nm付近にあり、温度が21℃より高くなるにしたがって、極大値が1450nmより短波長側にシフトすることが分かる。
Incidentally, it is known that the absorption coefficient of water has temperature dependency.
FIG. 9 is a diagram showing the temperature dependence of the water absorbance spectrum, in which A is the water absorbance spectrum at 41 ° C. and B is the water absorbance spectrum at 21 ° C.
Here, an optical cell having a cell length of 1 mm is used, a temperature control unit type optical cell holder is used, temperature is adjusted within a range of ± 0.1 ° C. using a constant temperature circulation tank, and an ultraviolet-visible near-infrared spectrophotometer is used. The absorbance spectrum of water at 41 ° C. and 21 ° C. was measured using a total Lambda 900S (manufactured by Perkin Elmer).
According to FIG. 9, it can be seen that the maximum value of the absorbance spectrum of water is near the wavelength of 1450 nm at 21 ° C., and the maximum value shifts to the shorter wavelength side from 1450 nm as the temperature becomes higher than 21 ° C.

図10は、水の吸光度スペクトル差の温度依存性を示す図であり、1000〜2000nmの波長領域について、21℃における蒸留水の吸光度スペクトルを基準として、25℃における蒸留水の吸光度スペクトルと21℃における蒸留水の吸光度スペクトルとの差を示したものである。
図10によれば、蒸留水の吸光度スペクトルは、波長により温度の影響が異なることが分かる。したがって、グルコース水溶液中のグルコース濃度を吸光度で求める場合、用いる波長に対応して温度補正を行えば、水の吸光度スペクトルの影響を除外した正確な測定値が得られることとなる。
FIG. 10 is a diagram showing the temperature dependence of the difference in the absorbance spectrum of water. In the wavelength region of 1000 to 2000 nm, the absorbance spectrum of distilled water at 25 ° C. and 21 ° C. based on the absorbance spectrum of distilled water at 21 ° C. It shows the difference from the absorbance spectrum of distilled water at.
According to FIG. 10, the absorbance spectrum of distilled water has different temperature effects depending on the wavelength. Therefore, when the glucose concentration in the aqueous glucose solution is determined by absorbance, if the temperature is corrected according to the wavelength used, an accurate measurement value excluding the influence of the absorbance spectrum of water can be obtained.

以上により、短時間パルス光を用いて真皮層33に含まれるグルコース量を測定し、このグルコース量を真皮層33の温度により補正すれば、皮膚から血糖値を非侵襲的にて正確に測定することができる。   As described above, if the amount of glucose contained in the dermis layer 33 is measured using short-time pulsed light, and the amount of glucose is corrected by the temperature of the dermis layer 33, the blood sugar level is accurately measured non-invasively from the skin. be able to.

図11は、グルコース水溶液の吸光度スペクトルの一例を示す図であり、図中、Aは参照側を蒸留水(21.5℃)として測定した9.4g/dlの高濃度のグルコース水溶液の吸光度スペクトルの測定値を、Bは同グルコース水溶液の吸光度スペクトルの測定値を温度補正及び体積補正した補正値を、それぞれ示している。   FIG. 11 is a diagram showing an example of the absorbance spectrum of an aqueous glucose solution. In the figure, A is the absorbance spectrum of a high-concentration glucose aqueous solution of 9.4 g / dl measured using the reference side as distilled water (21.5 ° C.). B represents a correction value obtained by temperature correction and volume correction of the measurement value of the absorbance spectrum of the glucose aqueous solution.

このグルコース水溶液では、グルコース濃度を健康な人の約100倍である9.4g/dlとしたので、このときの体積増加は約6%である。
また、この濃度では、グルコースと水の体積比率が6:100と大きく、無視できない。このように、試料側の水の体積が参照側の水の体積と比べて減少しているので、水の吸光度の大きい1400〜1500nm付近と1900nm以上の波長領域では、吸光度スペクトル差が大きく負になっている。この体積減少は、セル長1mmに対して0.057mmの減少に相当している。
In this glucose aqueous solution, since the glucose concentration was 9.4 g / dl, which is about 100 times that of a healthy person, the volume increase at this time is about 6%.
At this concentration, the volume ratio of glucose and water is as large as 6: 100 and cannot be ignored. Thus, since the volume of water on the sample side is reduced compared to the volume of water on the reference side, the absorbance spectrum difference is greatly negative in the vicinity of 1400-1500 nm where the absorbance of water is large and in the wavelength region of 1900 nm or more. It has become. This volume reduction corresponds to a reduction of 0.057 mm for a cell length of 1 mm.

図11から次のことが分かる。
例えば、波長1600nmにおいては、9.4g/dlのグルコース量で吸光度が0.035程度であるから、吸収係数は0.08/mm程度となる。一方、真皮層におけるグルコース量の正常値は100mg/dl程度であるから、この正常値に対応する吸収係数は0.0008/mm程度となる。
The following can be understood from FIG.
For example, at a wavelength of 1600 nm, the absorbance is about 0.035 with a glucose amount of 9.4 g / dl, so the absorption coefficient is about 0.08 / mm. On the other hand, since the normal value of the glucose amount in the dermis layer is about 100 mg / dl, the absorption coefficient corresponding to this normal value is about 0.0008 / mm.

次に、温度の影響について図10を参照して説明する。
図10中、波長1600nmにおいては、4℃の上昇に対して吸光度差は−0.008程度であるから、吸収係数の変化は−0.02/mm程度となる。
ここで、温度変化に対して吸光度変化が線形になると仮定すると、温度が1℃上昇すると、吸収係数の変化量は−0.004/mmとなる。すなわち、この1℃上昇は、グルコース濃度が500mg/dlの減少に相当することがわかる。
これは、吸光光度計を用いて、セル長1mm、試料温度21℃及び41℃それぞれの吸光度スペクトルを求めた結果における補正値である。
Next, the influence of temperature will be described with reference to FIG.
In FIG. 10, at a wavelength of 1600 nm, the absorbance difference is about −0.008 with respect to an increase of 4 ° C., so the change in absorption coefficient is about −0.02 / mm.
Here, assuming that the absorbance change is linear with respect to the temperature change, when the temperature rises by 1 ° C., the amount of change in the absorption coefficient becomes −0.004 / mm. That is, this 1 ° C. rise corresponds to a decrease in the glucose concentration of 500 mg / dl.
This is a correction value in the result of obtaining the absorbance spectra of a cell length of 1 mm and sample temperatures of 21 ° C. and 41 ° C. using an absorptiometer.

なお、実際の皮膚内におけるグルコース濃度に伴う吸光度変化は、皮膚内の散乱により光路長が延長し、吸光光度計を用いて、セル長1mm、試料温度21℃及び41℃それぞれの吸光度スペクトルを求めた結果よりも一桁程度大きくなる。したがって、実際の皮膚における温度変化に対する吸収係数の補正値も一桁程度大きくなる。   In addition, the absorbance change accompanying the glucose concentration in the actual skin is obtained by extending the optical path length due to scattering in the skin, and using an absorptiometer, obtain the absorbance spectra for a cell length of 1 mm and sample temperatures of 21 ° C. and 41 ° C., respectively. The result is about an order of magnitude larger. Therefore, the correction value of the absorption coefficient with respect to the temperature change in the actual skin is also increased by about one digit.

次に、この血糖値測定装置1を用いて血糖値を測定する手順について、図12に基づき説明する。
まず、被測定者が血糖値測定装置1を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置1を動作させる。
ここでは、温度センサ24により、皮膚31を構成する真皮層33の温度を測定する(ステップS1)。
一方、照射部5が、皮膚31に対して、この皮膚31を構成する真皮層33に短時間パルス光を照射する(ステップS2)。
Next, a procedure for measuring a blood sugar level using the blood sugar level measuring apparatus 1 will be described with reference to FIG.
First, the person to be measured applies the blood sugar level measuring device 1 to the skin such as the wrist, and operates the blood sugar level measuring device 1 by pressing a measurement start switch (not shown) or the like.
Here, the temperature of the dermis layer 33 constituting the skin 31 is measured by the temperature sensor 24 (step S1).
On the other hand, the irradiation unit 5 irradiates the dermis layer 33 constituting the skin 31 with the pulsed light for a short time on the skin 31 (step S2).

次いで、導光部6により、皮膚31から放射される複数種の後方散乱光、すなわち皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光を集光し、光散乱媒質層選択部7へ導光する。
光散乱媒質層選択部7では、導光部6により集光されかつ導光された皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光から、真皮層33により放射される後方散乱光を選択する(ステップS3)。
Next, the light guiding unit 6 collects a plurality of types of backscattered light radiated from the skin 31, that is, backscattered light emitted from the subcutaneous tissue 32, the dermis layer 33, and the epidermis layer 34, and a light scattering medium layer. The light is guided to the selection unit 7.
In the light scattering medium layer selection unit 7, the dermis layer 33 emits the backscattered light emitted from each of the subcutaneous tissue 32, the dermis layer 33, and the epidermis layer 34 collected and guided by the light guide unit 6. Backscattered light is selected (step S3).

次いで、受光部8により、真皮層33から放射される単位時間毎の後方散乱光を受光する(ステップS4)。このとき、受光部8では、照射開始からの単位時間毎(例えば、1ピコ秒毎の時刻t〜t)の受光強度を内部メモリに記録しておく。 Next, the light receiving unit 8 receives backscattered light emitted from the dermis layer 33 per unit time (step S4). At this time, the light receiving unit 8 records the received light intensity for each unit time from the start of irradiation (for example, times t 1 to t m every 1 picosecond) in the internal memory.

この受光部8が受光を完了したことを光強度取得部9に知らせると、この光強度取得部9では、真皮層33から放射される後方散乱光の異なる時刻の受光強度を取得する(ステップS5)。すなわち、複数の時刻t〜t各々における後方散乱光の光強度を取得する。
ここで、光強度取得部9が光強度を取得する時刻t〜tは、真皮層33から放射される後方散乱光のピークとなる時刻を含むことが好ましい。すなわち、照射部5が短時間パルス光を照射した時刻に、真皮層33の光路長が極大となる時間を加算した時刻とすることが好ましい。
When the light intensity acquisition unit 9 notifies the light intensity acquisition unit 9 that the light reception unit 8 has completed light reception, the light intensity acquisition unit 9 acquires the received light intensity at different times of the backscattered light emitted from the dermis layer 33 (step S5). ). That is, the light intensity of the backscattered light at each of the plurality of times t 1 to t m is acquired.
Here, it is preferable that the times t 1 to t m at which the light intensity acquisition unit 9 acquires the light intensity include the time at which the peak of the backscattered light emitted from the dermis layer 33 is obtained. That is, it is preferable that the time when the light path length of the dermis layer 33 is maximized is added to the time when the irradiation unit 5 irradiates the pulsed light for a short time.

次いで、光吸収係数算出部12では、光強度取得部9にて取得した真皮層33から放射される後方散乱光の異なる時刻の受光強度、すなわち、複数の時刻t〜t各々における後方散乱光の光強度を基に、真皮層33の光吸収係数を、下記の式(8)

Figure 0005674094
(但し、I(t)は受光部5が時刻tにて受光した光強度、N(t)は短時間パルス光の時間分解波形の無吸収モデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出する(ステップS6)。
ここでは、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 Next, in the light absorption coefficient calculation unit 12, the received light intensity at different times of the backscattered light emitted from the dermis layer 33 acquired by the light intensity acquisition unit 9, that is, backscattering at each of a plurality of times t 1 to t m. Based on the light intensity of light, the light absorption coefficient of the dermis layer 33 is expressed by the following equation (8).
Figure 0005674094
(Where I (t) is the light intensity received by the light receiving unit 5 at time t, N (t) is the light intensity at time t of the non-absorption model of the time-resolved waveform of the short-time pulse light, and Li (t) is (The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the skin, μ i is the light absorption coefficient of the i-th layer)
(Step S6).
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

次いで、濃度算出部13では、光吸収係数算出部12が算出した真皮層33の光吸収係数μを基に、真皮層33に含まれるグルコースの濃度を算出する。
ここでは、例えば、単一波長での主要成分の光吸収係数と、各層の光吸収係数との関係から、グルコースの濃度を算出する場合について説明する。
下記の式(9)は、皮膚の光吸収係数が、水、グルコース、蛋白質、脂質及びその他の成分各々の波長に関する関数とその係数との積の和であることを示している。

Figure 0005674094
Next, the concentration calculator 13 calculates the concentration of glucose contained in the dermis layer 33 based on the light absorption coefficient μ of the dermis layer 33 calculated by the light absorption coefficient calculator 12.
Here, for example, a case where the concentration of glucose is calculated from the relationship between the light absorption coefficient of the main component at a single wavelength and the light absorption coefficient of each layer will be described.
Equation (9) below shows that the light absorption coefficient of the skin is the sum of the product of the function and the coefficient relating to the wavelength of each of water, glucose, protein, lipid and other components.
Figure 0005674094

式(10)は、式(9)で示した皮膚の光吸収係数より、皮膚の表皮、真皮、皮下組織の各層の光吸収係数は、水、グルコース、蛋白質、脂質及びその他の成分各々の波長に関する光吸収係数と濃度との積の和であることを示している。

Figure 0005674094
Equation (10) shows the light absorption coefficient of each layer of the skin epidermis, dermis, and subcutaneous tissue from the light absorption coefficient of the skin shown in Equation (9), and the wavelength of water, glucose, protein, lipid and other components. This is the sum of the product of the light absorption coefficient and the concentration.
Figure 0005674094

式(11)は、上記の式(10)を行列で表した式であり、式(11)中、「C」は、皮膚の表皮、真皮、皮下組織の各層毎の水、グルコース、蛋白質、脂質及びその他の成分各々の濃度を示す係数行列である。

Figure 0005674094
Formula (11) is a formula representing the above formula (10) as a matrix, and in formula (11), “C” represents water, glucose, protein for each layer of the skin epidermis, dermis, and subcutaneous tissue, It is a coefficient matrix which shows the density | concentration of each of a lipid and another component.
Figure 0005674094

この式(11)を変形することにより、「C」を解く連立一次方程式である式(12)が導き出せる。

Figure 0005674094
By transforming Equation (11), Equation (12), which is a simultaneous linear equation for solving “C”, can be derived.
Figure 0005674094

この式(12)を行列で表した式が、式(13)である。

Figure 0005674094
Expression (13) is an expression in which Expression (12) is expressed as a matrix.
Figure 0005674094

ここでは、真皮(L2)の光吸収係数について、複数の波長(λ)における皮膚の主成分吸収係数とその濃度の関係について、式(14)で示される一次連立方程式を立てる。

Figure 0005674094
Here, with respect to the light absorption coefficient of the dermis (L2), a linear simultaneous equation represented by Expression (14) is established for the relationship between the skin principal component absorption coefficient and its concentration at a plurality of wavelengths (λ).
Figure 0005674094

この式(14)は、式(15)と変形することができる。

Figure 0005674094
This equation (14) can be transformed to the equation (15).
Figure 0005674094

この式(15)を変形することにより、「C」を解く連立一次方程式である式(16)を導くことができる。
式(16)中、εは水の光吸収係数、εはグルコースの光吸収係数、εは蛋白質の光吸収係数、εは脂質の光吸収係数、μL1は表皮の光吸収係数、μL2は真皮の光吸収係数、μL3は皮下組織の光吸収係数である。なお、皮膚主成分の光吸収係数、皮膚の層はさらに追加されても良い。

Figure 0005674094
このように、真皮(L2)に係わる係数行列「C」は、式(16)から算出することができる。 By transforming Equation (15), Equation (16) that is a simultaneous linear equation for solving “C” can be derived.
In equation (16), ε W is the light absorption coefficient of water, ε G is the light absorption coefficient of glucose, ε P is the light absorption coefficient of the protein, ε L is the light absorption coefficient of the lipid, and μ L1 is the light absorption coefficient of the epidermis. , mu L2 light absorption coefficient of the dermis, the mu L3 is a light absorption coefficient of the subcutaneous tissue. The light absorption coefficient of the skin main component and the skin layer may be further added.
Figure 0005674094
Thus, the coefficient matrix “C” related to the dermis (L2) can be calculated from the equation (16).

さらに、ここでは、複数波長での差分での説明を行う。
ここでは、真皮層33に含まれるグルコースの濃度を下記の式(17)

Figure 0005674094
(但し、μaは皮膚の任意の層である第a層における光吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは皮膚を構成する主成分の個数、qは短時間パルス光の種類数である)
から算出する(ステップS7)。 Furthermore, here, the explanation is based on the difference at a plurality of wavelengths.
Here, the concentration of glucose contained in the dermis layer 33 is expressed by the following equation (17).
Figure 0005674094
(Where μa is the light absorption coefficient in the a layer, which is an arbitrary layer of the skin, gj is the molar concentration of the jth component constituting the skin, εj is the light absorption coefficient of the jth component, and p is the main component constituting the skin. The number of components, q is the number of types of short-time pulsed light)
(Step S7).

次いで、濃度補正部14では、濃度算出部13で算出された真皮層33のグルコースの濃度を、温度センサ24にて測定した真皮層33の温度を用いて、下記の補正式:
グルコースの濃度の測定値−水の吸収係数相応値
にて補正する(ステップS8)。
例えば、真皮層33の温度がT℃上昇した場合、光の吸収係数の変化量は−0.004/mm×Tとなる。したがって、真皮層33の温度がT℃上昇した場合のグルコース濃度の減少量は500mg/dl×Tとなる。
Next, the concentration correction unit 14 uses the temperature of the dermis layer 33 measured by the temperature sensor 24 to calculate the glucose concentration of the dermis layer 33 calculated by the concentration calculation unit 13 as follows:
The measured value of glucose concentration is corrected by a value corresponding to the absorption coefficient of water (step S8).
For example, when the temperature of the dermis layer 33 is increased by T ° C., the amount of change in the light absorption coefficient is −0.004 / mm × T. Therefore, the amount of decrease in glucose concentration when the temperature of the dermis layer 33 is increased by T ° C. is 500 mg / dl × T.

上述の血糖値測定装置1は、コンピュータシステムを内蔵しており、上述した各ステップの処理動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されている。そこで、このプログラムをコンピュータが読み出して実行することにより、上記の処理動作を行うことができる。
ここで、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等が挙げられる。
また、このコンピュータプログラムを通信回線によりコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
The blood glucose level measuring apparatus 1 described above has a built-in computer system, and the processing operation of each step described above is stored in a computer-readable recording medium in the form of a program. Therefore, the above-described processing operation can be performed by the computer reading and executing this program.
Here, examples of the computer-readable recording medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory.
Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、上記の各ステップの一部を実現するためのものであってもよい。
さらに、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
The program may be for realizing a part of the above steps.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.

以上説明したように、本実施形態によれば、皮膚に短時間パルス光を照射した際に、真皮層の温度を測定し、この真皮層から放射される後方散乱光を基に算出される皮膚の真皮層におけるグルコースの濃度を、測定した真皮層の温度に基づき温度補正するので、この後方散乱光を基に算出される真皮層におけるグルコースの濃度に対する温度の影響を小さくすることができる。したがって、グルコースの濃度における真皮層の温度の影響を小さくすることができ、グルコースの濃度を、非侵襲的に精度良く測定することができる。   As described above, according to the present embodiment, when the skin is irradiated with pulsed light for a short time, the temperature of the dermis layer is measured, and the skin is calculated based on the backscattered light emitted from the dermis layer. Since the glucose concentration in the dermis layer is corrected based on the measured temperature of the dermis layer, the influence of the temperature on the glucose concentration in the dermis layer calculated based on the backscattered light can be reduced. Therefore, the influence of the temperature of the dermis layer on the glucose concentration can be reduced, and the glucose concentration can be accurately measured noninvasively.

[第2の実施形態]
図13は、本発明の第2の実施形態の血糖値測定装置(濃度定量装置)の導光部の構成の概略を示す断面図であり、本実施形態の血糖値測定装置41の導光部42が第1の実施形態の血糖値測定装置1の導光部6と異なる点は、温度センサ24を、皮膚31の表面の温度を測定する表面温度センサ(表面温度測定手段)43と、断熱材23内に設けられ表面温度センサ43自体の温度を直接測定する内部温度センサ(内部温度測定手段)44とに替え、さらに、表面温度センサ43にて測定された真皮層33の温度と内部温度センサ44にて測定された表面温度センサ43近傍の温度との差を、単位時間当たりの温度変化率として算出する表面・内部温度変化率算出部(表面・内部温度変化率算出手段)45を設け、この表面・内部温度変化率算出部45を濃度補正部14に接続した点であり、導光部42以外の構成であるシミュレーション部2〜濃度補正部14については第1の実施形態の血糖値測定装置1と全く同様であるから、説明を省略する。
[Second Embodiment]
FIG. 13: is sectional drawing which shows the outline of a structure of the light guide part of the blood glucose level measuring apparatus (concentration determination apparatus) of the 2nd Embodiment of this invention, and the light guide part of the blood glucose level measuring apparatus 41 of this embodiment 42 differs from the light guide 6 of the blood sugar level measuring apparatus 1 of the first embodiment in that the temperature sensor 24, the surface temperature sensor (surface temperature measuring means) 43 that measures the temperature of the surface of the skin 31, and the heat insulation. Instead of an internal temperature sensor (internal temperature measuring means) 44 that is provided in the material 23 and directly measures the temperature of the surface temperature sensor 43 itself, the temperature of the dermis layer 33 measured by the surface temperature sensor 43 and the internal temperature are also measured. A surface / internal temperature change rate calculating unit (surface / internal temperature change rate calculating means) 45 is provided for calculating a difference between the temperature near the surface temperature sensor 43 measured by the sensor 44 as a temperature change rate per unit time. , Surface and internal temperature change The calculation unit 45 is connected to the concentration correction unit 14, and the simulation unit 2 to the concentration correction unit 14, which are components other than the light guide unit 42, are exactly the same as the blood glucose level measurement device 1 of the first embodiment. Therefore, the description is omitted.

次に、この血糖値測定装置41を用いて血糖値を測定する手順について、図14に基づき説明する。
まず、被測定者が血糖値測定装置41を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置41を動作させる。
ここでは、表面温度センサ43により皮膚31の表面近傍、すなわち真皮層33の温度を測定し、内部温度センサ44により表面温度センサ43近傍の温度を測定する(ステップS11)。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 41 will be described with reference to FIG.
First, the person to be measured applies the blood sugar level measuring device 41 to the skin such as the wrist, and operates the blood sugar level measuring device 41 by pressing a measurement start switch (not shown) or the like.
Here, the surface temperature sensor 43 measures the vicinity of the surface of the skin 31, that is, the temperature of the dermis layer 33, and the internal temperature sensor 44 measures the temperature near the surface temperature sensor 43 (step S11).

一方、照射部5が、皮膚31に対して、この皮膚31を構成する真皮層33に短時間パルス光を照射する(ステップS12)。
その後、皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光から、真皮層33により放射される後方散乱光を選択する手順(ステップS13)から、濃度算出部13により、真皮層33に含まれるグルコースの濃度を算出する手順(ステップS17)までは、第1の実施形態の図12に示す手順(ステップS3〜S7)と全く同様である。
On the other hand, the irradiation unit 5 irradiates the dermis layer 33 constituting the skin 31 with short-time pulsed light on the skin 31 (step S12).
Thereafter, from the procedure (step S13) of selecting the backscattered light emitted from the dermis layer 33 from the backscattered light emitted from the subcutaneous tissue 32, the dermis layer 33, and the epidermis layer 34, the concentration calculation unit 13 performs the dermis. The procedure (step S17) for calculating the concentration of glucose contained in the layer 33 is exactly the same as the procedure (steps S3 to S7) shown in FIG. 12 of the first embodiment.

次いで、表面・内部温度変化率算出部45により、表面温度センサ43にて測定された真皮層33の温度と内部温度センサ44にて測定された表面温度センサ43近傍の温度との差を、単位時間当たりの温度変化率として算出し、この単位時間当たりの温度変化率が設定値以内か否かを判定する(ステップS18)。
ここで、単位時間当たりの温度変化率が設定値以内であれば、次の手順である濃度補正部14による温度補正を行い、設定値を超えていれば、その旨を音声等の告知手段で告知し、再度、表面温度センサ43により皮膚31の表面近傍、すなわち真皮層33の温度を測定し、内部温度センサ44により表面温度センサ43近傍の温度を測定する(ステップS11)。
Next, the difference between the temperature of the dermis layer 33 measured by the surface temperature sensor 43 and the temperature in the vicinity of the surface temperature sensor 43 measured by the internal temperature sensor 44 by the surface / internal temperature change rate calculation unit 45 is expressed as a unit. The temperature change rate per time is calculated, and it is determined whether or not the temperature change rate per unit time is within a set value (step S18).
Here, if the rate of temperature change per unit time is within the set value, the temperature correction by the density correction unit 14 as the next procedure is performed. If the rate exceeds the set value, a notification means such as sound is used. Then, the surface temperature sensor 43 measures the temperature near the surface of the skin 31, that is, the temperature of the dermis layer 33, and the internal temperature sensor 44 measures the temperature near the surface temperature sensor 43 (step S11).

濃度補正部14では、濃度算出部13で算出された真皮層33のグルコースの濃度を、表面温度センサ43にて測定した真皮層33の温度を用いて、下記の補正式:
グルコースの濃度の測定値−水の吸収係数相応値
にて補正する(ステップS19)。
例えば、真皮層33の温度がT℃上昇した場合、光の吸収係数の変化量は−0.004/mm×Tとなる。したがって、真皮層33の温度がT℃上昇した場合のグルコース濃度の減少量は500mg/dl×Tとなる。
The concentration correction unit 14 uses the temperature of the dermis layer 33 measured by the surface temperature sensor 43 to calculate the glucose concentration of the dermis layer 33 calculated by the concentration calculation unit 13, and the following correction formula:
The measured value of glucose concentration is corrected by a value corresponding to the absorption coefficient of water (step S19).
For example, when the temperature of the dermis layer 33 is increased by T ° C., the amount of change in the light absorption coefficient is −0.004 / mm × T. Therefore, the amount of decrease in glucose concentration when the temperature of the dermis layer 33 is increased by T ° C. is 500 mg / dl × T.

以上説明したように、本実施形態によれば、皮膚に短時間パルス光を照射した際に、真皮層33の温度及び表面温度センサ43近傍の温度を測定し、これら表面温度センサ43にて測定された真皮層33の温度と内部温度センサ44にて測定された表面温度センサ43近傍の温度との差から算出された単位時間当たりの温度変化率が設定値以内の場合に、真皮層33のグルコースの濃度を、表面温度センサ43にて測定した真皮層33の温度を用いて補正するので、真皮層におけるグルコースの濃度に対する温度の影響を小さくすることができる。したがって、グルコースの濃度における真皮層の温度の影響を小さくすることができ、グルコースの濃度を、非侵襲的に精度良く測定することができる。   As described above, according to the present embodiment, when the skin is irradiated with pulsed light for a short time, the temperature of the dermis layer 33 and the temperature in the vicinity of the surface temperature sensor 43 are measured and measured by these surface temperature sensors 43. When the temperature change rate per unit time calculated from the difference between the measured temperature of the dermis layer 33 and the temperature in the vicinity of the surface temperature sensor 43 measured by the internal temperature sensor 44 is within a set value, Since the glucose concentration is corrected using the temperature of the dermis layer 33 measured by the surface temperature sensor 43, the influence of the temperature on the glucose concentration in the dermis layer can be reduced. Therefore, the influence of the temperature of the dermis layer on the glucose concentration can be reduced, and the glucose concentration can be accurately measured noninvasively.

[第3の実施形態]
図15は、本発明の第3の実施形態の血糖値測定装置(濃度定量装置)の導光部の構成の概略を示す断面図であり、本実施形態の血糖値測定装置51の導光部52が第1の実施形態の血糖値測定装置1の導光部6と異なる点は、断熱材23の温度センサ24と反対側の面に、温度センサ24近傍をヒータ等の加熱手段を用いて所定温度、例えば36.0℃に温度調整し、保温する内部保温部(温度調整手段)53を設けた点であり、導光部52以外の構成であるシミュレーション部2〜濃度補正部14については第1の実施形態の血糖値測定装置1と全く同様であるから、説明を省略する。
[Third Embodiment]
FIG. 15: is sectional drawing which shows the outline of a structure of the light guide part of the blood glucose level measuring apparatus (concentration determination apparatus) of the 3rd Embodiment of this invention, and the light guide part of the blood glucose level measuring apparatus 51 of this embodiment 52 differs from the light guide 6 of the blood glucose level measuring apparatus 1 of the first embodiment in that the surface of the heat insulating material 23 opposite to the temperature sensor 24 is placed on the surface near the temperature sensor 24 using a heating means such as a heater. The temperature is adjusted to a predetermined temperature, for example, 36.0 ° C., and an internal heat retaining portion (temperature adjusting means) 53 is provided to retain the temperature. About the simulation unit 2 to the concentration correction unit 14 other than the light guide unit 52 Since it is completely the same as the blood glucose level measuring apparatus 1 of the first embodiment, the description thereof is omitted.

次に、この血糖値測定装置51を用いて血糖値を測定する手順について、図16に基づき説明する。
まず、被測定者が血糖値測定装置51を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置51を動作させる。
ここでは、内部保温部53により、温度センサ24近傍を所定温度、例えば36.0℃に温度調整し、保温する(ステップS21)。
次いで、温度センサ24により皮膚31の表面近傍、すなわち真皮層33の温度を測定する(ステップS22)。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 51 will be described with reference to FIG.
First, the person to be measured places the blood sugar level measuring device 51 on the skin such as the wrist and operates the blood sugar level measuring device 51 by pressing a measurement start switch (not shown) or the like.
Here, the temperature of the vicinity of the temperature sensor 24 is adjusted to a predetermined temperature, for example, 36.0 ° C., by the internal heat retaining unit 53 to retain the temperature (step S21).
Next, the temperature sensor 24 measures the temperature near the surface of the skin 31, that is, the temperature of the dermis layer 33 (step S22).

一方、照射部5が、皮膚31に対して、この皮膚31を構成する真皮層33に短時間パルス光を照射する(ステップS23)。
その後、皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光から、真皮層33により放射される後方散乱光を選択する手順(ステップS24)から、濃度算出部13で算出された真皮層33のグルコースの濃度を、温度センサ24にて測定した真皮層33の温度を用いて補正する(ステップS29)までは、第1の実施形態の図12に示す手順(ステップS3〜S8)と全く同様である。
On the other hand, the irradiation unit 5 irradiates the dermis layer 33 constituting the skin 31 with short-time pulse light on the skin 31 (step S23).
Thereafter, the concentration calculation unit 13 calculates the backscattered light emitted from the dermis layer 33 from the backscattered light emitted from the subcutaneous tissue 32, the dermis layer 33, and the epidermis layer 34, respectively (step S24). Until the concentration of glucose in the dermis layer 33 is corrected using the temperature of the dermis layer 33 measured by the temperature sensor 24 (step S29), the procedure (steps S3 to S8) shown in FIG. 12 of the first embodiment is performed. ) Is exactly the same.

次いで、濃度補正部14では、算出された真皮層33のグルコースの濃度を、温度センサ24にて測定した真皮層33の温度を用いて、下記の補正式:
グルコースの濃度の測定値−水の吸収係数相応値
にて補正する(ステップS29)。
例えば、真皮層33の温度がT℃上昇した場合、光の吸収係数の変化量は−0.004/mm×Tとなる。したがって、真皮層33の温度がT℃上昇した場合のグルコース濃度の減少量は500mg/dl×Tとなる。
Next, the concentration correction unit 14 uses the temperature of the dermis layer 33 measured by the temperature sensor 24 to calculate the glucose concentration of the dermis layer 33 as follows.
The measured value of glucose concentration is corrected by a value corresponding to the absorption coefficient of water (step S29).
For example, when the temperature of the dermis layer 33 is increased by T ° C., the amount of change in the light absorption coefficient is −0.004 / mm × T. Therefore, the amount of decrease in glucose concentration when the temperature of the dermis layer 33 is increased by T ° C. is 500 mg / dl × T.

以上説明したように、本実施形態によれば、内部保温部53により、温度センサ24近傍を所定温度に調整し保温した後、温度センサ24により真皮層33の温度を測定するので、温度センサ24近傍を所定温度に調整し保温することにより、温度センサ24における温度の変動を抑制することができ、温度センサ24の測定精度を向上させることができる。   As described above, according to the present embodiment, the temperature of the dermis layer 33 is measured by the temperature sensor 24 after the temperature of the vicinity of the temperature sensor 24 is adjusted to a predetermined temperature by the internal heat retaining unit 53 and the temperature sensor 24 measures the temperature. By adjusting the vicinity to a predetermined temperature and keeping the temperature, fluctuations in temperature in the temperature sensor 24 can be suppressed, and the measurement accuracy of the temperature sensor 24 can be improved.

[第4の実施形態]
図17は、本発明の第4の実施形態の血糖値測定装置(濃度定量装置)の導光部の構成の概略を示す断面図であり、本実施形態の血糖値測定装置61の導光部62が第2の実施形態の血糖値測定装置41の導光部42と異なる点は、断熱材23の表面温度センサ43と反対側の面に、第3の実施形態の内部保温部(温度調整手段)53を設けた点であり、導光部62以外の構成であるシミュレーション部2〜濃度補正部14については第1及び第2の実施形態の血糖値測定装置1、41と全く同様であるから、説明を省略する。
[Fourth Embodiment]
FIG. 17: is sectional drawing which shows the outline of a structure of the light guide part of the blood glucose level measuring apparatus (concentration determination apparatus) of the 4th Embodiment of this invention, and the light guide part of the blood glucose level measuring apparatus 61 of this embodiment 62 differs from the light guide part 42 of the blood glucose level measuring device 41 of the second embodiment in that the inner heat retaining part (temperature adjustment of the third embodiment) is provided on the surface of the heat insulating material 23 opposite to the surface temperature sensor 43. Means) 53 is provided, and the simulation unit 2 to the concentration correction unit 14 other than the light guide unit 62 are exactly the same as the blood glucose level measurement apparatuses 1 and 41 of the first and second embodiments. Therefore, the description is omitted.

この表面温度センサ43と、内部温度センサ44と、内部保温部53とにより、熱流補償法を用いた深部体温計が構成されている。この深部体温計では、十分時間が経過すると、表皮層32と真皮層33の組織が熱平衡に達し、表皮層32の温度と真皮層33の温度が一致する。よって、真皮層33の温度を測定することができる。   The surface temperature sensor 43, the internal temperature sensor 44, and the internal heat retaining portion 53 constitute a deep thermometer using a heat flow compensation method. In this deep thermometer, when sufficient time has passed, the tissues of the epidermis layer 32 and the dermis layer 33 reach thermal equilibrium, and the temperature of the epidermis layer 32 and the temperature of the dermis layer 33 coincide. Therefore, the temperature of the dermis layer 33 can be measured.

次に、この血糖値測定装置61を用いて血糖値を測定する手順について、図18に基づき説明する。
まず、被測定者が血糖値測定装置41を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置41を動作させる。
ここでは、内部保温部53により、表面温度センサ43及び内部温度センサ44近傍を所定温度、例えば36.0℃に温度調整し、保温する(ステップS31)。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 61 will be described with reference to FIG.
First, the person to be measured applies the blood sugar level measuring device 41 to the skin such as the wrist, and operates the blood sugar level measuring device 41 by pressing a measurement start switch (not shown) or the like.
Here, the temperature of the surface temperature sensor 43 and the vicinity of the internal temperature sensor 44 is adjusted to a predetermined temperature, for example, 36.0 ° C., by the internal heat retaining unit 53 to retain the temperature (step S31).

次いで、表面温度センサ43により皮膚31の表面近傍、すなわち真皮層33の温度を測定し、内部温度センサ44により表面温度センサ43近傍の温度を測定する(ステップS32)。
一方、照射部5が、皮膚31に対して、この皮膚31を構成する真皮層33に短時間パルス光を照射する(ステップS33)。
Next, the surface temperature sensor 43 measures the temperature near the surface of the skin 31, that is, the temperature of the dermis layer 33, and the internal temperature sensor 44 measures the temperature near the surface temperature sensor 43 (step S32).
On the other hand, the irradiation unit 5 irradiates the dermis layer 33 constituting the skin 31 with pulsed light for a short time on the skin 31 (step S33).

その後、皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光から、真皮層33により放射される後方散乱光を選択する手順(ステップS34)から、濃度算出部13により、真皮層33に含まれるグルコースの濃度を算出する手順(ステップS38)までは、第2の実施形態の図14に示す手順(ステップS13〜S17)と全く同様である。   Thereafter, from the procedure of selecting the backscattered light emitted by the dermis layer 33 from the backscattered light emitted from the subcutaneous tissue 32, the dermis layer 33, and the epidermis layer 34 (step S34), the concentration calculator 13 causes the dermis to perform Up to the procedure (step S38) for calculating the concentration of glucose contained in the layer 33 is exactly the same as the procedure (steps S13 to S17) shown in FIG. 14 of the second embodiment.

次いで、表面・内部温度変化率算出部45により、表面温度センサ43にて測定された真皮層33の温度と内部温度センサ44にて測定された表面温度センサ43近傍の温度との差を、単位時間当たりの温度変化率として算出し、この単位時間当たりの温度変化率が設定値以内か否かを判定する(ステップS39)。
ここで、単位時間当たりの温度変化率が設定値以内であれば、次の手順である濃度補正部14による温度補正を行い、設定値を超えていれば、その旨を音声等の告知手段で告知し、再度、表面温度センサ43により皮膚31の表面近傍、すなわち真皮層33の温度を測定し、内部温度センサ44により表面温度センサ43近傍の温度を測定する(ステップS32)。
Next, the difference between the temperature of the dermis layer 33 measured by the surface temperature sensor 43 and the temperature in the vicinity of the surface temperature sensor 43 measured by the internal temperature sensor 44 by the surface / internal temperature change rate calculation unit 45 is expressed as a unit. The temperature change rate per time is calculated, and it is determined whether or not the temperature change rate per unit time is within a set value (step S39).
Here, if the rate of temperature change per unit time is within the set value, the temperature correction by the density correction unit 14 as the next procedure is performed. If the rate exceeds the set value, a notification means such as sound is used. Then, the surface temperature sensor 43 measures the temperature near the surface of the skin 31, that is, the temperature of the dermis layer 33, and the internal temperature sensor 44 measures the temperature near the surface temperature sensor 43 (step S32).

濃度補正部14では、濃度算出部13で算出された真皮層33のグルコースの濃度を、表面温度センサ43にて測定した真皮層33の温度を用いて、下記の補正式:
グルコースの濃度の測定値−水の吸収係数相応値
にて補正する(ステップS40)。
例えば、真皮層33の温度がT℃上昇した場合、光の吸収係数の変化量は−0.004/mm×Tとなる。したがって、真皮層33の温度がT℃上昇した場合のグルコース濃度の減少量は500mg/dl×Tとなる。
The concentration correction unit 14 uses the temperature of the dermis layer 33 measured by the surface temperature sensor 43 to calculate the glucose concentration of the dermis layer 33 calculated by the concentration calculation unit 13, and the following correction formula:
The measured value of glucose concentration is corrected by a value corresponding to the absorption coefficient of water (step S40).
For example, when the temperature of the dermis layer 33 is increased by T ° C., the amount of change in the light absorption coefficient is −0.004 / mm × T. Therefore, the amount of decrease in glucose concentration when the temperature of the dermis layer 33 is increased by T ° C. is 500 mg / dl × T.

以上説明したように、本実施形態によれば、皮膚に短時間パルス光を照射した際に、内部保温部53により、表面温度センサ43及び内部温度センサ44近傍を所定温度に調整し、保温した後、真皮層33の温度及び表面温度センサ43近傍の温度を測定し、これら表面温度センサ43にて測定された真皮層33の温度と内部温度センサ44にて測定された表面温度センサ43近傍の温度との差から算出された単位時間当たりの温度変化率が設定値以内の場合に、真皮層33のグルコースの濃度を、表面温度センサ43にて測定した真皮層33の温度を用いて補正するので、温度センサ24における温度の変動を抑制することができ、真皮層におけるグルコースの濃度に対する温度の影響を小さくすることができる。したがって、グルコースの濃度における真皮層の温度の影響を小さくすることができ、グルコースの濃度を、非侵襲的に精度良く測定することができる。   As described above, according to the present embodiment, when the skin is irradiated with pulsed light for a short time, the internal heat retaining unit 53 adjusts the vicinity of the surface temperature sensor 43 and the internal temperature sensor 44 to a predetermined temperature and retains the temperature. Thereafter, the temperature of the dermis layer 33 and the temperature in the vicinity of the surface temperature sensor 43 are measured. The temperature of the dermis layer 33 measured by the surface temperature sensor 43 and the vicinity of the surface temperature sensor 43 measured by the internal temperature sensor 44 are measured. When the rate of temperature change per unit time calculated from the difference from the temperature is within the set value, the glucose concentration of the dermis layer 33 is corrected using the temperature of the dermis layer 33 measured by the surface temperature sensor 43. Therefore, temperature fluctuations in the temperature sensor 24 can be suppressed, and the influence of temperature on the glucose concentration in the dermis layer can be reduced. Therefore, the influence of the temperature of the dermis layer on the glucose concentration can be reduced, and the glucose concentration can be accurately measured noninvasively.

[第5の実施形態]
図19は、本発明の第5の実施形態の血糖値測定装置(濃度定量装置)の構成を示す概略ブロック図であり、本実施形態の血糖値測定装置71が第1の実施形態の血糖値測定装置1と異なる点は、光強度取得部9及び光吸収係数算出部12を、これらとは異なる機能を有する光強度取得部(光強度取得手段)72及び光吸収係数算出部(光吸収係数算出手段)73に替えた点である。
[Fifth Embodiment]
FIG. 19 is a schematic block diagram showing a configuration of a blood sugar level measuring device (concentration quantifying device) according to the fifth embodiment of the present invention, and the blood sugar level measuring device 71 of the present embodiment is the blood sugar level of the first embodiment. The difference from the measuring apparatus 1 is that the light intensity acquisition unit 9 and the light absorption coefficient calculation unit 12 are different from each other in that the light intensity acquisition unit (light intensity acquisition means) 72 and the light absorption coefficient calculation unit (light absorption coefficient) having different functions. (Calculating means) 73.

光強度取得部72は、受光部8が受光した真皮層から放射される後方散乱光の所定の時刻から少なくとも所定の時刻τまでの間の光強度を取得する。
光吸収係数算出部73は、特定波長λkの短時間パルス光を照射した皮膚の真皮層における光吸収係数を算出する。
The light intensity acquisition unit 72 acquires the light intensity between a predetermined time and at least a predetermined time τ of backscattered light emitted from the dermis layer received by the light receiving unit 8.
The light absorption coefficient calculation unit 73 calculates the light absorption coefficient in the dermis layer of the skin irradiated with the short-time pulse light having the specific wavelength λk.

この光吸収係数算出部73では、皮膚における任意の層の光吸収係数を、下記の式(18)

Figure 0005674094
(但し、I(t)は受光部5が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形の無吸収モデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは皮膚の観測対象となる層の数、μiは第i層の光吸収係数である)
から算出する。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 In the light absorption coefficient calculation unit 73, the light absorption coefficient of an arbitrary layer in the skin is expressed by the following equation (18).
Figure 0005674094
(Where I (t) is the light intensity received by the light receiving unit 5 at time t, N (t) is the light intensity at time t of the non-absorption model of the time-resolved waveform of the short-time pulse light of the specific wavelength λk, Li (T) is the optical path length of the i-th layer at time t of the propagation optical path length distribution model in each layer of the skin, n is the number of layers to be observed on the skin, and μ i is the light absorption coefficient of the i-th layer. )
Calculate from
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

次に、この血糖値測定装置71を用いて血糖値を測定する手順について、図20に基づき説明する。
この手順では、光散乱媒質層選択部7が皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光から、真皮層33により放射される後方散乱光を選択する(ステップS43)手順までが図12に示す手順と同一であるから、説明を省略する。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 71 will be described with reference to FIG.
In this procedure, the light scattering medium layer selection unit 7 selects the backscattered light emitted by the dermis layer 33 from the backscattered light emitted from the subcutaneous tissue 32, the dermis layer 33, and the epidermis layer 34 (step S43). Since the procedure is the same as the procedure shown in FIG.

この後方散乱光を選択した後、受光部8により、真皮層33から放射される所定の時刻τまでの間の後方散乱光を受光する(ステップS44)。このとき、受光部8では、照射開始から少なくとも所定の時刻τまでの間の受光強度を内部メモリに記録しておく。
次いで、この受光部8が受光を完了したことを光強度取得部72に知らせると、この光強度取得部72では、真皮層33から放射される後方散乱光の照射開始から少なくとも所定の時刻τまでの間の受光強度を取得する(ステップS45)。
After selecting the backscattered light, the light receiving unit 8 receives the backscattered light until a predetermined time τ emitted from the dermis layer 33 (step S44). At this time, the light receiving unit 8 records the received light intensity between the start of irradiation and at least a predetermined time τ in the internal memory.
Next, when the light intensity acquisition unit 72 is informed that the light receiving unit 8 has completed the light reception, the light intensity acquisition unit 72 starts at least the predetermined time τ from the start of the backscattered light emitted from the dermis layer 33. The received light intensity during the period is acquired (step S45).

次いで、光吸収係数算出部73では、光強度取得部72にて取得した真皮層33から放射される後方散乱光の照射開始から少なくとも所定の時刻τまでの間の受光強度を基に、真皮層33の光吸収係数を、下記の式(19)

Figure 0005674094
(但し、I(t)は受光部5が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは皮膚の観測対象となる層の数、μiは第i層の光吸収係数である)
から算出する(ステップS46)。 Next, in the light absorption coefficient calculation unit 73, the dermis layer is based on the received light intensity from the start of irradiation of the backscattered light emitted from the dermis layer 33 acquired by the light intensity acquisition unit 72 to at least a predetermined time τ. The light absorption coefficient of 33 is expressed by the following equation (19).
Figure 0005674094
(Where I (t) is the light intensity received by the light receiving unit 5 at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light of the specific wavelength λk, and Li (t ) Is the optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the skin, n is the number of layers to be observed on the skin, and μ i is the light absorption coefficient of the i-th layer)
(Step S46).

次いで、濃度算出部13では、光吸収係数算出部73が算出した真皮層33の光吸収係数μを基に、真皮層33に含まれるグルコースの濃度を、下記の式(20)

Figure 0005674094
(但し、μaは皮膚の任意の層である第a層における光吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは皮膚を構成する主成分の個数、qは短時間パルス光の種類数である)
から算出する(ステップS47)。 Next, the concentration calculation unit 13 calculates the concentration of glucose contained in the dermis layer 33 based on the light absorption coefficient μ of the dermis layer 33 calculated by the light absorption coefficient calculation unit 73 using the following equation (20).
Figure 0005674094
(Where μa is the light absorption coefficient in the a layer, which is an arbitrary layer of the skin, gj is the molar concentration of the jth component constituting the skin, εj is the light absorption coefficient of the jth component, and p is the main component constituting the skin. The number of components, q is the number of types of short-time pulsed light)
(Step S47).

次いで、濃度補正部14では、濃度算出部13で算出された真皮層33のグルコースの濃度を、温度センサ24にて測定した真皮層33の温度を用いて、下記の補正式:
グルコースの濃度の測定値−水の吸収係数相応値
にて補正する(ステップS48)。
例えば、真皮層33の温度がT℃上昇した場合、光の吸収係数の変化量は−0.004/mm×Tとなる。したがって、真皮層33の温度がT℃上昇した場合のグルコース濃度の減少量は500mg/dl×Tとなる。
Next, the concentration correction unit 14 uses the temperature of the dermis layer 33 measured by the temperature sensor 24 to calculate the glucose concentration of the dermis layer 33 calculated by the concentration calculation unit 13 as follows:
The measured value of glucose concentration is corrected by a value corresponding to the absorption coefficient of water (step S48).
For example, when the temperature of the dermis layer 33 is increased by T ° C., the amount of change in the light absorption coefficient is −0.004 / mm × T. Therefore, the amount of decrease in glucose concentration when the temperature of the dermis layer 33 is increased by T ° C. is 500 mg / dl × T.

本実施形態においても、第1の実施形態と同様に、温度センサ24における温度の変動を抑制することができ、真皮層におけるグルコースの濃度に対する温度の影響を小さくすることができる。したがって、グルコースの濃度における真皮層の温度の影響を小さくすることができ、グルコースの濃度を、非侵襲的に精度良く測定することができる。   Also in the present embodiment, similarly to the first embodiment, temperature fluctuations in the temperature sensor 24 can be suppressed, and the influence of temperature on the glucose concentration in the dermis layer can be reduced. Therefore, the influence of the temperature of the dermis layer on the glucose concentration can be reduced, and the glucose concentration can be accurately measured noninvasively.

以上、本発明の各実施形態について、図面を参照して説明してきたが、具体的な構成は上述のものに限られることはなく、本発明の要旨を逸脱しない範囲内において様々な設計変更等が可能である。
例えば、上記の各実施形態では、濃度定量装置として血糖値測定装置を、観測対象として人の手のひらの皮膚を、目的成分としてグルコースを、特定波長の光として特定波長の短時間パルス光を、それぞれ取ることで、皮膚の真皮層に含まれるグルコースの濃度を測定する場合について説明したが、これに限らず、濃度定量方法を、複数の光散乱媒質の層から形成される観測対象の任意の層における目的成分の濃度を定量する他の装置に用いてもよい。
As described above, each embodiment of the present invention has been described with reference to the drawings. However, the specific configuration is not limited to the above-described one, and various design changes and the like can be made without departing from the scope of the present invention. Is possible.
For example, in each of the above embodiments, the blood glucose level measuring device as the concentration quantification device, the skin of a human palm as the observation target, glucose as the target component, short-time pulsed light of a specific wavelength as light of a specific wavelength, Although the case where the concentration of glucose contained in the dermis layer of the skin is measured has been described, the present invention is not limited to this, and the concentration determination method is not limited to any layer to be observed formed from a plurality of light scattering medium layers. You may use for the other apparatus which quantifies the density | concentration of the target component in.

また、上記の各実施形態では、特定波長の短時間パルス光を用いた場合について説明したが、特定波長の短時間パルス光の替わりに特定波長の連続光を用いてもよい。
この場合、シミュレーション部2、光路長分布記憶部3、時間分解波形記憶部4、光路長取得部10及び無吸収時光強度取得部11が不要となり、しかも温度補正は可能である。
さらに、上記の各実施形態の濃度定量装置を、例えば、携帯型の皮膚主成分の濃度測定装置に適用した場合、皮膚疾患の検査や診断や治療に有効利用することが可能である。
In each of the embodiments described above, the case where the short-time pulsed light with the specific wavelength is used has been described. However, continuous light with the specific wavelength may be used instead of the short-time pulsed light with the specific wavelength.
In this case, the simulation unit 2, the optical path length distribution storage unit 3, the time-resolved waveform storage unit 4, the optical path length acquisition unit 10, and the non-absorption light intensity acquisition unit 11 are not necessary, and temperature correction is possible.
Furthermore, when the concentration quantification apparatus of each of the above embodiments is applied to, for example, a portable concentration measuring apparatus for skin main components, it can be effectively used for examination, diagnosis and treatment of skin diseases.

1…血糖値測定装置(濃度定量装置)、3…光路長分布記憶部(光路長分布記憶手段)、4…時間分解波形記憶部(時間分解波形記憶手段)、5…照射部(照射手段)、7…光散乱媒質層選択部(光散乱媒質層選択手段)、8…受光部(受光手段)、9…光強度取得部(光強度取得手段)、10…光路長取得部(光路長取得手段)、11…無吸収時光強度取得部(光強度モデル取得手段)、12…光吸収係数算出部(光吸収係数算出手段)、13…濃度算出部(濃度算出手段)、14…濃度補正部(濃度補正手段)、24…温度センサ(温度測定手段)、31…皮膚(観測対象)、33…真皮層(任意の層)、41…血糖値測定装置(濃度定量装置)、43…表面温度センサ(表面温度測定手段)、44…内部温度センサ(内部温度測定手段)、45…表面・内部温度変化率算出部(表面・内部温度変化率算出手段)、51…血糖値測定装置(濃度定量装置)、53…内部保温部(温度調整手段)、61…血糖値測定装置(濃度定量装置)、71…血糖値測定装置(濃度定量装置)、72…光強度取得部(光強度取得手段)、73…光吸収係数算出部(光吸収係数算出手段)、S1〜S8、S11〜S19、S21〜S29、S31〜S40、S41〜S48…ステップ DESCRIPTION OF SYMBOLS 1 ... Blood glucose level measuring apparatus (concentration determination apparatus), 3 ... Optical path length distribution storage part (optical path length distribution storage means), 4 ... Time-resolved waveform storage part (time-resolved waveform storage means), 5 ... Irradiation part (irradiation means) 7, light scattering medium layer selection section (light scattering medium layer selection means), 8 light receiving section (light receiving means), 9 light intensity acquisition section (light intensity acquisition means), 10 optical path length acquisition section (optical path length acquisition) Means), 11 ... Non-absorption light intensity acquisition part (light intensity model acquisition means), 12 ... Light absorption coefficient calculation part (light absorption coefficient calculation means), 13 ... Concentration calculation part (concentration calculation means), 14 ... Concentration correction part (Concentration correction means), 24 ... temperature sensor (temperature measurement means), 31 ... skin (observation object), 33 ... dermis layer (arbitrary layer), 41 ... blood glucose level measurement device (concentration determination device), 43 ... surface temperature Sensor (surface temperature measuring means), 44... Internal temperature sensor (internal temperature measuring means) 45 ... surface / internal temperature change rate calculating part (surface / internal temperature change rate calculating means), 51 ... blood sugar level measuring device (concentration quantifying device), 53 ... internal heat retaining part (temperature adjusting means), 61 ... blood sugar level measuring Device (concentration quantification device), 71 ... blood glucose level measurement device (concentration quantification device), 72 ... light intensity acquisition unit (light intensity acquisition unit), 73 ... light absorption coefficient calculation unit (light absorption coefficient calculation unit), S1 to S8 , S11 to S19, S21 to S29, S31 to S40, S41 to S48 ... step

Claims (9)

複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、
前記観測対象に光を照射する照射手段と、
前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択する光散乱媒質層選択手段と、
前記任意の層から放射される後方散乱光を受光する受光手段と、
前記観測対象のうち前記任意の層の温度を測定する温度測定手段と、
前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得する光強度取得手段と、
前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、
前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、
前記濃度算出手段が算出した前記目的成分の濃度を、前記温度測定手段により測定した前記温度に基づいて補正する濃度補正手段と、
を備え
前記温度測定手段により測定された前記任意の層の温度と、前記温度測定手段の周囲の温度との差に基づいて前記濃度補正手段が前記目的成分の濃度の補正を行うことを特徴とする濃度定量装置。
A concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of light scattering medium layers,
Irradiating means for irradiating the observation object with light;
A light scattering medium layer selection means for selecting time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation target by irradiating the light; and
A light receiving means for receiving backscattered light emitted from the arbitrary layer;
Temperature measuring means for measuring the temperature of the arbitrary layer of the observation target;
A light intensity acquisition means for acquiring the intensity of backscattered light emitted from the arbitrary layer received by the light receiving means;
A light absorption coefficient calculating means for calculating a light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquiring means;
Based on the light absorption coefficient calculated by the light absorption coefficient calculation means, a concentration calculation means for calculating the concentration of the target component in the arbitrary layer;
A concentration correction unit for correcting the concentration of the target component calculated by the concentration calculation unit based on the temperature measured by the temperature measurement unit;
Equipped with a,
A density wherein the density correction means corrects the density of the target component based on the difference between the temperature of the arbitrary layer measured by the temperature measurement means and the ambient temperature of the temperature measurement means A quantitative device.
前記光を短時間パルス光とし、さらに、
前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、前記任意の層の複数の時刻t〜tにおける光強度を取得し、
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(1)
Figure 0005674094
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形の無吸収モデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出することを特徴とする請求項1記載の濃度定量装置。
The light is a short-time pulsed light, and
Optical path length distribution storage means for storing a model of the propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
Time-resolved waveform storage means for storing a model of the time-resolved waveform of the short-time pulsed light irradiated to the observation object;
An optical path length acquisition means for acquiring an optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage means;
A light intensity model obtaining means for obtaining the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means;
The light intensity acquisition means acquires the light intensity at a plurality of times t 1 to t m of the arbitrary layer,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following formula (1):
Figure 0005674094
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the non-absorption model of the time-resolved waveform of the short-time pulsed light, and Li (t) Is the optical path length of the i-th layer at time t of the propagation optical path length distribution model in each layer of the plurality of light scattering media, and μ i is the light absorption coefficient of the i-th layer)
The concentration quantification apparatus according to claim 1, wherein the concentration quantification apparatus is calculated from:
前記光を短時間パルス光とし、さらに、
前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、所定の時刻から少なくとも所定の時刻τまでの間の光強度を取得し、
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(2)
Figure 0005674094
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形の無吸収モデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の層各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは前記観測対象となる層の数、μiは第i層の光吸収係数である)
から算出することを特徴とする請求項1記載の濃度定量装置。
The light is a short-time pulsed light, and
Optical path length distribution storage means for storing a model of the propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
Time-resolved waveform storage means for storing a model of the time-resolved waveform of the short-time pulsed light irradiated to the observation object;
An optical path length acquisition means for acquiring an optical path length of each of the layers of the plurality of light scattering media at the predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage means;
A light intensity model obtaining means for obtaining the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means;
The light intensity acquisition means acquires a light intensity between a predetermined time and at least a predetermined time τ,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following equation (2):
Figure 0005674094
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the non-absorption model of the time-resolved waveform of the short-time pulsed light, and Li (t) Is the optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, n is the number of layers to be observed, μi is the light absorption coefficient of the i-th layer Is)
The concentration quantification apparatus according to claim 1, wherein the concentration quantification apparatus is calculated from:
前記濃度算出手段は、前記任意の層における前記目的成分の濃度を、下記の式(3)
Figure 0005674094
(但し、μaは前記任意の層である第a層における光吸収係数、gjは前記観測対象を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは前記観測対象を構成する主成分の個数、qは前記短時間パルス光の種類数である)
から算出することを特徴とする請求項1ないし3のいずれか1項記載の濃度定量装置。
The concentration calculation means calculates the concentration of the target component in the arbitrary layer by the following formula (3)
Figure 0005674094
(Where μa is the light absorption coefficient in the a-th layer which is the arbitrary layer, gj is the molar concentration of the j-th component constituting the observation object, εj is the light absorption coefficient of the j-th component, and p is the observation object. (The number of constituent main components, q is the number of types of short-time pulsed light)
The concentration quantification apparatus according to claim 1, wherein the concentration quantification apparatus is calculated from:
前記温度測定手段は、前記観測対象の表面近傍の温度を測定する表面温度測定手段と、前記表面温度測定手段近傍の温度を測定する内部温度測定手段とを備え、
前記濃度補正手段は、前記濃度算出手段が算出した前記目的成分の濃度を、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記内部温度測定手段が測定した前記表面温度測定手段近傍の温度との差に基づいて補正する濃度補正手段であることを特徴とする請求項1ないし4のいずれか1項記載の濃度定量装置。
The temperature measuring means comprises surface temperature measuring means for measuring the temperature near the surface of the observation target, and internal temperature measuring means for measuring the temperature near the surface temperature measuring means,
The concentration correction unit is configured to measure the concentration of the target component calculated by the concentration calculation unit, the temperature near the surface of the observation target measured by the surface temperature measurement unit, and the surface temperature measurement measured by the internal temperature measurement unit. 5. The concentration quantifying apparatus according to claim 1, wherein the concentration quantifying device corrects based on a difference from a temperature in the vicinity of the means.
前記温度測定手段に、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記内部温度測定手段が測定した前記表面温度測定手段近傍の温度との差を、単位時間当たりの温度変化率として算出する表面・内部温度変化率算出手段を設けてなることを特徴とする請求項5記載の濃度定量装置。   The temperature measurement unit is configured to determine a difference between a temperature near the surface of the observation target measured by the surface temperature measurement unit and a temperature near the surface temperature measurement unit measured by the internal temperature measurement unit, as a temperature per unit time. 6. The concentration quantification apparatus according to claim 5, further comprising surface / internal temperature change rate calculation means for calculating the change rate. 前記温度測定手段に温度調整手段を設けたことを特徴とする請求項1ないし6のいずれか1項記載の濃度定量装置。   7. The concentration determination apparatus according to claim 1, wherein the temperature measuring means is provided with a temperature adjusting means. 複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量方法であって、
照射手段により、前記観測対象に光を照射し、
次いで、温度測定手段により、前記観測対象のうち前記任意の層の温度を測定し、
次いで、光散乱媒質層選択手段により、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択し、
次いで、受光手段により、前記任意の層から放射される後方散乱光を受光し、
次いで、光強度取得手段により、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得し、
次いで、光吸収係数算出手段により、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出し、
次いで、濃度算出手段により、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出し、
次いで、濃度補正手段により、前記濃度算出手段が算出した前記目的成分の濃度を、前記温度測定手段により測定した前記温度に基づいて補正する、ことを含み、
前記温度測定手段で測定した前記任意の層の温度と、前記温度測定手段の周囲の温度との差に基づいて前記濃度補正手段が前記目的成分の濃度の補正を行うことを特徴とする濃度定量方法。
A concentration quantification method for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of layers of a plurality of light scattering media,
By irradiating means, the observation object is irradiated with light,
Next, the temperature measurement means measures the temperature of the arbitrary layer among the observation objects,
Next, the light scattering medium layer selection means selects time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation target by irradiating the light. ,
Next, the light receiving means receives backscattered light emitted from the arbitrary layer,
Next, the light intensity acquisition means acquires the intensity of backscattered light emitted from the arbitrary layer received by the light receiving means,
Next, the light absorption coefficient calculation means calculates the light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquisition means,
Next, the concentration calculation means calculates the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculation means,
Then, the concentration correction unit corrects the concentration of the target component calculated by the concentration calculation unit based on the temperature measured by the temperature measurement unit ,
The concentration quantification, wherein the concentration correction unit corrects the concentration of the target component based on the difference between the temperature of the arbitrary layer measured by the temperature measurement unit and the ambient temperature of the temperature measurement unit. Method.
複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置のコンピュータに、
前記観測対象に光を照射する照射手順、
前記観測対象のうち前記任意の層の温度を測定する温度測定手順、
前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を時間分解計測して選択する光散乱媒質層選択手順、
前記任意の層から放射される後方散乱光を受光する受光手順、
前記受光手順にて得られた前記任意の層から放射される後方散乱光の強度を取得する光強度取得手順、
前記光強度取得手順にて取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手順、
前記光吸収係数算出手順にて算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手順、
前記濃度算出手順により算出した前記目的成分の濃度を、前記温度測定手順にて得られた前記温度に基づいて補正する濃度補正手順、を実行させ
前記温度測定手順で測定した前記任意の層の温度と、前記温度測定手順にて前記任意の層の温度を測定する手段の周囲の温度と、の差に基づいて、前記濃度補正手順において前記目的成分の濃度の補正を行わせることを特徴とするプログラム。
In the computer of the concentration quantification device that quantifies the concentration of the target component in any layer among the observation objects composed of multiple layers of light scattering media,
Irradiation procedure for irradiating the observation object with light,
A temperature measurement procedure for measuring the temperature of the arbitrary layer of the observation target;
A light scattering medium layer selection procedure for selecting time-resolved backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating the light;
A light receiving procedure for receiving backscattered light emitted from the arbitrary layer;
A light intensity acquisition procedure for acquiring the intensity of backscattered light emitted from the arbitrary layer obtained in the light reception procedure;
A light absorption coefficient calculation procedure for calculating a light absorption coefficient of the arbitrary layer based on the light intensity acquired in the light intensity acquisition procedure;
A concentration calculation procedure for calculating the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated in the light absorption coefficient calculation procedure;
A concentration correction procedure for correcting the concentration of the target component calculated by the concentration calculation procedure based on the temperature obtained by the temperature measurement procedure ;
Based on the difference between the temperature of the arbitrary layer measured in the temperature measurement procedure and the ambient temperature of the means for measuring the temperature of the arbitrary layer in the temperature measurement procedure, the object in the concentration correction procedure A program for correcting the concentration of a component .
JP2010158099A 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method, and program Expired - Fee Related JP5674094B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010158099A JP5674094B2 (en) 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method, and program
US13/176,422 US9464983B2 (en) 2010-07-12 2011-07-05 Concentration determination apparatus, probe, concentration determination method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158099A JP5674094B2 (en) 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method, and program

Publications (2)

Publication Number Publication Date
JP2012021812A JP2012021812A (en) 2012-02-02
JP5674094B2 true JP5674094B2 (en) 2015-02-25

Family

ID=45776219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158099A Expired - Fee Related JP5674094B2 (en) 2010-07-12 2010-07-12 Concentration determination apparatus, concentration determination method, and program

Country Status (1)

Country Link
JP (1) JP5674094B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838517B2 (en) 2011-06-21 2016-01-06 セイコーエプソン株式会社 Concentration determination device, concentration determination method
CN106256313B (en) * 2015-06-17 2021-02-05 松下知识产权经营株式会社 Image pickup apparatus
JP7439455B2 (en) 2019-10-28 2024-02-28 株式会社リコー Biological information measuring device and biological information measuring method
JP7438774B2 (en) * 2020-02-05 2024-02-27 アズビル株式会社 measuring device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3304559B2 (en) * 1993-10-25 2002-07-22 株式会社日立製作所 Optical measurement method and device
JPH08289882A (en) * 1995-04-24 1996-11-05 Hitachi Ltd Instrument for measuring non-invasive blood component
JP2000074829A (en) * 1998-09-02 2000-03-14 Mitsui Chemicals Inc Glucose sensor
JP4362936B2 (en) * 2000-04-25 2009-11-11 パナソニック電工株式会社 Measuring device for glucose concentration in living body
JP2003202287A (en) * 2002-01-08 2003-07-18 Hamamatsu Photonics Kk Scattering absorption member measuring method and device
JP2004321368A (en) * 2003-04-23 2004-11-18 Olympus Corp Apparatus for measuring glucose concentration
JP5463545B2 (en) * 2009-03-31 2014-04-09 セイコーエプソン株式会社 Concentration determination apparatus, concentration determination method and program
JP5750750B2 (en) * 2010-07-12 2015-07-22 セイコーエプソン株式会社 Concentration meter

Also Published As

Publication number Publication date
JP2012021812A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US9464983B2 (en) Concentration determination apparatus, probe, concentration determination method, and program
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5750750B2 (en) Concentration meter
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
US7156810B2 (en) Blood sugar level measuring method and apparatus
JP3566276B1 (en) Blood glucose meter
JP2005013273A (en) Blood sugar level measuring device
JP2005095317A (en) Optical measurement apparatus and blood sugar level measurement apparatus using it
JP2005230124A (en) Blood-sugar level measuring apparatus
JP2004535213A (en) Non-invasive method for determining analytes in selected volumes of tissue
JP2013103094A (en) Measurement device, measurement method, program, and recording medium
JP2008237775A (en) Blood component measuring apparatus
JP5674094B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5216709B2 (en) Blood glucose level measuring device
JP2016010717A (en) Concentration quantification apparatus
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5626879B2 (en) Concentration determination apparatus, concentration determination method, and program
JP3884036B2 (en) Blood glucose level measuring device
JP5652599B2 (en) Concentration determination apparatus, concentration determination method and program
EP1642524A1 (en) Method and apparatus for measuring blood sugar levels
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
US20050250999A1 (en) Blood sugar level measuring apparatus
JP7253733B2 (en) How to calculate the amount of glucose
JP2013140126A (en) Concentration assaying device, concentration assaying method and program
US7565249B2 (en) Method for the determination of a light transport parameter in a biological matrix

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5674094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees