JP5750750B2 - Concentration meter - Google Patents

Concentration meter Download PDF

Info

Publication number
JP5750750B2
JP5750750B2 JP2010158100A JP2010158100A JP5750750B2 JP 5750750 B2 JP5750750 B2 JP 5750750B2 JP 2010158100 A JP2010158100 A JP 2010158100A JP 2010158100 A JP2010158100 A JP 2010158100A JP 5750750 B2 JP5750750 B2 JP 5750750B2
Authority
JP
Japan
Prior art keywords
light
time
temperature
concentration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010158100A
Other languages
Japanese (ja)
Other versions
JP2012019834A (en
Inventor
天野 和彦
和彦 天野
孝一 清水
孝一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Seiko Epson Corp
Original Assignee
Hokkaido University NUC
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Seiko Epson Corp filed Critical Hokkaido University NUC
Priority to JP2010158100A priority Critical patent/JP5750750B2/en
Priority to US13/176,422 priority patent/US9464983B2/en
Publication of JP2012019834A publication Critical patent/JP2012019834A/en
Application granted granted Critical
Publication of JP5750750B2 publication Critical patent/JP5750750B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生体中の複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を、非侵襲的に定量する濃度定量装置とプローブ及び濃度定量方法並びにプログラムに関するものである。   The present invention relates to a concentration quantification apparatus, probe, concentration quantification method, and program for non-invasively quantifying the concentration of a target component in an arbitrary layer among observation targets composed of a plurality of light scattering medium layers in a living body. It is about.

近年、我が国は飽食の時代にあって、糖尿病の患者が毎年増加し続けている。そのために、糖尿病性腎炎の患者も毎年増加し続けることとなり、その結果、慢性腎不全の患者も毎年1万人もの増加を続け、患者数は28万人を超えるようになってきている。
一方、高齢化社会の到来により、予防医学に対する要求の高まりを受けて、個人における代謝量管理の重要性が急速に増大している。中でも、血糖値は、糖尿病の極初期の段階での糖代謝の反応を測定することで、糖尿病の早期診断に基づく早期治療を行うことができる。
In recent years, Japan is in the age of satiety, and the number of diabetic patients continues to increase every year. For this reason, the number of patients with diabetic nephritis will continue to increase every year. As a result, the number of patients with chronic renal failure continues to increase by 10,000 each year, and the number of patients exceeds 280,000.
On the other hand, with the arrival of an aging society, the importance of metabolic rate management in individuals is rapidly increasing in response to increasing demand for preventive medicine. Among them, the blood glucose level can be measured based on the reaction of glucose metabolism at the very early stage of diabetes, whereby early treatment based on early diagnosis of diabetes can be performed.

従来、血糖値の測定は、腕あるいは指先等の静脈から採血を行い、この血液中のグルコースに対する酵素活性を測定することで行っているが、このような血糖値の測定方法では、採血が煩雑であり、しかも採血に痛みを伴い、さらには感染症の危険性を伴う等の様々な問題がある。
また、血糖値を連続的に測定する方法としては、静脈に注射針を刺した状態で連続的に血糖値相応のグルコースの定量を行う機器が米国にて開発されており、現在臨床試験中であるが、静脈に注射針を刺したままにしているために、血糖値の測定中に針が抜ける危険性や感染症の危険性がある。
そこで、採血無しに頻繁に血糖値を測定することができ、しかも感染症の危険性が無い血糖値の測定装置の開発が求められている。さらには、簡単にかつ常時装着可能であり、小型化可能な血糖値の測定装置の開発が求められている。
Conventionally, blood sugar levels are measured by collecting blood from a vein such as an arm or fingertip, and measuring enzyme activity for glucose in the blood. However, in such a blood sugar level measuring method, blood sampling is complicated. In addition, there are various problems such as blood collection with pain and further risk of infection.
In addition, as a method for continuously measuring blood glucose level, an instrument that continuously measures glucose corresponding to blood glucose level with a needle inserted into a vein has been developed in the United States. However, since the needle is stuck in the vein, there is a risk that the needle may come off during the measurement of blood glucose level and there is a risk of infection.
Therefore, development of a blood glucose level measuring apparatus that can measure blood glucose level frequently without blood collection and that is free from the risk of infectious diseases is demanded. Furthermore, there is a demand for the development of a blood glucose level measuring device that can be easily and always worn and can be miniaturized.

そこで、血糖値の測定装置に分子吸光の原理を用いた分光分析装置を適用することにより、非侵襲的に血糖値を測定する装置が提案されている(例えば、特許文献1参照)。
この装置は、皮膚に近赤外の連続光を照射し、その光吸収量からグルコースの濃度を算出する装置であり、具体的には、予めグルコース濃度と照射する近赤外光の波長と光の吸収量との関係を示す検量線を作成しておき、皮膚に近赤外の連続光を照射し、この皮膚からの戻り光をモノクロメーター等を用いてある波長域を走査し、その波長域の各波長に対する光の吸収量を求め、この各波長における光の吸収量と検量線とを比較することで、血液中のグルコース濃度、すなわち血糖値を算出している。
In view of this, an apparatus that non-invasively measures blood glucose levels has been proposed by applying a spectroscopic analyzer that uses the principle of molecular absorption to a blood glucose level measuring apparatus (see, for example, Patent Document 1).
This device irradiates the skin with near-infrared continuous light and calculates the glucose concentration from the amount of light absorption. Specifically, the glucose concentration and the wavelength and light of the near-infrared light to be irradiated in advance. A calibration curve showing the relationship with the amount of absorption of light, irradiating the skin with near-infrared continuous light, scanning the wavelength of the return light from the skin with a monochromator, etc. The amount of light absorbed for each wavelength in the region is obtained, and the amount of light absorbed at each wavelength is compared with a calibration curve to calculate the glucose concentration in blood, that is, the blood sugar level.

一般に、水溶液や含水率の高い試料の近赤外分光分析を行う場合、それらのスペクトルは、水のスペクトルと同様、温度変化に伴うスペクトルのシフト等の変動が大きく、したがって、近赤外分光を用いて定量分析をする場合、水溶液や試料の温度の影響を無視することができない。
そこで、生体表面近傍の組織中のグルコース濃度を近赤外領域における光の吸収を利用して測定する場合に、近赤外光受発光用の光ファイババンドルのプロ−ブ先端の測定面と生体の表面近傍組織との接触部分の温度を、ヒータ及び表面温度検知手段を用いて一定にする装置も提案されている(特許文献2参照)。
In general, when performing near-infrared spectroscopic analysis of an aqueous solution or a sample with a high water content, their spectra, like the spectrum of water, have large fluctuations such as a shift of the spectrum accompanying a temperature change. When used for quantitative analysis, the effect of the temperature of the aqueous solution or sample cannot be ignored.
Therefore, when measuring the glucose concentration in the tissue near the surface of the living body using light absorption in the near-infrared region, the measurement surface of the probe tip of the optical fiber bundle for near-infrared light reception and emission and the living body There has also been proposed an apparatus for making the temperature of the contact portion with the tissue in the vicinity of the surface constant by using a heater and a surface temperature detecting means (see Patent Document 2).

特許第3931638号公報Japanese Patent No. 3931638 特開2001−299727号公報JP 2001-299727 A

しかしながら、従来のグルコース濃度の測定装置には次のような問題点があった。
第1に、近赤外光受発光用の光ファイババンドルのプロ−ブ先端の測定面と生体の表面近傍組織との接触部分の温度をヒータにより加熱する装置では、生体の表面と接する測定面を加熱するためのエネルギーを供給する必要があると共に、生体の表面近傍組織との接触部分の温度を一定にする制御手段が必要になり、装置構成の小型化が難しく、価格も高くなる。
However, the conventional glucose concentration measuring apparatus has the following problems.
1stly, in the apparatus which heats the temperature of the contact part of the probe front-end | tip of the optical fiber bundle for near-infrared light receiving and emitting, and the structure | tissue near the surface of a biological body with a heater, the measurement surface which contact | connects the surface of a biological body It is necessary to supply energy for heating the body, and a control means for making the temperature of the contact portion with the tissue near the surface of the living body constant is required, which makes it difficult to reduce the size of the apparatus and increase the price.

第2に、生体の表面近傍組織との接触部分の温度を一定にする制御手段は、近赤外光受発光部を表面近傍組織に接触させた時点で測定を行うか、または表面近傍組織に接触させて近赤外光の照射を開始してから所定時間が経過した後に測定を行うものであり、しかも、この所定時間を、目標温度と、環境温度及び近赤外光受発光手段を生体の表面近傍組織に接触させた時点での生体温度とから決定するものである。それ故に、表面近傍組織に接触させた時点での環境温度を得てから、表面近傍組織に接触させて近赤外光の照射を開始してから所定時間が経過した後の生体温度を得るまでに、十分な熱平衡状態を得る必要がある。この熱平衡状態を得るまでには、通常、60秒から120秒必要である。   Secondly, the control means for keeping the temperature of the contact portion with the tissue near the surface of the living body constant at the time when the near-infrared light receiving and emitting part is brought into contact with the tissue near the surface, The measurement is performed after a predetermined time has elapsed since the start of near-infrared light irradiation, and the target temperature, the environmental temperature, and the near-infrared light receiving and emitting means are placed on the living body. It is determined from the living body temperature at the time of contact with the tissue in the vicinity of the surface. Therefore, after obtaining the environmental temperature at the time of contact with the tissue near the surface, until the temperature of the living body after a predetermined time has elapsed after contacting the tissue near the surface and starting irradiation with near infrared light In addition, it is necessary to obtain a sufficient thermal equilibrium state. It usually takes 60 to 120 seconds to obtain this thermal equilibrium state.

このように、従来のグルコース濃度の測定装置は、生体中のグルコース濃度を定量する精度を確保しつつ、装置を小型化し、かつ、測定時間を大幅に短縮することは到底できないものであった。   As described above, the conventional glucose concentration measuring device cannot achieve downsizing of the device and greatly shorten the measuring time while ensuring the accuracy of quantifying the glucose concentration in the living body.

本発明は、上記の課題を解決するためになされたものであって、生体の安静状態や活動状態等の各状態を正確に把握するとともに、その生体の肉体的状況や精神的状況や脈拍数の周期的変動をも考慮に入れることで、生体中の観測対象におけるグルコース濃度を定量する精度を確保しつつ、装置を小型化することが可能であり、かつ、測定時間を大幅に短縮することが可能な濃度定量装置とプローブ及び濃度定量方法並びにプログラムを提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and accurately grasps each state such as a resting state and an active state of a living body, as well as a physical state, a mental state, and a pulse rate of the living body. By taking into account the periodic fluctuations of the device, it is possible to reduce the size of the device while significantly ensuring the accuracy of quantifying the glucose concentration in the observation target in the living body, and to greatly shorten the measurement time It is an object of the present invention to provide a concentration determination device, a probe, a concentration determination method, and a program.

上記の課題を解決するために、本発明は以下の濃度定量装置とプローブ及び濃度定量方法並びにプログラムを採用した。
すなわち、本発明の濃度定量装置は、生体中の複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波検出手段と、前記脈波検出手段近傍に設けられ前記所定領域に亘って温度を測定する温度測定手段と、前記温度測定手段の周囲を覆う断熱材と、前記所定領域に亘って検出された脈圧のうち最大の脈圧が検出された部位の温度を前記生体の体温として特定する体温特定手段と、前記観測対象に光を照射する照射手段と、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手段と、前記任意の層から放射される後方散乱光を受光する受光手段と、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得する光強度取得手段と、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、前記濃度算出手段が算出した前記目的成分の濃度を、前記体温特定手段により特定した前記体温に基づいて補正する濃度補正手段と、を備えてなることを特徴とする。
すなわち、本発明の濃度定量装置は、生体中の複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波検出手段と、前記脈波検出手段近傍に設けられ前記所定領域に亘って温度を測定する温度測定手段と、前記所定領域に亘って検出された脈圧のうち最大の脈圧が検出された部位の温度を前記生体の体温として特定する体温特定手段と、前記観測対象に光を照射する照射手段と、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手段と、前記任意の層から放射される後方散乱光を受光する受光手段と、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得する光強度取得手段と、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、前記濃度算出手段が算出した前記目的成分の濃度を、前記体温特定手段により特定した前記体温に基づいて補正する濃度補正手段と、を備えてなることを特徴とする。
In order to solve the above-described problems, the present invention employs the following concentration determination apparatus, probe, concentration determination method, and program.
That is, the concentration quantification device of the present invention is a concentration quantification device that quantifies the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of layers of light scattering media in a living body. A pulse wave detecting means for detecting a pulse pressure in the vicinity of a part having a pulsation over a predetermined area, a temperature measuring means provided in the vicinity of the pulse wave detecting means for measuring a temperature over the predetermined area, and the temperature A heat insulating material covering the periphery of the measuring means, a body temperature specifying means for specifying the temperature of the part where the maximum pulse pressure is detected among the pulse pressures detected over the predetermined region, and the observation target Irradiating means for irradiating light, and light scattering medium layer selecting means for selecting backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating the light And any layer above The light receiving means for receiving the backscattered light emitted from the light receiving means, the light intensity obtaining means for obtaining the intensity of the backscattered light emitted from the arbitrary layer received by the light receiving means, and the light intensity obtaining means. Light absorption coefficient calculation means for calculating the light absorption coefficient of the arbitrary layer based on light intensity, and the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculation means And a concentration correction unit that corrects the concentration of the target component calculated by the concentration calculation unit based on the body temperature specified by the body temperature specifying unit. .
That is, the concentration quantification device of the present invention is a concentration quantification device that quantifies the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of layers of light scattering media in a living body. A pulse wave detecting means for detecting a pulse pressure in the vicinity of a portion having a pulsation over a predetermined area, a temperature measuring means provided in the vicinity of the pulse wave detecting means for measuring a temperature over the predetermined area, and the predetermined Body temperature specifying means for specifying the temperature of the part of the pulse pressure detected over the region as the body temperature of the living body, irradiation means for irradiating the observation object with light, and the light Light scattering medium layer selection means for selecting backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiation, and backscattered emitted from the arbitrary layer Receiving light A light intensity acquisition means for acquiring the intensity of backscattered light emitted from the arbitrary layer received by the light receiving means, and the light intensity acquisition means based on the light intensity acquired by the light intensity acquisition means. A light absorption coefficient calculating means for calculating a light absorption coefficient; a concentration calculating means for calculating a concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means; and the concentration calculation. And a concentration correcting means for correcting the concentration of the target component calculated by the means based on the body temperature specified by the body temperature specifying means.

本発明の濃度定量装置では、脈波検出手段により、生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出し、温度測定手段により、所定領域に亘って温度を測定し、体温特定手段により、所定領域に亘って検出された脈圧のうち最大の脈圧が検出された部位の温度を生体の深部体温に近似した体温として特定する。
また、濃度補正手段により、算出された目的成分の濃度を、体温特定手段により特定した体温に基づいて補正する。
このように、生体の深部体温に近似した体温を特定した後、算出された目的成分の濃度を、脈波検出手段、温度測定手段及び体温特定手段により特定された体温に基づいて補正することで、この後方散乱光を基に算出される観測対象の任意の層における目的成分の濃度を生体の活動状態に応じて精度良く検出することができる。したがって、観測対象の任意の層における目的成分の濃度を、生体の活動状態に応じて、非侵襲的に、短時間にて精度良く測定することができる。
In the concentration quantification device of the present invention, the pulse wave detection means detects the pulse pressure in the vicinity of the part having pulsation in the living body over a predetermined area, the temperature measurement means measures the temperature over the predetermined area, The body temperature specifying means specifies the temperature of the part where the maximum pulse pressure is detected among the pulse pressures detected over a predetermined region as the body temperature approximating the deep body temperature of the living body.
Further, the concentration correction means corrects the calculated concentration of the target component based on the body temperature specified by the body temperature specifying means.
Thus, after specifying the body temperature approximated to the deep body temperature of the living body, the calculated concentration of the target component is corrected based on the body temperature specified by the pulse wave detecting means, the temperature measuring means, and the body temperature specifying means. The concentration of the target component in an arbitrary observation target layer calculated based on the backscattered light can be accurately detected according to the activity state of the living body. Therefore, the concentration of the target component in an arbitrary layer to be observed can be accurately measured in a short time in a non-invasive manner according to the activity state of the living body.

本発明の濃度定量装置は、生体中の複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波検出手段と、前記観測対象の表面近傍の温度を測定する表面温度測定手段及び前記表面温度測定手段近傍の温度を測定するセンサ内部温度測定手段と、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記センサ内部温度測定手段が測定した前記表面温度測定手段近傍の温度との差を、単位時間当たりの温度変化率として算出する表面・内部温度変化率算出手段と、を備えてなる温度測定手段と、前記温度測定手段の周囲を覆う断熱材と、前記観測対象に光を照射する照射手段と、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手段と、前記任意の層から放射される後方散乱光を受光する受光手段と、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得する光強度取得手段と、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、前記表面・内部温度変化率算定手段が算出した前記温度変化率が設定値であれば、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度に基づいて、前記濃度算出手段が算出した前記目的成分の濃度を補正する濃度補正手段と、を備えてなることを特徴とする。
本発明の濃度定量装置は、生体中の複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、前記生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波検出手段と、前記観測対象の表面近傍の温度を測定する表面温度測定手段及び前記表面温度測定手段近傍の温度を測定するセンサ内部温度測定手段を備えてなる温度測定手段と、前記観測対象に光を照射する照射手段と、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手段と、前記任意の層から放射される後方散乱光を受光する受光手段と、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得する光強度取得手段と、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、前記濃度算出手段が算出した前記目的成分の濃度を、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記センサ内部温度測定手段が測定した前記表面温度測定手段近傍の温度との差に基づいて補正する濃度補正手段と、を備えてなることを特徴とする。
The concentration quantification device according to the present invention is a concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of layers of light scattering media in a living body, wherein A pulse wave detecting means for detecting a pulse pressure in the vicinity of a moving part over a predetermined region, a surface temperature measuring means for measuring a temperature in the vicinity of the surface of the observation object, and a sensor for measuring a temperature in the vicinity of the surface temperature measuring means The difference between the temperature near the surface of the observation target measured by the internal temperature measuring means, the surface temperature measuring means, and the temperature near the surface temperature measuring means measured by the sensor internal temperature measuring means is calculated per unit time. A surface / internal temperature change rate calculating means for calculating a temperature change rate, a heat insulating material covering the periphery of the temperature measuring means, an irradiating means for irradiating the observation object with light, Light scattering medium layer selection means for selecting backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating light, and emitted from the arbitrary layer Based on the light receiving means for receiving the back scattered light, the light intensity acquiring means for acquiring the intensity of the back scattered light emitted from the arbitrary layer received by the light receiving means, and the light intensity acquired by the light intensity acquiring means. A light absorption coefficient calculating means for calculating the light absorption coefficient of the arbitrary layer, and a concentration for calculating the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated by the light absorption coefficient calculating means. If the temperature change rate calculated by the calculating means and the surface / internal temperature change rate calculating means is a set value, the concentration calculation is performed based on the temperature near the surface of the observation target measured by the surface temperature measuring means. Means characterized by being provided with, a density correcting means for correcting the concentration of the target component was calculated.
The concentration quantification device according to the present invention is a concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets configured by a plurality of layers of light scattering media in a living body, wherein A pulse wave detecting means for detecting a pulse pressure in the vicinity of a moving part over a predetermined region, a surface temperature measuring means for measuring a temperature in the vicinity of the surface of the observation object, and a sensor for measuring a temperature in the vicinity of the surface temperature measuring means Temperature measuring means comprising an internal temperature measuring means, irradiation means for irradiating the observation object with light, and the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating the light Light scattering medium layer selection means for selecting the backscattered light emitted more from the light receiving means, light receiving means for receiving the backscattered light emitted from the arbitrary layer, and the arbitrary layer received by the light receiving means. Backward A light intensity acquisition means for acquiring the intensity of turbulent light; a light absorption coefficient calculation means for calculating a light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquisition means; and the light absorption coefficient calculation. Based on the light absorption coefficient calculated by the means, a concentration calculating means for calculating the concentration of the target component in the arbitrary layer, and the surface temperature measuring means measures the concentration of the target component calculated by the concentration calculating means. Density correction means for correcting based on the difference between the temperature near the surface of the observation target and the temperature near the surface temperature measurement means measured by the sensor internal temperature measurement means. .

本発明の濃度定量装置では、脈波検出手段により、生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出し、表面温度測定手段により観測対象の表面近傍の温度を測定し、センサ内部温度測定手段により前記表面温度測定手段近傍の温度を測定する。
また、濃度補正手段により、前記目的成分の濃度を、表面温度測定手段が測定した観測対象の表面近傍の温度と、センサ内部温度測定手段が測定した表面温度測定手段近傍の温度との差に基づいて補正する。
このように補正することで、この後方散乱光を基に算出される観測対象の任意の層における目的成分の濃度を、精度良く検出することができる。したがって、観測対象の任意の層における目的成分の濃度を、非侵襲的に、短時間にて精度良く測定することができる。
In the concentration quantification apparatus of the present invention, the pulse wave detection means detects the pulse pressure in the vicinity of the part having pulsation in the living body over a predetermined region, and the surface temperature measurement means measures the temperature near the surface of the observation target. Then, the temperature in the vicinity of the surface temperature measuring means is measured by the sensor internal temperature measuring means.
Further, the concentration correction means determines the concentration of the target component based on the difference between the temperature near the surface of the observation target measured by the surface temperature measurement means and the temperature near the surface temperature measurement means measured by the sensor internal temperature measurement means. To correct.
By correcting in this way, it is possible to accurately detect the concentration of the target component in an arbitrary observation target layer calculated based on the backscattered light. Therefore, the concentration of the target component in any layer to be observed can be accurately measured in a short time non-invasively.

本発明の濃度定量装置は、前記光を短時間パルス光とし、さらに、前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、前記光強度取得手段は、前記任意の層の複数の時刻t〜tにおける光強度を取得し、前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(1)

Figure 0005750750
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出することを特徴とする。 The concentration quantification device according to the present invention uses the light as a short-time pulse light, and further propagates the optical path length of each of the layers of the plurality of light scattering media of the short-time pulse light irradiated onto the observation target. From the optical path length distribution storage means for storing the model of distribution, the time-resolved waveform storage means for storing the model of the time-resolved waveform of the short-time pulse light irradiated to the observation object, and the optical path length distribution storage means, From the optical path length acquisition means for acquiring the optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution, and the short-time pulse from the time-resolved waveform storage means and a light intensity model acquiring means for acquiring the intensity of the light in the predetermined time in the model of the time-resolved waveform of the light, the light intensity obtaining unit, in a plurality of times t 1 ~t m of the optional layer Gets the intensity, the light absorption coefficient calculating means, a light absorption coefficient of the arbitrary layer, the following equation (1)
Figure 0005750750
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity (The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, and μ i is the light absorption coefficient of the i-th layer)
It is characterized by calculating from.

本発明の濃度定量装置では、光強度取得手段が、任意の層の複数の時刻t〜tにおける光強度を取得し、光吸収係数算出手段が、任意の層の光吸収係数を、上記の式(1)から算出する。
このように、後方散乱光を時間分解計測することで、任意の層以外の層からの後方散乱光をノイズとして低減することができ、目的成分の濃度に対する各層の温度の影響を小さくすることができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration determination apparatus of the present invention, the light intensity acquisition unit acquires the light intensity at a plurality of times t 1 to t m of an arbitrary layer, and the light absorption coefficient calculation unit calculates the light absorption coefficient of the arbitrary layer as described above. Is calculated from the equation (1).
Thus, by measuring the time-resolved backscattered light, it is possible to reduce the backscattered light from any layer other than any layer as noise, and to reduce the influence of the temperature of each layer on the concentration of the target component. it can. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記光を短時間パルス光とし、さらに、前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの前記所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、前記光強度取得手段は、所定の時刻から少なくとも所定の時刻τまでの間の光強度を取得し、前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(2)

Figure 0005750750
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の層各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは前記観測対象となる層の数、μiは第i層の光吸収係数である)
から算出することを特徴とする。 The concentration quantification device according to the present invention uses the light as a short-time pulse light, and further propagates the optical path length of each of the layers of the plurality of light scattering media of the short-time pulse light irradiated onto the observation target. From the optical path length distribution storage means for storing the model of distribution, the time-resolved waveform storage means for storing the model of the time-resolved waveform of the short-time pulse light irradiated to the observation object, and the optical path length distribution storage means, From the optical path length acquisition means for acquiring the optical path length of each of the layers of the light scattering medium at the predetermined time of the model of the propagation optical path length distribution, and the short-time pulse from the time-resolved waveform storage means A light intensity model acquisition unit that acquires the light intensity at the predetermined time of the model of the time-resolved waveform of light, the light intensity acquisition unit between a predetermined time and at least a predetermined time τ Get the light intensity, the light absorption coefficient calculating means, a light absorption coefficient of the arbitrary layer, the following equation (2)
Figure 0005750750
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, n is the number of layers to be observed, and μi is the light absorption coefficient of the i-th layer. )
It is characterized by calculating from.

本発明の濃度定量装置では、光強度取得手段が、所定の時刻から少なくとも所定の時刻τまでの間の光強度を取得し、光吸収係数算出手段が、任意の層の光吸収係数を、上記の式(2)から算出する。
このように、後方散乱光を時間分解計測することで、任意の層以外の層からの後方散乱光をノイズとして低減することができ、目的成分の濃度に対する各層の温度の影響を小さくすることができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration quantification device of the present invention, the light intensity acquisition means acquires light intensity between a predetermined time and at least a predetermined time τ, and the light absorption coefficient calculation means calculates the light absorption coefficient of an arbitrary layer as described above. (2) is calculated.
Thus, by measuring the time-resolved backscattered light, it is possible to reduce the backscattered light from any layer other than any layer as noise, and to reduce the influence of the temperature of each layer on the concentration of the target component. it can. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記濃度算出手段は、前記任意の層における前記目的成分の濃度を、下記の式(3)

Figure 0005750750
(但し、μaは前記任意の層である第a層における光吸収係数、gjは前記観測対象を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは前記観測対象を構成する主成分の個数、qは前記短時間パルス光の種類数である)
から算出することを特徴とする。 In the concentration quantification apparatus of the present invention, the concentration calculation means calculates the concentration of the target component in the arbitrary layer by the following equation (3):
Figure 0005750750
(Where μa is the light absorption coefficient in the a-th layer which is the arbitrary layer, gj is the molar concentration of the j-th component constituting the observation object, εj is the light absorption coefficient of the j-th component, and p is the observation object. (The number of constituent main components, q is the number of types of short-time pulsed light)
It is characterized by calculating from.

本発明の濃度定量装置では、濃度算出手段が、任意の層における目的成分の濃度を、上記の式(3)から算出する。
このように、時間分解計測した後方散乱光を用いて任意の層における目的成分の濃度を算出することで、目的成分の濃度に対する各層の温度の影響を小さくすることができる。したがって、目的成分の濃度をさらに精度良く測定することができる。
In the concentration determination apparatus of the present invention, the concentration calculation means calculates the concentration of the target component in an arbitrary layer from the above equation (3).
Thus, by calculating the concentration of the target component in any layer using the backscattered light that has been time-resolved, the influence of the temperature of each layer on the concentration of the target component can be reduced. Therefore, the concentration of the target component can be measured with higher accuracy.

本発明の濃度定量装置は、前記脈波検出手段及び前記温度測定手段を複数組備え、前記体温特定手段は、複数の前記脈波検出手段のうち最大の脈圧が検出された部位の前記脈波検出手段近傍の前記温度測定手段が測定した温度を体温として特定することを特徴とする。   The concentration quantification device of the present invention comprises a plurality of sets of the pulse wave detection means and the temperature measurement means, and the body temperature specifying means is the pulse of the site where the maximum pulse pressure is detected among the plurality of pulse wave detection means. The temperature measured by the temperature measuring means in the vicinity of the wave detecting means is specified as a body temperature.

本発明の濃度定量装置では、複数の前記脈波検出手段のうち最大の脈圧が検出された部位の脈波検出手段近傍の温度測定手段が測定した温度を、体温として特定する。
このように、複数組の脈波検出手段及び温度測定手段を用いることで、最小の操作により、生体中の観測対象となる部位の体温を短時間にて測定することができる。
In the concentration quantifying device of the present invention, the temperature measured by the temperature measuring means in the vicinity of the pulse wave detecting means at the site where the maximum pulse pressure is detected among the plurality of pulse wave detecting means is specified as the body temperature.
In this way, by using a plurality of sets of pulse wave detection means and temperature measurement means, the body temperature of the site to be observed in the living body can be measured in a short time with a minimum operation.

本発明の濃度定量装置は、前記温度測定手段に、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記センサ内部温度測定手段が測定した前記表面温度測定手段近傍の温度との差を、単位時間当たりの温度変化率として算出する表面・内部温度変化率算出手段を設けてなることを特徴とする。   The concentration quantification apparatus according to the present invention provides the temperature measuring means with a temperature near the surface of the observation target measured by the surface temperature measuring means, and a temperature near the surface temperature measuring means measured by the sensor internal temperature measuring means. A surface / internal temperature change rate calculating means for calculating the difference between the two as a temperature change rate per unit time is provided.

本発明の濃度定量装置では、表面・内部温度変化率算出手段により、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記センサ内部温度測定手段が測定した表面温度測定手段近傍の温度との差を、単位時間当たりの温度変化率として算出する。
このように、濃度算出手段が算出した目的成分の濃度を、表面温度測定手段が測定した観測対象の表面近傍の温度と、センサ内部温度測定手段が測定した表面温度測定手段近傍の温度との差から算出した単位時間当たりの温度変化率に基づいて補正することで、この後方散乱光を基に算出される観測対象の任意の層における目的成分の濃度に対する温度の影響を極めて小さくすることができる。したがって、目的成分の濃度を、非侵襲的に精度良く測定することができる。
In the concentration determination apparatus of the present invention, the surface / internal temperature change rate calculating means calculates the temperature near the surface of the observation target measured by the surface temperature measuring means and the vicinity of the surface temperature measuring means measured by the sensor internal temperature measuring means. Is calculated as a temperature change rate per unit time.
In this way, the concentration of the target component calculated by the concentration calculating means is the difference between the temperature near the surface of the observation target measured by the surface temperature measuring means and the temperature near the surface temperature measuring means measured by the sensor internal temperature measuring means. By correcting based on the temperature change rate per unit time calculated from the above, the influence of the temperature on the concentration of the target component in any observation target layer calculated based on this backscattered light can be made extremely small . Therefore, the concentration of the target component can be accurately measured noninvasively.

本発明の濃度定量装置は、前記脈波検出手段に、該脈波検出手段が脈圧を検出しているか否かを判別する拍動弁別手段を設けてなることを特徴とする。
本発明の濃度定量装置では、脈波検出手段に、該脈波検出手段が脈圧を検出しているか否かを判別する拍動弁別手段を設けたことにより、脈波検出手段が脈圧を検出しているか否かを確実に知ることができ、脈圧の検出を誤認するおそれが無い。
The concentration determination apparatus of the present invention is characterized in that the pulse wave detection means is provided with a pulsation discrimination means for determining whether or not the pulse wave detection means detects a pulse pressure.
In the concentration quantification device of the present invention, the pulse wave detecting means is provided with a pulsation discriminating means for determining whether or not the pulse wave detecting means detects the pulse pressure. Whether or not it is detected can be known with certainty, and there is no possibility of misidentifying detection of pulse pressure.

本発明の濃度定量装置は、前記生体の体動を検出する体動検出手段と、前記体動検出手段が検出した生体の体動が所定範囲内であるか否かを判別する体動判別手段と、を備えたことを特徴とする。   The concentration quantification device of the present invention includes a body motion detecting unit for detecting the body motion of the living body, and a body motion determining unit for determining whether or not the body motion of the living body detected by the body motion detecting unit is within a predetermined range. And.

本発明の濃度定量装置では、体動検出手段が生体の体動を検出し、体動判別手段が、体動検出手段が検出した生体の体動が所定範囲内であると判断した場合に、生体の体温を特定するので、生体の安静な状態を正確に把握することができる。したがって、生体が安静な状態における観測対象の任意の層における目的成分の濃度を精度良く検出することができる。   In the concentration quantification device of the present invention, when the body movement detecting means detects the body movement of the living body, and the body movement determining means determines that the body movement of the living body detected by the body movement detecting means is within a predetermined range, Since the body temperature of the living body is specified, it is possible to accurately grasp the resting state of the living body. Therefore, it is possible to accurately detect the concentration of the target component in an arbitrary layer to be observed in a state where the living body is at rest.

本発明のプローブは、生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波検出手段と、前記脈波検出手段近傍に設けられ前記所定領域に亘って温度を測定する温度測定手段と、前記温度測定手段の周囲を覆う断熱材と、生体中の複数の光散乱媒質の層により構成される観測対象に光を照射する照射手段と、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から任意の層より放射される後方散乱光を選択する光散乱媒質層選択手段と、前記任意の層から放射される後方散乱光を受光する受光手段と、を備えてなることを特徴とする。
本発明のプローブは、生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波検出手段と、前記脈波検出手段近傍に設けられ前記所定領域に亘って温度を測定する温度測定手段と、前記観測対象に光を照射する照射手段と、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手段と、前記任意の層から放射される後方散乱光を受光する受光手段と、を備えてなることを特徴とする。
The probe of the present invention has a pulse wave detection means for detecting a pulse pressure in the vicinity of a part having a pulsation in a living body over a predetermined area, and measures a temperature over the predetermined area provided in the vicinity of the pulse wave detection means. Irradiating means for irradiating light to an observation target composed of a plurality of light scattering medium layers in the living body, and a temperature measuring means for performing irradiation, and irradiating the light Light scattering medium layer selection means for selecting backscattered light radiated from an arbitrary layer from a plurality of types of backscattered light radiated from the observation target, and light reception for receiving backscattered light radiated from the arbitrary layer And means.
The probe of the present invention has a pulse wave detection means for detecting a pulse pressure in the vicinity of a part having a pulsation in a living body over a predetermined area, and measures a temperature over the predetermined area provided in the vicinity of the pulse wave detection means. Temperature measuring means, irradiating means for irradiating the observation object with light, and backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating the light A light scattering medium layer selecting means for selecting the light and a light receiving means for receiving the backscattered light emitted from the arbitrary layer.

本発明のプローブでは、脈波検出手段により生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出し、温度測定手段により所定領域に亘って温度を測定し、照射手段により観測対象に光を照射し、光散乱媒質層選択手段により観測対象より放射される複数種の後方散乱光から任意の層より放射される後方散乱光を選択し、受光手段により任意の層から放射される後方散乱光を受光する。
このように、生体中の観測対象の体温及び観測対象の任意の層から放射される後方散乱光を効率よくかつ簡便に採取することができる。
In the probe of the present invention, the pulse wave detection means detects the pulse pressure in the vicinity of the part having pulsation in the living body over a predetermined area, the temperature measurement means measures the temperature over the predetermined area, and the irradiation means observes it. The target is irradiated with light, the backscattering light emitted from any layer is selected from the multiple types of backscattered light emitted from the observation target by the light scattering medium layer selection means, and the light receiving means emits the light from any layer. Receiving backscattered light.
Thus, the backscattered light radiated from the body temperature of the observation target and the arbitrary layer of the observation target in the living body can be collected efficiently and simply.

本発明の濃度定量方法は、生体中の複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量方法であって、脈波検出手段により前記生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出するとともに、温度測定手段により、前記所定領域に亘って温度を測定し、次いで、体温特定手段により、前記所定領域に亘って検出された脈圧のうち最大の脈圧が検出された部位の温度を前記生体の体温として特定し、次いで、照射手段により、前記観測対象に光を照射し、次いで、光散乱媒質層選択手段により、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択し、次いで、受光手段により、前記任意の層から放射される後方散乱光を受光し、次いで、光強度取得手段により、前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得し、次いで、光吸収係数算出手段により、前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出し、次いで、濃度算出手段により、前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出し、次いで、濃度補正手段により、前記濃度算出手段が算出した前記目的成分の濃度を、前記体温特定手段により特定した前記体温に基づいて補正する、ことを特徴とする。   The concentration quantification method of the present invention is a concentration quantification method for quantifying the concentration of a target component in an arbitrary layer among observation targets constituted by a plurality of light scattering medium layers in a living body, and comprises a pulse wave detection means. The pulsation pressure in the vicinity of the part having pulsation in the living body is detected over a predetermined area, the temperature is measured over the predetermined area by the temperature measuring means, and then the body temperature specifying means is applied to the predetermined area. The temperature of the part where the maximum pulse pressure is detected among the detected pulse pressures is specified as the body temperature of the living body, and then the observation object is irradiated with light by the irradiation means, and then the light scattering medium layer The selection means selects the backscattered light emitted from the arbitrary layer from the plurality of types of backscattered light emitted from the observation object by irradiating the light, and then the light receiving means selects the optional layer. Or Receiving the emitted backscattered light, then, by the light intensity acquisition means, obtain the intensity of the backscattered light emitted from the arbitrary layer received by the light receiving means, then, by the light absorption coefficient calculation means, Based on the light intensity acquired by the light intensity acquisition means, calculate the light absorption coefficient of the arbitrary layer, and then by the concentration calculation means based on the light absorption coefficient calculated by the light absorption coefficient calculation means, Calculating a concentration of the target component in an arbitrary layer, and then correcting the concentration of the target component calculated by the concentration calculation unit based on the body temperature specified by the body temperature specifying unit by a concentration correction unit; It is characterized by.

本発明の濃度定量方法では、脈波検出手段により生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出し、温度測定手段により所定領域に亘って温度を測定し、体温特定手段により、所定領域に亘って検出された脈圧のうち最大の脈圧が検出された部位の温度を生体の深部体温に近似した体温として特定する。
このように、生体の深部体温に近似した体温を特定した後に、算出された目的成分の濃度を、この体温に基づいて補正することで、観測対象の任意の層における目的成分の濃度を生体の活動状態に応じて精度良く検出することができる。したがって、観測対象の任意の層における目的成分の濃度を、生体の活動状態に応じて、非侵襲的に、短時間にて精度良く測定することができる。
In the concentration quantification method of the present invention, the pulse wave detection means detects a pulse pressure in the vicinity of a part having a pulsation in a living body over a predetermined area, the temperature measurement means measures the temperature over the predetermined area, and the body temperature is specified. By the means, the temperature of the part where the maximum pulse pressure is detected among the pulse pressures detected over the predetermined region is specified as the body temperature approximating the deep body temperature of the living body.
Thus, after specifying a body temperature that approximates the deep body temperature of the living body, the concentration of the target component in any layer to be observed is corrected by correcting the calculated concentration of the target component based on this body temperature. It can be accurately detected according to the activity state. Therefore, the concentration of the target component in an arbitrary layer to be observed can be accurately measured in a short time in a non-invasive manner according to the activity state of the living body.

本発明のプログラムは、生体中の複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置のコンピュータに、前記生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波検出手順、前記所定領域に亘って温度を測定する温度測定手順、
前記所定領域に亘って検出された脈圧のうち最大の脈圧が検出された部位の温度を前記生体の体温として特定する体温特定手順、前記観測対象に光を照射する照射手順、前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手順、前記任意の層から放射される後方散乱光を受光する受光手順、前記受光手順にて得られた前記任意の層から放射される後方散乱光の強度を取得する光強度取得手順、前記光強度取得手順にて取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手順、前記光吸収係数算出手順にて算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手順、前記濃度算出手順により算出した前記目的成分の濃度を、前記体温特定手順にて特定した前記体温に基づいて補正する濃度補正手順、を実行させることを特徴とする。
The program of the present invention provides a computer of a concentration quantification apparatus for quantifying the concentration of a target component in an arbitrary layer among observation targets constituted by a plurality of layers of light scattering media in a living body, and transmits the pulsation in the living body. A pulse wave detection procedure for detecting the pulse pressure in the vicinity of the site over a predetermined region, a temperature measurement procedure for measuring the temperature over the predetermined region,
The body temperature specifying procedure for specifying the temperature of the part of the pulse pressure detected over the predetermined region as the body temperature of the living body, the irradiation procedure for irradiating the observation target with light, and the light Light scattering medium layer selection procedure for selecting backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiation, backscattered light emitted from the arbitrary layer Based on the light intensity acquired in the light intensity acquisition procedure, the light intensity acquisition procedure for acquiring the intensity of the backscattered light emitted from the arbitrary layer obtained in the light reception procedure, Light absorption coefficient calculation procedure for calculating the light absorption coefficient of the arbitrary layer, concentration calculation procedure for calculating the concentration of the target component in the arbitrary layer based on the light absorption coefficient calculated in the light absorption coefficient calculation procedure The above The concentration of the target component calculated by the degree calculation procedure, characterized in that to perform the density correction procedure that corrects, based on the body temperature specified by said body temperature specifying step.

本発明のプログラムでは、濃度定量装置のコンピュータに、生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波検出手順、所定領域に亘って温度を測定する温度測定手順、所定領域に亘って検出された脈圧のうち最大の脈圧が検出された部位の温度を前記生体の体温として特定する体温特定手順、を実行させる。
このように、上記の脈波検出手順、温度測定手順及び体温特定手順を実行することで、生体の深部体温に近似した体温を特定した後に、この特定された体温に基づいて目的成分の濃度を精度良く補正することができる。したがって、観測対象の任意の層における目的成分の濃度を、生体の活動状態に応じて、非侵襲的に、短時間にて精度良く測定することができる。
In the program of the present invention, a pulse wave detection procedure for detecting a pulse pressure in the vicinity of a part having a pulsation in a living body over a predetermined region, a temperature measurement procedure for measuring a temperature over the predetermined region A body temperature specifying procedure for specifying the temperature of the part where the maximum pulse pressure is detected among the pulse pressures detected over a predetermined region as the body temperature of the living body is executed.
As described above, by performing the above-described pulse wave detection procedure, temperature measurement procedure, and body temperature specifying procedure, after specifying a body temperature that approximates the deep body temperature of the living body, the concentration of the target component is determined based on the specified body temperature. Correction can be made with high accuracy. Therefore, the concentration of the target component in an arbitrary layer to be observed can be accurately measured in a short time in a non-invasive manner according to the activity state of the living body.

本発明の第1の実施形態の血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の血糖値測定装置の導光部の構成を示す断面図である。It is sectional drawing which shows the structure of the light guide part of the blood glucose level measuring apparatus of the 1st Embodiment of this invention. 人体の手のひら近傍の測定部位の外観を示す斜視図である。It is a perspective view which shows the external appearance of the measurement site | part of the palm vicinity of a human body. 人体の手のひら近傍の各測定点における温度の測定結果を示す図である。It is a figure which shows the measurement result of the temperature in each measurement point of the palm vicinity of a human body. 人体の広域循環系を示す模式図である。It is a schematic diagram which shows the wide circulation system of a human body. 人体の皮膚組織の断面を示す模式図である。It is a schematic diagram which shows the cross section of the skin tissue of a human body. シミュレーション部が算出した各層の伝搬光路長分布を示す図である。It is a figure which shows the propagation optical path length distribution of each layer which the simulation part computed. シミュレーション部が算出した時間分解波形を示す図である。It is a figure which shows the time-resolved waveform which the simulation part computed. 水による光吸収波長特性を示す図である。It is a figure which shows the light absorption wavelength characteristic by water. 皮膚の主成分の吸収スペクトルを示す図である。It is a figure which shows the absorption spectrum of the main component of skin. 皮膚の表皮層、真皮層及び皮下組織各々に照射される光の波長と吸収係数との関係を示す図である。It is a figure which shows the relationship between the wavelength of the light irradiated to each of the epidermis layer of a skin, a dermis layer, and subcutaneous tissue, and an absorption coefficient. 水の吸光度スペクトルの温度依存性を示す図である。It is a figure which shows the temperature dependence of the absorbance spectrum of water. 水の吸光度スペクトル差の温度依存性を示す図である。It is a figure which shows the temperature dependence of the light absorption spectrum difference. グルコース水溶液の吸光度スペクトルの一例を示す図である。It is a figure which shows an example of the absorbance spectrum of glucose aqueous solution. 本発明の第1の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 1st Embodiment of this invention. 本発明の第2の実施形態の血糖値測定装置の導光部の構成を示す断面図である。It is sectional drawing which shows the structure of the light guide part of the blood glucose level measuring apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 2nd Embodiment of this invention. 本発明の第3の実施形態の血糖値測定装置の導光部の構成を示す断面図である。It is sectional drawing which shows the structure of the light guide part of the blood glucose level measuring apparatus of the 3rd Embodiment of this invention. 本発明の第3の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 3rd Embodiment of this invention. 本発明の第4の実施形態の血糖値測定装置の導光部の構成を示す断面図である。It is sectional drawing which shows the structure of the light guide part of the blood glucose level measuring apparatus of the 4th Embodiment of this invention. 本発明の第4の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 4th Embodiment of this invention. 本発明の第5の実施形態の血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus of the 5th Embodiment of this invention. 本発明の第5の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 5th Embodiment of this invention. 本発明の第6の実施形態の血糖値測定装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the blood glucose level measuring apparatus of the 6th Embodiment of this invention. 本発明の第6の実施形態の血糖値を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the blood glucose level of the 6th Embodiment of this invention.

本発明の濃度定量装置とプローブ及び濃度定量方法並びにプログラムを実施するための形態について説明する。
本発明では、濃度定量装置として血糖値測定装置を、観測対象として人体(生体)の手のひらの皮膚を、目的成分としてグルコースを、特定波長の光として特定波長の短時間パルス光を、それぞれ例に取り説明する。
A concentration quantification apparatus, a probe, a concentration quantification method, and an embodiment for executing a program according to the present invention will be described.
In the present invention, a blood glucose level measuring device is used as a concentration determination device, the skin of the palm of a human body (living body) is used as an observation target, glucose is used as a target component, and short-time pulse light of a specific wavelength is used as light of a specific wavelength. I will explain.

[第1の実施形態]
図1は、本発明の第1の実施形態の血糖値測定装置の構成を示す概略ブロック図、図2は、同血糖値測定装置の導光部の構成の概略を示す断面図である。
この血糖値測定装置1は、人体(生体)の手のひら等の皮膚(観測対象)を構成する複数層のうちの真皮層(任意の層)に含まれるグルコース(目的成分)の濃度を非侵襲にて定量する装置であり、シミュレーション部2と、光路長分布記憶部(光路長分布記憶手段)3と、時間分解波形記憶部(時間分解波形記憶手段)4と、照射部(照射手段)5と、導光部6と、光散乱媒質層選択部(光散乱媒質層選択手段)7と、受光部(受光手段)8と、光強度取得部(光強度取得手段)9と、光路長取得部(光路長取得手段)10と、無吸収時光強度取得部(光強度モデル取得手段)11と、光吸収係数算出部(光吸収係数算出手段)12と、濃度算出部(濃度算出手段)13と、体温特定部(体温特定手段)14と、濃度補正部(濃度補正手段)15とを備えている。
[First Embodiment]
FIG. 1 is a schematic block diagram showing a configuration of a blood glucose level measuring apparatus according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an outline of a configuration of a light guide unit of the blood glucose level measuring apparatus.
This blood glucose level measuring apparatus 1 non-invasively determines the concentration of glucose (target component) contained in the dermis layer (arbitrary layer) of a plurality of layers constituting the skin (observation target) such as the palm of a human body (living body). A simulation unit 2, an optical path length distribution storage unit (optical path length distribution storage unit) 3, a time-resolved waveform storage unit (time-resolved waveform storage unit) 4, and an irradiation unit (irradiation unit) 5. , A light guide unit 6, a light scattering medium layer selection unit (light scattering medium layer selection unit) 7, a light receiving unit (light receiving unit) 8, a light intensity acquisition unit (light intensity acquisition unit) 9, and an optical path length acquisition unit (Optical path length acquisition means) 10, non-absorption light intensity acquisition section (light intensity model acquisition means) 11, light absorption coefficient calculation section (light absorption coefficient calculation means) 12, concentration calculation section (concentration calculation means) 13, , Body temperature specifying part (body temperature specifying means) 14 and density correcting part (concentration correcting means) And a 15.

シミュレーション部2は、光吸収係数がゼロの皮膚モデルに対して光を照射するシミュレーションを行う。
光路長分布記憶部3は、皮膚に対して照射する短時間パルス光の、この皮膚を構成する各々の層における伝搬光路長分布のモデルを記憶する。ここでは、光吸収係数がゼロの皮膚モデルの伝搬光路長分布を記憶する。
時間分解波形記憶部4は、皮膚に対して照射する短時間パルス光の時間分解波形のモデルを記憶する。ここでは、光吸収係数がゼロの皮膚モデルの時間分解波形を記憶する。
照射部5は、皮膚に短時間パルス光を照射する。ここで、短時間パルス光とは、パルス幅が100psec程度かそれ以下のパルス光を意味する。なお、短時間パルス光として0.1psecから数psecの範囲のパルス幅を持つパルス光を用いても良い。
The simulation unit 2 performs a simulation of irradiating light to a skin model having a light absorption coefficient of zero.
The optical path length distribution storage unit 3 stores a model of a propagation optical path length distribution in each layer constituting the skin of short-time pulse light irradiated to the skin. Here, the propagation optical path length distribution of the skin model having zero light absorption coefficient is stored.
The time-resolved waveform storage unit 4 stores a model of a time-resolved waveform of short-time pulse light that is applied to the skin. Here, the time-resolved waveform of the skin model having zero light absorption coefficient is stored.
The irradiation unit 5 irradiates the skin with pulsed light for a short time. Here, the short-time pulsed light means pulsed light having a pulse width of about 100 psec or less. Note that pulse light having a pulse width in the range of 0.1 psec to several psec may be used as the short-time pulse light.

導光部6は、図2に示すように、皮膚31に密着して照射部5から発せられた短時間パルス光を皮膚31に向かって導光させる照射導光路21と、この照射導光路21の外側に一体に設けられ、この皮膚31から放射される複数種の後方散乱光を集光して光散乱媒質層選択部7へ導光する受光導光路22と、一体化された照射導光路21及び受光導光路22の外側に設けられた断熱材23と、断熱材23の皮膚側の表面に設けられ人体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波センサ(脈波検出手段)24と、脈波センサ24近傍に設けられ前記所定領域に亘って温度を測定する温度センサ(温度測定手段)25と、これら照射導光路21、受光導光路22及び断熱材23を固定する基台26とにより構成されている。
この導光部6と、照射部5と、受光部8とにより本発明のプローブが構成されている。
As shown in FIG. 2, the light guide 6 is in close contact with the skin 31 and guides short-time pulsed light emitted from the irradiation unit 5 toward the skin 31, and the irradiation light guide 21. A light receiving light guide 22 that is integrally provided outside the light source and collects a plurality of types of backscattered light radiated from the skin 31 and guides it to the light scattering medium layer selector 7, and an integrated irradiation light guide 21 and a heat insulating material 23 provided outside the light receiving light guide 22 and a pulse wave which is provided on the skin side surface of the heat insulating material 23 and detects a pulse pressure in the vicinity of a portion having a pulsation in the human body over a predetermined region. A sensor (pulse wave detecting means) 24, a temperature sensor (temperature measuring means) 25 provided in the vicinity of the pulse wave sensor 24 and measuring the temperature over the predetermined area, the irradiation light guide path 21, the light receiving light guide path 22, and the heat insulation. It is comprised by the base 26 which fixes the material 23
The light guide unit 6, the irradiation unit 5, and the light receiving unit 8 constitute a probe of the present invention.

照射導光路21及び受光導光路22は、導光する短時間パルス光の吸収損失が小さい材料であればよく、例えば、石英ガラス、ポリメチルメタアクリレート(PMMA)やポリエチレン等のプラスチックが好適に用いられる。
断熱材23は、皮膚31の温度変化に影響しない程度に熱容量が十分小さい断熱性を有する材料であればよい。この断熱材23と皮膚31との間隔は、この皮膚31の温度変化を断熱材23が直接受けない程度に離れていることが好ましく、0.5mm〜1.0mmが好ましい。この断熱材23では、熱容量を皮膚31の温度変化に影響しない程度に十分小さくすることで、温度センサ25が温度到達値の90%に達するまでの熱応答時間を0.2秒以内に抑えることができる。
The irradiation light guide path 21 and the light receiving light guide path 22 may be made of a material that has a small absorption loss of short-time pulsed light to be guided. For example, quartz glass, plastic such as polymethyl methacrylate (PMMA) or polyethylene is preferably used. It is done.
The heat insulating material 23 may be any material having a heat insulating property with a sufficiently small heat capacity so as not to affect the temperature change of the skin 31. It is preferable that the space | interval of this heat insulating material 23 and the skin 31 is separated so that the heat insulating material 23 may not receive the temperature change of this skin 31 directly, and 0.5 mm-1.0 mm are preferable. In this heat insulating material 23, the heat response time until the temperature sensor 25 reaches 90% of the temperature reached value is suppressed within 0.2 seconds by making the heat capacity sufficiently small so as not to affect the temperature change of the skin 31. Can do.

脈波センサ24は、人体中の拍動を有する部位近傍の脈圧、すなわち橈骨動脈等の動脈の脈圧を、この動脈を含む皮膚31の表面(所定領域)に亘って非接触にて検出する。
この脈波センサ24では、検出されたアナログ信号をA/D変換部によりデジタル信号に変換し、FFT(高速フーリエ変換)処理部によりデジタル信号に変換された脈波信号にFFT処理を施し、その後、拍数演算部にてFFT処理された脈波信号から拍数を求め、この拍数を信号として出力する。
The pulse wave sensor 24 detects, in a non-contact manner, the pulse pressure in the vicinity of a part having a pulsation in the human body, that is, the pulse pressure of an artery such as the radial artery over the surface (predetermined region) of the skin 31 including the artery. To do.
In this pulse wave sensor 24, the detected analog signal is converted into a digital signal by an A / D converter, and the pulse wave signal converted into a digital signal by an FFT (Fast Fourier Transform) processor is subjected to FFT processing, and thereafter The number of beats is obtained from the pulse wave signal subjected to the FFT processing in the number-of-beats calculation unit, and this number of beats is output as a signal.

なお、脈波信号から拍数を求める場合、取り込まれた脈波信号の波形のピーク間隔を求めて、その逆数を拍数として算出してもよい。
また、本来必要なのは心拍数、すなわち、単位時間あたりにおける心臓の拍数であるが、心拍数=脈拍数であるから、脈拍数を求める構成としても構わない。したがって、心電を検出して心拍数を直接求める構成としても良い。
この脈拍数と心拍数とは、医学的には区別されるべきものであるが、本発明においては区別する必要が無いので、両者を含めて「拍数」と表記する。
この脈波センサ24は、周囲が断熱材23により覆われているので、照射導光路21及び受光導光路22の温度の影響を受けるおそれがない。
この脈波センサ24には、必要に応じて、脈圧を検出しているか否かを判別する拍動判別手段を設けてもよい。
In addition, when calculating | requiring a beat rate from a pulse wave signal, you may obtain | require the peak interval of the waveform of the taken-in pulse wave signal, and may calculate the reciprocal number as a beat number.
In addition, what is originally required is the heart rate, that is, the heart rate per unit time. However, since heart rate = pulse rate, the pulse rate may be obtained. Therefore, a configuration may be adopted in which an electrocardiogram is detected to directly obtain the heart rate.
Although the pulse rate and the heart rate should be distinguished medically, it is not necessary to distinguish them in the present invention, so they are described as “beat number” including both.
Since the periphery of the pulse wave sensor 24 is covered with the heat insulating material 23, there is no possibility of being affected by the temperature of the irradiation light guide path 21 and the light receiving light guide path 22.
The pulse wave sensor 24 may be provided with pulsation discrimination means for discriminating whether or not the pulse pressure is detected as necessary.

温度センサ25は、この動脈を含む皮膚31の表面(所定領域)に亘って非接触にて温度を測定する。
この温度センサ25では、検出されたアナログ信号をA/D変換部によりデジタル信号に変換し、出力する。
この温度センサ25は、周囲が断熱材23により覆われているので、照射導光路21及び受光導光路22の温度の影響を受けるおそれがなく、皮膚31の温度を測定することができる。
The temperature sensor 25 measures the temperature in a non-contact manner over the surface (predetermined region) of the skin 31 including the artery.
In the temperature sensor 25, the detected analog signal is converted into a digital signal by the A / D converter and output.
Since the temperature sensor 25 is covered with the heat insulating material 23, the temperature sensor 25 can measure the temperature of the skin 31 without being affected by the temperature of the irradiation light guide path 21 and the light reception light guide path 22.

この導光部6では、照射導光路21が、照射部5が照射した短時間パルス光を導光して皮膚31に向かって照射すると、この短時間パルス光が皮膚31に照射されることにより、この皮膚31からは複数種の後方散乱光を放射させることとなる。これら複数種の後方散乱光は、受光導光路22により光散乱媒質層選択部7へ導光される。   In the light guide unit 6, when the irradiation light guide path 21 guides the short-time pulse light irradiated by the irradiation unit 5 and irradiates the skin 31 with the short-time pulse light, the short-time pulse light is applied to the skin 31. The skin 31 emits a plurality of types of backscattered light. These multiple types of backscattered light are guided to the light scattering medium layer selection unit 7 by the light receiving light guide path 22.

光散乱媒質層選択部7は、導光部6により集光されかつ導光された皮膚から放射される複数種の後方散乱光から、主として真皮層により放射される後方散乱光を選択する。
受光部8は、短時間パルス光が皮膚によって後方散乱した光を受光する。
The light scattering medium layer selection unit 7 selects the backscattered light mainly emitted from the dermis layer from the multiple types of backscattered light emitted from the skin condensed and guided by the light guide unit 6.
The light receiving unit 8 receives light obtained by backscattering the short-time pulsed light by the skin.

光強度取得部9は、受光部8が受光した真皮層から放射される後方散乱光の異なる複数の時刻の受光強度を取得する。
ここで、この複数の時刻は、皮膚を構成する各々の層の伝搬光路長分布のピーク時間を含むことが好ましい。
このように、各々の層の伝搬光路長分布のピーク時間を含むことで、皮膚の複数の層から任意の層、例えば真皮層を効率的に選択することができる。
The light intensity acquisition unit 9 acquires the light reception intensities at different times of the backscattered light emitted from the dermis layer received by the light receiving unit 8.
Here, it is preferable that the plurality of times include the peak time of the propagation optical path length distribution of each layer constituting the skin.
As described above, by including the peak time of the propagation optical path length distribution of each layer, an arbitrary layer, for example, the dermis layer can be efficiently selected from a plurality of skin layers.

光路長取得部10は、光路長分布記憶部3から、伝搬光路長分布のモデルの所定の時刻における、皮膚の各々の層の光路長を取得する。ここでは、光路長分布記憶部3からある時刻における光路長を取得する。
無吸収時光強度取得部11は、時間分解波形記憶部4から、短時間パルス光の時間分解波形のモデルの所定の時刻における光の強度を取得する。ここでは、時間分解波形記憶部4からある時刻における光強度を取得する。
光吸収係数算出部12は、短時間パルス光を照射した皮膚の真皮層における光吸収係数を算出する。
The optical path length acquisition unit 10 acquires from the optical path length distribution storage unit 3 the optical path length of each layer of the skin at a predetermined time of the model of the propagation optical path length distribution. Here, the optical path length at a certain time is acquired from the optical path length distribution storage unit 3.
The non-absorption light intensity acquisition unit 11 acquires the light intensity at a predetermined time of the model of the time-resolved waveform of the short-time pulsed light from the time-resolved waveform storage unit 4. Here, the light intensity at a certain time is acquired from the time-resolved waveform storage unit 4.
The light absorption coefficient calculation unit 12 calculates the light absorption coefficient in the dermis layer of the skin irradiated with the short-time pulse light.

この光吸収係数算出部12では、皮膚における任意の層の光吸収係数を、下記の式(4)

Figure 0005750750
(但し、I(t)は受光部8が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形の無吸収モデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出する。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 In the light absorption coefficient calculation unit 12, the light absorption coefficient of an arbitrary layer in the skin is expressed by the following equation (4).
Figure 0005750750
(Where I (t) is the light intensity received by the light receiving unit 8 at time t, N (t) is the light intensity at time t of the non-absorption model of the time-resolved waveform of the short-time pulse light of the specific wavelength λk, Li (T) is the optical path length of the i-th layer at time t of the model of the propagation optical path length distribution in each layer of the skin, and μ i is the light absorption coefficient of the i-th layer)
Calculate from
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

濃度算出部13は、真皮層における光吸収係数から、真皮層に含まれるグルコースの濃度を算出する。
この濃度算出部13では、皮膚の任意の層におけるグルコースの濃度を、下記の式(5)

Figure 0005750750
(但し、μaは皮膚の任意の層である第a層における光吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは皮膚を構成する主成分の個数、qは特定波長λkの種類数である)
から算出する。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 The concentration calculation unit 13 calculates the concentration of glucose contained in the dermis layer from the light absorption coefficient in the dermis layer.
In the concentration calculation unit 13, the glucose concentration in an arbitrary layer of the skin is expressed by the following equation (5).
Figure 0005750750
(Where μa is the light absorption coefficient in the a layer, which is an arbitrary layer of the skin, gj is the molar concentration of the jth component constituting the skin, εj is the light absorption coefficient of the jth component, and p is the main component constituting the skin. The number of components, q is the number of types of specific wavelength λk)
Calculate from
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

体温特定部14は、脈波センサ24にて動脈を含む皮膚31の表面に亘って非接触にて検出された脈圧データ、及び温度センサ25にて動脈を含む皮膚31の表面に亘って非接触にて測定された温度データに基づき、脈圧のうち最大の脈圧を特定し、この特定された最大の脈圧に対応する部位の温度を生体の深部体温に近似した体温として特定する。この体温は、一定時間毎に特定され、メモリ等の記憶手段に記憶される。   The body temperature specifying unit 14 detects the pulse pressure data detected by the pulse wave sensor 24 in a non-contact manner across the surface of the skin 31 including the artery, and the temperature sensor 25 applies the non-pressure across the surface of the skin 31 including the artery. Based on the temperature data measured by contact, the maximum pulse pressure of the pulse pressure is specified, and the temperature of the part corresponding to the specified maximum pulse pressure is specified as a body temperature that approximates the deep body temperature of the living body. This body temperature is specified at regular intervals and stored in storage means such as a memory.

濃度補正部15は、濃度算出部13で算出された真皮層のグルコースの濃度を、体温特定部14にて特定された生体の体温を用いて補正する。
この濃度補正部15では、濃度算出部13で算出された真皮層のグルコースの濃度を、体温特定部14にて特定された生体の体温と基準温度との差を用いて補正することで、この真皮層のグルコースの濃度を人体の活動状態に応じて精度良く検出することが可能である。これにより、真皮層のグルコースの濃度を、人体の活動状態に応じて、非侵襲的に、短時間にて精度良く測定することができる。
The concentration correction unit 15 corrects the glucose concentration of the dermis layer calculated by the concentration calculation unit 13 using the body temperature of the living body specified by the body temperature specifying unit 14.
The concentration correction unit 15 corrects the glucose concentration of the dermis layer calculated by the concentration calculation unit 13 using the difference between the body temperature of the living body specified by the body temperature specifying unit 14 and the reference temperature, thereby It is possible to accurately detect the glucose concentration in the dermis layer according to the activity state of the human body. Thereby, the glucose concentration in the dermis layer can be accurately measured in a short time in a non-invasive manner according to the activity state of the human body.

このように構成された血糖値測定装置1では、人体の皮膚31に導光部6の先端部を当てたまま、この導光部6を皮膚31に沿って任意の方向に摺動させることにより、脈波センサ24により人体中の拍動を有する部位近傍の脈圧、すなわち動脈の脈圧を非接触にて検出する。この際、脈波センサ24により検出された動脈近傍の皮膚31の温度を温度センサ25により非接触にて測定する。   In the blood glucose level measuring apparatus 1 configured as described above, the light guide unit 6 is slid in an arbitrary direction along the skin 31 while the tip of the light guide unit 6 is applied to the skin 31 of the human body. The pulse wave sensor 24 detects the pulse pressure in the vicinity of the part having pulsation in the human body, that is, the pulse pressure of the artery without contact. At this time, the temperature of the skin 31 in the vicinity of the artery detected by the pulse wave sensor 24 is measured by the temperature sensor 25 in a non-contact manner.

一方、照射部5から放射された短時間パルス光は、皮膚31に照射導光路21を介して照射される。皮膚31からは複数種の後方散乱光が放射されるが、これらの後方散乱光は受光導光路22により集光されて光散乱媒質層選択部7へ導光される。
光散乱媒質層選択部7は、皮膚31から放射される複数種の後方散乱光から、主として真皮層により放射される後方散乱光のみを選択する。受光部8は、主として真皮層から放射される後方散乱光のみを受光する。
On the other hand, the short-time pulse light emitted from the irradiation unit 5 is irradiated to the skin 31 via the irradiation light guide path 21. A plurality of types of backscattered light is radiated from the skin 31, and these backscattered light are collected by the light receiving light guide path 22 and guided to the light scattering medium layer selection unit 7.
The light scattering medium layer selection unit 7 selects only the backscattered light mainly emitted from the dermis layer from the multiple types of backscattered light emitted from the skin 31. The light receiving unit 8 receives only backscattered light mainly emitted from the dermis layer.

さらに、光強度取得部9は、時刻tにおいて受光部8が受光した真皮層から放射される後方散乱光の光強度を取得する。
一方、光路長取得部10は、光路長分布記憶部3から、皮膚モデルにおける伝搬光路長分布の時刻tにおける皮膚31の各層の光路長を取得し、無吸収時光強度取得部11は、時間分解波形記憶部4から、皮膚モデルにおける短時間パルス光の時間分解波形の時刻tにおける光の強度を取得する。
Furthermore, the light intensity acquisition unit 9 acquires the light intensity of the backscattered light emitted from the dermis layer received by the light receiving unit 8 at time t.
On the other hand, the optical path length acquisition unit 10 acquires the optical path length of each layer of the skin 31 at the time t of the propagation optical path length distribution in the skin model from the optical path length distribution storage unit 3, and the non-absorbing light intensity acquisition unit 11 The light intensity at time t of the time-resolved waveform of the short-time pulse light in the skin model is acquired from the waveform storage unit 4.

次いで、光吸収係数算出部12は、光強度取得部9が取得した光強度と、光路長取得部10が取得した皮膚の各層の光路長と、無吸収時光強度取得部11が取得した光強度とに基づいて、皮膚の真皮層の光吸収係数を算出する。
次いで、濃度算出部13は、光吸収係数算出部12が算出した光吸収係数に基づいて、皮膚20の真皮層に含まれるグルコースの濃度を、上記の式(5)に基づき算出する。
このようにして、真皮層に含まれるグルコースの濃度が算出される。
Next, the light absorption coefficient calculation unit 12 includes the light intensity acquired by the light intensity acquisition unit 9, the optical path length of each layer of the skin acquired by the optical path length acquisition unit 10, and the light intensity acquired by the non-absorption light intensity acquisition unit 11. Based on the above, the light absorption coefficient of the dermis layer of the skin is calculated.
Next, the concentration calculation unit 13 calculates the concentration of glucose contained in the dermis layer of the skin 20 based on the equation (5) based on the light absorption coefficient calculated by the light absorption coefficient calculation unit 12.
In this way, the concentration of glucose contained in the dermis layer is calculated.

一方、体温特定部14では、脈波センサ24にて動脈を含む皮膚31の表面に亘って非接触にて検出された脈圧データ、及び温度センサ25にて動脈を含む皮膚31の表面に亘って非接触にて測定された温度データに基づき、脈圧のうち最大の脈圧を特定し、この特定された最大の脈圧に対応する部位の温度を生体の深部体温に近似した体温として特定する。
次いで、濃度補正部15は、濃度算出部13で算出された真皮層のグルコースの濃度を、体温特定部14で特定された体温を用いて補正する。
On the other hand, in the body temperature specifying unit 14, pulse pressure data detected by the pulse wave sensor 24 across the surface of the skin 31 including the artery and the surface of the skin 31 including the artery by the temperature sensor 25. Based on the temperature data measured in a non-contact manner, the maximum pulse pressure of the pulse pressure is specified, and the temperature corresponding to the specified maximum pulse pressure is specified as a body temperature that approximates the deep body temperature of the living body. To do.
Next, the concentration correction unit 15 corrects the glucose concentration of the dermis layer calculated by the concentration calculation unit 13 using the body temperature specified by the body temperature specifying unit 14.

以上により、真皮層から放射される後方散乱光を基に算出される真皮層に含まれるグルコースの濃度を、脈波センサ24にて検出された脈圧データ及び温度センサ25にて測定された動脈を含む皮膚31の表面の温度データに基づき、脈圧体温特定部14にて特定された体温を用いて補正することにより、真皮層のグルコースの濃度を生体の活動状態に応じて精度良く検出することができる。したがって、真皮層に含まれるグルコース濃度を、生体の活動状態に応じて、非侵襲的に精度良く測定することができる。   As described above, the concentration of glucose contained in the dermis layer calculated based on the backscattered light emitted from the dermis layer is measured by the pulse pressure data detected by the pulse wave sensor 24 and the artery measured by the temperature sensor 25. Is corrected using the body temperature specified by the pulse pressure body temperature specifying unit 14 based on the temperature data of the surface of the skin 31 including the dermal layer, thereby accurately detecting the glucose concentration in the dermis layer according to the activity state of the living body. be able to. Therefore, the glucose concentration contained in the dermis layer can be accurately measured noninvasively according to the activity state of the living body.

次に、本実施形態の体温の測定原理について、本発明者等が行った実験結果に基づいて説明する。
ここでは、開口径5ミリ程度の放射温度計を用いて、椀骨動脈部の周辺の温度分布を測定した。その結果、椀骨動脈部の略直上における温度が、周辺部の温度に比べて1℃弱高くなっており、平熱に近い体温が測定されることが判明した。
Next, the body temperature measurement principle of this embodiment will be described based on the results of experiments conducted by the inventors.
Here, the temperature distribution around the radial artery was measured using a radiation thermometer having an opening diameter of about 5 mm. As a result, it was found that the temperature just above the radial artery was 1 ° C. higher than the temperature at the periphery, and a body temperature close to normal heat was measured.

図3は人体の手のひら近傍の測定部位の外観を示す斜視図である。
温度の測定は、橈骨茎状突起から中枢側へ10mmだけ移動したところの橈骨動脈/尺骨動脈に直交する仮想線上に5mm間隔にて測定点を設け、これらの測定点それぞれについて温度測定を行った。
FIG. 3 is a perspective view showing the appearance of a measurement site in the vicinity of the palm of a human body.
The temperature was measured by providing measurement points at 5 mm intervals on a virtual line orthogonal to the radial artery / ulna artery moved 10 mm from the radial styloid process to the central side, and the temperature was measured for each of these measurement points. .

図4は、人体の手のひら近傍の各測定点における温度の測定結果を示す図であり、同図(a)は腕が乾燥した状態での温度の測定結果であり、同図(b)は測定部位を一旦水で濡らした後に温度測定を行なった場合の温度の測定結果である。
図4から明らかなように、橈骨動脈上の温度と尺骨動脈上の温度とは、何れも周辺部の温度と比べて高く、より深部体温に近い値となっている。しかも、動脈上の温度と周辺部との温度の差異は、乾燥した場合よりも水で濡らした後の場合にいっそう顕著に現れており、特に橈骨動脈上にて測定される温度は、水濡れの影響をほとんど受けずに乾燥時のそれに略等しい値が得られている。
FIG. 4 is a diagram showing the temperature measurement results at each measurement point in the vicinity of the palm of the human body. FIG. 4 (a) shows the temperature measurement results when the arm is dry, and FIG. 4 (b) shows the measurement. It is a measurement result of temperature when temperature measurement is performed after the part is once wetted with water.
As is clear from FIG. 4, the temperature on the radial artery and the temperature on the ulnar artery are both higher than the temperature at the peripheral portion and are closer to the deep body temperature. In addition, the difference between the temperature on the artery and the periphery is more prominent when wet with water than when it is dry, especially the temperature measured on the radial artery. A value almost equal to that at the time of drying is obtained without being substantially affected by the above.

以上の実験結果を医学的観点から検討すると、橈骨動脈等の動脈は血液という熱源を搬送する経路になっていることから、このような動脈の直上部分における表皮の温度は、その周辺部に比べて深部体温に十分近いものになっていると考えられる。加えて、橈骨動脈の直上部分では、心臓からの血液の拍出に伴って時間応答の速い拍動が観測されるので、この拍動を発生している部位を探し出し、この部位の温度を測ることにより、深部体温に十分近い体温を得ることができる。   Examining the above experimental results from a medical point of view, arteries such as radial arteries are routes that carry a heat source called blood, so the temperature of the epidermis directly above such arteries is higher than that of the surrounding area. It is thought that it is close enough to deep body temperature. In addition, in the portion directly above the radial artery, a fast pulsation with time response is observed as the blood from the heart is pumped. Find the part where this pulsation occurs and measure the temperature of this part. Thus, a body temperature sufficiently close to the deep body temperature can be obtained.

この拍動を検出する部位としては、細小動脈を除く動脈、すなわち大動脈、中動脈、小動脈の各動脈の直上部であればどこであってもよい。例えば、中動脈の部位としては、上述した橈骨動脈が挙げられ、また、小動脈としては、指の側胴部が挙げられる。
図5は、人体の広域循環系を示す模式図である。
この広域循環系は、心臓から人体の各部へ血液を分配するとともに、人体の各部から血液を帰還させる肉体的各血管路のことである。これに対し、体液と組織の間の交換に携わる顕微鏡的な血管と、これに伴うリンパ毛細血管、および、これらを取り囲む間質組織ないし実質組織を包含した循環単位を微少循環系と称している。微少循環系は、動脈系の末端においては細小動脈が網状の毛細血管に分岐した後、これらの毛細血管が再び集合して細小静脈となり、静脈へと繋がっている。
The site for detecting the pulsation may be anywhere as long as it is directly above the arteries other than the small arteries, that is, the aorta, middle artery, and small artery. For example, the radial artery mentioned above can be cited as the site of the middle artery, and the side trunk of the finger can be cited as the small artery.
FIG. 5 is a schematic diagram showing a wide circulation system of a human body.
This wide-area circulatory system is a physical vascular pathway that distributes blood from the heart to each part of the human body and returns blood from each part of the human body. On the other hand, the microscopic blood vessels involved in the exchange between body fluid and tissue, the accompanying lymph capillaries, and the circulatory unit including the interstitial or parenchyma surrounding them are called the microcirculatory system. . In the microcirculatory system, at the end of the arterial system, after the small arteries branch into reticulated capillaries, these capillaries reassemble to form small veins that are connected to the veins.

このように、橈骨動脈等の末梢部で体温を測定すれば、常時水に晒されるという特異な状況下ではなく、普通に生活している限りにおいては、水濡れ後等であってもかなりの精度で深部体温に近い体温を測定することができると推定される。
例えば、就寝の間にその人の体温の変化をモニタリングするという用途を想定した場合、上記の測定原理を適用することで、問題のない体温測定を行うことができる。
本実施形態にあっては、人体の深部体温に十分近い体温を測定するために、上述した導光部6の脈波センサ24及び温度センサ25を上記の人体の橈骨動脈上の表面に配置し、その人体の部位にて検出した温度を体温とする構成となっている。
Thus, if the body temperature is measured at the peripheral part of the radial artery, etc., it is not under the unusual situation of being constantly exposed to water, but as long as you live normally, even if it is wet, etc. It is estimated that body temperature close to deep body temperature can be measured with accuracy.
For example, when the use of monitoring the change in the body temperature of the person during sleep is assumed, the body temperature can be measured without any problem by applying the above measurement principle.
In the present embodiment, in order to measure a body temperature sufficiently close to the deep body temperature of the human body, the pulse wave sensor 24 and the temperature sensor 25 of the light guide unit 6 described above are disposed on the surface of the radial artery of the human body. The temperature detected at the part of the human body is the body temperature.

従来、深部体温を測定する場合、体温計等の小型機器もしくは卓上型の機器を用いて、直腸、舌、脇の下等で温度測定を行っていたが、これらの部位での測定では、ある時刻における一点の測定しかできなかった。さらに、装置が一般に大型であるため、常時携帯しながら継続的に体温を測定するようなことはできなかった。
これに対し、本実施形態では、人体の深部体温に十分近い体温を、比較的簡便に測定することができる。したがって、本実施形態にて測定される深部体温に十分近い体温は、消費カロリー算出等として有用であることのみならず、この体温自体が、臨床医学の観点においては極めて重要である。
Conventionally, when measuring deep body temperature, temperature measurement was performed on the rectum, tongue, armpit, etc. using a small device such as a thermometer or a table-type device, but at these points, one point at a certain time It was only possible to measure. Furthermore, since the device is generally large, it has not been possible to continuously measure body temperature while being carried around.
On the other hand, in this embodiment, body temperature sufficiently close to the deep body temperature of the human body can be measured relatively easily. Therefore, the body temperature sufficiently close to the deep body temperature measured in the present embodiment is not only useful for calculating calorie consumption, but also the body temperature itself is extremely important from the viewpoint of clinical medicine.

次に、血糖値測定装置1の動作を説明する。
血糖値測定装置1は、血糖値を測定する前に、予め皮膚モデルの各層における伝搬光路長分布と時間分解波形とを算出しておく必要がある。
図6は、人の皮膚組織の断面を示す模式図であり、皮膚31は、概ね水を20%程度含み、残部が蛋白質からなる厚み0.3mm程度の表皮層32と、表皮層32下に形成され、概ね水を60%程度、蛋白質、脂質及びグルコースを含有する厚み1.2mm程度の真皮層(任意の層)33と、真皮層33下に形成され、概ね脂質を90%以上含み、残部が水からなる厚み3.0mm程度の皮下組織34とにより構成されている。
Next, the operation of the blood sugar level measuring apparatus 1 will be described.
The blood glucose level measuring apparatus 1 needs to calculate the propagation optical path length distribution and the time-resolved waveform in each layer of the skin model before measuring the blood glucose level.
FIG. 6 is a schematic diagram showing a cross-section of human skin tissue. The skin 31 includes approximately 20% of water and the rest is made of protein, and a skin layer 32 having a thickness of approximately 0.3 mm and a skin layer 32 below the skin layer 32. A dermis layer (arbitrary layer) 33 having a thickness of about 1.2 mm containing approximately 60% water and containing proteins, lipids and glucose, and formed under the dermis layer 33, and generally containing 90% or more of lipids; The remaining part is composed of water and a subcutaneous tissue 34 having a thickness of about 3.0 mm.

ここで、皮膚モデルの伝搬光路長分布及び時間分解波形の算出方法を説明する。
初めに、シミュレーション部2は、皮膚モデルを生成する。皮膚モデルの生成は、皮膚の各層の光散乱係数、光吸収係数及び厚みを決定することで行う。ここで、皮膚の各層の散乱係数及び厚みは、個体による差が少ないので、予めサンプルを取ることなどによって決定すると良い。
また、ここで用いる皮膚モデルの光吸収係数はゼロとする。その理由は、この皮膚モデルを用いて光吸収量を算出するからである。
Here, a method of calculating the propagation optical path length distribution and time-resolved waveform of the skin model will be described.
First, the simulation unit 2 generates a skin model. The skin model is generated by determining the light scattering coefficient, light absorption coefficient, and thickness of each layer of the skin. Here, since the scattering coefficient and thickness of each layer of the skin have little difference between individuals, it is preferable to determine by taking a sample in advance.
The light absorption coefficient of the skin model used here is zero. The reason is that the amount of light absorption is calculated using this skin model.

シミュレーション部2は、皮膚モデルを生成すると、この皮膚モデルに光を照射するシミュレーションを行う。このとき、照射部5の位置と受光部8の位置との間の距離を決定しておく必要がある。シミュレーションは、モンテカルロ法を用いて行うと良い。モンテカルロ法によるシミュレーションは、例えば以下のように行われる。   When the simulation unit 2 generates a skin model, the simulation unit 2 performs a simulation of irradiating the skin model with light. At this time, it is necessary to determine the distance between the position of the irradiation unit 5 and the position of the light receiving unit 8. The simulation is preferably performed using the Monte Carlo method. The simulation by the Monte Carlo method is performed as follows, for example.

まず、シミュレーション部2は、照射する光のモデルを光子(光束)とし、この光子を皮膚モデルに照射する計算を行う。皮膚モデルに照射された光子は、皮膚モデル内を移動する。このとき、光子は、次に進む点までの距離L及び方向θを乱数Rによって決定する。シミュレーション部2は、光子が次に進む点までの距離Lの計算を、式(6)により行う。

Figure 0005750750
ただし、μsは、皮膚モデルの第s層(表皮層、真皮層、皮下組織層の何れか)の散乱係数を示す。 First, the simulation unit 2 performs calculation for irradiating the skin model with a photon (light beam) as a model of light to be irradiated. Photons irradiated to the skin model move in the skin model. At this time, the photon determines the distance L and the direction θ to the next advancing point by the random number R. The simulation unit 2 calculates the distance L to the point at which the photon advances next using Equation (6).
Figure 0005750750
Here, μs represents the scattering coefficient of the s-th layer (any one of the epidermis layer, dermis layer, and subcutaneous tissue layer) of the skin model.

また、シミュレーション部2は、光子が次に進む点までの方向θの計算を、式(7)により行う。

Figure 0005750750
ただし、gは、散乱角度の余弦(cos)の平均である非等方性パラメータを示し、皮膚の非等方性パラメータは、略0.9である。 In addition, the simulation unit 2 calculates the direction θ up to the point where the photon advances next by Expression (7).
Figure 0005750750
However, g shows the anisotropic parameter which is the average of the cosine (cos) of a scattering angle, and the anisotropic parameter of skin is about 0.9.

シミュレーション部2は、上記式(6)及び式(7)の計算を単位時間毎に繰り返すことにより、照射部5から受光部8までの光子の移動経路を算出することができる。シミュレーション部2は、複数の光子について移動距離の算出を行う。例えば、シミュレーション部2は、108個の光子について移動距離を算出する。   The simulation unit 2 can calculate the movement path of photons from the irradiation unit 5 to the light receiving unit 8 by repeating the calculations of the above formulas (6) and (7) every unit time. The simulation unit 2 calculates the movement distance for a plurality of photons. For example, the simulation unit 2 calculates the movement distance for 108 photons.

図7は、シミュレーション部が算出した各層の伝搬光路長分布を示す図である。
図7では、横軸を光子の照射からの経過時間とし、縦軸を光路長の対数表示としている。
シミュレーション部2は、受光部8に到達した光子の各々の移動経路を、移動経路が通過する層毎に分類する。そして、シミュレーション部2は、単位時間毎に到達した光子の移動経路の平均長を分類された層毎に算出することで、図7に示すような皮膚の各層の伝搬光路長分布を算出する。
FIG. 7 is a diagram illustrating the propagation optical path length distribution of each layer calculated by the simulation unit.
In FIG. 7, the horizontal axis represents the elapsed time from the photon irradiation, and the vertical axis represents the logarithmic display of the optical path length.
The simulation unit 2 classifies each movement path of the photons that have reached the light receiving unit 8 for each layer through which the movement path passes. And the simulation part 2 calculates the propagation | transmission optical path length distribution of each layer of skin as shown in FIG. 7 by calculating the average length of the movement path | route of the photon which arrived for every unit time for every classified layer.

図8は、シミュレーション部が算出した時間分解波形を示す図である。
図8では、横軸を光子の照射からの経過時間とし、縦軸を受光部8が検出した光子数としている。
シミュレーション部2は、単位時間毎に受光部8に到達した光子の個数を算出することで、図5に示すような皮膚モデルの時間分解波形を算出する。
上述したような処理により、シミュレーション部2は、複数の波長に対して、皮膚モデルの伝搬光路長分布及び時間分解波形を算出する。このとき、シミュレーション部2は、皮膚の主成分(水、たんぱく質、脂質、グルコース等)の吸収スペクトルの差が大きくなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 8 is a diagram illustrating a time-resolved waveform calculated by the simulation unit.
In FIG. 8, the horizontal axis represents the elapsed time from photon irradiation, and the vertical axis represents the number of photons detected by the light receiving unit 8.
The simulation unit 2 calculates the time-resolved waveform of the skin model as shown in FIG. 5 by calculating the number of photons that have reached the light receiving unit 8 per unit time.
Through the processing described above, the simulation unit 2 calculates the propagation optical path length distribution and time-resolved waveform of the skin model for a plurality of wavelengths. At this time, the simulation unit 2 may calculate the propagation optical path length distribution and the time-resolved waveform for a wavelength at which the difference in absorption spectrum of the skin main components (water, protein, lipid, glucose, etc.) becomes large.

図9は、水による光吸収波長特性を示す図である(久保宇市著、「医用レーザ入門」、第1版、オーム社、昭和60年6月25日発行、第70頁、ISBN4−274−03065−2)。
図9では、横軸を照射する光の波長(μm)とし、縦軸を照射する光の皮膚への浸透深さ(cm)とし、水に向かって光を入射した場合、入射時の光強度が1/10に減少するまでに進む浸透深さを赤外域の各波長の光に対して示している。
例えば、3.0μm付近の波長帯域の光では、浸透深さが2×10−3cm程度と浅く、水に吸収され易く、また、2.0μm以下の波長帯域の光では、浸透深さが10−2cmより深く、水に吸収され難いことが分かる。
FIG. 9 is a diagram showing the light absorption wavelength characteristics of water (by Kubo City, “Introduction to Medical Lasers”, 1st Edition, Ohmsha, published on June 25, 1985, page 70, ISBN4-274. -03065-2).
In FIG. 9, the horizontal axis represents the wavelength of light to be irradiated (μm), the vertical axis represents the penetration depth of the light to be irradiated into the skin (cm), and when light is incident toward water, the light intensity at the time of incidence Shows the penetration depth that advances until it decreases to 1/10 for light of each wavelength in the infrared region.
For example, light having a wavelength band near 3.0 μm has a penetration depth as shallow as about 2 × 10 −3 cm and is easily absorbed by water, and light having a wavelength band of 2.0 μm or less has a penetration depth of about 2 × 10 −3 cm. It can be seen that it is deeper than 10 −2 cm and is hardly absorbed by water.

図10は、皮膚の主成分の吸収スペクトルを示す図である。この図7では、横軸を照射する光の波長とし、縦軸を吸収係数としている。
図10によれば、グルコースの吸収係数は波長が1600nmのときに極大となり、水の吸収係数は波長が1450nmのときに極大となることがわかる。
したがって、シミュレーション部2は、例えば1450nm、1600nmというように皮膚の主成分の吸収スペクトルの差が大きくなる波長について伝搬光路長分布及び時間分解波形を算出すると良い。
FIG. 10 is a diagram showing an absorption spectrum of the main component of the skin. In FIG. 7, the horizontal axis represents the wavelength of light to be irradiated, and the vertical axis represents the absorption coefficient.
As can be seen from FIG. 10, the absorption coefficient of glucose is maximized when the wavelength is 1600 nm, and the absorption coefficient of water is maximized when the wavelength is 1450 nm.
Therefore, the simulation unit 2 may calculate the propagation optical path length distribution and the time-resolved waveform for a wavelength at which the difference in the absorption spectrum of the main component of the skin becomes large, such as 1450 nm and 1600 nm.

シミュレーション部2は、複数の波長に対する皮膚モデルの伝搬光路長分布及び時間分解波形を算出すると、伝搬光路長分布の情報を光路長分布記憶部3に記憶させ、時間分解波形の情報を時間分解波形記憶部4に記憶させる。   When the simulation unit 2 calculates the propagation optical path length distribution and the time-resolved waveform of the skin model for a plurality of wavelengths, the simulation unit 2 stores the information on the propagation optical path length distribution in the optical path length distribution storage unit 3 and the time-resolved waveform information as the time-resolved waveform. Store in the storage unit 4.

図11は、皮膚31の表皮層32、真皮層33及び皮下組織34各々に照射される光の波長と吸収係数との関係を示す図であり、図中、Aは表皮層32の吸収係数を、Bは真皮層33の吸収係数を、Cは皮下組織34の吸収係数を、それぞれ示している。
この図11によれば、真皮層33の吸収スペクトルには、波長1450nm付近に極大値があり、水の吸収係数の60%程度の水分が含まれていることが分かる。また、表皮層32の吸収スペクトルにおいても、波長1450nm付近に真皮層23の1/3程度の大きさの極大値があり、水の吸収係数の20%程度の水分が含まれていることが分かる。一方、皮下組織34の吸収スペクトルでは、波長1450nm付近に真皮層23の1/10程度の大きさの極大値しかなく、水の吸収係数の数%程度の水分しか含まれていないことが分かる。
FIG. 11 is a diagram showing the relationship between the wavelength of light applied to each of the epidermis layer 32, the dermis layer 33 and the subcutaneous tissue 34 of the skin 31 and the absorption coefficient. In the figure, A represents the absorption coefficient of the epidermis layer 32. , B indicates the absorption coefficient of the dermis layer 33, and C indicates the absorption coefficient of the subcutaneous tissue 34, respectively.
According to FIG. 11, it can be seen that the absorption spectrum of the dermal layer 33 has a maximum value near the wavelength of 1450 nm and contains about 60% of the water absorption coefficient. Also, in the absorption spectrum of the skin layer 32, there is a maximum value of about 1/3 the size of the dermis layer 23 in the vicinity of the wavelength of 1450 nm, and it is understood that the moisture content is about 20% of the water absorption coefficient. . On the other hand, in the absorption spectrum of the subcutaneous tissue 34, it can be seen that there is only a maximum value of about 1/10 the size of the dermis layer 23 in the vicinity of the wavelength of 1450 nm, and it contains only about several percent of the water absorption coefficient.

以上により、真皮層33には、水の吸収係数の60%程度の水分が含まれており、また、表皮層32には、水の吸収係数の20%程度の水分が含まれているが、皮下組織34には、水の吸収係数の数%程度の水分しか含まれていないことが分かる。したがって、皮膚から血糖値を非侵襲的に測定するには、測定対象としてグルコースを含んでいる真皮層33を選択し、この真皮層33に含まれるグルコース量を測定すればよいことが分かる。   As described above, the dermis layer 33 contains about 60% of the water absorption coefficient, and the skin layer 32 contains about 20% of the water absorption coefficient. It can be seen that the subcutaneous tissue 34 contains only about several percent of the water absorption coefficient. Therefore, it can be understood that in order to non-invasively measure the blood glucose level from the skin, it is only necessary to select the dermis layer 33 containing glucose as a measurement target and measure the amount of glucose contained in the dermis layer 33.

ところで、水の吸収係数には温度依存性があることが知られている。
図12は、水の吸光度スペクトルの温度依存性を示す図であり、図中、Aは41℃における水の吸光度スペクトル、Bは21℃における水の吸光度スペクトルである。
ここでは、セル長が1mmの光学セルを用い、光学セルホルダとして温調ユニットタイプのものを用い、恒温循環槽を用いて±0.1℃の範囲で温度調節を行い、紫外可視近赤外分光光度計 Lambda 900S(パーキンエルマー社製)を用いて41℃及び21℃各々における水の吸光度スペクトルを測定した。
図12によれば、水の吸光度スペクトルの極大値は、21℃では波長1450nm付近にあり、温度が21℃より高くなるにしたがって、極大値が1450nmより短波長側にシフトすることが分かる。
Incidentally, it is known that the absorption coefficient of water has temperature dependency.
FIG. 12 is a diagram showing the temperature dependence of the water absorbance spectrum, where A is the water absorbance spectrum at 41 ° C., and B is the water absorbance spectrum at 21 ° C.
Here, an optical cell having a cell length of 1 mm is used, a temperature control unit type optical cell holder is used, temperature is adjusted within a range of ± 0.1 ° C. using a constant temperature circulation tank, and an ultraviolet-visible near-infrared spectrophotometer is used. The absorbance spectrum of water at 41 ° C. and 21 ° C. was measured using a total Lambda 900S (manufactured by Perkin Elmer).
According to FIG. 12, the maximum value of the absorbance spectrum of water is near the wavelength of 1450 nm at 21 ° C., and the maximum value shifts to the shorter wavelength side from 1450 nm as the temperature becomes higher than 21 ° C.

図13は、水の吸光度スペクトル差の温度依存性を示す図であり、1000〜2000nmの波長領域について、21℃における蒸留水の吸光度スペクトルを基準として、25℃における蒸留水の吸光度スペクトルと21℃における蒸留水の吸光度スペクトルとの差を示したものである。
図13によれば、蒸留水の吸光度スペクトルは、波長により温度の影響が異なることが分かる。したがって、グルコース水溶液中のグルコース濃度を吸光度で求める場合、用いる波長に対応して温度補正を行えば、水の吸光度スペクトルの影響を除外した正確な測定値が得られることとなる。
FIG. 13 is a diagram showing the temperature dependence of the difference in the absorbance spectrum of water. In the wavelength region of 1000 to 2000 nm, the absorbance spectrum of distilled water at 25 ° C. and 21 ° C. based on the absorbance spectrum of distilled water at 21 ° C. It shows the difference from the absorbance spectrum of distilled water at.
According to FIG. 13, it can be seen that the absorbance spectrum of distilled water has a different temperature effect depending on the wavelength. Therefore, when the glucose concentration in the aqueous glucose solution is determined by absorbance, if the temperature is corrected according to the wavelength used, an accurate measurement value excluding the influence of the absorbance spectrum of water can be obtained.

以上により、短時間パルス光を用いて真皮層33に含まれるグルコース量を測定し、このグルコース量を真皮層33の温度により補正すれば、皮膚から血糖値を非侵襲的にて正確に測定することができる。   As described above, if the amount of glucose contained in the dermis layer 33 is measured using short-time pulsed light, and the amount of glucose is corrected by the temperature of the dermis layer 33, the blood sugar level is accurately measured non-invasively from the skin. be able to.

図14は、グルコース水溶液の吸光度スペクトルの一例を示す図であり、図中、Aは参照側を蒸留水(21.5℃)として測定した9.4g/dlの高濃度のグルコース水溶液の吸光度スペクトルの測定値を、Bは同グルコース水溶液の吸光度スペクトルの測定値を温度補正及び体積補正した補正値を、それぞれ示している。   FIG. 14 is a diagram showing an example of the absorbance spectrum of an aqueous glucose solution, in which A is the absorbance spectrum of a high-concentration glucose aqueous solution of 9.4 g / dl measured with the reference side as distilled water (21.5 ° C.). B represents a correction value obtained by temperature correction and volume correction of the measurement value of the absorbance spectrum of the glucose aqueous solution.

このグルコース水溶液では、グルコース濃度を健康な人の約100倍である9.4g/dlとしたので、このときの体積増加は約6%である。
また、この濃度では、グルコースと水の体積比率が6:100と大きく、無視できない。このように、試料側の水の体積が参照側の水の体積と比べて減少しているので、水の吸光度の大きい1400〜1500nm付近と1900nm以上の波長領域では、吸光度スペクトル差が大きく負になっている。この体積減少は、セル長1mmに対して0.057mmの減少に相当している。
In this glucose aqueous solution, since the glucose concentration was 9.4 g / dl, which is about 100 times that of a healthy person, the volume increase at this time is about 6%.
At this concentration, the volume ratio of glucose and water is as large as 6: 100 and cannot be ignored. Thus, since the volume of water on the sample side is reduced compared to the volume of water on the reference side, the absorbance spectrum difference is greatly negative in the vicinity of 1400-1500 nm where the absorbance of water is large and in the wavelength region of 1900 nm or more. It has become. This volume reduction corresponds to a reduction of 0.057 mm for a cell length of 1 mm.

図14から次のことが分かる。
例えば、波長1600nmにおいては、9.4g/dlのグルコース量で吸光度が0.035程度であるから、吸収係数は0.08/mm程度となる。一方、真皮層におけるグルコース量の正常値は100mg/dl程度であるから、この正常値に対応する吸収係数は0.0008/mm程度となる。
The following can be understood from FIG.
For example, at a wavelength of 1600 nm, the absorbance is about 0.035 with a glucose amount of 9.4 g / dl, so the absorption coefficient is about 0.08 / mm. On the other hand, since the normal value of the glucose amount in the dermis layer is about 100 mg / dl, the absorption coefficient corresponding to this normal value is about 0.0008 / mm.

次に、温度の影響について図13を参照して説明する。
図13中、波長1600nmにおいては、4℃の上昇に対して吸光度差は−0.008程度であるから、吸収係数の変化は−0.02/mm程度となる。
ここで、温度変化に対して吸光度変化が線形になると仮定すると、温度が1℃上昇すると、吸収係数の変化量は−0.004/mmとなる。すなわち、この1℃上昇は、グルコース濃度が500mg/dlの減少に相当することがわかる。
これは、吸光光度計を用いて、セル長1mm、試料温度21℃及び41℃それぞれの吸光度スペクトルを求めた結果における補正値である。
Next, the influence of temperature will be described with reference to FIG.
In FIG. 13, at a wavelength of 1600 nm, the absorbance difference is about −0.008 with respect to an increase of 4 ° C., so the change in absorption coefficient is about −0.02 / mm.
Here, assuming that the absorbance change is linear with respect to the temperature change, when the temperature rises by 1 ° C., the amount of change in the absorption coefficient becomes −0.004 / mm. That is, this 1 ° C. rise corresponds to a decrease in the glucose concentration of 500 mg / dl.
This is a correction value in the result of obtaining the absorbance spectra of a cell length of 1 mm and sample temperatures of 21 ° C. and 41 ° C. using an absorptiometer.

なお、実際の皮膚内におけるグルコース濃度に伴う吸光度変化は、皮膚内の散乱係数により、吸光光度計を用いて、セル長1mm、試料温度21℃及び41℃それぞれの吸光度スペクトルを求めた結果よりも一桁程度大きくなる。したがって、実際の皮膚における温度変化に対する吸収係数の補正値も一桁程度大きくなる。   Note that the change in absorbance due to the glucose concentration in the actual skin is based on the scattering coefficient in the skin, and the results obtained from the absorbance spectra of the cell length of 1 mm and the sample temperatures of 21 ° C. and 41 ° C. were obtained using an absorptiometer. It is about an order of magnitude larger. Therefore, the correction value of the absorption coefficient with respect to the temperature change in the actual skin is also increased by about one digit.

次に、この血糖値測定装置1を用いて血糖値を測定する手順について、図15に基づき説明する。
まず、被測定者が血糖値測定装置1を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置1を動作させる。
ここでは、人体の皮膚31に導光部6の先端部を当てたまま、この導光部6を皮膚31に沿って任意の方向に摺動させ、脈波センサ24により人体中の拍動を有する部位近傍の脈圧、すなわち動脈の脈圧を非接触にて検出する。同時に、脈波センサ24により検出された動脈近傍の皮膚31の温度を温度センサ25により非接触にて測定する(ステップS1)。
Next, a procedure for measuring a blood sugar level using the blood sugar level measuring apparatus 1 will be described with reference to FIG.
First, the person to be measured applies the blood sugar level measuring device 1 to the skin such as the wrist, and operates the blood sugar level measuring device 1 by pressing a measurement start switch (not shown) or the like.
Here, the light guide 6 is slid in an arbitrary direction along the skin 31 with the tip of the light guide 6 placed on the skin 31 of the human body, and the pulse wave sensor 24 causes pulsation in the human body. The pulse pressure in the vicinity of the site, that is, the pulse pressure of the artery is detected without contact. At the same time, the temperature of the skin 31 in the vicinity of the artery detected by the pulse wave sensor 24 is measured in a non-contact manner by the temperature sensor 25 (step S1).

次いで、体温特定部14により、脈波センサ24にて動脈を含む皮膚31の表面に亘って非接触にて検出された脈圧データ、及び温度センサ25にて動脈を含む皮膚31の表面に亘って非接触にて測定された温度データに基づき、脈圧のうち最大の脈圧を特定し、この特定された最大の脈圧に対応する部位の温度を生体の深部体温に近似した体温として特定する(ステップS2)。
一方、照射部5が、皮膚31に対して、この皮膚31を構成する真皮層33に短時間パルス光を照射する(ステップS3)。
Next, the body temperature specifying unit 14 detects the pulse pressure data detected by the pulse wave sensor 24 over the surface of the skin 31 including the artery and the surface of the skin 31 including the artery with the temperature sensor 25. Based on the temperature data measured in a non-contact manner, the maximum pulse pressure of the pulse pressure is specified, and the temperature corresponding to the specified maximum pulse pressure is specified as a body temperature that approximates the deep body temperature of the living body. (Step S2).
On the other hand, the irradiation unit 5 irradiates the dermis layer 33 constituting the skin 31 with short-time pulsed light on the skin 31 (step S3).

次いで、導光部6により、皮膚31から放射される複数種の後方散乱光、すなわち皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光を集光し、光散乱媒質層選択部7へ導光する。
光散乱媒質層選択部7では、導光部6により集光されかつ導光された皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光から、真皮層33により放射される後方散乱光を選択する(ステップS4)。
Next, the light guiding unit 6 collects a plurality of types of backscattered light radiated from the skin 31, that is, backscattered light emitted from the subcutaneous tissue 32, the dermis layer 33, and the epidermis layer 34, and a light scattering medium layer. The light is guided to the selection unit 7.
In the light scattering medium layer selection unit 7, the dermis layer 33 emits the backscattered light emitted from each of the subcutaneous tissue 32, the dermis layer 33, and the epidermis layer 34 collected and guided by the light guide unit 6. Backscattered light is selected (step S4).

次いで、受光部8により、真皮層33から放射される単位時間毎の後方散乱光を受光する(ステップS5)。このとき、受光部8では、照射開始からの単位時間毎(例えば、1ピコ秒毎の時刻t〜t)の受光強度を内部メモリに記録しておく。 Next, the backscattered light per unit time emitted from the dermis layer 33 is received by the light receiving unit 8 (step S5). At this time, the light receiving unit 8 records the received light intensity for each unit time from the start of irradiation (for example, times t 1 to t m every 1 picosecond) in the internal memory.

この受光部8が受光を完了したことを光強度取得部9に知らせると、この光強度取得部9では、真皮層33から放射される後方散乱光の異なる時刻の受光強度を取得する(ステップS6)。すなわち、複数の時刻t〜t各々における後方散乱光の光強度を取得する。
ここで、光強度取得部9が光強度を取得する時刻t〜tは、真皮層33から放射される後方散乱光のピークとなる時刻を含むことが好ましい。すなわち、照射部5が短時間パルス光を照射した時刻に、真皮層33の光路長が極大となる時間を加算した時刻とすることが好ましい。
When the light intensity acquisition unit 9 is notified that the light receiving unit 8 has completed the light reception, the light intensity acquisition unit 9 acquires the received light intensity at different times of the backscattered light emitted from the dermis layer 33 (step S6). ). That is, the light intensity of the backscattered light at each of the plurality of times t 1 to t m is acquired.
Here, it is preferable that the times t 1 to t m at which the light intensity acquisition unit 9 acquires the light intensity include the time at which the peak of the backscattered light emitted from the dermis layer 33 is obtained. That is, it is preferable that the time when the light path length of the dermis layer 33 is maximized is added to the time when the irradiation unit 5 irradiates the pulsed light for a short time.

次いで、光吸収係数算出部12では、光強度取得部9にて取得した真皮層33から放射される後方散乱光の異なる時刻の受光強度、すなわち、複数の時刻t〜t各々における後方散乱光の光強度を基に、真皮層33の光吸収係数を、下記の式(8)

Figure 0005750750
(但し、I(t)は受光部5が時刻tにて受光した光強度、N(t)は短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)
から算出する(ステップS7)。
ここでは、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 Next, in the light absorption coefficient calculation unit 12, the received light intensity at different times of the backscattered light emitted from the dermis layer 33 acquired by the light intensity acquisition unit 9, that is, backscattering at each of a plurality of times t 1 to t m. Based on the light intensity of light, the light absorption coefficient of the dermis layer 33 is expressed by the following equation (8).
Figure 0005750750
(Where I (t) is the light intensity received by the light receiving unit 5 at time t, N (t) is the light intensity at time t of the time-resolved waveform model of the short-time pulse light, and Li (t) is the skin (The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer, μi is the light absorption coefficient of the i-th layer)
(Step S7).
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

次いで、濃度算出部13では、光吸収係数算出部12が算出した真皮層33の光吸収係数μを基に、真皮層33に含まれるグルコースの濃度を、下記の式(9)

Figure 0005750750
(但し、μaは皮膚の任意の層である第a層における光吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは皮膚を構成する主成分の個数、qは短時間パルス光の種類数である)
から算出する(ステップS8)。 Next, the concentration calculation unit 13 calculates the concentration of glucose contained in the dermis layer 33 based on the light absorption coefficient μ of the dermis layer 33 calculated by the light absorption coefficient calculation unit 12 using the following equation (9).
Figure 0005750750
(Where μa is the light absorption coefficient in the a layer, which is an arbitrary layer of the skin, gj is the molar concentration of the jth component constituting the skin, εj is the light absorption coefficient of the jth component, and p is the main component constituting the skin. The number of components, q is the number of types of short-time pulsed light)
(Step S8).

次いで、濃度補正部14では、濃度算出部13で算出された真皮層33のグルコースの濃度を、体温特定部14にて特定された生体の深部体温に近似した体温と基準温度との差を用いて、下記の補正式:
グルコースの濃度の測定値−水の吸収係数相応値
にて補正する(ステップS9)。
例えば、真皮層33の温度がT℃上昇した場合、光の吸収係数の変化量は−0.004/mm×Tとなる。したがって、真皮層33の温度がT℃上昇した場合のグルコース濃度の減少量は500mg/dl×Tとなる。
Next, the concentration correction unit 14 uses the difference between the body temperature approximated to the deep body temperature of the living body specified by the body temperature specifying unit 14 and the reference temperature as the glucose concentration of the dermis layer 33 calculated by the concentration calculation unit 13. The following correction formula:
The measured value of glucose concentration is corrected by a value corresponding to the absorption coefficient of water (step S9).
For example, when the temperature of the dermis layer 33 is increased by T ° C., the amount of change in the light absorption coefficient is −0.004 / mm × T. Therefore, the amount of decrease in glucose concentration when the temperature of the dermis layer 33 is increased by T ° C. is 500 mg / dl × T.

上述の血糖値測定装置1は、コンピュータシステムを内蔵しており、上述した各ステップの処理動作は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されている。そこで、このプログラムをコンピュータが読み出して実行することにより、上記の処理動作を行うことができる。
ここで、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等が挙げられる。
また、このコンピュータプログラムを通信回線によりコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
The blood glucose level measuring apparatus 1 described above has a built-in computer system, and the processing operation of each step described above is stored in a computer-readable recording medium in the form of a program. Therefore, the above-described processing operation can be performed by the computer reading and executing this program.
Here, examples of the computer-readable recording medium include a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, and a semiconductor memory.
Alternatively, the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.

また、上記プログラムは、上記の各ステップの一部を実現するためのものであってもよい。
さらに、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
The program may be for realizing a part of the above steps.
Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.

以上説明したように、本実施形態によれば、脈波センサ24により動脈の脈圧を非接触にて検出すると同時に、温度センサ25により動脈近傍の皮膚31の温度を非接触にて測定し、真皮層から放射される後方散乱光を基に算出される皮膚の真皮層におけるグルコースの濃度を、体温特定部14にて特定された生体の深部体温に近似した体温に基づき補正するので、この後方散乱光を基に算出される真皮層におけるグルコースの濃度を、人体の活動状態に応じて精度良く検出することができる。したがって、真皮層におけるグルコースの濃度を、生体の活動状態に応じて、非侵襲的に、短時間にて精度良く測定することができる。   As described above, according to the present embodiment, the pulse wave sensor 24 detects the pulse pressure of the artery without contact, and at the same time, the temperature sensor 25 measures the temperature of the skin 31 near the artery without contact, Since the glucose concentration in the dermis layer of the skin calculated based on the backscattered light emitted from the dermis layer is corrected based on the body temperature approximated to the deep body temperature of the living body specified by the body temperature specifying unit 14, It is possible to accurately detect the glucose concentration in the dermis layer calculated based on the scattered light according to the activity state of the human body. Therefore, the glucose concentration in the dermis layer can be accurately measured in a short time in a non-invasive manner according to the activity state of the living body.

[第2の実施形態]
図16は、本発明の第2の実施形態の血糖値測定装置(濃度定量装置)の導光部の構成の概略を示す断面図であり、本実施形態の血糖値測定装置41の導光部42が第1の実施形態の血糖値測定装置1の導光部6と異なる点は、温度センサ25を、皮膚31の表面の温度を測定する表面温度センサ(表面温度測定手段)43と、断熱材23内に設けられ表面温度センサ43自体の温度を直接測定するセンサ内部温度測定センサ(センサ内部温度測定手段)44とに替え、さらに、表面温度センサ43にて測定された真皮層33の温度とセンサ内部温度測定センサ44にて測定された表面温度センサ43近傍の温度との差を、単位時間当たりの温度変化率として算出する表面・内部温度変化率算出部(表面・内部温度変化率算出手段)45を設け、この脈波センサ24及び表面・内部温度変化率算出部45を濃度補正部15に接続した点であり、導光部42以外の構成であるシミュレーション部2〜濃度算出部13については第1の実施形態の血糖値測定装置1と全く同様であるから、説明を省略する。
[Second Embodiment]
FIG. 16: is sectional drawing which shows the outline of a structure of the light guide part of the blood glucose level measuring apparatus (concentration determination apparatus) of the 2nd Embodiment of this invention, and the light guide part of the blood glucose level measuring apparatus 41 of this embodiment 42 differs from the light guide unit 6 of the blood sugar level measuring apparatus 1 of the first embodiment in that the temperature sensor 25, the surface temperature sensor (surface temperature measuring means) 43 that measures the temperature of the surface of the skin 31, and the heat insulation. The temperature of the dermis layer 33 measured by the surface temperature sensor 43 is used instead of the sensor internal temperature measurement sensor (sensor internal temperature measurement means) 44 that is provided in the material 23 and directly measures the temperature of the surface temperature sensor 43 itself. Surface / internal temperature change rate calculation unit (surface / internal temperature change rate calculation) that calculates the difference between the temperature in the vicinity of the surface temperature sensor 43 measured by the sensor internal temperature measurement sensor 44 as a temperature change rate per unit time Means) 45 The pulse wave sensor 24 and the surface / internal temperature change rate calculation unit 45 are connected to the concentration correction unit 15, and the simulation unit 2 to the concentration calculation unit 13 other than the light guide unit 42 are the first. Since it is completely the same as the blood glucose level measuring apparatus 1 of the embodiment, the description is omitted.

次に、この血糖値測定装置41を用いて血糖値を測定する手順について、図17に基づき説明する。
まず、被測定者が血糖値測定装置41を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置41を動作させる。
ここでは、人体の皮膚31に導光部42の先端部を当てたまま、この導光部42を皮膚31に沿って任意の方向に摺動させ、脈波センサ24により人体中の拍動を有する部位近傍の脈圧、すなわち動脈の脈圧を非接触にて検出する(ステップS11)。
次いで、表面温度センサ43により皮膚31の表面、すなわち動脈直上の表面温度を測定し、センサ内部温度測定センサ44により表面温度センサ43近傍の温度を測定する(ステップS12)。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 41 will be described with reference to FIG.
First, the person to be measured applies the blood sugar level measuring device 41 to the skin such as the wrist, and operates the blood sugar level measuring device 41 by pressing a measurement start switch (not shown) or the like.
Here, the light guide 42 is slid in an arbitrary direction along the skin 31 while the tip of the light guide 42 is applied to the skin 31 of the human body, and the pulsation in the human body is caused by the pulse wave sensor 24. The pulse pressure in the vicinity of the site, that is, the pulse pressure of the artery is detected without contact (step S11).
Next, the surface temperature sensor 43 measures the surface of the skin 31, that is, the surface temperature just above the artery, and the sensor internal temperature measurement sensor 44 measures the temperature near the surface temperature sensor 43 (step S12).

次いで、表面・内部温度変化率算出部45により、表面温度センサ43にて測定された動脈直上の表面温度とセンサ内部温度測定センサ44にて測定された表面温度センサ43近傍の温度との差を、単位時間当たりの温度変化率として算出し、この単位時間当たりの温度変化率が設定値以内か否かを判定する(ステップS13)。
ここで、単位時間当たりの温度変化率が設定値以内であれば、照射部5が、皮膚31に対して、この皮膚31を構成する真皮層33に短時間パルス光を照射する(ステップS14)。
一方、単位時間当たりの温度変化率が設定値を超えていれば、その旨を音声等の告知手段で告知し、再度、動脈の脈圧を非接触にて検出する(ステップS11)。
Next, the difference between the surface temperature immediately above the artery measured by the surface temperature sensor 43 and the temperature near the surface temperature sensor 43 measured by the sensor internal temperature measurement sensor 44 is calculated by the surface / internal temperature change rate calculation unit 45. The temperature change rate per unit time is calculated, and it is determined whether or not the temperature change rate per unit time is within a set value (step S13).
Here, if the rate of temperature change per unit time is within the set value, the irradiating unit 5 irradiates the skin 31 with a short-time pulsed light on the dermis layer 33 constituting the skin 31 (step S14). .
On the other hand, if the rate of temperature change per unit time exceeds the set value, the fact is notified by voice or other notification means, and the arterial pulse pressure is detected again without contact (step S11).

短時間パルス光を照射した後、皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光から、真皮層33により放射される後方散乱光を選択する手順(ステップS15)から、濃度算出部13により、真皮層33に含まれるグルコースの濃度を算出する手順(ステップS19)までは、第1の実施形態の図15に示す手順(ステップS4〜S8)と全く同様である。   After irradiating pulsed light for a short time, from the procedure (step S15) of selecting the backscattered light emitted by the dermis layer 33 from the backscattered light emitted from the subcutaneous tissue 32, the dermis layer 33 and the epidermis layer 34, respectively. The procedure up to the procedure (step S19) for calculating the concentration of glucose contained in the dermis layer 33 by the concentration calculator 13 is exactly the same as the procedure (steps S4 to S8) shown in FIG. 15 of the first embodiment.

濃度補正部15では、濃度算出部13で算出された真皮層33のグルコースの濃度を、表面温度センサ43にて測定した動脈直上の表面温度を用いて、下記の補正式:
グルコースの濃度の測定値−水の吸収係数相応値
にて補正する(ステップS20)。
例えば、真皮層33(=動脈直上の表面温度)の温度がT℃上昇した場合、光の吸収係数の変化量は−0.004/mm×Tとなる。したがって、真皮層33の温度がT℃上昇した場合のグルコース濃度の減少量は500mg/dl×Tとなる。
The concentration correction unit 15 uses the surface temperature directly above the artery measured by the surface temperature sensor 43 for the glucose concentration of the dermis layer 33 calculated by the concentration calculation unit 13, and the following correction formula:
The measured value of glucose concentration is corrected by a value corresponding to the absorption coefficient of water (step S20).
For example, when the temperature of the dermis layer 33 (= surface temperature immediately above the artery) is increased by T ° C., the amount of change in the light absorption coefficient is −0.004 / mm × T. Therefore, the amount of decrease in glucose concentration when the temperature of the dermis layer 33 is increased by T ° C. is 500 mg / dl × T.

以上説明したように、本実施形態によれば、脈波センサ24により人体中の動脈の脈圧を非接触にて検出し、次いで、動脈直上の温度及び表面温度センサ43近傍の温度を測定し、これら表面温度センサ43にて測定された動脈直上の温度とセンサ内部温度測定センサ44にて測定された表面温度センサ43近傍の温度との差から算出された単位時間当たりの温度変化率が設定値以内の場合に、真皮層33のグルコースの濃度を、表面温度センサ43にて測定した動脈直上の温度を用いて補正するので、真皮層におけるグルコースの濃度を、人体の活動状態に応じて精度良く検出することができる。したがって、真皮層におけるグルコースの濃度を、生体の活動状態に応じて、非侵襲的に、短時間にて精度良く測定することができる。   As described above, according to the present embodiment, the pulse wave sensor 24 detects the pulse pressure of the artery in the human body without contact, and then measures the temperature immediately above the artery and the temperature near the surface temperature sensor 43. The rate of change in temperature per unit time calculated from the difference between the temperature immediately above the artery measured by the surface temperature sensor 43 and the temperature in the vicinity of the surface temperature sensor 43 measured by the sensor internal temperature measurement sensor 44 is set. When the value is within the range, the glucose concentration in the dermis layer 33 is corrected using the temperature immediately above the artery measured by the surface temperature sensor 43, so that the glucose concentration in the dermis layer is accurately determined according to the activity state of the human body. It can be detected well. Therefore, the glucose concentration in the dermis layer can be accurately measured in a short time in a non-invasive manner according to the activity state of the living body.

[第3の実施形態]
図18は、本発明の第3の実施形態の血糖値測定装置(濃度定量装置)の導光部の構成の概略を示す断面図であり、本実施形態の血糖値測定装置51の導光部52が第1の実施形態の血糖値測定装置1の導光部6と異なる点は、断熱材23の脈波センサ24及び温度センサ25と反対側の面に、脈波センサ24及び温度センサ25近傍をヒータ等の加熱手段を用いて所定温度、例えば36.0℃に温度調整し、保温する内部保温部(温度調整手段)53を設けた点であり、導光部52以外の構成であるシミュレーション部2〜濃度補正部15については第1の実施形態の血糖値測定装置1と全く同様であるから、説明を省略する。
[Third Embodiment]
FIG. 18 is a cross-sectional view schematically showing the configuration of the light guide unit of the blood sugar level measuring device (concentration quantifying device) according to the third embodiment of the present invention, and the light guide unit of the blood sugar level measuring device 51 of the present embodiment. 52 differs from the light guide 6 of the blood sugar level measuring apparatus 1 of the first embodiment in that the pulse wave sensor 24 and the temperature sensor 25 are disposed on the surface of the heat insulating material 23 opposite to the pulse wave sensor 24 and the temperature sensor 25. In the vicinity, a temperature is adjusted to a predetermined temperature, for example, 36.0 ° C. by using a heating means such as a heater, and an internal heat retaining part (temperature adjusting means) 53 for keeping the temperature is provided. Since the simulation unit 2 to the concentration correction unit 15 are exactly the same as those in the blood glucose level measurement apparatus 1 of the first embodiment, description thereof is omitted.

次に、この血糖値測定装置51を用いて血糖値を測定する手順について、図19に基づき説明する。
まず、被測定者が血糖値測定装置51を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置51を動作させる。
ここでは、内部保温部53により、温度センサ25近傍を所定温度、例えば36.0℃に温度調整し、保温する(ステップS21)。
次いで、人体の皮膚31に導光部52の先端部を当てたまま、この導光部52を皮膚31に沿って任意の方向に摺動させ、脈波センサ24により人体中の拍動を有する部位近傍の脈圧、すなわち動脈の脈圧を非接触にて検出する。同時に、脈波センサ24により検出された動脈直上の皮膚31の温度を温度センサ25により非接触にて測定する(ステップS22)。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 51 will be described with reference to FIG.
First, the person to be measured places the blood sugar level measuring device 51 on the skin such as the wrist and operates the blood sugar level measuring device 51 by pressing a measurement start switch (not shown) or the like.
Here, the temperature of the vicinity of the temperature sensor 25 is adjusted to a predetermined temperature, for example, 36.0 ° C., by the internal heat retaining unit 53 to retain the temperature (step S21).
Next, the light guide 52 is slid in any direction along the skin 31 with the tip of the light guide 52 placed on the skin 31 of the human body, and the pulse wave sensor 24 causes pulsation in the human body. The pulse pressure in the vicinity of the part, that is, the pulse pressure of the artery is detected without contact. At the same time, the temperature of the skin 31 immediately above the artery detected by the pulse wave sensor 24 is measured by the temperature sensor 25 without contact (step S22).

次いで、体温特定部14により、脈波センサ24にて動脈を含む皮膚31の表面に亘って非接触にて検出された脈圧データ、及び温度センサ25にて動脈を含む皮膚31の表面に亘って非接触にて測定された温度データに基づき、脈圧のうち最大の脈圧を特定し、この特定された最大の脈圧に対応する部位の温度を生体の深部体温に近似した体温として特定する(ステップS23)。
一方、照射部5が、皮膚31に対して、この皮膚31を構成する真皮層33に短時間パルス光を照射する(ステップS24)。
Next, the body temperature specifying unit 14 detects the pulse pressure data detected by the pulse wave sensor 24 over the surface of the skin 31 including the artery and the surface of the skin 31 including the artery with the temperature sensor 25. Based on the temperature data measured in a non-contact manner, the maximum pulse pressure of the pulse pressure is specified, and the temperature corresponding to the specified maximum pulse pressure is specified as a body temperature that approximates the deep body temperature of the living body. (Step S23).
On the other hand, the irradiation unit 5 irradiates the dermis layer 33 constituting the skin 31 with pulsed light for a short time on the skin 31 (step S24).

その後、皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光から、真皮層33により放射される後方散乱光を選択する手順(ステップS25)から、濃度算出部13で算出された真皮層33のグルコースの濃度を、温度センサ24にて測定した真皮層33の温度を用いて補正する(ステップS30)までは、第1の実施形態の図15に示す手順(ステップS3〜S9)と全く同様である。   Thereafter, the concentration calculator 13 calculates the backscattered light emitted from the dermis layer 33 from the backscattered light emitted from the subcutaneous tissue 32, the dermis layer 33, and the epidermis layer 34 (step S25). Until the concentration of glucose in the dermis layer 33 is corrected using the temperature of the dermis layer 33 measured by the temperature sensor 24 (step S30), the procedure shown in FIG. 15 of the first embodiment (steps S3 to S9). ) Is exactly the same.

本実施形態においても、第1の実施形態の血糖値測定装置1と同様の効果を奏することができる。
しかも、内部保温部53により、脈波センサ24及び温度センサ25近傍を所定温度に調整し保温した後、脈波センサ24により動脈の脈圧を非接触にて検出すると同時に、温度センサ25により動脈近傍の皮膚31の温度を非接触にて測定し、真皮層から放射される後方散乱光を基に算出される皮膚の真皮層におけるグルコースの濃度を、体温特定部14にて特定された生体の深部体温に近似した体温に基づき補正するので、脈波センサ24及び温度センサ25近傍を所定温度に調整し保温することにより、脈波センサ24及び温度センサ25における温度の変動を抑制することができ、脈波センサ24及び温度センサ25の測定精度を向上させることができる。
Also in this embodiment, the same effect as the blood sugar level measuring apparatus 1 of the first embodiment can be obtained.
In addition, the internal heat retaining unit 53 adjusts the vicinity of the pulse wave sensor 24 and the temperature sensor 25 to a predetermined temperature and retains the temperature, and then the pulse wave sensor 24 detects the arterial pulse pressure in a non-contact manner. The temperature of the nearby skin 31 is measured in a non-contact manner, and the concentration of glucose in the dermis layer of the skin calculated based on the backscattered light emitted from the dermis layer is determined by the body temperature specifying unit 14. Since the correction is based on the body temperature approximated to the deep body temperature, the temperature fluctuations in the pulse wave sensor 24 and the temperature sensor 25 can be suppressed by adjusting the temperature in the vicinity of the pulse wave sensor 24 and the temperature sensor 25 to a predetermined temperature. The measurement accuracy of the pulse wave sensor 24 and the temperature sensor 25 can be improved.

[第4の実施形態]
図20は、本発明の第4の実施形態の血糖値測定装置(濃度定量装置)の導光部の構成の概略を示す断面図であり、本実施形態の血糖値測定装置61の導光部62が第2の実施形態の血糖値測定装置41の導光部42と異なる点は、断熱材23の脈波センサ24及び表面温度センサ43と反対側の面に、第3の実施形態の内部保温部(温度調整手段)53を設けた点であり、導光部62以外の構成であるシミュレーション部2〜濃度補正部15については第2の実施形態の血糖値測定装置41と全く同様であるから、説明を省略する。
[Fourth Embodiment]
FIG. 20 is a cross-sectional view schematically illustrating the configuration of the light guide unit of the blood sugar level measuring device (concentration quantifying device) according to the fourth embodiment of the present invention, and the light guide unit of the blood sugar level measuring device 61 of the present embodiment. 62 differs from the light guide part 42 of the blood glucose level measuring device 41 of the second embodiment in that the inner surface of the third embodiment is arranged on the surface of the heat insulating material 23 opposite to the pulse wave sensor 24 and the surface temperature sensor 43. The heat retaining unit (temperature adjusting means) 53 is provided, and the simulation unit 2 to the concentration correction unit 15 other than the light guide unit 62 are exactly the same as the blood sugar level measuring device 41 of the second embodiment. Therefore, the description is omitted.

この表面温度センサ43と、内部温度センサ44と、内部保温部53とにより、熱流補償法を用いた深部体温計が構成されている。この深部体温計では、十分時間が経過すると、表皮層32と真皮層33の組織が熱平衡に達し、表皮層32の温度と真皮層33の温度が一致する。よって、真皮層33の温度を測定することができる。   The surface temperature sensor 43, the internal temperature sensor 44, and the internal heat retaining portion 53 constitute a deep thermometer using a heat flow compensation method. In this deep thermometer, when sufficient time has passed, the tissues of the epidermis layer 32 and the dermis layer 33 reach thermal equilibrium, and the temperature of the epidermis layer 32 and the temperature of the dermis layer 33 coincide. Therefore, the temperature of the dermis layer 33 can be measured.

次に、この血糖値測定装置61を用いて血糖値を測定する手順について、図21に基づき説明する。
まず、被測定者が血糖値測定装置41を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置41を動作させる。
ここでは、内部保温部53により、脈波センサ24、表面温度センサ43及び内部温度センサ44近傍を所定温度、例えば36.0℃に温度調整し、保温する(ステップS31)。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 61 will be described with reference to FIG.
First, the person to be measured applies the blood sugar level measuring device 41 to the skin such as the wrist, and operates the blood sugar level measuring device 41 by pressing a measurement start switch (not shown) or the like.
Here, the internal heat retaining unit 53 adjusts the temperature of the vicinity of the pulse wave sensor 24, the surface temperature sensor 43, and the internal temperature sensor 44 to a predetermined temperature, for example, 36.0 ° C., and retains the temperature (step S31).

次いで、人体の皮膚31に導光部62の先端部を当てたまま、この導光部62を皮膚31に沿って任意の方向に摺動させ、脈波センサ24により人体中の拍動を有する部位近傍の脈圧、すなわち動脈の脈圧を非接触にて検出する(ステップS32)。
次いで、表面温度センサ43により動脈直上の皮膚31の温度を測定し、センサ内部温度測定センサ44により表面温度センサ43近傍の温度を測定する(ステップS33)。
Next, the light guide 62 is slid in an arbitrary direction along the skin 31 with the tip of the light guide 62 placed on the skin 31 of the human body, and the pulse wave sensor 24 causes pulsation in the human body. The pulse pressure in the vicinity of the part, that is, the pulse pressure of the artery is detected without contact (step S32).
Next, the surface temperature sensor 43 measures the temperature of the skin 31 immediately above the artery, and the sensor internal temperature measurement sensor 44 measures the temperature near the surface temperature sensor 43 (step S33).

次いで、表面・内部温度変化率算出部45により、表面温度センサ43にて測定された動脈直上の表面温度とセンサ内部温度測定センサ44にて測定された表面温度センサ43近傍の温度との差を、単位時間当たりの温度変化率として算出し、この単位時間当たりの温度変化率が設定値以内か否かを判定する(ステップS34)。
ここで、単位時間当たりの温度変化率が設定値以内であれば、照射部5が、皮膚31に対して、この皮膚31を構成する真皮層33に短時間パルス光を照射する(ステップS35)。
一方、単位時間当たりの温度変化率が設定値を超えていれば、その旨を音声等の告知手段で告知し、再度、温度調整及び保温(ステップS31)以降を行う。
Next, the difference between the surface temperature immediately above the artery measured by the surface temperature sensor 43 and the temperature near the surface temperature sensor 43 measured by the sensor internal temperature measurement sensor 44 is calculated by the surface / internal temperature change rate calculation unit 45. The temperature change rate per unit time is calculated, and it is determined whether or not the temperature change rate per unit time is within a set value (step S34).
Here, if the rate of temperature change per unit time is within the set value, the irradiating unit 5 irradiates the dermis layer 33 constituting the skin 31 with the pulsed light for a short time on the skin 31 (step S35). .
On the other hand, if the rate of change in temperature per unit time exceeds the set value, the fact is notified by voice or other notification means, and temperature adjustment and heat retention (step S31) are performed again.

短時間パルス光を照射した後、皮下組織32、真皮層33及び表皮層34各々から放射される後方散乱光から、真皮層33により放射される後方散乱光を選択する手順(ステップS36)から、濃度算出部13により、真皮層33に含まれるグルコースの濃度を算出する手順(ステップS40)までは、第2の実施形態の図17に示す手順(ステップS15〜S19)と全く同様である。   After irradiating pulsed light for a short time, from the procedure of selecting the backscattered light emitted by the dermis layer 33 from the backscattered light emitted from the subcutaneous tissue 32, the dermis layer 33 and the epidermis layer 34 (step S36), The procedure up to the procedure (step S40) for calculating the concentration of glucose contained in the dermis layer 33 by the concentration calculator 13 is exactly the same as the procedure (steps S15 to S19) shown in FIG. 17 of the second embodiment.

濃度補正部15では、濃度算出部13で算出された真皮層33のグルコースの濃度を、表面温度センサ43にて測定した動脈直上の表面温度を用いて、下記の補正式:
グルコースの濃度の測定値−水の吸収係数相応値
にて補正する(ステップS41)。
例えば、真皮層33(=動脈直上の表面温度)の温度がT℃上昇した場合、光の吸収係数の変化量は−0.004/mm×Tとなる。したがって、真皮層33の温度がT℃上昇した場合のグルコース濃度の減少量は500mg/dl×Tとなる。
The concentration correction unit 15 uses the surface temperature directly above the artery measured by the surface temperature sensor 43 for the glucose concentration of the dermis layer 33 calculated by the concentration calculation unit 13, and the following correction formula:
The measured value of glucose concentration is corrected by a value corresponding to the absorption coefficient of water (step S41).
For example, when the temperature of the dermis layer 33 (= surface temperature immediately above the artery) is increased by T ° C., the amount of change in the light absorption coefficient is −0.004 / mm × T. Therefore, the amount of decrease in glucose concentration when the temperature of the dermis layer 33 is increased by T ° C. is 500 mg / dl × T.

本実施形態においても、第2の実施形態の血糖値測定装置41と同様の効果を奏することができる。
しかも、内部保温部53により、脈波センサ24、表面温度センサ43及びセンサ内部温度測定センサ44近傍を保温し、次いで、脈波センサ24により動脈の脈圧を非接触にて検出し、次いで、動脈直上の表面温度及び表面温度センサ43近傍の温度を測定し、これら表面温度センサ43にて測定された動脈直上の表面温度とセンサ内部温度測定センサ44にて測定された表面温度センサ43近傍の温度との差から算出された単位時間当たりの温度変化率が設定値以内の場合に、真皮層33のグルコースの濃度を、表面温度センサ43にて測定された動脈直上の表面温度を用いて補正するので、脈波センサ24、表面温度センサ43及び内部温度センサ44近傍を所定温度に調整し保温することにより、脈波センサ24、表面温度センサ43及びセンサ内部温度測定センサ44各々における温度の変動を抑制することができ、脈波センサ24、表面温度センサ43及びセンサ内部温度測定センサ44各々の測定精度を向上させることができる。
Also in this embodiment, the same effect as the blood glucose level measuring device 41 of the second embodiment can be obtained.
Moreover, the internal heat retaining unit 53 retains the vicinity of the pulse wave sensor 24, the surface temperature sensor 43, and the sensor internal temperature measurement sensor 44, and then detects the pulse pressure of the artery in a non-contact manner by the pulse wave sensor 24. The surface temperature immediately above the artery and the temperature in the vicinity of the surface temperature sensor 43 are measured. The surface temperature directly above the artery measured by the surface temperature sensor 43 and the temperature in the vicinity of the surface temperature sensor 43 measured by the sensor internal temperature measurement sensor 44 are measured. When the rate of temperature change per unit time calculated from the difference from the temperature is within the set value, the glucose concentration in the dermis layer 33 is corrected using the surface temperature directly above the artery measured by the surface temperature sensor 43. Therefore, the pulse wave sensor 24, the surface temperature sensor 4 and the internal temperature sensor 44 are adjusted to a predetermined temperature and kept warm to maintain the pulse wave sensor 24, the surface temperature sensor 4 and so on. And it is possible to suppress the variation of temperature in the interior temperature measuring sensor 44 each sensor, the pulse wave sensor 24, thereby improving the surface temperature sensor 43 and the sensor internal temperature measuring sensor 44 each measurement accuracy.

[第5の実施形態]
図22は、本発明の第5の実施形態の血糖値測定装置(濃度定量装置)の構成を示す概略ブロック図であり、本実施形態の血糖値測定装置71が第1の実施形態の血糖値測定装置1と異なる点は、光強度取得部9及び光吸収係数算出部12を、これらとは異なる機能を有する光強度取得部(光強度取得手段)72及び光吸収係数算出部(光吸収係数算出手段)73に替えた点である。
[Fifth Embodiment]
FIG. 22 is a schematic block diagram showing a configuration of a blood sugar level measuring device (concentration quantifying device) according to the fifth embodiment of the present invention. The blood sugar level measuring device 71 of the present embodiment is the blood sugar level of the first embodiment. The difference from the measuring apparatus 1 is that the light intensity acquisition unit 9 and the light absorption coefficient calculation unit 12 are different from each other in that the light intensity acquisition unit (light intensity acquisition means) 72 and the light absorption coefficient calculation unit (light absorption coefficient) having different functions. (Calculating means) 73.

光強度取得部72は、受光部8が受光した真皮層から放射される後方散乱光の所定の時刻から少なくとも所定の時刻τまでの間の光強度を取得する。
光吸収係数算出部73は、特定波長λkの短時間パルス光を照射した皮膚の真皮層における光吸収係数を算出する。
The light intensity acquisition unit 72 acquires the light intensity between a predetermined time and at least a predetermined time τ of backscattered light emitted from the dermis layer received by the light receiving unit 8.
The light absorption coefficient calculation unit 73 calculates the light absorption coefficient in the dermis layer of the skin irradiated with the short-time pulse light having the specific wavelength λk.

この光吸収係数算出部73では、皮膚における任意の層の光吸収係数を、下記の式(10)

Figure 0005750750
(但し、I(t)は受光部5が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは皮膚の観測対象となる層の数、μiは第i層の光吸収係数である)
から算出する。
ここで、第1層は表皮層、第2層は真皮層、第3層は皮下組織を示し、μは表皮層の光吸収係数、μは真皮層の光吸収係数、μは皮下組織の光吸収係数を示す。 In this light absorption coefficient calculation unit 73, the light absorption coefficient of an arbitrary layer in the skin is expressed by the following equation (10).
Figure 0005750750
(Where I (t) is the light intensity received by the light receiving unit 5 at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light of the specific wavelength λk, and Li (t ) Is the optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the skin, n is the number of layers to be observed on the skin, and μ i is the light absorption coefficient of the i-th layer)
Calculate from
Here, the first layer is the epidermis layer, the second layer is the dermis layer, the third layer is the subcutaneous tissue, μ 1 is the light absorption coefficient of the epidermis layer, μ 2 is the light absorption coefficient of the dermis layer, and μ 3 is the subcutaneous Shows the light absorption coefficient of tissue.

次に、この血糖値測定装置71を用いて血糖値を測定する手順について、図23に基づき説明する。
この手順では、脈波センサ24により動脈の脈圧を非接触にて検出し、この動脈直上の皮膚31の温度を温度センサ25により非接触にて測定する(ステップS51)手順から真皮層33により放射される後方散乱光を選択する(ステップS54)手順までが図15に示す手順(ステップS1〜4)と同一であるから、説明を省略する。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 71 will be described with reference to FIG.
In this procedure, the pulse pressure of the artery is detected by the pulse wave sensor 24 in a non-contact manner, and the temperature of the skin 31 immediately above the artery is measured in a non-contact manner by the temperature sensor 25 (step S51). The procedure up to the procedure for selecting the emitted backscattered light (step S54) is the same as the procedure (steps S1 to S4) shown in FIG.

この後方散乱光を選択した後、受光部8により、真皮層33から放射される所定の時間τの間の後方散乱光を受光する(ステップS55)。このとき、受光部8では、照射開始から少なくとも所定の時刻τまでの間の受光強度を内部メモリに記録しておく。
次いで、この受光部8が受光を完了したことを光強度取得部72に知らせると、この光強度取得部72では、真皮層33から放射される後方散乱光の照射開始から少なくとも所定の時刻τまでの間の受光強度を取得する(ステップS56)。
After selecting the backscattered light, the light receiving unit 8 receives the backscattered light for a predetermined time τ emitted from the dermis layer 33 (step S55). At this time, the light receiving unit 8 records the received light intensity between the start of irradiation and at least a predetermined time τ in the internal memory.
Next, when the light intensity acquisition unit 72 is informed that the light receiving unit 8 has completed the light reception, the light intensity acquisition unit 72 starts at least the predetermined time τ from the start of the backscattered light emitted from the dermis layer 33. The received light intensity during the period is acquired (step S56).

次いで、光吸収係数算出部73では、光強度取得部72にて取得した真皮層33から放射される後方散乱光の照射開始から少なくとも所定の時刻τまでの間の受光強度を基に、真皮層33の光吸収係数を、下記の式(11)

Figure 0005750750
(但し、I(t)は受光部5が時刻tにて受光した光強度、N(t)は特定波長λkの短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は皮膚の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは皮膚の観測対象となる層の数、μiは第i層の光吸収係数である)
から算出する(ステップS57)。 Next, in the light absorption coefficient calculation unit 73, the dermis layer is based on the received light intensity from the start of irradiation of the backscattered light emitted from the dermis layer 33 acquired by the light intensity acquisition unit 72 to at least a predetermined time τ. The light absorption coefficient of 33 is expressed by the following equation (11).
Figure 0005750750
(Where I (t) is the light intensity received by the light receiving unit 5 at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light of the specific wavelength λk, and Li (t ) Is the optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the skin, n is the number of layers to be observed on the skin, and μ i is the light absorption coefficient of the i-th layer)
(Step S57).

次いで、濃度算出部13では、光吸収係数算出部73が算出した真皮層33の光吸収係数μを基に、真皮層33に含まれるグルコースの濃度を、下記の式(12)

Figure 0005750750
(但し、μaは皮膚の任意の層である第a層における光吸収係数、gjは皮膚を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは皮膚を構成する主成分の個数、qは短時間パルス光の種類数である)
から算出する(ステップS58)。 Next, the concentration calculator 13 calculates the concentration of glucose contained in the dermis layer 33 based on the light absorption coefficient μ of the dermis layer 33 calculated by the light absorption coefficient calculator 73 by the following equation (12).
Figure 0005750750
(Where μa is the light absorption coefficient in the a layer, which is an arbitrary layer of the skin, gj is the molar concentration of the jth component constituting the skin, εj is the light absorption coefficient of the jth component, and p is the main component constituting the skin. The number of components, q is the number of types of short-time pulsed light)
(Step S58).

次いで、濃度補正部15では、濃度算出部13で算出された真皮層33のグルコースの濃度を、温度センサ25にて測定した動脈直上の皮膚31の温度を用いて、下記の補正式:
グルコースの濃度の測定値−水の吸収係数相応値
にて補正する(ステップS59)。
例えば、動脈直上の皮膚31の温度がT℃上昇した場合、光の吸収係数の変化量は−0.004/mm×Tとなる。したがって、真皮層33の温度がT℃上昇した場合のグルコース濃度の減少量は500mg/dl×Tとなる。
Next, the concentration correction unit 15 uses the temperature of the skin 31 immediately above the artery measured by the temperature sensor 25 to determine the glucose concentration of the dermis layer 33 calculated by the concentration calculation unit 13 as follows:
The measured value of glucose concentration is corrected by a value corresponding to the absorption coefficient of water (step S59).
For example, when the temperature of the skin 31 immediately above the artery is increased by T ° C., the amount of change in the light absorption coefficient is −0.004 / mm × T. Therefore, the amount of decrease in glucose concentration when the temperature of the dermis layer 33 is increased by T ° C. is 500 mg / dl × T.

本実施形態においても、第1の実施形態の血糖値測定装置1と同様の効果を奏することができる。
しかも、光強度取得部72が、所定の時刻から少なくとも所定の時刻τまでの間の光強度を取得し、光吸収係数算出部73が、真皮層33の光吸収係数を、上記の式(2)から算出し、このようにして算出された真皮層33のグルコースの濃度を、温度センサ25にて測定した動脈直上の皮膚31の温度を用いて補正するので、この後方散乱光を基に算出される真皮層におけるグルコースの濃度を、人体の活動状態に応じて精度良く検出することができる。したがって、真皮層におけるグルコースの濃度を、生体の活動状態に応じて、非侵襲的に、短時間にて精度良く測定することができる。
Also in this embodiment, the same effect as the blood sugar level measuring apparatus 1 of the first embodiment can be obtained.
Moreover, the light intensity acquisition unit 72 acquires the light intensity between a predetermined time and at least the predetermined time τ, and the light absorption coefficient calculation unit 73 calculates the light absorption coefficient of the dermis layer 33 from the above equation (2). ), And the glucose concentration of the dermis layer 33 calculated in this way is corrected using the temperature of the skin 31 immediately above the artery measured by the temperature sensor 25, and is calculated based on this backscattered light. The concentration of glucose in the dermis layer to be detected can be accurately detected according to the activity state of the human body. Therefore, the glucose concentration in the dermis layer can be accurately measured in a short time in a non-invasive manner according to the activity state of the living body.

[第6の実施形態]
図24は、本発明の第6の実施形態の血糖値測定装置(濃度定量装置)の構成を示す概略ブロック図であり、本実施形態の血糖値測定装置81が第1の実施形態の血糖値測定装置1と異なる点は、生体の体動を検出する体動検出部(体動検出手段)82、及び体動検出部82が検出した生体の体動が所定範囲内であるか否かを判別する体動判別部(体動判別手段)83を設けた点である。
[Sixth Embodiment]
FIG. 24 is a schematic block diagram showing a configuration of a blood sugar level measuring apparatus (concentration quantifying apparatus) according to the sixth embodiment of the present invention. The blood sugar level measuring apparatus 81 of the present embodiment is the blood sugar level of the first embodiment. The difference from the measuring apparatus 1 is that a body motion detection unit (body motion detection means) 82 that detects body motion of the living body, and whether the body motion of the living body detected by the body motion detection unit 82 is within a predetermined range. This is the point that a body motion discriminating section (body motion discriminating means) 83 for discriminating is provided.

体動検出部82は、生体の運動における体の動きを検出するセンサ、例えば加速度センサ等から構成されている。
この体動検出部82では、検出されたアナログ信号をA/D変換部によりデジタル信号に変換し、FFT(高速フーリエ変換)処理部によりデジタル信号に変換された体動信号にFFT処理を施す。
The body motion detection unit 82 is configured by a sensor that detects a body motion in the motion of a living body, such as an acceleration sensor.
In the body motion detection unit 82, the detected analog signal is converted into a digital signal by an A / D conversion unit, and the body motion signal converted into the digital signal by an FFT (fast Fourier transform) processing unit is subjected to FFT processing.

体動判別部83は、FFT処理が施された体動信号に基づいて、生体が安静状態にあるか、活動(運動)状態にあるかを判別する。
この判別方法としては、例えば、FFT処理後の体動信号について、周波数成分の最も高い振幅レベルがしきい値以下か否かを判定し、振幅レベルがしきい値以下であれば安静状態にあると判定し、振幅レベルがしきい値を超えていれば活動状態にあると判定する。
The body motion determining unit 83 determines whether the living body is in a resting state or an active (exercising) state based on the body motion signal subjected to the FFT processing.
As this discrimination method, for example, it is determined whether or not the highest amplitude level of the frequency component is equal to or less than a threshold value for the body motion signal after the FFT processing. If the amplitude level exceeds the threshold value, the active state is determined.

次に、この血糖値測定装置81を用いて血糖値を測定する手順について、図25に基づき説明する。
まず、被測定者が血糖値測定装置81を手首等の皮膚に当て、測定開始スイッチ(図示せず)の押下等により血糖値測定装置81を動作させる。
ここでは、人体の皮膚31に体動検出部82を当てたまま生体の動きを検出する(ステップ61)。
Next, a procedure for measuring a blood glucose level using the blood glucose level measuring device 81 will be described with reference to FIG.
First, the person to be measured puts the blood sugar level measuring device 81 on the skin such as the wrist and operates the blood sugar level measuring device 81 by pressing a measurement start switch (not shown) or the like.
Here, the movement of the living body is detected while the body motion detector 82 is applied to the human skin 31 (step 61).

次いで、体動判別部83により、体動検出部82が検出した体動信号の周波数成分の最も高い振幅レベルがしきい値以下か否かを判定する(ステップS62)。 ここで、振幅レベルがしきい値以下であれば安静状態にあると判定し、人体の皮膚31に導光部6の先端部を当てたまま、この導光部6を皮膚31に沿って任意の方向に摺動させ、脈波センサ24により人体中の拍動を有する部位近傍の脈圧、すなわち動脈の脈圧を非接触にて検出する。同時に、脈波センサ24により検出された動脈近傍の皮膚31の温度を温度センサ25により非接触にて測定する(ステップS63)。
一方、振幅レベルがしきい値を超えていれば活動状態にあると判定し、再度、生体の動きの検出(ステップ61)を行う。
Next, the body motion determination unit 83 determines whether or not the highest amplitude level of the frequency component of the body motion signal detected by the body motion detection unit 82 is equal to or less than a threshold value (step S62). Here, if the amplitude level is equal to or lower than the threshold value, it is determined that the subject is in a resting state, and the light guide unit 6 is arbitrarily placed along the skin 31 while the tip of the light guide unit 6 is applied to the skin 31 of the human body. The pulse wave sensor 24 detects the pulse pressure in the vicinity of the part having pulsation in the human body, that is, the pulse pressure of the artery without contact. At the same time, the temperature of the skin 31 near the artery detected by the pulse wave sensor 24 is measured by the temperature sensor 25 in a non-contact manner (step S63).
On the other hand, if the amplitude level exceeds the threshold value, it is determined that the active state is established, and the movement of the living body is detected again (step 61).

この手順では、脈波センサ24により動脈の脈圧を非接触にて検出し、この動脈直上の皮膚31の温度を温度センサ25により非接触にて測定する(ステップS63)手順から濃度補正部14によりグルコースの濃度を補正する(ステップS71)手順までが図15に示す手順と同一であるから、説明を省略する。   In this procedure, the pulse pressure of the artery is detected by the pulse wave sensor 24 in a non-contact manner, and the temperature of the skin 31 immediately above the artery is measured in a non-contact manner by the temperature sensor 25 (step S63). The procedure up to correcting the glucose concentration (step S71) is the same as the procedure shown in FIG.

以上説明したように、本実施形態によれば、体動検出部82により生体の動きを検出し、次いで、体動判別部83により生体が安静状態にあるか否かを判別するので、生体の安静な状態を正確に把握することができる。したがって、生体が安静な状態における観測対象の任意の層における目的成分の濃度を精度良く検出することができる。   As described above, according to the present embodiment, the movement of the living body is detected by the body movement detection unit 82, and then the body movement determination unit 83 determines whether the living body is in a resting state. It is possible to accurately grasp the resting state. Therefore, it is possible to accurately detect the concentration of the target component in an arbitrary layer to be observed in a state where the living body is at rest.

以上、本発明の各実施形態について、図面を参照して説明してきたが、具体的な構成は上述のものに限られることはなく、本発明の要旨を逸脱しない範囲内において様々な設計変更等が可能である。
例えば、上記の各実施形態では、濃度定量装置として血糖値測定装置を、観測対象として人の手のひらの皮膚を、目的成分としてグルコースを、特定波長の光として特定波長の短時間パルス光を、それぞれ取ることで、皮膚の真皮層に含まれるグルコースの濃度を測定する場合について説明したが、これに限らず、濃度定量方法を、複数の光散乱媒質の層から形成される観測対象の任意の層における目的成分の濃度を定量する他の装置に用いてもよい。
As described above, each embodiment of the present invention has been described with reference to the drawings. However, the specific configuration is not limited to the above-described one, and various design changes and the like can be made without departing from the scope of the present invention. Is possible.
For example, in each of the above embodiments, the blood glucose level measuring device as the concentration quantification device, the skin of a human palm as the observation target, glucose as the target component, short-time pulsed light of a specific wavelength as light of a specific wavelength, Although the case where the concentration of glucose contained in the dermis layer of the skin is measured has been described, the present invention is not limited to this, and the concentration determination method is not limited to any layer to be observed formed from a plurality of light scattering medium layers. You may use for the other apparatus which quantifies the density | concentration of the target component in.

また、上記の各実施形態では、脈波センサ24及び温度センサ25、または、脈波センサ24、表面温度センサ43及び内部温度センサ44を1組設けた構成としたが、これらは2組以上設けた構成としてもよい。
例えば、脈波センサ24及び温度センサ25、または、脈波センサ24、表面温度センサ43及び内部温度センサ44を複数組、例えば2行2列のマトリックス状に設けた構成としてもよい。
In each of the above-described embodiments, the pulse wave sensor 24 and the temperature sensor 25 or the pulse wave sensor 24, the surface temperature sensor 43, and the internal temperature sensor 44 are provided as a set. It is good also as a structure.
For example, the pulse wave sensor 24 and the temperature sensor 25 or the pulse wave sensor 24, the surface temperature sensor 43, and the internal temperature sensor 44 may be provided in a plurality of sets, for example, in a matrix of 2 rows and 2 columns.

1…血糖値測定装置(濃度定量装置)、3…光路長分布記憶部(光路長分布記憶手段)、4…時間分解波形記憶部(時間分解波形記憶手段)、5…照射部(照射手段)、7…光散乱媒質層選択部(光散乱媒質層選択手段)、8…受光部(受光手段)、9…光強度取得部(光強度取得手段)、10…光路長取得部(光路長取得手段)、11…無吸収時光強度取得部(光強度モデル取得手段)、12…光吸収係数算出部(光吸収係数算出手段)、13…濃度算出部(濃度算出手段)、14…体温特定部(体温特定手段)、15…濃度補正部(濃度補正手段)、24…脈波センサ(脈波検出手段)、25…温度センサ(温度測定手段)、31…皮膚、33…真皮層(任意の層)、41…血糖値測定装置(濃度定量装置)、43…表面温度センサ(表面温度測定手段)、44…センサ内部温度測定センサ(センサ内部温度測定手段)、45…表面・内部温度変化率算出部(表面・内部温度変化率算出手段)、51…血糖値測定装置(濃度定量装置)、53…内部保温部(温度調整手段)、61…血糖値測定装置(濃度定量装置)、71…血糖値測定装置(濃度定量装置)、72…光強度取得部(光強度取得手段)、73…光吸収係数算出部(光吸収係数算出手段)、81…血糖値測定装置(濃度定量装置)、82…体動検出部(体動検出手段)、83…体動判別部(体動判別手段)、S1〜S9、S11〜S20、S21〜S30、S31〜S41、S51〜S59、S61〜S71…ステップ DESCRIPTION OF SYMBOLS 1 ... Blood glucose level measuring apparatus (concentration determination apparatus), 3 ... Optical path length distribution storage part (optical path length distribution storage means), 4 ... Time-resolved waveform storage part (time-resolved waveform storage means), 5 ... Irradiation part (irradiation means) 7, light scattering medium layer selection section (light scattering medium layer selection means), 8 light receiving section (light receiving means), 9 light intensity acquisition section (light intensity acquisition means), 10 optical path length acquisition section (optical path length acquisition) Means), 11 ... Non-absorption light intensity acquisition part (light intensity model acquisition means), 12 ... Light absorption coefficient calculation part (light absorption coefficient calculation means), 13 ... Concentration calculation part (concentration calculation means), 14 ... Body temperature specifying part (Body temperature specifying means), 15 ... concentration correction unit (concentration correction means), 24 ... pulse wave sensor (pulse wave detection means), 25 ... temperature sensor (temperature measurement means), 31 ... skin, 33 ... dermis layer (arbitrary) Layer), 41 ... blood glucose level measuring device (concentration quantification device), 43 ... surface temperature sensor (table) Temperature measuring means), 44 ... sensor internal temperature measuring sensor (sensor internal temperature measuring means), 45 ... surface / internal temperature change rate calculating section (surface / internal temperature change rate calculating means), 51 ... blood glucose level measuring device (concentration determination) Devices), 53... Internal heat retaining unit (temperature adjusting means), 61... Blood glucose level measuring device (concentration quantifying device), 71... Blood glucose level measuring device (concentration quantifying device), 72. 73 ... Light absorption coefficient calculating unit (light absorption coefficient calculating means), 81 ... Blood glucose level measuring device (concentration quantifying device), 82 ... Body motion detecting unit (body motion detecting unit), 83 ... Body motion determining unit (body motion) Determination means), S1 to S9, S11 to S20, S21 to S30, S31 to S41, S51 to S59, S61 to S71...

Claims (6)

生体中の複数の光散乱媒質の層により構成される観測対象のうち、任意の層における目的成分の濃度を定量する濃度定量装置であって、
前記生体中の拍動を有する部位近傍の脈圧を所定領域に亘って検出する脈波検出手段と、
前記観測対象の表面近傍の温度を測定する表面温度測定手段及び前記表面温度測定手段近傍の温度を測定するセンサ内部温度測定手段と、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度と、前記センサ内部温度測定手段が測定した前記表面温度測定手段近傍の温度との差を、単位時間当たりの温度変化率として算出する表面・内部温度変化率算出手段と、を備えてなる温度測定手段と、
前記温度測定手段の周囲を覆う断熱材と、
前記観測対象に光を照射する照射手段と、
前記光を照射することにより前記観測対象より放射される複数種の後方散乱光から前記任意の層より放射される後方散乱光を選択する光散乱媒質層選択手段と、
前記任意の層から放射される後方散乱光を受光する受光手段と、
前記受光手段が受光した前記任意の層から放射される後方散乱光の強度を取得する光強度取得手段と、
前記光強度取得手段が取得した光強度に基づいて、前記任意の層の光吸収係数を算出する光吸収係数算出手段と、
前記光吸収係数算出手段が算出した光吸収係数に基づいて、前記任意の層における前記目的成分の濃度を算出する濃度算出手段と、
前記表面・内部温度変化率算手段が算出した前記温度変化率が設定値であれば、前記表面温度測定手段が測定した前記観測対象の表面近傍の温度に基づいて、前記濃度算出手段が算出した前記目的成分の濃度を補正する濃度補正手段と、を備えてなることを特徴とする濃度定量装置。
A concentration quantification device for quantifying the concentration of a target component in an arbitrary layer among observation targets composed of layers of a plurality of light scattering media in a living body,
Pulse wave detection means for detecting a pulse pressure in the vicinity of a part having a pulsation in the living body over a predetermined region;
Surface temperature measuring means for measuring the temperature near the surface of the observation target, sensor internal temperature measuring means for measuring the temperature near the surface temperature measuring means, and temperature near the surface of the observation target measured by the surface temperature measuring means And a surface / internal temperature change rate calculating means for calculating a difference between the temperature in the vicinity of the surface temperature measuring means measured by the sensor internal temperature measuring means as a temperature change rate per unit time. Means,
A heat insulating material covering the periphery of the temperature measuring means;
Irradiating means for irradiating the observation object with light;
A light scattering medium layer selection means for selecting backscattered light emitted from the arbitrary layer from a plurality of types of backscattered light emitted from the observation object by irradiating the light;
A light receiving means for receiving backscattered light emitted from the arbitrary layer;
A light intensity acquisition means for acquiring the intensity of backscattered light emitted from the arbitrary layer received by the light receiving means;
A light absorption coefficient calculating means for calculating a light absorption coefficient of the arbitrary layer based on the light intensity acquired by the light intensity acquiring means;
Based on the light absorption coefficient calculated by the light absorption coefficient calculation means, a concentration calculation means for calculating the concentration of the target component in the arbitrary layer;
If the temperature change rate the surface and internal temperature change rate calculation detection means has calculated set value, based on the temperature in the vicinity of the surface of the surface temperature measuring means and the observation target that has been determined, the density calculating means calculates A concentration quantification device comprising: a concentration correction means for correcting the concentration of the target component.
前記光を短時間パルス光とし、さらに、
前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、前記任意の層の複数の時刻t〜tにおける光強度を取得し、
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(1)
Figure 0005750750
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、μiは第i層の光吸収係数である)から算出することを特徴とする請求項1記載の濃度定量装置。
The light is a short-time pulsed light, and
Optical path length distribution storage means for storing a model of the propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
Time-resolved waveform storage means for storing a model of the time-resolved waveform of the short-time pulsed light irradiated to the observation object;
An optical path length acquisition unit that acquires an optical path length of each of the layers of the plurality of light scattering media at a predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage unit;
A light intensity model obtaining means for obtaining the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means;
The light intensity acquisition means acquires the light intensity at a plurality of times t 1 to t m of the arbitrary layer,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following formula (1):
Figure 0005750750
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity 2. An optical path length of an i-th layer at a time t in a model of a propagation optical path length distribution in each layer of a plurality of light scattering media, and μ i is a light absorption coefficient of the i-th layer). concentration Determination device according to.
前記光を短時間パルス光とし、さらに、
前記観測対象に対して照射する前記短時間パルス光の、前記複数の光散乱媒質の層の各々の層における伝搬光路長分布のモデルを記憶する光路長分布記憶手段と、
前記観測対象に対して照射する前記短時間パルス光の時間分解波形のモデルを記憶する時間分解波形記憶手段と、
前記光路長分布記憶手段から、前記伝搬光路長分布のモデルの所定の時刻における、前記複数の光散乱媒質の層の各々の層の光路長を取得する光路長取得手段と、
前記時間分解波形記憶手段から、前記短時間パルス光の時間分解波形のモデルの前記所定の時刻における光の強度を取得する光強度モデル取得手段とを備え、
前記光強度取得手段は、所定の時刻から少なくとも所定の時刻τまでの間の光強度を取得し、
前記光吸収係数算出手段は、前記任意の層の光吸収係数を、下記の式(2)
Figure 0005750750
(但し、I(t)は前記受光手段が時刻tにて受光した光強度、N(t)は前記短時間パルス光の時間分解波形のモデルの時刻tにおける光強度、Li(t)は前記複数の光散乱媒質の層各々の層における伝搬光路長分布のモデルの時刻tにおける第i層の光路長、nは前記観測対象となる層の数、μiは第i層の光吸収係数である)から算出することを特徴とする請求項1記載の濃度定量装置。
The light is a short-time pulsed light, and
Optical path length distribution storage means for storing a model of the propagation optical path length distribution in each of the layers of the plurality of light scattering media of the short-time pulse light irradiated to the observation object;
Time-resolved waveform storage means for storing a model of the time-resolved waveform of the short-time pulsed light irradiated to the observation object;
An optical path length acquisition unit that acquires an optical path length of each of the layers of the plurality of light scattering media at a predetermined time of the model of the propagation optical path length distribution from the optical path length distribution storage unit;
A light intensity model obtaining means for obtaining the light intensity at the predetermined time of the time-resolved waveform model of the short-time pulsed light from the time-resolved waveform storage means;
The light intensity acquisition means acquires a light intensity between a predetermined time and at least a predetermined time τ,
The light absorption coefficient calculating means calculates the light absorption coefficient of the arbitrary layer by the following equation (2):
Figure 0005750750
(Where I (t) is the light intensity received by the light receiving means at time t, N (t) is the light intensity at time t of the model of the time-resolved waveform of the short-time pulse light, and Li (t) is the light intensity The optical path length of the i-th layer at time t in the model of the propagation optical path length distribution in each layer of the plurality of light scattering media, n is the number of layers to be observed, and μi is the light absorption coefficient of the i-th layer. The concentration quantification apparatus according to claim 1 , wherein
前記光を短時間パルス光とし、
前記濃度算出手段は、前記任意の層における前記目的成分の濃度を、下記の式(3)
Figure 0005750750
(但し、μaは前記任意の層である第a層における光吸収係数、gjは前記観測対象を構成する第j成分のモル濃度、εjは第j成分の光吸収係数、pは前記観測対象を構成する主成分の個数、qは前記短時間パルス光の種類数である)から算出することを特徴とする請求項1または2に記載の濃度定量装置。
The light is a short-time pulse light,
The concentration calculation means calculates the concentration of the target component in the arbitrary layer by the following formula (3)
Figure 0005750750
(Where μa is the light absorption coefficient in the a-th layer which is the arbitrary layer, gj is the molar concentration of the j-th component constituting the observation object, εj is the light absorption coefficient of the j-th component, and p is the observation object. 3. The concentration quantification apparatus according to claim 1 , wherein the concentration quantification apparatus is calculated from the number of main components to be configured, q being the number of types of the short-time pulsed light).
前記脈波検出手段に、該脈波検出手段が脈圧を検出しているか否かを判別する拍動弁別手段を設けてなることを特徴とする請求項1ないしのいずれか1項記載の濃度定量装置。 The pulse wave detecting means,該脈wave detecting means according to any one of claims 1 to 4, characterized in that provided beating discriminating means for discriminating whether the detected pulse pressure Concentration determination device. 前記生体の体動を検出する体動検出手段と、前記体動検出手段が検出した生体の体動が所定範囲内であるか否かを判別する体動判別手段と、を備えたことを特徴とする請求項1ないしのいずれか1項記載の濃度定量装置。 Body movement detecting means for detecting body movement of the living body, and body movement determining means for determining whether or not the body movement of the living body detected by the body movement detecting means is within a predetermined range. The concentration quantification apparatus according to any one of claims 1 to 5 .
JP2010158100A 2010-07-12 2010-07-12 Concentration meter Expired - Fee Related JP5750750B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010158100A JP5750750B2 (en) 2010-07-12 2010-07-12 Concentration meter
US13/176,422 US9464983B2 (en) 2010-07-12 2011-07-05 Concentration determination apparatus, probe, concentration determination method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158100A JP5750750B2 (en) 2010-07-12 2010-07-12 Concentration meter

Publications (2)

Publication Number Publication Date
JP2012019834A JP2012019834A (en) 2012-02-02
JP5750750B2 true JP5750750B2 (en) 2015-07-22

Family

ID=45774637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158100A Expired - Fee Related JP5750750B2 (en) 2010-07-12 2010-07-12 Concentration meter

Country Status (1)

Country Link
JP (1) JP5750750B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674094B2 (en) * 2010-07-12 2015-02-25 セイコーエプソン株式会社 Concentration determination apparatus, concentration determination method, and program
JP5838517B2 (en) 2011-06-21 2016-01-06 セイコーエプソン株式会社 Concentration determination device, concentration determination method
JP6685811B2 (en) * 2016-04-08 2020-04-22 京セラ株式会社 Electronic equipment and estimation system
WO2019026387A1 (en) * 2017-07-31 2019-02-07 アルプス電気株式会社 Biological-information measurement device
JP7411349B2 (en) 2019-07-31 2024-01-11 太陽誘電株式会社 Glucose measuring device and glucose measuring method
JP6740500B2 (en) * 2020-04-01 2020-08-12 京セラ株式会社 Electronic equipment and estimation system
JP6807481B2 (en) * 2020-07-22 2021-01-06 京セラ株式会社 Electronics and estimation system
JP6882590B2 (en) * 2020-12-07 2021-06-02 京セラ株式会社 Electronics and estimation system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615672A (en) * 1993-01-28 1997-04-01 Optiscan, Inc. Self-emission noninvasive infrared spectrophotometer with body temperature compensation
EP1424038B1 (en) * 1996-06-12 2006-01-04 Seiko Epson Corporation Device for measuring calorie expenditure
JP2000074829A (en) * 1998-09-02 2000-03-14 Mitsui Chemicals Inc Glucose sensor
JP2003202287A (en) * 2002-01-08 2003-07-18 Hamamatsu Photonics Kk Scattering absorption member measuring method and device
JP2006198321A (en) * 2005-01-24 2006-08-03 Hitachi Ltd Blood sugar level measuring apparatus
JP2008237775A (en) * 2007-03-28 2008-10-09 Toshiba Corp Blood component measuring apparatus
JP5101366B2 (en) * 2008-03-28 2012-12-19 テルモ株式会社 Blood component measuring device

Also Published As

Publication number Publication date
JP2012019834A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US9464983B2 (en) Concentration determination apparatus, probe, concentration determination method, and program
JP5750750B2 (en) Concentration meter
JP6125743B2 (en) Medical measuring device for bioelectrical impedance measurement
JP5674093B2 (en) Concentration determination apparatus, concentration determination method, and program
US7930015B2 (en) Methods and sensors for monitoring internal tissue conditions
CA2333565C (en) Tissue modulation process for quantitative noninvasive in vivo spectroscopic analysis of tissues
Swain et al. Methods of measuring skin blood flow
JP2005013273A (en) Blood sugar level measuring device
JP2005095317A (en) Optical measurement apparatus and blood sugar level measurement apparatus using it
JP4872536B2 (en) Biological component concentration measurement method
US20060111622A1 (en) Apparatus and method for monitoring deep tissue temperature using broadband diffuse optical spectroscopy
JP2004535213A (en) Non-invasive method for determining analytes in selected volumes of tissue
CN101605495A (en) Medical measuring device
Bornmyr et al. Skin temperature changes and changes in skin blood flow monitored with laser Doppler flowmetry and imaging: a methodological study in normal humans
JP2016010717A (en) Concentration quantification apparatus
JP2011024698A (en) Blood sugar level measuring instrument
US20060094941A1 (en) Optical measurement apparatus and blood sugar level measuring apparatus using the same
JP5674094B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5521199B2 (en) Concentration determination apparatus, concentration determination method, and program
US9370323B2 (en) Concentration determination apparatus, concentration determination method, and program
JP5804822B2 (en) Noninvasive measurement method for glucose and noninvasive measurement device for glucose
JP5626880B2 (en) Concentration determination apparatus, concentration determination method, and program
JP2011220993A (en) Near-infrared spectroscopic analysis apparatus
JP2013140126A (en) Concentration assaying device, concentration assaying method and program
JP5818038B2 (en) Concentration determination apparatus, concentration determination method, and program

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R150 Certificate of patent or registration of utility model

Ref document number: 5750750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees