JP2006054093A - Continuous energization heating device for high viscosity fluid food - Google Patents

Continuous energization heating device for high viscosity fluid food Download PDF

Info

Publication number
JP2006054093A
JP2006054093A JP2004234323A JP2004234323A JP2006054093A JP 2006054093 A JP2006054093 A JP 2006054093A JP 2004234323 A JP2004234323 A JP 2004234323A JP 2004234323 A JP2004234323 A JP 2004234323A JP 2006054093 A JP2006054093 A JP 2006054093A
Authority
JP
Japan
Prior art keywords
food material
annular electrode
fluid food
viscosity
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004234323A
Other languages
Japanese (ja)
Inventor
Hiroshi Hoshino
弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Engineering Co Ltd
Original Assignee
Frontier Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Engineering Co Ltd filed Critical Frontier Engineering Co Ltd
Priority to JP2004234323A priority Critical patent/JP2006054093A/en
Publication of JP2006054093A publication Critical patent/JP2006054093A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device using circular electrodes, electrically heating a high viscosity fluid food material while making the food continuously flow through a pipe passage, of which unevenness of heating temperature in a radial direction of the pipe passage is restrained, spark and scaling are prevented, deterioration of food quality is prevented, and a life of the electrode is prolonged. <P>SOLUTION: A length L of the circular electrodes in a longitudinal direction is set longer than R/2, preferably longer than R, an inner diameter of the circular electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、パイプ内で連続的に流動移送可能な程度の流動性を有する食品材料、例えば液状食品材料、固体−液体混合食品材料、ゲル状食品材料など、特に粘度が100cP以上、好ましくは1000cP以上の高粘度の流動性食品材料について、殺菌や調理などのためにパイプ内(管路内)で連続的に流動移送させながら通電加熱するための装置に関するものである。   The present invention relates to a food material having fluidity that can be continuously fluidly transferred in a pipe, such as a liquid food material, a solid-liquid mixed food material, a gel food material, etc., and has a viscosity of 100 cP or more, preferably 1000 cP. The present invention relates to an apparatus for energizing and heating the above-described high-viscosity fluid food material while continuously flowing and transferring in a pipe (in a pipe) for sterilization and cooking.

流動性を有する食品材料を殺菌や調理等のために加熱する方法の一つとしては、その流動性食品を、ポンプ等の圧力によってパイプ内を連続的に流動移送させつつ、そのパイプ内で連続的に加熱する方法がある。このようにパイプ内を連続的に流動移送させつつ流動性食品材料を連続加熱する方法によれば、パイプ内で連続的に加熱された食品材料をそのまま連続的に容器に充填することができるため、加熱から充填までの作業を完全連続化することができる。   One method of heating a fluid food material for sterilization, cooking, etc. is to continuously flow the fluid food through the pipe by the pressure of a pump, etc. There is a method of heating. In this way, according to the method of continuously heating the fluid food material while continuously flowing and transporting the inside of the pipe, the food material continuously heated in the pipe can be continuously filled in the container as it is. The operation from heating to filling can be completely continuous.

従来前述のようにパイプ内を連続的に流動移送される食品材料を連続的に加熱するための方法として、食品材料の有する電気抵抗を利用して、食品材料に直接通電して発熱させる通電加熱(ジュール加熱)を利用する方法が実用化されている。このように通電加熱を適用してパイプ内を連続的に流れる流動性食品材料を連続的に加熱する装置は、既に例えば特許文献1等において提案されている。   Conventionally, as described above, as a method for continuously heating a food material that is continuously flow-transferred in a pipe, the heating is performed by directly energizing the food material using the electrical resistance of the food material. A method using (Joule heating) has been put into practical use. An apparatus for continuously heating a fluid food material that continuously flows in a pipe by applying electric heating in this way has already been proposed in Patent Document 1, for example.

上記特許文献1の装置では、管路の上流側から下流側へ向けて所定間隔を置いて少なくとも2以上の部分に、管路の少なくとも内面に相当する部分に、管路内を流れる食品材料を取囲むように導電材料からなる環状の電極(環状電極)を設けておき、管路内を流れる食品材料に対して管路の上流側の環状電極と下流側の環状電極との間で電流を流し、連続的に通電加熱することとしている。   In the apparatus of Patent Document 1, the food material flowing in the pipe line is provided in at least two parts at a predetermined interval from the upstream side to the downstream side of the pipe line, and in at least a part corresponding to the inner surface of the pipe line. An annular electrode (annular electrode) made of a conductive material is provided so as to surround, and a current is passed between the annular electrode on the upstream side and the annular electrode on the downstream side of the food material flowing in the pipeline. It is supposed to be heated and continuously energized and heated.

なおこの場合環状電極としては、食品衛生上の観点や耐食性、耐久性等の観点から、Ti(チタン)もしくはTi合金を用いるのが通常であり、また通電電流としては1kHz〜50kHz程度の高周波電流を用いることが多い。   In this case, as the annular electrode, Ti (titanium) or a Ti alloy is usually used from the viewpoint of food hygiene, corrosion resistance, durability, and the like, and the energization current is a high frequency current of about 1 kHz to 50 kHz. Is often used.

特公平5−33024号公報Japanese Patent Publication No. 5-33024

特許文献1に示されるような環状電極を用いた連続通電加熱装置では、外部からの伝熱加熱ではなく、管路内を流れる流動性食品材料自体の抵抗発熱によって流動性食品材料を加熱しているため、原理的には流動性食品材料は均一に温度上昇し、加熱温度ムラは発生しない筈である。しかしながら実際には管路内において加熱温度ムラが生じることが多く、特に粘性の高い流動性食品材料を加熱する場合に、加熱温度ムラが発生しやすくかつその悪影響が大きいことが判明した。   In the continuous energization heating apparatus using the annular electrode as shown in Patent Document 1, the fluid food material is heated not by heat transfer from the outside but by resistance heat generation of the fluid food material itself flowing in the pipe. Therefore, in principle, the temperature of the flowable food material should rise uniformly, and heating temperature unevenness should not occur. In practice, however, heating temperature unevenness often occurs in the pipe line, and it has been found that heating temperature unevenness is likely to occur and its adverse effect is particularly great when heating a highly viscous fluid food material.

すなわち、管路内の内壁に近い部分では通電加熱による流動性食品材料の温度上昇が大きい一方、管路の内壁から離れた部分(特に管路内の中心軸線位置付近)では流動性食品材料の温度上昇が小さくなり、そのため管路内の半径方向に温度ムラが生じてしまう。このような現象が生じる原因は必ずしも明確ではないが、上流側の環状電極と下流側の環状電極との間に流れる電流における管路半径方向の電流密度分布が均一ではないために生じると考えられる。すなわち上流側の環状電極と下流側の環状電極との間に流れる電流の経路の長さは、管壁近くで最も小さくなり、一方管路内中心軸線位置を流れる電流経路は相対的に長くなり、そのため管路の内壁に近い部分に電流が集中して電流密度が高くなりがちになる一方、中心軸線位置では電流密度が小さくなりやすく、そのため管路内の半径方向に電流密度分布の不均一が生じて、加熱ムラが生じてしまうと考えられる。ここで、粘度の低い(水っぽい)流動性食品材料を加熱する場合には、流動性食品材料は管路内を流れる間にある程度撹拌された状態となるため、たとえ電流分布の不均一により加熱ムラが発生したとしても、結果的にはほぼ均一な温度上昇が得られ、そのため加熱ムラもさほど問題とはならないが、粘度の高い流動性食品材料の場合には、上下の環状電極間でほとんど乱流が生じず、そのため加熱ムラが直接温度上昇のムラとなって現われてしまう。   That is, the temperature rise of the flowable food material due to energization heating is large in the portion near the inner wall in the pipeline, while the portion of the flowable food material in the portion far from the inner wall of the pipeline (particularly near the central axis position in the pipeline). The temperature rise is reduced, so that temperature unevenness occurs in the radial direction in the pipe. The cause of such a phenomenon is not necessarily clear, but it is thought that it occurs because the current density distribution in the pipe radial direction in the current flowing between the upstream annular electrode and the downstream annular electrode is not uniform. . That is, the length of the path of the current flowing between the upstream annular electrode and the downstream annular electrode is the shortest near the pipe wall, while the current path flowing through the central axis position in the pipe is relatively long. Therefore, the current density tends to increase due to the concentration of current near the inner wall of the pipeline, while the current density tends to decrease at the central axis position, and therefore the current density distribution in the radial direction in the pipeline is uneven. This is considered to cause heating unevenness. Here, when a fluid food material having a low viscosity (watery) is heated, the fluid food material is in a state of being stirred to some extent while flowing in the pipe. As a result, an almost uniform temperature rise is obtained, and thus uneven heating is not a problem. However, in the case of a fluid food material having a high viscosity, there is almost no disturbance between the upper and lower annular electrodes. There is no flow, so that heating unevenness appears directly as temperature increase unevenness.

ここで、上述のような温度ムラが極端に大きくなって、管路の内壁近くの部分の温度が著しく高くなることは、その管路の内面に位置している環状電極の温度も著しく高くなることを意味する。そしてこのように環状電極の内面の温度が著しく高くなれば、その部分でスケーリング(流動性食品材料の焦げ付き)が発生したり、流動性食品材料に突沸が生じて電気的なスパークが生じたりして、環状電極の保守・点検・洗浄の手間が増大するばかりでなく、環状電極の寿命が短くなり、コスト増大を招くおそれがある。   Here, the temperature unevenness as described above becomes extremely large and the temperature of the portion near the inner wall of the pipe line becomes remarkably high. The temperature of the annular electrode located on the inner surface of the pipe line also becomes high. Means that. If the temperature of the inner surface of the annular electrode becomes extremely high in this way, scaling (burning of the fluid food material) may occur at that part, or bumping may occur in the fluid food material and an electrical spark may occur. Thus, not only the maintenance, inspection, and cleaning of the annular electrode is increased, but also the life of the annular electrode is shortened, which may increase the cost.

また上述のように管路内壁近く(特に環状電極内面近く)で流動性食品材料が過加熱されて、スケーリングやスパークが発生すれば、流動性食品材料の品質の低下、例えば香りや色、味の低下やスケールの混入などを招く問題がある。   In addition, if the fluid food material is overheated near the inner wall of the pipe line (particularly near the inner surface of the annular electrode) as described above and scaling or sparking occurs, the quality of the fluid food material deteriorates, for example, aroma, color, taste There is a problem that causes deterioration of the scale and contamination of the scale.

特に粘度の高い流動性食品材料に対する連続通電加熱においては、流路内を流れる粘度の高い流動性食品材料は、管路の内面に沿った位置(したがって環状電極の内面に沿った位置)で、管路内面に対する粘性抵抗によって、その流速が管路内中心位置より遅くなるのが通常であり、そのため管路内を流れる流動性食品材料の温度は、管路の内面に沿った位置の温度が管路内中心位置よりも高くなりやすく、そのため前述のような加熱温度ムラを助長することとなる。   Particularly in continuous energization heating for a fluid food material having a high viscosity, the fluid food material having a high viscosity flowing in the flow path is located at a position along the inner surface of the pipe line (therefore, a position along the inner surface of the annular electrode). Due to viscous resistance to the inner surface of the pipeline, the flow velocity is usually slower than the central position in the pipeline, so the temperature of the fluid food material flowing in the pipeline is the temperature at the location along the inner surface of the pipeline. This tends to be higher than the center position in the pipe, and thus promotes the heating temperature unevenness as described above.

またさらに通電加熱の場合、流動性食品材料はその温度が高くなるほど電気抵抗が小さくなって電流値が増大し、発熱しやすくなるのが通常であり、そのため管路内面近くの位置で流動性食品材料が温度上昇すれば、それに伴なう電流値の増大によりその内面近くの流動性食品材料は一層温度上昇してしまい、その結果加熱温度ムラが顕著となってしまうのである。   In addition, in the case of electric heating, the flowable food material usually has a lower electrical resistance and an increased current value as the temperature rises, and it tends to generate heat. Therefore, the flowable food material tends to generate heat near the inner surface of the pipe. If the temperature of the material rises, the current value accompanying the increase in the temperature increases the temperature of the fluid food material near the inner surface, and as a result, the heating temperature unevenness becomes remarkable.

したがってこれらの要因が相俟って、環状電極を用いた流動性食品材料の通電加熱、特に粘度の高い流動性食品材料に対する通電加熱においては、管路内の加熱温度ムラが大きくなって、前述のような問題を引き起こすことが多かったのである。   Therefore, in combination with these factors, in the heating of fluid food materials using an annular electrode, particularly in the heating of fluid food materials with high viscosity, the heating temperature unevenness in the pipe line becomes large, and the aforementioned It often caused such problems.

この発明は以上の事情を背景としてなされたもので、高粘度の流動性食品材料に対する環状電極を用いた連続通電加熱方法において、管路内の流動性食品材料の加熱温度ムラの発生を抑え、これにより前述のような流動性食品材料の品質低下や、環状電極の寿命や保守上の問題が生じないようにした装置を提供することを課題とするものである。   This invention was made against the background described above, and in a continuous energization heating method using an annular electrode for a fluid food material having a high viscosity, the occurrence of uneven heating temperature of the fluid food material in the pipeline is suppressed. Accordingly, it is an object of the present invention to provide an apparatus in which the quality deterioration of the fluid food material as described above, the life of the annular electrode, and problems in maintenance are not caused.

前述のような課題を解決するべく、本発明者等が環状電極を用いた高粘度の流動性食品材料の通電加熱時における管路内の加熱温度ムラの発生状況と、通電加熱条件や環状電極の形状・寸法等との関係について、鋭意実験・検討を重ねたところ、環状電極の寸法、特にその幅(管路の長さ方向に沿った方向の幅)と、環状電極の内径(通常は管路の内径と同じ)との関係が管路内半径方向の温度ムラの発生に密接に関係していることを見出し、さらに実験・検討を進めたところ、環状電極の幅Lを大きくして、その幅Lを、環状電極の内径寸法Rに対して、R/2以上、好ましくはR以上の寸法とすることにより、100cP以上、特に1000cP以上の粘度の高い流動性食品材料を加熱する場合でも、温度ムラを実用上支障ない程度まで抑制し得ることを見出し、この発明をなすに至ったのである。   In order to solve the problems as described above, the present inventors have found that the heating temperature unevenness in the pipe line during energization heating of the highly viscous fluid food material using the annular electrode, the current heating conditions and the annular electrode As a result of repeated experiments and examinations on the relationship between the shape and dimensions of the tube, the dimensions of the annular electrode, especially its width (width in the direction along the length of the conduit), and the inner diameter of the annular electrode (usually The same as the inner diameter of the pipe) is closely related to the occurrence of temperature unevenness in the radial direction of the pipe, and when further experiments and examinations were conducted, the width L of the annular electrode was increased. When the fluidity food material having a high viscosity of 100 cP or more, particularly 1000 cP or more is heated by setting the width L to R / 2 or more, preferably R or more, with respect to the inner diameter R of the annular electrode. However, to the extent that temperature irregularities do not interfere Found that can win, it was able to complete the present invention.

具体的には、請求項1の発明の高粘度流動性食品材料の連続通電加熱装置は、管路の上流側から下流側へ向けて所定間隔を置いて少なくとも2以上の部分に、管路の中心軸線に対し同心状となるように環状電極を設けておき、粘度が100cP以上の高粘度の流動性食品材料を、管路内において長さ方向に連続的に流動移送させながら、隣り合う環状電極間に1〜50kHzの範囲内の周波数の高周波電流を通電して、高粘度流動性食品材料を連続的に通電加熱するための高粘度流動性食品材料の連続通電加熱装置において、前記各環状電極における管路長さ方向の幅Lの寸法を、環状電極の内径寸法Rに対してR/2以上に設定したことを特徴とするものである。   Specifically, the continuous energization heating device for the high-viscosity flowable food material according to the first aspect of the present invention is provided with at least two portions at predetermined intervals from the upstream side to the downstream side of the pipeline. An annular electrode is provided so as to be concentric with the central axis, and a fluid food material having a high viscosity of 100 cP or more is continuously fluidized and transferred in the length direction in the pipe, and adjacent annular In the continuous energization heating device for high-viscosity flowable food material for energizing and heating the high-viscosity flowable food material by passing a high-frequency current having a frequency in the range of 1 to 50 kHz between the electrodes, The dimension of the width L of the electrode in the pipe length direction is set to R / 2 or more with respect to the inner diameter dimension R of the annular electrode.

また請求項2の発明の高粘度流動性食品材料の連続通電加熱装置は、請求項1に記載の高粘度流動性食品材料の連続通電加熱装置において、前記各環状電極における管路長さ方向の幅Lの寸法を、環状電極の内径寸法R以上の寸法に設定したことを特徴とするものである。   Moreover, the continuous electric heating apparatus of the high-viscosity fluid food material according to the invention of claim 2 is the continuous electric heating apparatus of the high-viscosity fluid food material according to claim 1, wherein The dimension of the width L is set to a dimension equal to or larger than the inner diameter dimension R of the annular electrode.

さらに請求項3の発明の高粘度流動性食品材料の連続通電加熱装置は、請求項1もしくは請求項2に記載の高粘度流動性食品材料の連続通電加熱装置において、前記各環状電極における管路長さ方向の幅Lの寸法を、環状電極の内径寸法Rの3倍以下の寸法に設定したことを特徴とするものである。   Furthermore, the continuous energization heating device for the high-viscosity flowable food material according to claim 3 is the continuous energization heating device for the high-viscosity flowable food material according to claim 1 or 2, wherein the pipe line in each annular electrode The dimension of the width L in the length direction is set to a dimension not more than three times the inner diameter dimension R of the annular electrode.

そしてまた請求項4の発明の高粘度流動性食品材料の連続通電加熱装置は、請求項1〜請求項3のいずれかに記載の高粘度流動性食品材料の連続通電加熱装置において、粘度が1000cP以上の流動性材料を通電加熱するためのものである。   And the continuous-current heating apparatus for high-viscosity fluid food material according to the invention of claim 4 is the continuous-current heating apparatus for high-viscosity fluid food material according to any one of claims 1 to 3, wherein the viscosity is 1000 cP. This is for energizing and heating the above fluid material.

なおこの明細書において粘度が100cP以上、あるいは1000cP以上とは、いずれも20℃における粘度を意味するものとする。   In this specification, the viscosity of 100 cP or more, or 1000 cP or more means the viscosity at 20 ° C.

この発明の連続通電加熱装置によれば、100cP以上、特に1000cP以上の高粘度の流動性食品材料を通電加熱するにあたって、管路内における半径方向の加熱温度ムラを可及的に抑え、これによって食品材料の過加熱やスケーリング、スパークの発生を抑えて、食品材料の品質低下を防止することができ、また保守・点検・洗浄の手間を少なくするとともに電極寿命を延長して、操業コスト、製造コストの引下げを図ることができる。   According to the continuous energization heating apparatus of the present invention, when heating a fluid food material having a high viscosity of 100 cP or more, particularly 1000 cP or more, the heating temperature unevenness in the radial direction in the pipe is suppressed as much as possible. Reduces the quality of food materials by preventing overheating, scaling and sparking of food materials, reducing maintenance, inspection and cleaning, extending electrode life, operating costs and manufacturing Costs can be reduced.

図1、図2にこの発明の連続通電加熱装置の一例を示す。   FIG. 1 and FIG. 2 show an example of the continuous energization heating device of the present invention.

図1、図2において、流動性食品材料3が流れる流路2を区画形成するための管路1は、断面円形のパイプ状に作られている。そしてこの管路1は、合成樹脂等の電気絶縁材料からなる円筒状の複数の管壁部材5を軸線方向に沿って配列し、かつ管壁部材5のそれぞれの間に、例えばTiもしくはTi合金等の導電材料からなる複数(図示の例では3個)の環状の電極7A、7B、7Cを配した構成とされている。したがって環状の各電極7A、7B、7Cは、管路1の長さ方向(流動性食品材料の流れ方向)に所定間隔を置いて設けられていて、それぞれ管路1内を流れる流動性食品材料3の周囲を取囲むことになる。   In FIG. 1 and FIG. 2, the pipe line 1 for partitioning the flow path 2 through which the flowable food material 3 flows is made into a pipe shape having a circular cross section. And this pipe line 1 arranges a plurality of cylindrical pipe wall members 5 made of an electrically insulating material such as a synthetic resin along the axial direction, and, for example, Ti or Ti alloy between each of the pipe wall members 5 A plurality of (three in the illustrated example) annular electrodes 7A, 7B, and 7C made of a conductive material such as the like are arranged. Accordingly, the annular electrodes 7A, 7B, and 7C are provided at predetermined intervals in the length direction of the pipe line 1 (flow direction of the flowable food material), and the flowable food material that flows through the pipe line 1 respectively. 3 will be surrounded.

電極7A、7B、7Cには、高周波電極9から電源製制御装置11を介して1〜50kHzの周波数の高周波電圧が互いに逆相で印加されるようになっている。そして管路1内に流動性食品材料3を連続的に流し、かつ電極7A−7B間、7B−7C間に高周波電圧を印加すれば、電極7A−7B間、7B−7C間において流動性食品材料3に高周波電流が流れ、これによって流動性食品材料3が発熱する。すなわち流動性食品材料3が管路1内において連続的に加熱される。   A high frequency voltage having a frequency of 1 to 50 kHz is applied to the electrodes 7A, 7B, and 7C from the high frequency electrode 9 via the power supply controller 11 in opposite phases. And if the fluid food material 3 is continuously flowed in the pipe line 1 and a high frequency voltage is applied between the electrodes 7A-7B and 7B-7C, the fluid food is produced between the electrodes 7A-7B and 7B-7C. A high frequency current flows through the material 3, whereby the fluid food material 3 generates heat. That is, the fluid food material 3 is continuously heated in the pipe 1.

ここで、この発明の通電加熱装置の場合、各環状電極7A、7B、7Cにおける管路1の長さ方向(流動性食品材料の流れる方向)の幅Lを、各環状電極7A、7B、7Cの内径Rに対し、
L≧R/2
となるように定めておく。このように各環状電極7A、7B、7Cの幅LをR/2以上に定めておくことによって、管路1内における流動性食品材料の加熱温度ムラを抑制することができる。
Here, in the case of the current heating device of the present invention, the width L in the length direction (flowing direction of the flowable food material) of the pipe line 1 in each annular electrode 7A, 7B, 7C is set to each annular electrode 7A, 7B, 7C. For the inner diameter R of
L ≧ R / 2
It is determined that Thus, by setting the width L of each annular electrode 7A, 7B, 7C to R / 2 or more, the heating temperature unevenness of the fluid food material in the pipe line 1 can be suppressed.

すなわち、従来の環状電極を用いた連続通電加熱装置においては、環状電極の幅Lは、環状電極の内径Rの1/2よりも小さいのが通常であり、例えば管路として呼び径2S(内径47.8mm)のパイプを用いて、環状電極の内径Rが47.8mmの場合、環状電極の幅Lは20mm程度以下とされているのが通常であり、この場合特に粘度の高い流動性食品材料では、既に述べたように半径方向に加熱温度ムラが発生しやすかった。しかるに、各環状電極の幅LをR/2以上に大きく設定することによって、半径方向の加熱温度ムラを従来よりも小さくすることが可能となったのである。   That is, in a continuous energization heating apparatus using a conventional annular electrode, the width L of the annular electrode is usually smaller than ½ of the inner diameter R of the annular electrode. When the inner diameter R of the annular electrode is 47.8 mm using a pipe of 47.8 mm), the width L of the annular electrode is usually about 20 mm or less. In this case, the fluid food with particularly high viscosity is used. In the material, the heating temperature unevenness was easily generated in the radial direction as described above. However, by setting the width L of each annular electrode to be larger than R / 2, it becomes possible to reduce the uneven heating temperature in the radial direction as compared with the conventional case.

上述のような環状電極の幅Lの寸法による加熱温度ムラ抑制効果は、本発明者等の実験により見出されたものである。すなわち本発明者等が、図1、図2に示されるような連続通電加熱装置において、環状電極7A、7B、7CとしてTi製のものを用いて、粘度が100cP以上の高粘度の流動性食品時亜量を1〜50kHzの高周波により通電加熱するにあたり、環状電極7A、7B、7Cの間隔は一定として、環状電極7A、7B、7Cの幅Lを環状電極7A、7B、7Cの内径Rに対し相対的に種々変化させて、管路1内の半径方向の温度ムラの発生状況を調べたところ、図3に模式的に示すように、幅Lを内径Rに対して相対的に大きくするほど(すなわちL/R比が大きくなるほど)温度ムラが少なくなり、特に幅Lが、内径Rの1/2すなわちR/2以上となれば、温度ムラが実用上支障のない程度となり、さらに幅Lが内径Rと同じかそれ以上となれば、温度ムラがより確実かつ安定して著しく小さくなることを見出した。そこでこの発明では環状電極の幅Lを内径Rの1/2以上と規定している。なおL≧R/2の範囲内でも特にL≧Rとすることがより温度ムラを小さくするために有効である。   The effect of suppressing the heating temperature unevenness due to the dimension of the width L of the annular electrode as described above has been found by experiments of the present inventors. That is, the present inventors use a continuous-current heating apparatus as shown in FIG. 1 and FIG. 2 using a product made of Ti as the annular electrodes 7A, 7B, and 7C, and a high-viscosity fluid food having a viscosity of 100 cP or more. In conducting heating with a high frequency of 1 to 50 kHz, the interval between the annular electrodes 7A, 7B, 7C is constant, and the width L of the annular electrodes 7A, 7B, 7C is set to the inner diameter R of the annular electrodes 7A, 7B, 7C. On the other hand, when the state of occurrence of temperature unevenness in the radial direction in the pipe line 1 was examined by making various changes relatively, the width L was made relatively large with respect to the inner diameter R as schematically shown in FIG. As the L / R ratio increases (ie, the L / R ratio increases), the temperature non-uniformity is reduced. In particular, if the width L is 1/2 of the inner diameter R, ie, R / 2 or more, the temperature non-uniformity becomes practically satisfactory. L is equal to or greater than inner diameter R If the temperature unevenness was found more reliable and stable significantly smaller things. Therefore, in the present invention, the width L of the annular electrode is defined to be ½ or more of the inner diameter R. Even in the range of L ≧ R / 2, L ≧ R is particularly effective for reducing temperature unevenness.

このようにL≧R/2、さらにはL≧Rとすることによって管路1内の半径方向の温度ムラを抑制し得る理由は必ずしも明確ではないが、環状電極の幅Lを大きくすることに伴なって、管路1内の中心軸線位置付近を通る電流が増大(したがって中心軸線位置付近の電流密度が増大)するためと考えられる。   The reason why the temperature unevenness in the radial direction in the pipe line 1 can be suppressed by setting L ≧ R / 2, and further L ≧ R is not necessarily clear, but the width L of the annular electrode is increased. Along with this, it is considered that the current passing through the vicinity of the central axis position in the pipeline 1 increases (thus increasing the current density near the central axis position).

一方、環状電極の幅Lの上限は特に規定しないが、幅Lが内径Rの3倍を越えれば、温度ムラ抑制効果は飽和し、また極端に幅Lが大きくなれば、加熱部の管路の長大化、ひいては装置の大型化とコスト増大を招くおそれがあり、したがって通常は幅Lは環状電極の内径Rの3倍以下、すなわち
L≦3R
とすることが好ましい。
On the other hand, the upper limit of the width L of the annular electrode is not particularly defined, but if the width L exceeds three times the inner diameter R, the temperature unevenness suppressing effect is saturated, and if the width L is extremely large, the pipe of the heating unit , And consequently the size and cost of the apparatus may be increased. Therefore, the width L is usually not more than three times the inner diameter R of the annular electrode, that is,
L ≦ 3R
It is preferable that

但し、粘度が100cP未満の流動性食品材料を通電加熱する場合は、L≧R/2の条件を満たさない場合でも加熱温度ムラが小さいかまたはほとんど発生しないため、温度ムラ抑制効果が明確には現われない。そこでこの発明では、粘度が100cP以上の流動性食品材料を通電加熱する場合に限ることとした。なお100cP以上の粘度の食品材料のうちでも特に1000cP以上の粘度の商品材料に対して温度ムラ発生抑制効果が顕著に現れ、したがってこの発明は、粘度が1000cP以上の流動性食品材料を加熱する場合に適用することが好ましい。ここで、粘度が100cP未満の代表的なものとしては醤油、ウスターソース、オレンジジュース、カルピス(商品名)、オリーブ油等がある。一方粘度が100cP〜1000cPの代表的なものとしてはトマトジュース、液卵、中濃ソース、ガムシロップ等があり、さらに粘度が1000cP以上のものとしては、マヨネーズ、ハチミツ、カスタードクリーム、トマトケチャップ、練り辛子、水あめ、味噌等があり、これらがこの発明の適用対象となる。   However, when a fluid food material having a viscosity of less than 100 cP is heated by current, even if the condition of L ≧ R / 2 is not satisfied, the heating temperature unevenness is small or hardly occurs, so the temperature unevenness suppressing effect is clearly Does not appear. Therefore, in the present invention, the flowable food material having a viscosity of 100 cP or more is limited to the case where it is heated by energization. In addition, among the food materials having a viscosity of 100 cP or more, the effect of suppressing the occurrence of temperature unevenness is particularly noticeable with respect to commodity materials having a viscosity of 1000 cP or more. It is preferable to apply to. Here, representative ones having a viscosity of less than 100 cP include soy sauce, Worcester sauce, orange juice, Calpis (trade name), olive oil, and the like. On the other hand, typical ones having a viscosity of 100 cP to 1000 cP include tomato juice, liquid egg, medium-concentrated sauce, gum syrup and the like, and those having a viscosity of 1000 cP or more mayonnaise, honey, custard cream, tomato ketchup, knead There are hot pepper, syrup, miso, etc., and these are the objects of application of this invention.

以下にこの発明の実施例を比較例とともに示す。なお以下の各実施例において、条件等は飽くまでこの発明の効果を説明するためのものに過ぎず、各実施例記載の条件がこの発明の範囲を制限するものでないことはもちろんである。   Examples of the present invention are shown below together with comparative examples. In each of the following embodiments, conditions and the like are merely for explaining the effects of the present invention until they are tired, and it goes without saying that the conditions described in each embodiment do not limit the scope of the present invention.

実施例1
図4に示すような連続通電加熱装置を使用し、流動性食品材料の代用として、20℃での粘度が95000cPに調整したCMC溶液を用いて連続通電加熱実験を行なった。ここで、図4に示す装置の概要は次の通りである。
Example 1
A continuous current heating apparatus as shown in FIG. 4 was used, and a continuous current heating experiment was performed using a CMC solution whose viscosity at 20 ° C. was adjusted to 95000 cP as a substitute for the fluid food material. Here, the outline of the apparatus shown in FIG. 4 is as follows.

すなわち、図4の装置は、基本的にはそれぞれ3個の環状電極7A、7B、7Cを用いた二つの通電加熱ユニット20、22(各ユニット内の基本的な構成は図1、図2に示したものと同様)を直列に接続してなるものである。但し図4において各ユニット20、22の両端部付近には、アース用の環状電極24A、24Bが設けられている。ここで、管路1は、呼び径1Sのものを用いた。この場合、管路1の内径は23mmであり、各環状電極7A、7B、7Cの内径Rも管路1の内径に等しく、23mmである。また環状電極7A、7B、7Cの管路長さ方向の幅Lは、50mm、30mm、20mm、10mm、6mmの5段階に変化させ、各幅でそれぞれ実験を行なった。なお各環状電極7A、7B、7Cの間の距離は100mmである。   That is, the apparatus of FIG. 4 basically has two current heating units 20 and 22 each using three annular electrodes 7A, 7B and 7C (the basic configuration in each unit is shown in FIGS. 1 and 2). (Similar to those shown) are connected in series. However, in FIG. 4, ground electrodes 24 </ b> A and 24 </ b> B are provided near both ends of the units 20 and 22. Here, the pipe 1 having a nominal diameter of 1S was used. In this case, the inner diameter of the pipe line 1 is 23 mm, and the inner diameter R of each annular electrode 7A, 7B, 7C is also equal to the inner diameter of the pipe line 1 and is 23 mm. In addition, the width L in the pipe length direction of the annular electrodes 7A, 7B, and 7C was changed in five stages of 50 mm, 30 mm, 20 mm, 10 mm, and 6 mm, and each width was tested. The distance between each annular electrode 7A, 7B, 7C is 100 mm.

実験条件としては、前記のCMC溶液を流入路26から装置内へ120l/hrもしくは80l/hrの流量で流入させ、各環状電極7A、7B、7C間で、300Vもしくは400Vの20kHzの高周波電圧を印加し、加熱後のCMC溶液を流出路28により系外へ流出させた。この時、流入路26におけるCMC溶液の平均温度、すなわち通電加熱前の平均流入側温度Tを測定するとともに、流出路28におけるCMC溶液の平均温度、すなわち通電加熱後の平均流出側温度Tを測定し、平均温度上昇量Δt=T−Tを求めた。また下流側の通電加熱ユニット22の最下流の環状電極27Cの出口側において、管路1内における管壁の温度Tおよび管路1内の中心軸線位置の温度Tを測定し、その温度差(すなわち管壁と中心との温度ムラ)ΔtをΔt=T−Tとして求めた。さらに、温度ムラの程度を表わす値としては、上記の管壁と中心との間の温度差Δtを、加熱による平均温度上昇量Δtによって規格化した値、すなわちΔt/Δtの値を求め、このΔt/Δtの値を温度ムラ比とした。 As an experimental condition, the CMC solution is introduced into the apparatus from the inflow path 26 at a flow rate of 120 l / hr or 80 l / hr, and a high frequency voltage of 20 kHz of 300 V or 400 V is applied between the annular electrodes 7A, 7B, 7C. The CMC solution after heating was flowed out of the system through the outflow path 28. At this time, the average temperature of the CMC solution in the inlet channel 26, i.e. with measuring the average inflow-side temperature T 1 of the previous energization heating, the average temperature of the CMC solution in the outlet channel 28, i.e. the average outflow-side temperature after current heating T 2 The average temperature rise Δt 1 = T 2 −T 1 was determined. Also at the outlet side of the most downstream of the annular electrode 27C of the electrical heating unit 22 on the downstream side, to measure the temperature T 4 of the central axis position of the temperature T 3 and the conduit 1 of the tube wall in line 1, the temperature The difference (that is, temperature unevenness between the tube wall and the center) Δt 2 was determined as Δt 2 = T 3 −T 4 . Further, the value representing the degree of temperature unevenness is a value obtained by normalizing the temperature difference Δt 2 between the tube wall and the center by the average temperature increase Δt 1 due to heating, that is, a value of Δt 2 / Δt 1 . And the value of Δt 2 / Δt 1 was defined as the temperature unevenness ratio.

以上の結果を表1および表2に示す。   The above results are shown in Tables 1 and 2.

Figure 2006054093
Figure 2006054093

Figure 2006054093
Figure 2006054093

ここで、表1、表2における各温度ムラ比Δt/Δtと環状電極の幅Lとの関係について、図5、図6にグラフ化して示す。すなわち図5は、表1における流量120l/hr、電圧300Vの場合の例(実験番号1〜5)、および流量120l/hr、電圧400Vの場合の例(実験番号6〜10)を示し、図6は、表2における流量80l/hr、電圧300Vの場合の例(実験番号11〜15)、および流量80l/hr、電圧400Vの例(実験番号16〜20)の場合の例を示す。 Here, the relationship between each temperature unevenness ratio Δt 2 / Δt 1 in Tables 1 and 2 and the width L of the annular electrode is shown in a graph in FIGS. That is, FIG. 5 shows an example (experiment number 1 to 5) in the case of a flow rate of 120 l / hr and a voltage of 300 V in Table 1 and an example (experiment number of 6 to 10) in the case of a flow rate of 120 l / hr and a voltage of 400 V. 6 shows an example in the case of a flow rate of 80 l / hr and a voltage of 300 V in Table 2 (experiment numbers 11 to 15) and an example of a flow rate of 80 l / hr and a voltage of 400 V (experiment numbers 16 to 20).

図5、図6から明らかなように、いずれの場合も環状電極の幅Lが大きくなるに従って温度ムラ比Δt/Δtが小さくなる傾向を示し、特に幅LがR/2以上の本発明例(実験番号1〜3、6〜8、11〜13、16〜18)では、それぞれ同じ条件で実験した比較例(実験番号4、5、9、10、14、15、19、20)よりも温度ムラ比Δt/Δtが確実に小さくなっていることが明らかである。 As is apparent from FIGS. 5 and 6, in any case, the temperature unevenness ratio Δt 2 / Δt 1 tends to decrease as the width L of the annular electrode increases, and in particular, the present invention in which the width L is R / 2 or more. In the examples (Experiment Nos. 1-3, 6-8, 11-13, 16-18), from the comparative examples (Experiment Nos. 4, 5, 9, 10, 14, 15, 19, 20) which were experimented under the same conditions, respectively. It is clear that the temperature unevenness ratio Δt 2 / Δt 1 is reliably reduced.

実施例2
管路1として呼び径2S(内径47.8mm)のものを用いて、環状電極の内径Rを47.8mmとし、環状電極の幅Lを100mm、60mm、50mm、20mmの4段階に変化させ、また各環状電極の間の距離を200mmとした点以外は、実施例1と同様にして実験を行なった。なお流量は365l/hrで一定とし、電圧は480V、360Vの2種の電圧で通電加熱を行なった。
Example 2
Using a pipe 1 having a nominal diameter of 2S (inner diameter of 47.8 mm), the inner diameter R of the annular electrode is set to 47.8 mm, and the width L of the annular electrode is changed in four stages of 100 mm, 60 mm, 50 mm, and 20 mm, The experiment was performed in the same manner as in Example 1 except that the distance between the annular electrodes was 200 mm. The flow rate was fixed at 365 l / hr, and energization heating was performed with two voltages of 480 V and 360 V.

その結果を表1、表2に準じて表3に示し、さらに温度ムラ比Δt/Δtと環状電極の幅Lとの関係を図7にグラフ化して示す。 The results are shown in Table 3 according to Tables 1 and 2, and the relationship between the temperature unevenness ratio Δt 2 / Δt 1 and the width L of the annular electrode is shown in a graph in FIG.

Figure 2006054093
Figure 2006054093

図7から明らかなように、この実施例2の場合も、環状電極の幅Lが大きくなるに従って温度ムラ比Δt/Δtが小さくなる傾向が示され、特に環状電極の幅LがR/2以上では、確実に温度ムラ比Δt/Δtを小さくすることができた。 As is apparent from FIG. 7, in the case of Example 2, the temperature unevenness ratio Δt 2 / Δt 1 tends to decrease as the width L of the annular electrode increases. When the ratio was 2 or more, the temperature unevenness ratio Δt 2 / Δt 1 could be reliably reduced.

この発明の連続通電加熱装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the continuous electricity heating apparatus of this invention. 図1のII−II線における横断平面図である。It is a cross-sectional plan view in the II-II line | wire of FIG. 連続通電加熱装置における環状電極の管路長さ方向の幅Lと内径Rとの比L/Rと、管路内の半径方向温度ムラとの関係を模式的に示すグラフである。It is a graph which shows typically the relation between the ratio L / R of the width L of the annular electrode in the pipe length direction and the inner diameter R in the continuous energization heating device, and the radial temperature unevenness in the pipe. この発明の実施例で用いた連続通電加熱装置の全体構成を示す略解図である。It is a schematic diagram which shows the whole structure of the continuous electricity heating apparatus used in the Example of this invention. 実施例1の実験番号1〜5および実験番号6〜10における温度ムラ比Δt/Δtと環状電極の幅Lとの関係を示すグラフである。Is a graph showing the relationship between the width L of the temperature variation ratio Delta] t 2 / Delta] t 1 and the annular electrode in Experiment No. 1-5 and Experiment No. 6-10 of Example 1. 実施例1の実験番号11〜15および実験番号16〜20における温度ムラ比Δt/Δtと環状電極の幅Lとの関係を示すグラフである。Is a graph showing the relationship between the width L of the temperature variation ratio Delta] t 2 / Delta] t 1 and the annular electrode in Experiment No. 11 to 15 and Test No. 16 to 20 of Example 1. 実施例2の実験番号21〜24および実験番号25〜28における温度ムラ比Δt/Δtと環状電極の幅Lとの関係を示すグラフである。Is a graph showing the relationship between the width L of the temperature variation ratio Delta] t 2 / Delta] t 1 and the annular electrode in Experiment No. 21 to 24 and Test No. 25 to 28 of Example 2.

符号の説明Explanation of symbols

1 管路
2 流路
3 流動性食品材料
7A、7B、7C 環状電極
9 電源
L 環状電極の管路長さ方向の幅
R 環状電極の内径
DESCRIPTION OF SYMBOLS 1 Pipe line 2 Flow path 3 Flowable food material 7A, 7B, 7C Annular electrode 9 Power supply L Width of annular electrode in length direction R Inner diameter of annular electrode

Claims (4)

管路の上流側から下流側へ向けて所定間隔を置いて少なくとも2以上の部分に、管路の中心軸線に対し同心状となるように環状電極を設けておき、粘度が100cP以上の高粘度の流動性食品材料を、管路内において長さ方向に連続的に流動移送させながら、隣り合う環状電極間に1〜50kHzの範囲内の周波数の高周波電流を通電して、高粘度流動性食品材料を連続的に通電加熱するための高粘度流動性食品材料の連続通電加熱装置において、
前記各環状電極における管路長さ方向の幅Lの寸法を、環状電極の内径寸法Rに対してR/2以上に設定したことを特徴とする、高粘度流動性食品材料の連続通電加熱装置。
An annular electrode is provided in at least two or more portions at a predetermined interval from the upstream side to the downstream side of the pipeline so as to be concentric with the central axis of the pipeline, and the viscosity is 100 cP or higher. A high-viscosity fluid food product is obtained by passing a high-frequency current having a frequency in the range of 1 to 50 kHz between adjacent annular electrodes while continuously fluidly transporting the fluid food material in the length direction in the pipe. In a continuous current heating device for high viscosity fluid food materials for continuous current heating of materials,
The continuous energization heating device for high-viscosity fluid food material, characterized in that the dimension of the width L in the pipe length direction of each annular electrode is set to R / 2 or more with respect to the inner diameter dimension R of the annular electrode. .
請求項1に記載の高粘度流動性食品材料の連続通電加熱装置において、
前記各環状電極における管路長さ方向の幅Lの寸法を、環状電極の内径寸法R以上の寸法に設定したことを特徴とする、高粘度流動性食品材料の連続通電加熱装置。
In the continuous energization heating apparatus of the high-viscosity fluid food material according to claim 1,
The continuous energization heating device for high-viscosity fluid food material, wherein the dimension of the width L in the pipe length direction of each annular electrode is set to be equal to or larger than the inner diameter dimension R of the annular electrode.
請求項1もしくは請求項2に記載の高粘度流動性食品材料の連続通電加熱装置において、
前記各環状電極における管路長さ方向の幅Lの寸法を、環状電極の内径寸法Rの3倍以下の寸法に設定したことを特徴とする、高粘度流動性食品材料の連続通電加熱装置。
In the continuous energization heating apparatus of the high-viscosity fluid food material according to claim 1 or 2,
The continuous energization heating apparatus for high-viscosity fluid food materials, wherein the dimension of the width L in the pipe length direction of each annular electrode is set to a dimension not more than three times the inner diameter dimension R of the annular electrode.
請求項1〜請求項3のいずれかに記載の高粘度流動性食品材料の連続通電加熱装置において、
粘度が1000cP以上の流動性材料を通電加熱するためのものである、高粘度流動性食品材料の連続通電加熱装置。
In the continuous electricity heating apparatus of the high-viscosity fluid food material according to any one of claims 1 to 3,
A continuous energization heating device for high-viscosity fluid food materials, which is for electrically heating fluid materials having a viscosity of 1000 cP or more.
JP2004234323A 2004-08-11 2004-08-11 Continuous energization heating device for high viscosity fluid food Pending JP2006054093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234323A JP2006054093A (en) 2004-08-11 2004-08-11 Continuous energization heating device for high viscosity fluid food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234323A JP2006054093A (en) 2004-08-11 2004-08-11 Continuous energization heating device for high viscosity fluid food

Publications (1)

Publication Number Publication Date
JP2006054093A true JP2006054093A (en) 2006-02-23

Family

ID=36031437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234323A Pending JP2006054093A (en) 2004-08-11 2004-08-11 Continuous energization heating device for high viscosity fluid food

Country Status (1)

Country Link
JP (1) JP2006054093A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136486A (en) * 2006-11-07 2008-06-19 Frontier Engineering Co Ltd Continuous joule heating method and apparatus for food material
JP7427246B2 (en) 2020-06-03 2024-02-05 株式会社フロンティアエンジニアリング Electrical heating device, method of heating food materials using the same, and control program for the electric heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136486A (en) * 2006-11-07 2008-06-19 Frontier Engineering Co Ltd Continuous joule heating method and apparatus for food material
JP7427246B2 (en) 2020-06-03 2024-02-05 株式会社フロンティアエンジニアリング Electrical heating device, method of heating food materials using the same, and control program for the electric heating device

Similar Documents

Publication Publication Date Title
JP4842240B2 (en) Method for continuous joule heating of food materials
JP2008022850A (en) Ohmic heating system with circulation by worm
WO1993019620A1 (en) Method and apparatus for pasteurizing liquid whole egg products
JP2011086443A (en) Energization heating device of migration body
JP2006054093A (en) Continuous energization heating device for high viscosity fluid food
JP4995164B2 (en) COOLABLE ELECTRODE BODY AND CONTINUOUS ELECTRIC HEATING DEVICE HAVING THE SAME
JP4310510B2 (en) Continuous energization heating device for fluid food materials
EP2308316A1 (en) An ohmic device for heat-treating foods
JP6030040B2 (en) Continuous energization heating device for fluid food materials
US20130315574A1 (en) Continuous heat treatment method and heating device for an electrically conductive fluid
JP4852013B2 (en) Joule heating method and apparatus
JP2006050941A (en) Method for continuously electrifying and heating fluid food material
JP4232381B2 (en) Continuous energization heating sterilization method of high viscosity fluid food material
JP3534661B2 (en) Heating device
JP7427246B2 (en) Electrical heating device, method of heating food materials using the same, and control program for the electric heating device
JP3745866B2 (en) Food sterilizer
JP3965599B2 (en) Continuous energization heating device for fluid food materials
JP7201220B2 (en) Electric heating device for fluid food material and its control method
JPH03172161A (en) Continuous heater for food material having fluidity
JP2659313B2 (en) Joule heating unit for food materials with fluidity
JP7312424B2 (en) Electric heating device and method for fluid food material
JP4737847B2 (en) Continuous energization heating device for fluid food materials
JP2003339537A (en) Continuous electric heating device for fluid food material
TW450791B (en) Heat-pasteurization apparatus for heating and pasteurizing a flowable foodstuff
JP7261465B2 (en) Electric heating device for food materials and heating method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Effective date: 20090630

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090828

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126