JP2006053151A - 実地下環境模擬装置 - Google Patents
実地下環境模擬装置 Download PDFInfo
- Publication number
- JP2006053151A JP2006053151A JP2005234461A JP2005234461A JP2006053151A JP 2006053151 A JP2006053151 A JP 2006053151A JP 2005234461 A JP2005234461 A JP 2005234461A JP 2005234461 A JP2005234461 A JP 2005234461A JP 2006053151 A JP2006053151 A JP 2006053151A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- test chamber
- underground environment
- pressure test
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
【課題】少なくとも高圧の地下環境を模擬することを可能にする。
【解決手段】 内外に雰囲気が遮断されたグローブボックス3と、グローブボックス3に所定成分の循環ガスを供給して回収するガス循環精製装置2と、グローブボックス3内 に設けられ、任意の圧力に加圧可能な高圧試験室26を形成する高圧装置4とを有している。高圧装置4は、高圧試験室26を内部に有し、高圧試験室26を外 部に開放するように上面が開口された第1筒状部材24と、第1筒状部材24の開口から密接状態で移動自在に内挿された第1ピストン部材23と、第1ピストン部材23を進退移動させる第1シリンダ装置16とを有している。
【選択図】 図1
【解決手段】 内外に雰囲気が遮断されたグローブボックス3と、グローブボックス3に所定成分の循環ガスを供給して回収するガス循環精製装置2と、グローブボックス3内 に設けられ、任意の圧力に加圧可能な高圧試験室26を形成する高圧装置4とを有している。高圧装置4は、高圧試験室26を内部に有し、高圧試験室26を外 部に開放するように上面が開口された第1筒状部材24と、第1筒状部材24の開口から密接状態で移動自在に内挿された第1ピストン部材23と、第1ピストン部材23を進退移動させる第1シリンダ装置16とを有している。
【選択図】 図1
Description
本発明は、放射性廃棄物の処分環境等と想定される深地下環境を模擬する実地下環境模擬装置に関するものである。
近年においては、核燃料サイクルにより発生する高レベル放射性廃棄物の処分に関する研究開発が進められるにつれ、その処分環境である数百m以上の大深度における低酸素濃度等の地下環境(還元性雰囲気)を模擬的に実現し、その雰囲気下で実験を行う必要性が高まっている。
そこで、従来は、気密チャンバ内のガスを排気して真空状態にしたり、常圧の窒素で置換した後、窒素ガス等の不活性ガスを不活性ガス供給装置から供給することによって、大部分の酸素等を除去する。この後、気密チャンバに封入された不活性ガスを残存する酸素等と共に循環させながら、循環経路中に設けられた脱酸素装置により酸素を除去すると共に、水吸着装置および炭酸ガス吸着装置により水分および残存する炭酸ガスを除去する構成の実地下環境模擬装置が提案されている。そして、この構成によれば、大深度地下に形成された処分場における気圧および低酸素濃度等の地下環境を気密チャンバ内に出現させることができるため、気密チャンバ内に放射性廃棄物を放置することによって、放射性廃棄物を地下環境に処分したときの状態を調査する各種実験を行うことができる。
しかしながら、上記従来のように、処分場における気圧および低酸素濃度等の地下環境を気密チャンバ内に出現させるだけでは、処分後ある期間が経過した後に生じる可能性がある高圧の地下環境での実験を行うことができないという問題がある。
即ち、処分してから相当の期間が経過すると、放射性廃棄物が地圧(500mで200〜300kg/cm2)により加圧されながら地下水に浸漬された状態になる可能性がある。また、ベントナイトの再冠水による膨潤圧の発生やガスの発生等により高圧が放射性廃棄物に付与される可能性もある。
そして、このような高圧の地下環境になると、放射性廃棄物中の各種元素の化学平衡(溶解度)が大きく変化する。これにより、放射性廃棄物の処分においては、高圧の地下環境に処分した場合の実験も極めて重要であるが、上記従来の装置では、地圧等の高圧の地下環境を気密チャンバ内に出現させることができない。
従って、本発明は、少なくとも高圧の地下環境を模擬することができる実地下環境模擬装置を提供しようとするものである。
上記課題を解決するために、第1の発明は、内外の雰囲気が遮断された密閉ボックスと、前記密閉ボックスに所定成分の循環ガスを供給して回収し、前記密閉ボックス内を常圧の地下環境にするガス循環精製装置と、前記密閉ボックス内に設けられ、高圧の地下環境となるように任意の圧力に加圧可能な高圧試験室を形成する高圧装置とを有することを特徴としている。上記の構成によれば、ガス循環精製装置と密閉ボックスとの間で循環ガスを交換し、この循環ガスで密閉ボックス内を充満させることによって、密閉ボックス内を循環ガスのガス成分からなる常圧の地下環境にすることができる。そして、このような地下環境の密閉ボックス内に高圧装置が設けられ、この高圧装置内に任意の圧力に加圧可能な高圧試験室が形成されるため、高圧試験室が高圧の地下環境となる。これにより、密閉ボックス内の高圧試験室に高圧の地下環境が出現するため、高圧試験室に試験片をセットすれば、高圧の地下環境下での実験を行うことができる。さらに、密閉ボックス内における高圧装置以外の空間は、常圧の地下環境であるため、常圧の地下環境下での実験も行うことができる。
第2の発明は、第1の発明の実地下環境模擬装置であって、前記高圧装置は、前記高圧試験室を内部に有し、該高圧試験室を外部に開放するように一端面が開口された第1筒状部材と、前記第1筒状部材の開口から密接状態で移動自在に内挿された第1ピストン部材と、前記第1ピストン部材を進退移動させる第1シリンダ装置と、前記第1筒状部材内の高圧試験室に収容された流動体を撹拌する撹拌手段とを有することを特徴としている。上記の構成によれば、一般的な部品を用いて簡単な構成で高圧装置を作成することができ、高圧試験室の全体の温度を均一化することができる。
第3の発明は、第2の発明の実地下環境模擬装置であって、前記高圧装置は、さらに、前記第1筒状部材を所望の温度に調整する温度調整手段を有することを特徴としている。上記の構成によれば、高圧試験室の高圧の地下環境を所望の温度に安定化させることができる。
本発明の実施の形態を図1および図2に基づいて以下に説明する。本実施形態の実地下環境模擬装置は、図2に示すように、常圧および高圧の地下環境での実験を可能にする模擬装置本体1と、模擬装置本体1に対して低酸素濃度等の所望のガス成分の循環ガスを供給して回収するガス循環精製装置2と、後述の高圧装置4の作動等に使用される油圧ユニット41および恒温槽制御盤8と、これらの各装置を制御する制御盤9と、実験時における各装置の動作データや指令データ、検出データ等のデータを取り扱うパーソナルコンピュータ等の情報処理装置10とを有している。
上記の模擬装置本体1は、内外の雰囲気を気密状態に遮断し、内部に常圧試験室7を形成したグローブボックス3と、グローブボックス3の常圧試験室7に設けられた高圧装置4と、グローブボックス3の壁面に設けられ、試験片や各種部品、消耗品の出し入れに使用されるエアロック5とを有している。そして、グローブボックス3は、ガス循環配管6を介して上述のガス循環精製装置2に接続されており、ガス循環精製装置2からの循環ガスにより低酸素濃度(還元性雰囲気)の常圧の地下環境を常圧試験室7に出現させるようになっている。
上記の高圧装置4は、図1に示すように、地下水と同成分に調整された疑似地下水14内で試験片13を加圧する加圧部11と、疑似地下水14の撹拌時等に使用される背圧部12とを有している。加圧部11は、図1の油圧ユニット41からの作動オイルによりシリンダロッド16aを進退移動(昇降)させる第1シリンダ装置16と、シリンダロッド16aの先端部に設けられた収容機構17と、収容機構17を冷却水18に浸漬させる恒温槽19とを有している。
上記の恒温槽19には、銅管等の冷却用配管20が冷却水18に接触するように配設されており、冷却用配管20は、恒温槽19の内部から外部に引き出された後、一端部が空冷ユニット21に接続されている。そして、冷却用配管20および空冷ユニット21は、冷却水18の熱量を冷却用配管20を介して空冷ユニット21に伝達し、空冷ユニット21において放熱させることにより冷却水18の冷却を促進している。また、恒温槽19には、図2の恒温槽制御盤8に接続された温調ユニット22が設けられている。温調ユニット22は、冷却水18の温度を測定する温度センサと、冷却水18を加熱するヒータと、冷却水18を流動させて撹拌する撹拌機構と、温度センサで得られた測定温度が所望の温度となるようにヒータの発熱量を調整する温度制御装置とを有している。
上記の恒温槽19の冷却水18に浸漬された収容機構17は、上面から下面にかけて連通された第1筒状部材24と、第1筒状部材24の上面開口部に密接状態(液密および気密状態)で移動自在に内挿され、上述のシリンダロッド16aに連結された第1ピストン部材23と、第1筒状部材24の下面開口部を密接状態に密閉するように設けられた第1下蓋部材25とを有している。そして、これらの第1ピストン部材23および第1下蓋部材25は、第1筒状部材24の上面開口部および下面開口部をそれぞれ密閉することによって、第1筒状部材24の内部に高圧の地下環境を出現させる高圧試験室26を形成させている。
上記の第1ピストン部材23には、下面から上面にかけて連通穴23aが形成されている。第1ピストン部材23の下面には、試験片13の圧壊等により発生する粉状物を補集するフィルタ28aが設けられており、フィルタ28aは、粉状物の流入による連通穴23aの目詰まりを防止している。そして、この連通穴23aの上端部には、圧力検出管29を介して圧力センサ30が着脱可能に設けられており、圧力センサ30は、連通穴23aおよび圧力検出管29を介して高圧試験室26の圧力を検出している。
一方、第1下蓋部材25には、上面から側面にかけて連通穴25aが形成されている。第1下蓋部材25の上面には、上述のフィルタ28aと同一のフィルタ28bが設けられており、フィルタ28bは、粉状物の流入による連通穴25aの目詰まりを防止している。そして、この連通穴25aの側面側の端部には、第1高圧配管31が接続されており、第1高圧配管31は、恒温槽19から外部に引き出された後、高圧バルブ32および第2高圧配管33を介して背圧部12に接続されている。
上記の背圧部12は、図2の油圧ユニット41からの作動オイルによりシリンダロッド34aを進退移動(昇降)させる第2シリンダ装置34と、シリンダロッド34aの先端部に設けられた背圧機構35とを有している。背圧機構35は、上面から下面にかけて連通された第2筒状部材36と、第2筒状部材36の上面開口部に密接状態で移動自在に内挿され、上述のシリンダロッド34aに連結された第2ピストン部材37と、第2筒状部材36の下面開口部を密接状態に密閉するように設けられた第2下蓋部材38とを有しており、これらの部材36〜37により背圧室39を形成している。第2ピストン部材37および第2下蓋部材38には、背圧室39に接する下面および上面にフィルタ40a・40bがそれぞれ設けられている。そして、第2下蓋部材38には、上面から側面にかけて連通穴38aが形成されており、連通穴38aには、上述の第2高圧配管33が接続されている。
上記の第2シリンダ装置34および第1シリンダ装置16は、図2に示すように、各シリンダ装置34・16にそれぞれ独立したタイミングで作動オイルを供給可能な油圧ユニット41に接続されている。油圧ユニット41は、恒温槽制御盤8や図1の圧力センサ30、高圧バルブ32と共に制御盤9に接続されている。そして、制御盤9は、温度設定処理や高圧動作処理、ガス濃度調整処理等の各種の動作処理をソフトウエア的やハードウエア的に実行可能になっており、温度設定処理を実行した場合には、冷却水18の温度が設定値に制御されるように、恒温槽制御盤8に対して設定値データを出力して指示する。また、高圧動作処理を実行した場合には、図1に示すように、第1シリンダ装置16および第2シリンダ装置34のシリンダロッド16a・34aを互いに逆方向に進退移動(昇降)させるように油圧ユニット41を制御することによって、高圧試験室26の疑似地下水14を所望の圧力でもって撹拌させる。また、ガス濃度調整処理を実行した場合には、常圧試験室7が所望のガス濃度となるように、ガス循環精製装置2に対して循環ガスの成分や濃度等の内容を指示する。
上記の構成において、実地下環境模擬装置の動作について説明する。尚、以降の説明においては、説明の便宜のため、常圧および高圧の地下環境下で同時に実験を行う場合について説明するが、常圧および高圧の何れか一方の地下環境下で実験を行うこともできる。
先ず、図2に示すように、試験片13の地下環境データ(常圧データ、高圧データ、ガス濃度データ、温度データ、湿度データ等)を制御盤9に設定する。尚、この設定は、制御盤9に対して直接的に行われても良いし、情報処理装置10を介して間接的に行われても良い。制御盤9に地下環境データが設定されると、制御盤9は、地下環境データ中の常圧データ、ガス濃度データ、および湿度データをガス循環精製装置2に出力する。そして、ガス循環精製装置2は、地下環境データに対応した循環ガスをグローブボックス3内の常圧試験室7に送出すると共に回収することによって、常圧試験室7を地下環境データに対応した常圧の還元性雰囲気の地下環境に設定する。
次に、図1に示すように、温調ユニット22の温度センサを介して冷却水18の温度を認識し、冷却水18の温度が所望の温度となるように温調ユニット22を作動させる。また、圧力センサ30を圧力検出管29から抜脱し、高圧試験室26を外部の常圧試験室7に対して開放状態にする。この後、図2の油圧ユニット41から作動オイルを第1シリンダ装置16に供給し、第1シリンダ装置16のシリンダロッド16aを後退(上昇)させることによって、上述の冷却水18に浸漬された第1筒状部材24から第1ピストン部材23を引き上げて抜脱する。そして、第1筒状部材24の上面が開口すると、この開口部から高圧試験室26に試験片13をセットすると共に、疑似地下水14の収容量を調整する。
次に、第1シリンダ装置16のシリンダロッド16aを進出(下降)させることによって、第1ピストン部材23を下降させて第1筒状部材24に内挿する。第1筒状部材24に内挿された第1ピストン部材23が下降すると、第1ピストン部材23が第1筒状部材24に密接状態にされているため、高圧試験室26のガスが連通穴23aおよび圧力検出管29を介して外部に排出される。そして、第1ピストン部材23が疑似地下水14の水面に到達し、この疑似地下水14が圧力検出管29から排出されたときに第1ピストン部材23の下降を停止する。この後、圧力センサ30を圧力検出管29に取り付けることによって、高圧試験室26を密封する。
次に、高圧バルブ32を開栓し、加圧部11の高圧試験室26と背圧部12の背圧室39とを連通状態にする。この後、作動オイルを第1シリンダ装置16および第2シリンダ装置34に供給し、両シリンダロッド16a・34aを進出させることによって、高圧試験室26および背圧室39における疑似地下水14の圧力を上昇させる。そして、この圧力を圧力センサ30を介して認識し、地下環境データ中の高圧データで示される圧力に一致したときに、両シリンダロッド16a・34aの進出を停止して圧力を安定させる。
高圧試験室26が所望の圧力に到達すると、この圧力を維持しながら、両シリンダ装置16・34により第1ピストン部材23と第2ピストン部材37とを互いに逆方向に進退移動させることによって、高圧試験室26および背圧室39間で疑似地下水14を流動させる。そして、この流動により高圧試験室26内の疑似地下水14を撹拌し、温度を均一化させながら、高圧試験室26を地下環境データに対応した高圧の還元性雰囲気の地下環境に設定する。
これにより、常圧試験室7および高圧試験室26における常圧および高圧の地下環境下での実験がそれぞれ行われることになり、所定時間の経過後に実験が終了すると、上述の操作手順とは逆の操作手順により高圧試験室26および常圧試験室7から試験片13をグローブボックス3の外部に取り出す。
以上のように、本実施形態の実地下環境模擬装置は、内外に雰囲気が遮断されたグローブボックス3(密閉ボックス)と、グローブボックス3に所定成分の循環ガスを供給して回収するガス循環精製装置2と、グローブボックス3内に設けられ、任意の圧力に加圧可能な高圧試験室26を形成する高圧装置4とを有した構成にされている。
これにより、ガス循環精製装置2とグローブボックス3との間で循環ガスを交換し、この循環ガスでグローブボックス3内を充満させることによって、グローブボックス3内を循環ガスのガス成分からなる常圧の地下環境にすることができる。そして、このような地下環境のグローブボックス3内に高圧装置4が設けられ、この高圧装置4内に任意の圧力に加圧可能な高圧試験室26が形成されるため、高圧試験室26が高圧の地下環境となる。グローブボックス3内の高圧試験室26に高圧の地下環境が出現するため、高圧試験室26に試験片13をセットすれば、高圧の地下環境下での実験を行うことができる。さらに、グローブボックス3内における高圧装置4以外の空間は、常圧の地下環境であるため、常圧の地下環境下での実験も同時に並行して行うことができる。
尚、本実施形態の実地下環境模擬装置は、放射性廃棄物の処分環境を模擬する原子力分野の他、一般廃棄物/産業廃棄物処分の分野、金属燃料分野、金属Naを取り扱う実験の分野等に適用することができる。また、本実施形態においては、グローブボックス3が密閉ボックスとして用いられているが、これに限定されるものではなく、密閉ボックスは、金属またはアクリル等の板材やOリングパッキン等の密封部材により内外に雰囲気が遮蔽されたものであれば良い。
また、本実施形態において、上記の高圧装置4は、高圧試験室26を内部に有し、高圧試験室26を外部に開放するように上面(一端面)が開口された第1筒状部材24と、第1筒状部材24の開口から密接状態で移動自在に内挿された第1ピストン部材23と、第1ピストン部材23を進退移動させる第1シリンダ装置16とを有した構成にされることによって、一般的な部品を用いて簡単な構成で作成することが可能になっている。
さらに、高圧装置4は、第1筒状部材24を所望の温度に冷却する冷却水18を収容した恒温槽19(温度調整手段)を有した構成にされることによって、高圧試験室26の高圧の地下環境を所望の温度に安定化させることが可能になっている。
尚、本実施形態においては、冷却水18を収容した恒温槽19により温度調整手段を構成しているが、これに限定されるものではなく、例えば第1筒状部材24の周囲に銅管を巻回し、この銅管内に冷却水等の冷媒を流動させて熱交換する方式の温度調整手段であっても良い。さらに、温度調整手段は、第1筒状部材24の周囲にニクロム線を巻回したヒータ部材や、上述の銅管に高温の水蒸気を流動させて熱交換するヒータ部材により加熱する構成であっても良い。
さらに、本実施形態において、高圧装置4は、第1筒状部材24内の高圧試験室26に収容された疑似地下水14(流動体)を撹拌する背圧部12等の撹拌手段を有した構成にされることによって、高圧試験室26の全体の温度を均一化することが可能になっている。具体的には、背圧室39を内部に有し、背圧室39を外部に開放するように一端面が開口された第2筒状部材36と、第2筒状部材36の開口から密接状態で移動自在に内挿された第2ピストン部材37と、第2ピストン部材37を進退移動させる第2シリンダ装置34と、第2筒状部材36の背圧室39と第1筒状部材24の高圧試験室26とを連通させた第1高圧配管31および第2高圧配管33と、高圧試験室26の圧力を一定に維持しながら第1ピストン部材23と第2ピストン部材37とを互いに逆方向に進退移動させるように、第1シリンダ装置16と第2シリンダ装置34とを連動させる図2の制御盤9(撹拌制御手段)とを有した構成にされている。
尚、撹拌手段は、上記の構成に限定されるものではなく、第2シリンダ装置34により第2ピストン部材37を進退移動させる代わりに下記のように構成されたものであっても良い。即ち、駆動モータにより正逆回転されるボールスクリューにナット部材を螺合し、このナット部材に第2ピストン部材37を連結することによって、ナット部材と共に第2ピストン部材37を進退移動させるように構成されていても良い。また、本実施形態においては、高圧試験室26に疑似地下水14を収容して実験する場合について説明しているが、その他の溶液やガスを収容して実験を行うこともできる。
以上、説明したように、第1の発明は、内外の雰囲気が遮断された密閉ボックスと、前記密閉ボックスに所定成分の循環ガスを供給して回収し、前記密閉ボックス内を常圧の地下環境にするガス循環精製装置と、前記密閉ボックス内に設けられ、高圧の地下環境となるように任意の圧力に加圧可能な高圧試験室を形成する高圧装置とを有する構成である。上記の構成によれば、ガス循環精製装置と密閉ボックスとの間で循環ガスを交換し、この循環ガスで密閉ボックス内を充満させることによって、密閉ボックス内を循環ガスのガス成分からなる常圧の地下環境にすることができる。そして、このような地下環境の密閉ボックス内に高圧装置が設けられ、この高圧装置内に任意の圧力に加圧可能な高圧試験室が形成されているため、高圧試験室が高圧の地下環境となる。これにより、密閉ボックス内の高圧試験室に高圧の地下環境が出現するため、高圧試験室に試験片をセットすれば、高圧の地下環境下での実験を行うことができる。さらに、密閉ボックス内における高圧装置以外の空間は、常圧の地下環境であるため、常圧の地下環境下での実験も行うことができるという効果を奏する。さらに、一般的な部品を用いて簡単な構成で高圧装置を作成することができるという効果を奏する。
第2の発明は、第1の発明の実地下環境模擬装置であって、前記高圧装置は、前記高圧試験室を内部に有し、該高圧試験室を外部に開放するように一端面が開口された第1筒状部材と、前記第1筒状部材の開口から密接状態で移動自在に内挿された第1ピストン部材と、前記第1ピストン部材を進退移動させる第1シリンダ装置と、前記第1筒状部材内の高圧試験室に収容された流動体を撹拌する撹拌手段とを有する構成である。上記の構成によれば、一般的な部品を用いて簡単な構成で高圧装置を作成することができ、高圧試験室の全体の温度を均一化することができる。
第3の発明は、第2の発明の実地下環境模擬装置であって、前記高圧装置は、さらに、前記第1筒状部材を所望の温度に調整する温度調整手段を有する構成である。上記の構成によれば、高圧試験室の高圧の地下環境を所望の温度に安定化させることができる。
1 模擬装置本体
2 ガス循環精製装置
3 グローブボックス
4 高圧装置
5 エアロック
6 ガス循環配管
7 常圧試験室
8 恒温槽制御盤
9 制御盤
10 情報処理装置
11 加圧部
12 背圧部
13 試験片
14 疑似地下水
16 第1シリンダ装置
17 収容機構
18 冷却水
19 恒温槽
20 冷却用配管
21 空冷ユニット
22 温調ユニット
23 第1ピストン部材
24 第1筒状部材
25 第1下蓋部材
26 高圧試験室
29 圧力検出管
30 圧力センサ
31 第1高圧配管
32 高圧バルブ
33 第2高圧配管
34 第2シリンダ装置
35 背圧機構
36 第2筒状部材
37 第2ピストン部材
38 第2下蓋部材
39 背圧室
41 油圧ユニット
2 ガス循環精製装置
3 グローブボックス
4 高圧装置
5 エアロック
6 ガス循環配管
7 常圧試験室
8 恒温槽制御盤
9 制御盤
10 情報処理装置
11 加圧部
12 背圧部
13 試験片
14 疑似地下水
16 第1シリンダ装置
17 収容機構
18 冷却水
19 恒温槽
20 冷却用配管
21 空冷ユニット
22 温調ユニット
23 第1ピストン部材
24 第1筒状部材
25 第1下蓋部材
26 高圧試験室
29 圧力検出管
30 圧力センサ
31 第1高圧配管
32 高圧バルブ
33 第2高圧配管
34 第2シリンダ装置
35 背圧機構
36 第2筒状部材
37 第2ピストン部材
38 第2下蓋部材
39 背圧室
41 油圧ユニット
Claims (3)
- 内外の雰囲気が遮断された密閉ボックスと、
前記密閉ボックスに所定成分の循環ガスを供給して回収し、前記密閉ボックス内を常圧の地下環境にするガス循環精製装置と、
前記密閉ボックス内に設けられ、高圧の地下環境となるように任意の圧力に加圧可能な高圧試験室を形成する高圧装置と
を有することを特徴とする実地下環境模擬装置。 - 前記高圧装置は、
前記高圧試験室を内部に有し、該高圧試験室を外部に開放するように一端面が開口された第1筒状部材と、
前記第1筒状部材の開口から密接状態で移動自在に内挿された第1ピストン部材と、
前記第1ピストン部材を進退移動させる第1シリンダ装置と、
前記第1筒状部材内の高圧試験室に収容された流動体を撹拌する撹拌手段と
を有することを特徴とする請求項1記載の実地下環境模擬装置。 - 前記高圧装置は、さらに、前記第1筒状部材を所望の温度に調整する温度調整手段を有することを特徴とする請求項2記載の実地下環境模擬装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005234461A JP2006053151A (ja) | 2005-08-12 | 2005-08-12 | 実地下環境模擬装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005234461A JP2006053151A (ja) | 2005-08-12 | 2005-08-12 | 実地下環境模擬装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28497899A Division JP3805581B2 (ja) | 1999-10-06 | 1999-10-06 | 実地下環境模擬装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006053151A true JP2006053151A (ja) | 2006-02-23 |
Family
ID=36030705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005234461A Pending JP2006053151A (ja) | 2005-08-12 | 2005-08-12 | 実地下環境模擬装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006053151A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008128224A (ja) * | 2006-11-16 | 2008-06-05 | Dia Shinku Kk | ケース収納型送風機およびガス循環精製装置 |
JP2009178055A (ja) * | 2008-01-29 | 2009-08-13 | Ihi Corp | 高圧試験方法および装置 |
JP2010286356A (ja) * | 2009-06-11 | 2010-12-24 | Ihi Corp | 地下圏摸擬試験方法および装置 |
JP2015017905A (ja) * | 2013-07-11 | 2015-01-29 | 清水建設株式会社 | 地下水水質測定方法および地下水水質測定装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58200199A (ja) * | 1982-05-17 | 1983-11-21 | 三菱マテリアル株式会社 | 流水式高温高圧浸出試験装置 |
JPH0371040A (ja) * | 1989-08-09 | 1991-03-26 | Kobe Steel Ltd | 地下環境シミュレーション装置 |
JPH0427899A (ja) * | 1990-05-23 | 1992-01-30 | Kobe Steel Ltd | 高圧ガス取扱い機器の設置室 |
JPH06273592A (ja) * | 1993-03-24 | 1994-09-30 | Ishikawajima Harima Heavy Ind Co Ltd | 地層シュミレーション装置 |
JPH09318796A (ja) * | 1996-05-29 | 1997-12-12 | Kobe Steel Ltd | 放射性物質の雰囲気制御装置 |
-
2005
- 2005-08-12 JP JP2005234461A patent/JP2006053151A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58200199A (ja) * | 1982-05-17 | 1983-11-21 | 三菱マテリアル株式会社 | 流水式高温高圧浸出試験装置 |
JPH0371040A (ja) * | 1989-08-09 | 1991-03-26 | Kobe Steel Ltd | 地下環境シミュレーション装置 |
JPH0427899A (ja) * | 1990-05-23 | 1992-01-30 | Kobe Steel Ltd | 高圧ガス取扱い機器の設置室 |
JPH06273592A (ja) * | 1993-03-24 | 1994-09-30 | Ishikawajima Harima Heavy Ind Co Ltd | 地層シュミレーション装置 |
JPH09318796A (ja) * | 1996-05-29 | 1997-12-12 | Kobe Steel Ltd | 放射性物質の雰囲気制御装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008128224A (ja) * | 2006-11-16 | 2008-06-05 | Dia Shinku Kk | ケース収納型送風機およびガス循環精製装置 |
JP2009178055A (ja) * | 2008-01-29 | 2009-08-13 | Ihi Corp | 高圧試験方法および装置 |
JP2010286356A (ja) * | 2009-06-11 | 2010-12-24 | Ihi Corp | 地下圏摸擬試験方法および装置 |
JP2015017905A (ja) * | 2013-07-11 | 2015-01-29 | 清水建設株式会社 | 地下水水質測定方法および地下水水質測定装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11217353B2 (en) | Method of preparing spent nuclear fuel for dry storage | |
US10229764B2 (en) | System and method for preparing a container loaded with wet radioactive elements for dry storage | |
CN102435716B (zh) | 一种成岩作用模拟实验装置 | |
CN107966398B (zh) | 一种模拟高温腐蚀的试验装置 | |
JP3805581B2 (ja) | 実地下環境模擬装置 | |
JP2006053151A (ja) | 実地下環境模擬装置 | |
CN111537697B (zh) | 一种超临界水与页岩反应的室内模拟装置和方法 | |
CN105424527A (zh) | 一种模拟库岸边坡消落带浸泡-风干岩循环作用试验仪 | |
WO2010106155A2 (en) | Remediation of polluted materials or sites | |
CN109856172A (zh) | 一种固体废弃物中重金属污染物释放动态实时监控与分析的模拟装置及其应用 | |
Kim et al. | Thermochemical changes on swelling pressure of compacted bentonite | |
JP2009047668A (ja) | 放射化された金属材料及び放射性ガスを含む密閉容器の切断・開封装置 | |
CN110441183B (zh) | 一种蒸汽驱替过程中有机污染物的相变观测装置 | |
CN111524620A (zh) | 模拟燃料组件离线啜吸中破口处微小气体扩散收集的装置及方法 | |
KR200176691Y1 (ko) | 전기화학부식전위 감시를 위한 루프 시험장치 | |
JP2664489B2 (ja) | 地下環境シミュレーション装置 | |
KR20140042581A (ko) | 부식 산화막 생성 시스템, 및 이를 이용한 모사된 원자로 1차 계통의 부식시험방법 | |
CN210639048U (zh) | 一种蒸汽驱替过程中有机污染物的相变观测装置 | |
Mutailipu et al. | The pH of CO2–saturated aqueous KCl solutions at temperatures between 298 K and 423 K at pressures up to 13.5 MPa | |
CN209102474U (zh) | 一种恶臭气体定时采样真空箱装置 | |
CN103084233B (zh) | 一种气氛可控的可视化降温装置 | |
CN111474078A (zh) | 支撑剂酸蚀条件下的导流能力评价方法和装置 | |
CN221440483U (zh) | 一种用于模拟给水管网余氯衰减的管段反应器 | |
JP2664489C (ja) | ||
CN114965955A (zh) | 一种铀尾矿充填体动态浸出实验装置及实验方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060824 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070227 |