JP2006051555A - Nanometer-level structure composition observing method, manufacturing method of multi-layer film structure having interposed insulating layer, and nanometer-level structure composition observing device - Google Patents

Nanometer-level structure composition observing method, manufacturing method of multi-layer film structure having interposed insulating layer, and nanometer-level structure composition observing device Download PDF

Info

Publication number
JP2006051555A
JP2006051555A JP2004233186A JP2004233186A JP2006051555A JP 2006051555 A JP2006051555 A JP 2006051555A JP 2004233186 A JP2004233186 A JP 2004233186A JP 2004233186 A JP2004233186 A JP 2004233186A JP 2006051555 A JP2006051555 A JP 2006051555A
Authority
JP
Japan
Prior art keywords
convex structure
nano
observation
insulating layer
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004233186A
Other languages
Japanese (ja)
Other versions
JP4762511B2 (en
Inventor
Yasuyuki Goto
康之 後藤
Masahiro Fukuda
真大 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004233186A priority Critical patent/JP4762511B2/en
Publication of JP2006051555A publication Critical patent/JP2006051555A/en
Application granted granted Critical
Publication of JP4762511B2 publication Critical patent/JP4762511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanometer-level structure composition observing method, a manufacturing method of a multi-layer film structure having an interposed insulating layer, and a nanometer-level structure composition observing device, analyzing the microstructure composition in a wide range of a sample having the multi-layer thin film structure having an interposed insulating layer with high accuracy. <P>SOLUTION: A plurality of projected structures 2 formed of the multi-layer film structure having the interposed insulating layer 3 are provided, and only in the projected structure 2 as an observation object, the upper and lower conductive parts 4, 5 are sequentially electrically short-circuited to perform observation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はナノレベル構造組成観察方法、絶縁層が介在する多層膜構造体の製造方法、及び、ナノレベル構造組成観察装置に関するものであり、特に、絶縁層が介在する多層薄膜構造からなる表面層の界面構造を広い範囲にわたってアトムプローブ法によって精度良く観察するための特徴のあるナノレベル構造組成観察方法、絶縁層が介在する多層膜構造体の製造方法、及び、ナノレベル構造組成観察装置に関するものである。   The present invention relates to a nano-level structural composition observation method, a manufacturing method of a multilayer film structure in which an insulating layer is interposed, and a nano-level structural composition observation apparatus, and in particular, a surface layer having a multilayer thin film structure in which an insulating layer is interposed. A characteristic nano-level structure composition observation method for accurately observing the interface structure of a wide area by an atom probe method, a method for manufacturing a multilayer film structure in which an insulating layer is interposed, and a nano-level structure composition observation apparatus It is.

近年、HDD(ハードディスクドライブ)の小型化、大容量化が急速に進んでおり、高密度磁気記録を実現するためのヘッド及び媒体の開発が求められている
媒体に微細に配列された記録ビットから発生する磁気的信号を再生ヘッドで高効率に電気信号に変換するために、MRヘッドの微細化・薄層化が求められている。
In recent years, HDDs (hard disk drives) are rapidly becoming smaller and larger in capacity, and there is a need to develop heads and media for realizing high-density magnetic recording. From recording bits finely arranged on a medium In order to convert the generated magnetic signal into an electric signal with high efficiency by the reproducing head, it is required to make the MR head finer and thinner.

この様に微細化・薄層化されたMRヘッドにおいては、スピンバルブ膜を構成する各層の層厚を精度良く形成するとともに、各層間の界面状態を良好に保つ必要がある。
例えば、膜厚分布が不均一であったり、界面が湾曲していたり、或いは、界面で構成原子が相互拡散して界面が不明確になっていれば、所望の特性が得られなくなる。
In such a miniaturized / thinned MR head, it is necessary to accurately form the thickness of each layer constituting the spin valve film and to maintain a good interface state between the layers.
For example, if the film thickness distribution is not uniform, the interface is curved, or if the constituent atoms are interdiffused at the interface and the interface is unclear, desired characteristics cannot be obtained.

そこで、従来においては、界面におけるX線の反射を利用した2θ法を用いて、スピンバルブ膜等の各層の膜厚及び界面状態を評価して、結果を製造工程へフィードバックすることによって、性能の向上と製造歩留りの向上を図っていた。   Therefore, in the past, the 2θ method using X-ray reflection at the interface was used to evaluate the film thickness and interface state of each layer such as the spin valve film and feed back the results to the manufacturing process. Improvement and production yield were improved.

しかし、2θ法は界面でのX線の反射強度を利用する手法であるため、界面で構成原子が相互拡散して界面が不明確になっている場合には精度の高い解析が困難であり、また、予期せぬ層が介在していた場合にも、精度の高い解析が困難であった。   However, since the 2θ method is a method that uses the reflection intensity of X-rays at the interface, when the constituent atoms are interdiffused at the interface and the interface is unclear, a highly accurate analysis is difficult. In addition, even when an unexpected layer is present, it is difficult to perform highly accurate analysis.

一方、この様な問題を解決する手法として、原子レベルの3次元構造を直接観察する手法として3次元アトムプローブ法が知られており、このアトムプローブ法は針状に鋭角に形成された1μm以下の針状試料にパルス状高電界やレーザを照射し、このエネルギーで、表面の原子或いはクラスターを電解蒸発させ2次元位置検出器により試料の3次元原子レベルの構造を観察するものである。   On the other hand, as a technique for solving such a problem, a three-dimensional atom probe method is known as a technique for directly observing a three-dimensional structure at an atomic level, and this atom probe method is 1 μm or less formed in a needle shape at an acute angle. The needle-like sample is irradiated with a pulsed high electric field or laser, and with this energy, atoms or clusters on the surface are electrolytically evaporated, and the three-dimensional atomic level structure of the sample is observed by a two-dimensional position detector.

しかし、このアトムプローブ法においては、針一箇所の3次元原子レベルの情報のみしかえられず、膜厚の分布等の広い範囲における2次元的情報を一度に入手することができないという問題がある。   However, this atom probe method has a problem that only three-dimensional atomic level information of one needle point can be obtained, and two-dimensional information in a wide range such as a film thickness distribution cannot be obtained at a time.

そこで、本発明者等は、基板上に複数の針状構造物を形成し、個々の針状構造物に引出電極を近接させることによって、個々の針状構造物の3次元原子レベルの情報を取得し、全ての情報を総合することによって、膜厚の分布等の広い範囲における3次元的構造組成を解析することを提案している(例えば、特許文献1参照)ので、図8を参照して説明する。   Therefore, the present inventors formed a plurality of needle-like structures on the substrate, and brought the extraction electrode close to each needle-like structure, thereby obtaining information on the three-dimensional atomic level of each needle-like structure. It has been proposed to analyze the three-dimensional structural composition in a wide range such as the film thickness distribution by acquiring and integrating all the information (see, for example, Patent Document 1), so refer to FIG. I will explain.

図8参照
図8は、3次元構造組成測定装置の概念的構成図であり、Bを局所的にイオン注入したシリコン基板61を主面に垂直な断面が表れるように切断したのち、切断面を研磨し、次いで、研磨面の表面に複数の針状構造物63を形成し、この針状構造物63に引出電極64を近接させて電界蒸発したのちイオン化した構成原子或いはクラスタを印加した電界で引出し、位置敏感検出器65によって、検出するものである。
See FIG.
FIG. 8 is a conceptual configuration diagram of a three-dimensional structural composition measuring apparatus. After cutting the silicon substrate 61 into which B is locally ion-implanted so that a cross section perpendicular to the main surface appears, the cut surface is polished, Next, a plurality of needle-like structures 63 are formed on the surface of the polishing surface, and the extraction electrode 64 is brought close to the needle-like structures 63 to be evaporated by an electric field, and then extracted with an electric field applied with ionized constituent atoms or clusters. It is detected by the sensitive detector 65.

一つの針状構造物63に対する測定により、まず、2次元情報が得られ、それらを時間的に重合わせることによって3次元構造組成情報を取得することができる。
この測定を全ての針状構造物63について行い、得られた全ての情報を総合することによって、イオン注入領域62におけるB濃度分布を得ることができる。
By measuring one needle-like structure 63, first, two-dimensional information is obtained, and three-dimensional structural composition information can be obtained by overlapping them in terms of time.
By performing this measurement for all the needle-like structures 63 and integrating all the obtained information, the B concentration distribution in the ion implantation region 62 can be obtained.

この様な3次元アトムプローブ法を各種の試料に適用することによって、基板の広い範囲における表面における吸着、表面反応、多層膜の界面構造を評価したり、或いは、材料の点欠陥等のナノオーダーの欠陥等を検出することができ、CPP(Current Perpendicular to the Plane)型のGMR素子からなるMRヘッドにおける各層の膜厚分布及び界面状態を評価が可能になる。   By applying such a three-dimensional atom probe method to various samples, it is possible to evaluate adsorption, surface reaction, interface structure of multilayer film on a wide area of the substrate, or nano order such as point defects of materials. Defects, etc. can be detected, and the film thickness distribution and interface state of each layer in an MR head composed of a CPP (Current Perpendicular to the Plane) type GMR element can be evaluated.

しかし、このアトムプローブ法においては、イオン化工程を伴うため、イオン化に伴って電子が基板側に残ることになるが、絶縁層が介在する場合には、電子の逃げ場がなくチャージアップにより継続した測定ができないという問題がある。   However, since this atom probe method involves an ionization process, electrons remain on the substrate side as a result of ionization. However, when an insulating layer is present, there is no escape field for electrons and measurement is continued by charge-up. There is a problem that can not be.

例えば、Al2 3 膜等からなるリードギャップ層を上下に備えたCIP(Current In the Plane)型のGMR素子からなるMRヘッドの解析には適用できないという問題がある。 For example, there is a problem that it cannot be applied to the analysis of an MR head made of a CIP (Current In the Plane) type GMR element provided with upper and lower lead gap layers made of an Al 2 O 3 film or the like.

さらに、CPP構造のGMR素子の場合にも、中間にトンネル絶縁膜が介在するMTJ(強磁性トンネル接合)型のGMR素子の場合には、同様に解析が困難であり、このような事情は、GMR素子に限らず、層構造中に絶縁膜を含む各種の試料において共通の問題であった。   Further, in the case of a GMR element having a CPP structure, in the case of an MTJ (ferromagnetic tunnel junction) type GMR element in which a tunnel insulating film is interposed in the middle, the analysis is similarly difficult. This is a common problem not only for GMR elements but also for various samples including an insulating film in the layer structure.

一方、アトムプローブ法において、被分析試料に絶縁層が介在する場合のチャージアップを防止するために集束イオンビーム(FIB)法を用いて絶縁層を跨ぐ導電性膜を形成して、絶縁層の上下を短絡させることも提案されている(例えば、特許文献2参照)。   On the other hand, in the atom probe method, a conductive film straddling the insulating layer is formed using a focused ion beam (FIB) method in order to prevent charge-up when the insulating layer is present in the sample to be analyzed. It has also been proposed to short-circuit the top and bottom (see, for example, Patent Document 2).

そこで、この様なFIB法を用いた短絡法と上述の複数の針状構造物を形成する方法を組み合わせることによって、CIP型GMR素子等の中間に絶縁層が介在する多層薄膜試料の解析も可能になる。
特開2004−117287号公報 特開2001−208659号公報
Therefore, by combining such a short circuit method using the FIB method and the above-described method of forming a plurality of needle-like structures, it is possible to analyze a multilayer thin film sample in which an insulating layer is interposed between CIP type GMR elements and the like. become.
JP 2004-117287 A JP 2001-208659 A

しかし、上記の特許文献1と特許文献2を組み合わせ場合も、試料平面内における密度の高い詳細な分析は困難であるという問題がある。   However, even when the above-mentioned Patent Document 1 and Patent Document 2 are combined, there is a problem that detailed analysis with high density in the sample plane is difficult.

即ち、上記の特許文献1からの明らかなように、引出電極の下端の開口部の直径は50nm程度であるため、50nm以下のピッチで針状構造物を形成した場合、引出電極に対して複数の針状構造物が対向して、検出した粒子がどの針状構造物から飛来したかの判定が困難になる。   That is, as apparent from the above-mentioned Patent Document 1, since the diameter of the opening at the lower end of the extraction electrode is about 50 nm, when the needle-like structure is formed at a pitch of 50 nm or less, a plurality of the extraction electrodes are formed with respect to the extraction electrode. These needle-like structures face each other, and it becomes difficult to determine which needle-like structure the detected particles have come from.

一方、判定の精度を高めるためには、50nm以上のピッチで針状構造物を形成すれば良いが、そうすると観察点がまばらになるので精度の高い2次元解析ができなくなるという問題がある。   On the other hand, in order to increase the accuracy of the determination, the needle-like structure may be formed with a pitch of 50 nm or more, but there is a problem that the observation point becomes sparse and the two-dimensional analysis with high accuracy cannot be performed.

さらに、仮に、引出電極の下端の開口部の直径を20nm以下に微細化することが可能になったとして、そうすると、測定対象となる針状構造物と引出電極との位置合わせが非常に困難になるという問題がある。   Further, assuming that the diameter of the opening at the lower end of the extraction electrode can be reduced to 20 nm or less, then the alignment between the needle-like structure to be measured and the extraction electrode becomes very difficult. There is a problem of becoming.

したがって、本発明は、絶縁層が介在する多層薄膜構造の試料の広い範囲内における微細構造組成を高精度に解析することを目的とする。   Therefore, an object of the present invention is to analyze the fine structure composition in a wide range of a sample having a multilayer thin film structure in which an insulating layer is interposed with high accuracy.

図1は本発明の原理的構成図であり、ここで図1を参照して、本発明における課題を解決するための手段を説明する。
図1参照
上記課題を解決するために、本発明は、絶縁層3が介在する多層膜構造からなる凸状構造物2を表面側に有する被分析試料1の凸状構造物2の表面より、外部エネルギー或いは内部エネルギー8により凸状構造物2を構成する原子或いはクラスタのいずれかからなる粒子9を1個ずつ外部空間に離脱することにより凸状構造物2のナノレベルの構造組成を観察するナノレベル構造組成観察方法において、凸状構造物2を複数個設け、観察対象となる凸状構造物2のみの上下の導電性部分4,5を順次電気的に短絡させて観察を行うことを特徴とする。
FIG. 1 is a diagram illustrating the basic configuration of the present invention. Means for solving the problems in the present invention will be described with reference to FIG.
See FIG. 1 In order to solve the above problem, the present invention is based on the surface of the convex structure 2 of the sample 1 to be analyzed having the convex structure 2 having a multilayer structure with the insulating layer 3 interposed on the surface side. The nano-level structural composition of the convex structure 2 is observed by detaching particles 9 made of either atoms or clusters constituting the convex structure 2 one by one to the external space by external energy or internal energy 8. In the nano-level structural composition observation method, observation is performed by providing a plurality of convex structures 2 and electrically short-circuiting the upper and lower conductive portions 4 and 5 of only the convex structure 2 to be observed sequentially. Features.

このように、観察対象となる凸状構造物2のみの上下の導電性部分4,5を一個一個順次電気的に短絡させて観察を行うとともに、観察の終了した凸状構造物2については電気的に開放することによって、凸状構造物2を高密度に設けた場合にも対象となる上下の導電性部分4,5を短絡させた凸状構造物2からのみ粒子9が飛来することになるので精度の高い測定が可能になる。   In this way, observation is performed by sequentially short-circuiting the upper and lower conductive portions 4 and 5 of only the convex structure 2 to be observed one by one, and the convex structure 2 that has been observed is electrically When the convex structure 2 is provided at a high density, the particles 9 fly only from the convex structure 2 in which the upper and lower conductive portions 4 and 5 are short-circuited. Therefore, highly accurate measurement is possible.

また、凸状構造物2の上下の導電性部分4,5の短絡及び開放を、微細領域の加工が容易な集束イオンビーム6法を用いて行うことによって、凸状構造物2を高密度に設けた場合にも短絡或いは開放の対象となる一個の凸状構造部のみに対して選択的な堆積或いはエッチングが可能になる。   Moreover, the convex structure 2 can be made dense by short-circuiting and opening the upper and lower conductive portions 4 and 5 of the convex structure 2 by using the focused ion beam 6 method that allows easy processing of a fine region. Even when it is provided, it is possible to selectively deposit or etch only one convex structure portion to be short-circuited or opened.

また、引出電極を用いる場合、引出電極の下端の開口部が広くても粒子9が飛来してくるのは、凸状構造物2の上下の導電性部分4,5が短絡している1個の凸状構造物2のみであるので、精度の高い測定が可能になり、逆に、開口部が広いことにより観察対象となる凸状構造物2に対する位置合わせが容易になる。   Further, when the extraction electrode is used, the particles 9 come in even if the opening at the lower end of the extraction electrode is wide because the upper and lower conductive portions 4 and 5 of the convex structure 2 are short-circuited. Therefore, it is possible to perform measurement with high accuracy, and conversely, the wide opening portion facilitates alignment with the convex structure 2 to be observed.

この場合、内部エネルギー8としては、パルス状高電界よる電界蒸発が典型的なものであり、また、外部エネルギーとしては、パルスレーザ光等のパルス状電磁波が典型的なものである。   In this case, the internal energy 8 is typically a field evaporation due to a pulsed high electric field, and the external energy is typically a pulsed electromagnetic wave such as a pulsed laser beam.

また、装置構成としては、通常のアトムプローブ装置構成に加えて、凸状構造物2の上下の導電性部分4,5を順次電気的に短絡させる導電性膜7を堆積するための原料ガスの導入手段、及び、導電性膜7の堆積及び除去に際して集束イオンビーム6を照射するための集束イオンビーム照射手段を備えていることを特徴とする。   Further, as an apparatus configuration, in addition to the normal atom probe apparatus configuration, a raw material gas for depositing a conductive film 7 for sequentially electrically short-circuiting the upper and lower conductive portions 4 and 5 of the convex structure 2 is used. Introducing means and a focused ion beam irradiation means for irradiating the focused ion beam 6 when depositing and removing the conductive film 7 are provided.

このように、通常の装置構成に原料ガスの導入手段及び 集束イオンビーム照射手段を備えるだけで、被分析試料1を真空系外に取り出すことなく、或いは、別個の成膜装置及びエッチング装置を付随させることなく、凸状構造物2を一個一個順次連続的に観察することが可能になるので、装置構成が簡素化されるとともに、観察時間が短縮され、且つ、凸状構造部の表面が外気により汚染されることがない。   As described above, a normal apparatus configuration includes only a raw material gas introduction means and a focused ion beam irradiation means, and the sample 1 to be analyzed is not taken out of the vacuum system, or a separate film forming apparatus and etching apparatus are attached. Therefore, it is possible to sequentially observe the convex structures 2 one by one successively, without simplifying the structure, so that the apparatus configuration is simplified, the observation time is shortened, and the surface of the convex structure portion is exposed to the outside air. Will not be contaminated.

また、上記のナノレベル構造組成観察方法によって絶縁層3が介在する多層膜構造体のナノレベル構造組成を観察した結果により製造工程を進めたり或いは製造工程にフィードバックすることによって、製品の製造歩留りを向上することができるとともに、製品の性能を向上することができる。
特に、界面状態が特性に大きく影響を与える再生ヘッドを構成する磁気抵抗素子に対して効果的である。
In addition, the production yield of the product can be increased by advancing the manufacturing process or feeding back to the manufacturing process according to the result of observing the nano-level structural composition of the multilayer structure with the insulating layer 3 interposed by the nano-level structural composition observation method. It is possible to improve the performance of the product.
In particular, this is effective for a magnetoresistive element constituting a reproducing head whose interface state greatly affects the characteristics.

本発明においては、絶縁層が介在する多層薄膜構造の広い範囲にわたる3次元構造を高密度に形成した凸状構造物によって高精度に解析することが可能になる。   In the present invention, it is possible to analyze with high accuracy a convex structure formed with a high density three-dimensional structure over a wide range of a multilayer thin film structure in which an insulating layer is interposed.

本発明は、絶縁層が介在する多層膜構造からなる凸状構造物を表面側に有する被分析試料の表面に複数の凸状構造部を形成し、観察対象となる一個の凸状構造物のみの上下の導電性部分をFIB法を用いて導電膜を堆積させて電気的に短絡させ、凸状構造部に脱離のためのパルス高電圧或いはパルスレーザ光を印加して凸状構造物を構成する原子或いはクラスタのいずれかからなる粒子を1個ずつ外部空間に離脱することにより凸状構造物のナノレベルの構造組成を観察したのち、観察の終了した凸状構造物についてはFIB法を用いて導電膜を除去するとともに、次の観察対象となる一個の凸状構造物のみの上下の導電性部分をFIB法を用いて導電膜を堆積させて電気的に短絡させて観察を行い、この工程を必要とする数の凸状構造物に対して行うものである。   In the present invention, a plurality of convex structure portions are formed on the surface of a sample to be analyzed having a convex structure having a multilayer structure with an insulating layer interposed on the surface side, and only one convex structure to be observed is provided. A conductive film is deposited on the upper and lower conductive portions using an FIB method to electrically short-circuit, and a pulse high voltage or pulse laser light for detachment is applied to the convex structure portion to form a convex structure. After observing the nano-level structural composition of the convex structure by leaving particles consisting of either atoms or clusters one by one into the external space, the FIB method is applied to the convex structure that has been observed. Using the FIB method to deposit the conductive film using the FIB method to observe the upper and lower conductive portions of only one convex structure to be observed next, and removing the conductive film. To the number of convex structures that require this process It shall be made by.

ここで、図2乃至図7を参照して、本発明の実施例1のナノレベル構造組成観察方法を説明する。
図2参照
まず、スライダーの母体となる、Al2 3 −TiC基板11上にAl2 3 膜(図示を省略)を介してNiFe等からなる下部磁気シールド層12を設け、その上に、Al2 3 からなる下部リードギャップ層13を設けたのち、スパッタリング法を用いてスピンバルブ膜14を形成する。
Here, with reference to FIG. 2 thru | or FIG. 7, the nano level structure composition observation method of Example 1 of this invention is demonstrated.
See Figure 2
First, the base of the slider is provided with Al 2 O 3 -TiC lower magnetic shield layer 12 made of NiFe or the like via an Al 2 O 3 film on the substrate 11 (not shown), on which, Al 2 O After the lower lead gap layer 13 made of 3 is provided, the spin valve film 14 is formed by sputtering.

このスピンバルブ膜14は、例えば、5nmのTa下地層15、2nmのNiFeフリー層16、1.5nmのCoFeBフリー層17、2.8nmのCu中間層18、2nmのCoFeBピンド層19、13nmのPdPtMn反強磁性層20、及び、6nmのTaキャップ層21からなる。   For example, the spin valve film 14 includes a 5 nm Ta underlayer 15, a 2 nm NiFe free layer 16, a 1.5 nm CoFeB free layer 17, a 2.8 nm Cu intermediate layer 18, a 2 nm CoFeB pinned layer 19, a 13 nm It consists of a PdPtMn antiferromagnetic layer 20 and a 6 nm Ta cap layer 21.

次いで、レジストパターン22をマスクとしてイオンミリングを施すことによって、所定の形状に加工することによってセンス部23を形成し、引き続いて、スパッタリング法を用いてCoCrPtからなる磁区制御膜24を形成する。
図3参照
Next, by performing ion milling using the resist pattern 22 as a mask, the sense portion 23 is formed by processing into a predetermined shape, and subsequently, a magnetic domain control film 24 made of CoCrPt is formed by sputtering.
See Figure 3

次いで、レジストパターン22を除去したのち、3nmのCr膜及び30nmのAu膜からなる電極端子用導電膜を形成し、新たなレジストパターンをマスクとしたイオンミリングを施すことによって電極端子25を形成する。   Next, after removing the resist pattern 22, an electrode terminal conductive film made of a 3 nm Cr film and a 30 nm Au film is formed, and an electrode terminal 25 is formed by ion milling using the new resist pattern as a mask. .

次いで、レジストパターンを除去したのちAl2 3 からなる上部リードギャップ層26及びNiFeからなる上部磁気シールド層27を設けることによってMRヘッドの基本構造が完成する。 Next, after removing the resist pattern, an upper lead gap layer 26 made of Al 2 O 3 and an upper magnetic shield layer 27 made of NiFe are provided to complete the basic structure of the MR head.

図4参照
次いで、ダイシング加工によって、矩形状のチップ28に切り出したのち、各チップ28に対してGaイオン29を用いたFIB法によって、下部リードギャップ層13を貫通して下部磁気シールド層12に達する針状構造物30をマトリクス状に形成することによって、ナノレベル構造組成観察用試料10が完成する。
なお、この場合の針状構造物30のピッチは例えば150nmであり、また、各針状構造物30の柄の部分の直径は100nmで、先端部の直径は50nmである。
Next, after cutting into rectangular chips 28 by dicing, each chip 28 penetrates the lower lead gap layer 13 and forms the lower magnetic shield layer 12 by FIB method using Ga ions 29. By forming the reaching needle-like structures 30 in a matrix, the nano-level structural composition observation sample 10 is completed.
In this case, the pitch of the needle-like structures 30 is, for example, 150 nm, the diameter of the handle portion of each needle-like structure 30 is 100 nm, and the diameter of the tip portion is 50 nm.

図5参照
次いで、このナノレベル構造組成観察用試料10をナノレベル構造組成観察装置40内に設けた試料ホルダ42に固定する。
このナノレベル構造組成観察装置40は、真空容器41、引出電極43、位置敏感検出器44、引出電源45、及び、パルス高圧電源46を備えるとともに、本発明に特有なFIB源47、及び、原料ガス導入管48が備えられている。
なお、この場合の引出電極43は、上端に直径が8μmで下端の直径が5μmの開口部を有するW製コーン状中空円筒体からなり、下端を厚さが、例えば、100nmのNi薄膜で塞ぐとともに、その中央部に直径が500nmの孔を設けたものである。
See Figure 5
Next, the nano-level structural composition observation sample 10 is fixed to a sample holder 42 provided in the nano-level structural composition observation apparatus 40.
The nano-level structural composition observation apparatus 40 includes a vacuum vessel 41, an extraction electrode 43, a position sensitive detector 44, an extraction power source 45, and a pulse high voltage power source 46, and a FIB source 47 and a raw material unique to the present invention. A gas introduction pipe 48 is provided.
In this case, the extraction electrode 43 is formed of a W cone-shaped hollow cylindrical body having an opening with a diameter of 8 μm at the upper end and a diameter of 5 μm at the lower end. In addition, a hole having a diameter of 500 nm is provided at the center.

図6参照
まず、真空容器41内に原料ガス導入管48から針状構造物30の近傍に向けてW(CO)6 ガス49を流すとともに、観察対象となる特定の一個の針状構造物30の下部磁気シールド層13近傍に向けてFIB源47からGaイオン50を照射することによって下部磁気シールド層12と上部の導電性多層薄膜構造からなるスピンバルブ膜14を短絡するように、W膜51を化学気相蒸着する。
See FIG.
First, the W (CO) 6 gas 49 is caused to flow from the source gas introduction pipe 48 into the vicinity of the needle-like structure 30 in the vacuum vessel 41 and the lower magnetism of a specific single needle-like structure 30 to be observed. By irradiating Ga ions 50 from the FIB source 47 toward the vicinity of the shield layer 13, the W film 51 is made to have a chemical vapor so as to short-circuit the lower magnetic shield layer 12 and the spin valve film 14 formed of the upper conductive multilayer thin film structure. Phase deposition.

次いで、W膜51を形成した針状構造物30の先端部に引出電極43を近接させ、パルス高圧電源46からのパルス状高電界によって先端部の構成物を電界蒸発させるととにイオン化し、イオン化した粒子を引出電極43で引出し、引き出した粒子52をナノレベル構造組成観察用試料10と位置敏感検出器44との間に印加された直流電圧によって加速し、位置敏感検出器44で検出する。   Next, the extraction electrode 43 is brought close to the tip of the needle-like structure 30 on which the W film 51 is formed, and the constituent at the tip is subjected to electric field evaporation by the pulsed high electric field from the pulse high voltage power source 46, and ionized The ionized particles are extracted by the extraction electrode 43, and the extracted particles 52 are accelerated by a DC voltage applied between the nano-level structural composition observation sample 10 and the position sensitive detector 44 and detected by the position sensitive detector 44. .

次いで、再び、FIB法を用いて、FIB源47からW膜51に向けてGaイオン50を照射することによって、W膜51をスパッタエッチングすることによって除去し、観察の終了した針状構造物30の下部磁気シールド層12と上部の導電性多層薄膜構造からなるスピンバルブ膜14を電気的に開放状態とする。
なお、図においては、観察を終了した針状構造物30を観察前と同じ大きさで表しているが、実際には、観察時間に応じて電界蒸発して小さくなっており、場合によって針状構造物30の大半が消失する。
Next, again using the FIB method, the W film 51 is removed by sputter etching by irradiating the W film 51 from the FIB source 47 toward the W film 51, and the needle-like structure 30 whose observation has been completed. The lower magnetic shield layer 12 and the upper spin-valve film 14 having a conductive multilayer thin film structure are electrically opened.
In the figure, the needle-like structure 30 that has been observed is shown in the same size as before the observation, but actually, the electric field evaporates depending on the observation time and becomes smaller. Most of the structure 30 disappears.

図7参照
次いで、再び、原料ガス導入管48から針状構造物30の近傍に向けてW(CO)6 ガス49を流すとともに、次の観察対象となる特定の一個の針状構造物30の下部磁気シールド層13近傍に向けてFIB源47からGaイオン50を照射することによって下部磁気シールド層12と上部の導電性多層薄膜構造からなるスピンバルブ膜14を短絡するように、W膜51を化学気相蒸着する。
以降は、この化学気相蒸着−観察−除去を必要とする針状構造物30の数だけ繰り返すことによって全体の観察が終了する。
See FIG.
Next, the W (CO) 6 gas 49 is again flowed from the source gas introduction pipe 48 toward the vicinity of the needle-like structure 30, and the lower magnetic shield of a specific single needle-like structure 30 to be observed next. By irradiating Ga ions 50 from the FIB source 47 toward the vicinity of the layer 13, the W film 51 is formed in a chemical vapor phase so as to short-circuit the lower magnetic shield layer 12 and the spin valve film 14 formed of the upper conductive multilayer thin film structure. Evaporate.
Thereafter, the entire observation is completed by repeating the number of the needle-like structures 30 that require this chemical vapor deposition-observation-removal.

このような膜厚及び界面状態に対するナノレベルの3次元組成構造に関する情報取得を、例えば、チップ28の50点以上の部位で実施し、膜組成、界面急峻性が初期設計値以内であるか否かを確認することによって、設計値以内であれば、製品を流し、設計値外であれば、成膜工程或いは、成膜の後の磁化付与のためのアニール工程の処理条件を変更するGO/NOGO試験を行う。   For example, information regarding the nano-level three-dimensional composition structure with respect to the film thickness and the interface state is obtained at 50 points or more of the chip 28, and whether the film composition and the interface steepness are within the initial design values. If the value is within the design value, the product is allowed to flow. If the value is outside the design value, the processing conditions of the film forming step or the annealing step for imparting magnetization after the film forming are changed. Perform a NOGO test.

このように、本発明の実施例1においては、観察した結果を再生ヘッドの製造工程にフィードバックすることによって、高性能の再生ヘッドを安定に製品化することができるとともに、従来に比べ、全体として、歩留りの向上、スループットの短縮、製造単価の低減を図ることができる。   As described above, according to the first embodiment of the present invention, by feeding back the observation result to the manufacturing process of the reproducing head, a high-performance reproducing head can be stably manufactured, and as a whole compared with the conventional one. It is possible to improve the yield, shorten the throughput, and reduce the manufacturing unit price.

以上、本発明の実施例を説明してきたが、本発明は実施例に記載した条件・構成に限られるものではなく、各種の変更が可能であり、例えば、各実施例に記載した多層薄膜構造は単なる一例にすぎず、解析対象となるデバイスの多層薄膜構造に応じて適宜変更されるものである。   Although the embodiments of the present invention have been described above, the present invention is not limited to the conditions and configurations described in the embodiments, and various modifications are possible. For example, the multilayer thin film structure described in each embodiment Is merely an example, and is appropriately changed according to the multilayer thin film structure of the device to be analyzed.

また、上記の実施例においては、短絡させる導電膜をW膜としているが、W膜に限られるものではなく、W膜と同様にFIB法によって成膜可能なC(炭素)膜を用いても良いものであり、C膜を用いる場合には、C1410等の炭化水素ガスを流した状態でGaイオンを照射すれば良い。 In the above embodiment, the conductive film to be short-circuited is the W film. However, the conductive film is not limited to the W film, and a C (carbon) film that can be formed by the FIB method is used similarly to the W film. If a C film is used, Ga ions may be irradiated in a state where a hydrocarbon gas such as C 14 H 10 is flowed.

また、上記実施例においては、電界蒸発及びイオン化に際して電圧しか印加していないものの、パルス電圧に同期させてレーザ光等のパルス電磁波を印加しても良いものであり、電磁波によるパルス電磁界により試料先端部における電界蒸発を容易に引き起こすことができ、特に、先端部のサイズが大きい場合に効果的である。   In the above embodiment, only a voltage is applied at the time of field evaporation and ionization, but a pulsed electromagnetic wave such as a laser beam may be applied in synchronization with the pulse voltage. Field evaporation at the tip can be easily caused, and is particularly effective when the size of the tip is large.

さらには、蒸発及びイオン化に際して、電界を印加することなく、レーザ光等のパルス電磁波のみで行っても良いものである。   Furthermore, evaporation and ionization may be performed only with pulsed electromagnetic waves such as laser light without applying an electric field.

また、上記実施例においては、観察終了後に上下の導電性領域を短絡させている導電性膜をFIBによって除去して開放しているが、観察に伴って凸状構造物全体が電界蒸発していくので、観察終了後に導電性膜をFIBによって除去する必要は必ずしもないものである。   In the above embodiment, the conductive film that short-circuits the upper and lower conductive regions is removed and opened by FIB after the observation is completed. However, the entire convex structure is evaporated due to the observation. Therefore, it is not always necessary to remove the conductive film by FIB after the observation is completed.

ここで再び図1を参照して、本発明の詳細な特徴を改めて説明する。
再び、図1参照
(付記1) 絶縁層3が介在する多層膜構造からなる凸状構造物2を表面側に有する被分析試料1の前記凸状構造物2の表面より、外部エネルギー或いは内部エネルギー8により前記凸状構造物2を構成する原子或いはクラスタのいずれかからなる粒子9を1個ずつ外部空間に離脱することにより前記凸状構造物2のナノレベルの構造組成を観察するナノレベル構造組成観察方法において、前記凸状構造物2を複数個設け、観察対象となる凸状構造物2のみの上下の導電性部分4,5を順次電気的に短絡させて観察を行うことを特徴とするナノレベル構造組成観察方法。
(付記2) 上記凸状構造物2の上下の導電性部分4,5の短絡を、集束イオンビーム6法を用いた導電性膜7の堆積により行うとともに、観察終了後に前記凸状構造物2の上下の導電性部分4,5を短絡させている前記導電性膜7に集束イオンビーム6を照射して前記導電性膜7の除去により行うことを特徴とする付記1記載のナノレベル構造組成観察方法。
(付記3) 上記観察対象となる凸状構造物2に引出電極を近接させて前記凸状構造物2の表面から離脱した粒子9を、引出電極に設けた開口部を介して引き出すことを特徴とする付記1または2に記載のナノレベル構造組成観察方法。
(付記4) 上記内部エネルギー8の印加が、パルス状高電界の印加であることを特徴とする付記1乃至3のいずれか1に記載のナノレベル構造組成観察方法。
(付記5) 上記外部エネルギーの印加が、パルス状電磁波の印加であることを特徴とする付記1乃至3のいずれか1に記載のナノレベル構造組成観察方法。
(付記6) 絶縁層3が介在する多層膜構造からなる凸状構造物2を表面側に有する被分析試料1の凸状構造物2の表面より、外部エネルギー或いは内部エネルギー8により前記凸状構造物2を構成する原子或いはクラスタのいずれかからなる粒子9を1個ずつ外部空間に離脱することにより前記凸状構造物2のナノレベルの構造組成を観察するナノレベル構造組成観察装置において、前記凸状構造物2の上下の導電性部分4,5を順次電気的に短絡させる導電性膜7を堆積するための原料ガスの導入手段、及び、前記導電性膜7の堆積及び除去に際して集束イオンビーム6を照射するための集束イオンビーム照射手段、及び、前記凸状構造物2の表面から離脱した粒子9を引き出す引出電極を少なくとも備えていることを特徴とするナノレベル構造組成観察装置。
(付記7) 付記1乃至5のいずれか1に記載のナノレベル構造組成観察方法によって絶縁層3が介在する多層膜構造体のナノレベル構造組成を観察したのち、観察結果が設計許容値の範囲内か否かによって製造工程の進行を決定することを特徴とする絶縁層3が介在する多層膜構造体の製造方法。
(付記8) 付記1乃至5のいずれか1に記載のナノレベル構造組成観察方法によって絶縁層3が介在する多層膜構造体のナノレベル構造組成を観察したのち、観察結果により決定した許容できる範囲の好適製造条件を絶縁層3が介在する多層膜構造体の製造工程にフィードバックして反映させることを特徴とする絶縁層3が介在する多層膜構造体の製造方法。
(付記9) 上記絶縁層3が介在する多層膜構造体が、再生ヘッドを構成する磁気抵抗素子であることを特徴とする付記7または8に記載の絶縁層3が介在する多層膜構造体の製造方法。
The detailed features of the present invention will be described again with reference to FIG. 1 again.
Again see Figure 1
(Additional remark 1) From the surface of the said convex structure 2 of the sample 1 to be analyzed which has the convex structure 2 which consists of a multilayer film structure in which the insulating layer 3 interposes on the surface side, the said convex shape by external energy or internal energy 8 In the nano-level structural composition observation method for observing the nano-level structural composition of the convex structure 2 by detaching particles 9 consisting of either atoms or clusters constituting the structure 2 one by one to the external space, A nano-level structural composition characterized in that a plurality of convex structures 2 are provided, and observation is performed by sequentially electrically shorting the upper and lower conductive portions 4 and 5 of only the convex structures 2 to be observed. Observation method.
(Supplementary Note 2) The upper and lower conductive portions 4 and 5 of the convex structure 2 are short-circuited by deposition of the conductive film 7 using the focused ion beam 6 method, and after the observation is finished, the convex structure 2 2. The nano-level structure composition according to claim 1, wherein the conductive film 7 in which the upper and lower conductive parts 4 and 5 are short-circuited is irradiated with a focused ion beam 6 to remove the conductive film 7. Observation method.
(Supplementary Note 3) The extraction electrode is brought close to the convex structure 2 to be observed and the particles 9 detached from the surface of the convex structure 2 are extracted through an opening provided in the extraction electrode. The nano-level structural composition observation method according to Supplementary Note 1 or 2,
(Supplementary note 4) The nano-level structure composition observation method according to any one of supplementary notes 1 to 3, wherein the internal energy 8 is applied as a pulsed high electric field.
(Supplementary note 5) The nano-level structure composition observation method according to any one of supplementary notes 1 to 3, wherein the application of the external energy is a pulsed electromagnetic wave.
(Additional remark 6) From the surface of the convex structure 2 of the sample 1 to be analyzed which has the convex structure 2 which consists of the multilayered film structure which the insulating layer 3 interposes on the surface side, the said convex structure by external energy or internal energy 8 In the nano-level structural composition observation apparatus for observing the nano-level structural composition of the convex structure 2 by detaching particles 9 consisting of either atoms or clusters constituting the structure 2 one by one to the external space, Source gas introduction means for depositing a conductive film 7 for electrically short-circuiting the upper and lower conductive portions 4 and 5 of the convex structure 2 in sequence, and focused ions when depositing and removing the conductive film 7 A nano-level comprising at least a focused ion beam irradiating means for irradiating the beam 6 and an extraction electrode for extracting the particles 9 separated from the surface of the convex structure 2. Le structure composition observation device.
(Supplementary note 7) After observing the nanolevel structure composition of the multilayer structure in which the insulating layer 3 is interposed by the nanolevel structural composition observation method according to any one of supplementary notes 1 to 5, the observation result is within a design allowable range. A method of manufacturing a multilayer structure with an insulating layer 3 interposed, wherein the progress of the manufacturing process is determined depending on whether or not it is inside.
(Appendix 8) An acceptable range determined by observation results after observing the nanolevel structure composition of the multilayer film structure in which the insulating layer 3 is interposed by the nanolevel structure composition observation method according to any one of appendices 1 to 5. The manufacturing method of the multilayer film structure in which the insulating layer 3 is interposed is characterized by feeding back and reflecting the preferable manufacturing conditions in the manufacturing process of the multilayer film structure in which the insulating layer 3 is interposed.
(Additional remark 9) The multilayer film structure in which the said insulating layer 3 interposes is a magnetoresistive element which comprises a read-head, The multilayer film structure in which the insulating layer 3 in any one of Additional remark 7 or 8 is interposed Production method.

本発明の活用例としては、再生ヘッドを構成するGMR素子が典型的なものであるが、再生ヘッド限られるものではなく、MISFETにおけるゲート絶縁膜の界面近傍の組成構造や界面状態等が問題となる半導体素子のナノレベル構造組成の解析方法等にも適用されるものであり、少なくとも絶縁層が介在する多層構造膜の解析に適用されるものである。   As a practical example of the present invention, a GMR element constituting a read head is typical, but the read head is not limited, and the composition structure and interface state in the vicinity of the interface of the gate insulating film in the MISFET are problematic. The present invention is also applied to a method for analyzing a nano-level structure composition of a semiconductor element, and is applied to an analysis of a multilayer structure film in which at least an insulating layer is interposed.

本発明の原理的構成の説明図である。It is explanatory drawing of the fundamental structure of this invention. 本発明の実施例1のナノレベル構造組成観察方法の途中までの工程の説明図である。It is explanatory drawing of the process to the middle of the nano level structure composition observation method of Example 1 of this invention. 本発明の実施例1のナノレベル構造組成観察方法の図2以降の途中までの工程の説明図である。It is explanatory drawing of the process to the middle after FIG. 2 of the nano level structure composition observation method of Example 1 of this invention. 本発明の実施例1のナノレベル構造組成観察方法の図3以降の途中までの工程の説明図である。It is explanatory drawing of the process to the middle after FIG. 3 of the nano level structure composition observation method of Example 1 of this invention. 本発明の実施例1のナノレベル構造組成観察方法の図4以降の途中までの工程の説明図である。It is explanatory drawing of the process to the middle after FIG. 4 of the nano level structure composition observation method of Example 1 of this invention. 本発明の実施例1のナノレベル構造組成観察方法の図5以降の途中までの工程の説明図である。It is explanatory drawing of the process to the middle after FIG. 5 of the nano level structure composition observation method of Example 1 of this invention. 本発明の実施例1のナノレベル構造組成観察方法の図6以降の工程の説明図である。It is explanatory drawing of the process after FIG. 6 of the nano level structure composition observation method of Example 1 of this invention. 3次元構造組成測定装置の概念的構成図である。It is a notional block diagram of a three-dimensional structural composition measuring apparatus.

符号の説明Explanation of symbols

1 被分析試料
2 凸状構造物
3 絶縁層
4 導電性部分
5 導電性部分
6 集束イオンビーム
7 導電性膜
8 内部エネルギー
9 粒子
10ナノレベル構造組成観察用試料
11 Al2 3 −TiC基板
12 下部磁気シールド層
13 下部リードギャップ層
14 スピンバルブ膜
15 Ta下地層
16 NiFeフリー層
17 CoFeBフリー層
18 Cu中間層
19 CoFeBピンド層
20 PdPtMn反強磁性層
21 Taキャップ層
22 レジストパターン
23 センス部
24 磁区制御膜
25 電極端子
26 上部リードギャップ層
27 上部磁気シールド層
28 チップ
29 Gaイオン
30 針状構造物
40 ナノレベル構造組成観察装置
41 真空容器
42 試料ホルダ
43 引出電極
44 位置敏感検出器
45 引出電源
46 パルス高圧電源
47 FIB源
48 原料ガス導入管
49 W(CO)6 ガス
50 Gaイオン
51 W膜
52 粒子
61 シリコン基板
62 イオン注入領域
63 針状構造物
64 引出電極
65 位置敏感検出器
DESCRIPTION OF SYMBOLS 1 Analyzed sample 2 Convex structure 3 Insulating layer 4 Conductive part 5 Conductive part 6 Focused ion beam 7 Conductive film 8 Internal energy 9 Particle 10 Nano-level structural composition observation sample 11 Al 2 O 3 —TiC substrate 12 Lower magnetic shield layer 13 Lower read gap layer 14 Spin valve film 15 Ta underlayer 16 NiFe free layer 17 CoFeB free layer 18 Cu intermediate layer 19 CoFeB pinned layer 20 PdPtMn antiferromagnetic layer 21 Ta cap layer 22 Resist pattern 23 Sense part 24 Magnetic domain control film 25 Electrode terminal 26 Upper lead gap layer 27 Upper magnetic shield layer 28 Chip 29 Ga ion 30 Needle-like structure 40 Nano-level structural composition observation device 41 Vacuum vessel 42 Sample holder 43 Extraction electrode 44 Position sensitive detector 45 Extraction power supply 46 pulse high voltage power supply 47 FIB source 48 original Gas introducing pipe 49 W (CO) 6 gas 50 Ga ions 51 W film 52 particles 61 silicon substrate 62 an ion implantation region 63 needle-like structure 64 extraction electrode 65 position sensitive detector

Claims (5)

絶縁層が介在する多層膜構造からなる凸状構造物を表面側に有する被分析試料の前記凸状構造物の表面より、外部エネルギー或いは内部エネルギーにより前記凸状構造物を構成する原子或いはクラスタのいずれかからなる粒子を1個ずつ外部空間に離脱することにより前記凸状構造物のナノレベルの構造組成を観察するナノレベル構造組成観察方法において、前記凸状構造物を複数個設け、観察対象となる凸状構造物のみの上下の導電性部分を順次電気的に短絡させて観察を行うことを特徴とするナノレベル構造組成観察方法。 From the surface of the convex structure of the sample to be analyzed having a convex structure consisting of a multilayer structure with an insulating layer interposed on the surface side, atoms or clusters constituting the convex structure by external energy or internal energy In the nano-level structural composition observation method for observing the nano-level structural composition of the convex structure by detaching any one particle from the exterior space one by one, a plurality of the convex structures are provided, A method for observing a nano-level structural composition, characterized in that observation is performed by sequentially short-circuiting the upper and lower conductive portions of only the convex structure. 上記凸状構造物の上下の導電性部分の短絡を、集束イオンビーム法を用いた導電性膜の堆積により行うとともに、観察終了後に前記凸状構造物の上下の導電性部分を短絡させている前記導電性膜に集束イオンビームを照射して前記導電性膜の除去により行うことを特徴とする請求項1記載のナノレベル構造組成観察方法。 The upper and lower conductive portions of the convex structure are short-circuited by depositing a conductive film using a focused ion beam method, and the upper and lower conductive portions of the convex structure are short-circuited after the observation is completed. 2. The nano-level structural composition observation method according to claim 1, wherein the conductive film is irradiated with a focused ion beam to remove the conductive film. 上記観察対象となる凸状構造物に引出電極を近接させて前記凸状構造物の表面から離脱した粒子を、引出電極に設けた開口部を介して引き出すことを特徴とする請求項1または2に記載のナノレベル構造組成観察方法。 3. The particle separated from the surface of the convex structure by bringing the extraction electrode close to the convex structure to be observed is extracted through an opening provided in the extraction electrode. The nano-level structural composition observation method according to 1. 絶縁層が介在する多層膜構造からなる凸状構造物を表面側に有する被分析試料の凸状構造物の表面より、外部エネルギー或いは内部エネルギーにより前記凸状構造物を構成する原子或いはクラスタのいずれかからなる粒子を1個ずつ外部空間に離脱することにより前記凸状構造物のナノレベルの構造組成を観察するナノレベル構造組成観察装置において、前記凸状構造物の上下の導電性部分を順次電気的に短絡させる導電性膜を堆積するための原料ガスの導入手段、及び、前記導電性膜の堆積及び除去に際して集束イオンビームを照射するための集束イオンビーム照射手段、及び、前記凸状構造物の表面から離脱した粒子を引き出す引出電極を少なくとも備えていることを特徴とするナノレベル構造組成観察装置。 From the surface of the convex structure of the sample to be analyzed having a convex structure consisting of a multilayer structure with an insulating layer on the surface side, either atoms or clusters constituting the convex structure by external energy or internal energy In the nano-level structural composition observation apparatus for observing the nano-level structural composition of the convex structure by detaching the particles made of the particles one by one to the external space, the upper and lower conductive portions of the convex structure are sequentially Source gas introduction means for depositing a conductive film to be electrically short-circuited, focused ion beam irradiation means for irradiating a focused ion beam when depositing and removing the conductive film, and the convex structure A nano-level structural composition observation apparatus comprising at least an extraction electrode for extracting particles detached from the surface of an object. 請求項1乃至3のいずれか1項に記載のナノレベル構造組成観察方法によって絶縁層が介在する多層膜構造体のナノレベル構造組成を観察したのち、観察結果が設計許容値の範囲内であるか否かによって製造工程の進行を決定することを特徴とする絶縁層が介在する多層膜構造体の製造方法。 After observing the nano-level structure composition of the multilayer film structure in which the insulating layer is interposed by the nano-level structure composition observation method according to any one of claims 1 to 3, the observation result is within a design allowable value range. A method of manufacturing a multilayer structure with an insulating layer interposed, wherein the progress of the manufacturing process is determined depending on whether or not the process proceeds.
JP2004233186A 2004-08-10 2004-08-10 Nano-level structural composition observation method and manufacturing method of multilayer structure with insulating layer interposed Expired - Fee Related JP4762511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233186A JP4762511B2 (en) 2004-08-10 2004-08-10 Nano-level structural composition observation method and manufacturing method of multilayer structure with insulating layer interposed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233186A JP4762511B2 (en) 2004-08-10 2004-08-10 Nano-level structural composition observation method and manufacturing method of multilayer structure with insulating layer interposed

Publications (2)

Publication Number Publication Date
JP2006051555A true JP2006051555A (en) 2006-02-23
JP4762511B2 JP4762511B2 (en) 2011-08-31

Family

ID=36029338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233186A Expired - Fee Related JP4762511B2 (en) 2004-08-10 2004-08-10 Nano-level structural composition observation method and manufacturing method of multilayer structure with insulating layer interposed

Country Status (1)

Country Link
JP (1) JP4762511B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052967A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Sample for evaluating nanolevel structural composition, its manufacturing method, and evaluation method of nanolevel structural composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208659A (en) * 2000-01-25 2001-08-03 Nippon Steel Corp Method of fabricating acicular sample for field ion microscopy
JP2003042929A (en) * 2001-07-31 2003-02-13 Seiko Instruments Inc Scanning atom probe
JP2004117287A (en) * 2002-09-27 2004-04-15 Fujitsu Ltd Element-measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208659A (en) * 2000-01-25 2001-08-03 Nippon Steel Corp Method of fabricating acicular sample for field ion microscopy
JP2003042929A (en) * 2001-07-31 2003-02-13 Seiko Instruments Inc Scanning atom probe
JP2004117287A (en) * 2002-09-27 2004-04-15 Fujitsu Ltd Element-measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052967A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Sample for evaluating nanolevel structural composition, its manufacturing method, and evaluation method of nanolevel structural composition

Also Published As

Publication number Publication date
JP4762511B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
CN102169728B (en) Magnetic field detecting device and methods of using the same
US5514477A (en) Corrosion-resistant laminate which consists of a metal of a single mass number deposited on a substrate
WO2006069469A1 (en) Method of nano thin film thickness measurement by auger electron spectrscopy
US8432646B2 (en) Magnetic detection element
US7824562B2 (en) Method of reducing an etch rate
US20080316656A1 (en) Magnetic head and method of manufacturing the magnetic head
Schneider Soft X-ray photoemission electron microscopy as an element-specific probe of magnetic microstructures
JP4762511B2 (en) Nano-level structural composition observation method and manufacturing method of multilayer structure with insulating layer interposed
JP2005019497A (en) Method of manufacturing magnetoresistive effect element, magnetic head, head suspension assembly, and magnetic disk device
JP4555714B2 (en) Preparation method of nano-level structural composition observation sample
US20190304741A1 (en) Evaluation method and evaluation apparatus for electronic device
JP4628153B2 (en) Nano-level structural composition observation apparatus and nano-level structural composition observation method
JP2006186345A (en) Film and method for producing nano-particles for magnetoresistive device
JP4309857B2 (en) Method for forming needle-like body used for field ion microscope or atom probe, and needle-like body used for field ion microscope or atom probe
US6398924B1 (en) Spin valve sensor with improved pinning field between nickel oxide (NiO) pinning layer and pinned layer
Fohler et al. A general approach to obtain soft x-ray transparency for thin films grown on bulk substrates
US7123456B2 (en) Method of making magnetoresistive head element
JP4762510B2 (en) Nano-level structural composition evaluation sample, observation method, observation apparatus, and method for manufacturing a device having a multilayer film structure
JP2004342167A (en) Reproducing magnetic head and manufacturing method therefor
US7480983B2 (en) Method for making magnetic write head
JP4011309B2 (en) Protective film forming method, magnetic head and manufacturing method thereof, and head suspension assembly
Arita et al. In situ transmission electron microscopy for electronics
US8354034B2 (en) Method of manufacturing a magnetic head
JP2004340611A (en) Fine sample manufacturing device and fine sample manufacturing method
JP2006147074A (en) Thin film magnetic head, manufacturing method thereof, thin film magnetic head integrated substrate, method of manufacturing sample for analysis, and method of analyzing thin film magnetic head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees