JP2004117287A - Element-measuring apparatus - Google Patents

Element-measuring apparatus Download PDF

Info

Publication number
JP2004117287A
JP2004117287A JP2002283752A JP2002283752A JP2004117287A JP 2004117287 A JP2004117287 A JP 2004117287A JP 2002283752 A JP2002283752 A JP 2002283752A JP 2002283752 A JP2002283752 A JP 2002283752A JP 2004117287 A JP2004117287 A JP 2004117287A
Authority
JP
Japan
Prior art keywords
sample
observation sample
information
extraction electrode
supplementary note
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002283752A
Other languages
Japanese (ja)
Inventor
Yasuyuki Goto
後藤 康之
Kazuaki Kurihara
栗原 和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002283752A priority Critical patent/JP2004117287A/en
Publication of JP2004117287A publication Critical patent/JP2004117287A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an element-measuring apparatus for measuring the distribution of elements, in a range exceeding the order of several hundreds of nanometers, even in X- and Y- directions. <P>SOLUTION: The measuring apparatus consists of a sample for observation, a deriving electrode, and a location sensitive detector or an element detector arranged at locations opposite to the sample for observation. The sample for observation has surface protrusions and recesses formed at intervals of longest period being 10 μm or smaller. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、元素測定装置に関する。特に、本発明は、多層薄膜またはバルク試料を構成する元素について、所望により0.1nmのレベルで3次元の元素の配置を測定し、そのうちの1〜2次元に対しては10〜100nm以上のレベルで元素の配置を測定することのできる元素測定装置に関する。
【0002】
【従来の技術】
従来より、0.1nmのレベルで3次元の元素の配置を測定する装置として、図1に示す如き概念に基づく3次元アトムプローブ装置が存在する(例えば、特許文献1および特許文献2参照)。しかしながら、かかる従来の装置では、先端の鋭い針状の試料に対してしか測定することができなかったり、あるいは例えば表面凹凸を有する他の形状の試料の測定をすることができても、xy方向が10nm程度で、z方向もせいぜい数百nmオーダーの範囲でしか測定することができなかた。
【0003】
【特許文献1】
特開平7−43373号公報
【特許文献2】
特開2002−42715号公報
【0004】
【発明が解決しようとする課題】
本発明は、上記の如き従来技術の問題点を解決し、xy方向においても数百nmオーダーを超える範囲で元素の分布を測定することのできる元素測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記課題を解決するため、観察用試料と、この観察用試料に対向して配置された引き出し電極および位置感知検出器とを含む3次元元素測定装置において、前記観察用試料が最長周期が10μm以下の間隔をもって形成された表面凹凸を有することを特徴とする3次元元素測定装置を提供する。
【0006】
本発明は、また、観察用試料と、この観察用試料に対向して配置された引き出し電極および元素検出器とを含む元素測定装置において、前記観察用試料が最長周期が10μm以下の間隔をもって形成された表面凹凸を有することを特徴とする2次元元素測定装置を提供する。
【0007】
【発明の実施の形態】
本発明に係る装置の好ましい態様においては、観察用試料の表面凹凸の間隔の最長周期は10nm以下である。
【0008】
本発明に係る装置において、観察用試料の表面凹凸は、試料作製後に、化学エッチング、イオンビームエッチング、レーザビームエッチング、電子ビームエッチングまたはプラズマガスを利用した物理エッチングまたは化学エッチングの手段により、人工的に形成されたものであるのが好ましい。
【0009】
引き出し電極は、好ましくは70μm 以下、特に好ましくは70nm 以下の開口面積を有する中空の引き出し空間を有する。また、引き出し電極の引き出し空間はカーボンナノチューブの中空空間であってもよく、引き出し電極は複数個存在するのがよい。また、引き出し電極および位置感知検出器は、観察用試料に対して相対的にラスタースキャンまたはヘリカルスキャンの2次元走査されるのがよい。
【0010】
さらに、本発明に係る3次元元素測定装置は、観察用試料と、この観察用試料に対向して配置された引き出し電極および位置感知検出器と、これらの引き出し電極および位置感知検出器をxy方向に相対的に移動させる手段と、xy方向の各点での3次元元素測定情報を格納する情報蓄積手段と、xy方向の移動情報を格納する情報蓄積手段と、およびこれらの2つの情報からxyz方向の元素分布情報を再構築する手段とを含むのがよい。
【0011】
また、本発明に係る2次元元素測定装置においては、観察用試料と、この観察用試料に対向して配置された引き出し電極および元素検出器と、これらの引き出し電極および元素検出器をxy方向に相対的に移動させる手段と、xy方向の各点での2次元元素測定情報を格納する情報蓄積手段と、xy方向の移動情報を格納する情報蓄積手段と、およびこれらの2つの情報からxy方向の元素分布情報を再構築する手段とを含むのがよい。
【0012】
本発明を完成させるに至る検討の過程において、本発明者らは、多層薄膜やバルク試料に対してxy方向についても数百nmのオーダーの範囲で元素の配置を測定することを可能にするためには、観察すべき試料の表面に人工的に10μm以下の最長周期の間隔で凹凸を形成し、個々の凸部から元素分布を測定し、その分布を再構築することが重要であり、そしてこれにより所望の範囲の元素分布を得ることができることを見出した。そして、そのための装置を得るためには、従来の元素測定装置において、
1.10μm以下、特に好ましくは10nm以下の最長周期からなる間隔の表面凹凸を形成する手段として、化学エッチングや物理エッチングの方法を用いること、
2.引き出し電極を複数配置すること、
3.xyもしくはxyz方向のの元素分布情報を再構築する手段を形成すること、
等の改良を加えることが特に好ましいことを見出したものである。
【0013】
これにより、従来においては不可能であった半導体中の注入不純物元素のnmレベルでの分布や、ゲート酸化膜界面での原子レベルの凹凸もしくは酸化膜内部の不純物元素やHDD用GMR多層膜の元素分布の分布を的確に評価することが可能になったのである。
【0014】
図2に本発明に係る3次元元素測定装置の概念図を示す。試料1の表面に前述した如き手段により、人工的に10μm以下の最長周期からなる間隔の表面凹凸2を形成する。そして、この試料表面に対向して配置された引き出し電極3と位置感知検出器4とを試料に対して平行にxおよびy方向に相対的に走査して個々の凸部から元素分布を測定し、その分布を再構築することにより、3次元の元素の分布を測定する。この場合、試料表面に対向して、引き出し電極3および位置感知検出器4を複数個配置してもよく、これによりさらにxy方向の測定範囲の拡大もしくはその測定の効率化を図ることができる。
【0015】
【実施例】
以下に実施例を挙げて本発明をさらに説明するが、本発明はこれらの実施例により何ら限定されるものではない。
【0016】
実施例1
不純物であるBを1E14個/cm 注入したSi基板について、注入の奥行き方向に断面を鏡面研磨法により作成した。本断面に対し、真空蒸着法により平均5nmΦの島状Ta5を1E4個/μm の密度で形成した(図3)。次いで、KOH水溶液(質量比1:1)による異方性エッチングによりTaをマスクとして、約10nmの周期の間隔で、整列させずにランダムに突起部2を形成した(図4)。本試料を走査型3次元アトムプローブ装置に導入することにより3次元元素測定を行った。ここで用いた走査型3次元アトムプローブ装置の引き出し電極部は8μmの直径のコーン状中空を有し、コーン状中空電極部の底部のW電極部分の直径は5μmΦであった。この5μmΦの中空部分を塞ぐように厚さ100nmのNi薄膜を取り付けた。このNi薄膜の中央部には、FIB加工により50nmΦの孔が形成されていた。
【0017】
上記により、500nm×500nm×10nmの範囲でSi基板試料中のBの3次元分布を評価することができた。
【0018】
実施例2
実施例1で用いたのと同じ不純物Bを1E14個/cm 注入したSi基板について、同様に断面を作成した。本断面に対し、FIB装置6により20nmの間隔でxy方向に溝7を形成し(図5)、溝間に凸状部分2を形成した(図6)。本試料を、実施例1で用いたのと同じ走査型3次元アトムプローブ装置に導入することにより3次元元素測定を行った。
【0019】
その結果、実施例1と同様の範囲で試料中のBの3次元分布を評価することができた。
【0020】
実施例3
実施例1で使用したのと同じ不純物Bを1E14個/cm 注入したSi基板について、同様に断面を作成した。本断面に対し、電子ビーム照射装置8により20nm間隔でxy方向に溝7を形成し(図7)、溝間に凸状部分2を形成した(図8)。本試料を、実施例1で用いたのと同じ走査型3次元アトムプローブ装置に導入することにより3次元元素測定を行った。
【0021】
その結果、実施例1と同様の範囲で試料中のBの3次元分布を評価することができた。
【0022】
実施例4
実施例1で用いたのと同じ走査型3次元アトムプローブ装置の引き出し電極部3のW電極部分に取り付けたNi薄膜の中央部の50nmΦの孔に、直径40nmのカーボンナノチューブ(長さ100nm)を取り付けた。この装置を用い、実施例1で用いたのと同じ試料について測定を行った結果、実施例1と同様に、500nm×500nm×10nmの範囲でSi基板試料中のBの3次元分布を評価することができた(図9)。
【0023】
実施例5
実施例1で用いたのと同じ試料について、実施例1で用いたのと同じ走査型3次元アトムプローブ装置のNi薄膜を取り付けた引き出し電極部を、走査方向(xy)に対し、斜めに4個形成した装置を用いて、実施例1と同様の測定を行った。
【0024】
その結果、実施例1と同じ500nm×500nm×10nmの範囲のSi基板試料中のBの3次元分布の評価を、実施例1の場合の4倍の処理速度で行うことができた。
【0025】
実施例6
実施例1で述べた評価において、引き出し電極部から検出したSiとBの情報を中央演算装置に送り、第一の情報を格納する第一の情報蓄積装置(メモリー領域)に格納した。次に、xy方向の移動に関する情報をを中央演算装置に送り、第二の情報を格納する第二の情報蓄積装置(メモリー領域)に格納した。測定終了後、第一と第二の情報蓄積装置(メモリー領域)より、データを中央演算装置に送り、2つの情報からxyzの元素分布情報を再構築した。これにより、再現性良く3次元元素測定を行うことができた(図10)。
【0026】
【発明の効果】
本発明によれば、多層薄膜やバルク試料について、3次元もしくは2次元方向の元素の分布を広範囲で効率的に測定することができる。
【0027】
(付記)
以上に説明した本発明の特徴を種々の実施態様とともに付記すれば、次のとおりである。
【0028】
(付記1) 観察用試料と、この観察用試料に対向して配置された引き出し電極および位置感知検出器とを含む3次元元素測定装置において、前記観察用試料が最長周期が10μm以下の間隔をもって形成された表面凹凸を有することを特徴とする3次元元素測定装置。
【0029】
(付記2) 観察用試料の表面凹凸の間隔の最長周期が10nm以下である、付記1に記載の装置。
【0030】
(付記3) 観察用試料の表面凹凸が、試料作製後に、人工的に形成されたものである、付記1または2に記載の装置。
【0031】
(付記4) 観察用試料の表面凹凸が、試料作製後に、化学エッチングにより形成されたものである、付記3に記載の装置。
【0032】
(付記5) 観察用試料の表面凹凸が、試料作製後に、イオンビームエッチングにより形成されたものである、付記3に記載の装置。
【0033】
(付記6) 観察用試料の表面凹凸が、試料作製後に、レーザビームエッチングにより形成されたものである、付記3に記載の装置。
【0034】
(付記7) 観察用試料の表面凹凸が、試料作製後に、電子ビームエッチングにより形成されたものである、付記3に記載の装置。
【0035】
(付記8) 観察用試料の表面凹凸が、試料作製後に、プラズマガスを利用した物理エッチングまたは化学エッチングにより形成されたものである、付記3に記載の装置。
【0036】
(付記9) 引き出し電極が70μm 以下の開口面積を有する中空の引き出し空間を有する、付記1〜8のいずれかに記載の装置。
【0037】
(付記10) 引き出し電極の引き出し空間の開口面積が70nm 以下である、付記9に記載の装置。
【0038】
(付記11) 引き出し電極の引き出し空間がカーボンナノチューブの中空空間である、付記9または10に記載の装置。
【0039】
(付記12) 引き出し電極が複数個存在する、付記1〜11のいずれかに記載の装置。
【0040】
(付記13) 引き出し電極および位置感知検出器が、観察用試料に対して相対的にラスタースキャンまたはヘリカルスキャンの2次元走査される、付記1〜12のいずれかに記載の装置。
【0041】
(付記14) 観察用試料と、この観察用試料に対向して配置された引き出し電極および位置感知検出器と、これらの引き出し電極および位置感知検出器をxy方向に相対的に移動させる手段と、xy方向の各点での3次元元素測定情報を格納する情報蓄積手段と、xy方向の移動情報を格納する情報蓄積手段と、およびこれらの2つの情報からxyz方向の元素分布情報を再構築する手段とを含む、付記1に記載の装置。
【0042】
(付記15) 観察用試料と、この観察用試料に対向して配置された引き出し電極および元素検出器とを含む元素測定装置において、前記観察用試料が最長周期が10μm以下の間隔をもって形成された表面凹凸を有することを特徴とする2次元元素測定装置。
【0043】
(付記16) 観察用試料の表面凹凸の間隔の最長周期が10nm以下である、付記15に記載の装置。
【0044】
(付記17) 観察用試料の表面凹凸が、試料作製後に、人工的に形成されたものである、付記15または16に記載の装置。
【0045】
(付記18) 観察用試料の表面凹凸が、試料作製後に、化学エッチングにより形成されたものである、付記17に記載の装置。
【0046】
(付記19) 観察用試料の表面凹凸が、試料作製後に、イオンビームエッチングにより形成されたものである、付記17に記載の装置。
【0047】
(付記20) 観察用試料の表面凹凸が、試料作製後に、レーザビームエッチングにより形成されたものである、付記17に記載の装置。
【0048】
(付記21) 観察用試料の表面凹凸が、試料作製後に、電子ビームエッチングにより形成されたものである、付記17に記載の装置。
【0049】
(付記22) 観察用試料の表面凹凸が、試料作製後に、プラズマガスを利用した物理エッチングまたは化学エッチングにより形成されたものである、付記17に記載の装置。
【0050】
(付記23) 引き出し電極が70μm 以下の開口面積を有する中空の引き出し空間を有する、付記15〜22のいずれかに記載の装置。
【0051】
(付記24) 引き出し電極の引き出し空間の開口面積が70nm 以下である、付記23に記載の装置。
【0052】
(付記25) 引き出し電極の引き出し空間がカーボンナノチューブの中空空間である、付記23または24に記載の装置。
【0053】
(付記26) 引き出し電極が複数個存在する、付記15〜25のいずれかに記載の装置。
【0054】
(付記27) 引き出し電極および位置感応性検出器が、観察用試料に対して相対的にラスタースキャンまたはヘリカルスキャンの2次元走査される、付記15〜26のいずれかに記載の装置。
【0055】
(付記28) 観察用試料と、この観察用試料に対向して配置された引き出し電極および元素検出器と、これらの引き出し電極および元素検出器をxy方向に相対的に移動させる手段と、xy方向の各点での2次元元素測定情報を格納する情報蓄積手段と、xy方向の移動情報を格納する情報蓄積手段と、およびこれらの2つの情報からxy方向の元素分布情報を再構築する手段とを含む、付記15に記載の装置。
【図面の簡単な説明】
【図1】従来の3次元元素測定装置の概念図。
【図2】本発明に係る3次元元素測定装置の概念図。
【図3】実施例における1工程の説明図。
【図4】実施例における他の1工程の説明図。
【図5】実施例における他の1工程の説明図。
【図6】実施例における他の1工程の説明図。
【図7】実施例における他の1工程の説明図。
【図8】実施例における他の1工程の説明図。
【図9】実施例における他の1工程の説明図。
【図10】本発明に係る3次元元素測定装置の一態様を示す模式図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an element measuring device. In particular, the present invention measures the arrangement of three-dimensional elements at the level of 0.1 nm as required for the elements constituting the multilayer thin film or the bulk sample, and for one or two dimensions, 10 to 100 nm or more. The present invention relates to an element measuring device capable of measuring the arrangement of elements at a level.
[0002]
[Prior art]
Conventionally, a three-dimensional atom probe device based on the concept as shown in FIG. 1 has been known as a device for measuring the arrangement of three-dimensional elements at a level of 0.1 nm (for example, see Patent Documents 1 and 2). However, such a conventional apparatus can measure only a needle-shaped sample having a sharp tip, or can measure a sample having another shape having surface irregularities, for example, in the xy directions. Is about 10 nm, and the measurement in the z direction can be performed only in the range of at most several hundred nm.
[0003]
[Patent Document 1]
JP-A-7-43373 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-42715
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an element measuring device capable of measuring the distribution of elements in a range exceeding several hundred nm in the xy directions.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a three-dimensional element measurement device including an observation sample, an extraction electrode and a position sensing detector arranged opposite to the observation sample, wherein the observation sample has a longest length. Provided is a three-dimensional element measurement device, which has surface irregularities formed at intervals of 10 μm or less.
[0006]
The present invention also provides an element measuring device including an observation sample, an extraction electrode and an element detector arranged opposite to the observation sample, wherein the observation sample is formed at an interval having a longest period of 10 μm or less. Provided is a two-dimensional element measurement device, characterized in that the two-dimensional element measurement device has a roughened surface.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In a preferred embodiment of the apparatus according to the present invention, the longest period of the interval between the surface irregularities of the observation sample is 10 nm or less.
[0008]
In the apparatus according to the present invention, the surface irregularities of the observation sample are artificially produced by chemical etching, ion beam etching, laser beam etching, electron beam etching or physical etching using plasma gas or chemical etching after the sample is prepared. It is preferred that it is formed in.
[0009]
The extraction electrode has a hollow extraction space having an opening area of preferably 70 μm 2 or less, particularly preferably 70 nm 2 or less. The extraction space of the extraction electrode may be a hollow space of the carbon nanotube, and it is preferable that a plurality of extraction electrodes exist. Further, it is preferable that the extraction electrode and the position sensing detector are two-dimensionally scanned in a raster scan or a helical scan relative to the observation sample.
[0010]
Further, the three-dimensional element measuring apparatus according to the present invention includes an observation sample, an extraction electrode and a position sensing detector arranged opposite to the observation sample, and the extraction electrode and the position detection detector in the xy directions. , An information storage means for storing three-dimensional element measurement information at each point in the xy direction, an information storage means for storing movement information in the xy direction, and xyz from these two pieces of information. Means for reconstructing the directional element distribution information.
[0011]
Further, in the two-dimensional element measurement apparatus according to the present invention, the observation sample, the extraction electrode and the element detector arranged opposite to the observation sample, and the extraction electrode and the element detector in the xy directions. Means for relatively moving; information storage means for storing two-dimensional element measurement information at each point in the xy direction; information storage means for storing movement information in the xy direction; And means for reconstructing the element distribution information.
[0012]
In the course of the study leading to the completion of the present invention, the present inventors aimed to make it possible to measure the arrangement of elements in the range of several hundred nm in the xy direction for a multilayer thin film or a bulk sample. It is important to artificially form irregularities on the surface of the sample to be observed at intervals of the longest cycle of 10 μm or less, measure the element distribution from each convex part, and reconstruct the distribution, and As a result, it has been found that an element distribution in a desired range can be obtained. And in order to obtain a device for that, in a conventional element measurement device,
Using a method of chemical etching or physical etching as a means for forming surface irregularities at intervals having a longest cycle of 1.10 μm or less, particularly preferably 10 nm or less;
2. Arranging a plurality of extraction electrodes,
3. forming means for reconstructing element distribution information in the xy or xyz directions;
It has been found that it is particularly preferable to add such an improvement.
[0013]
As a result, the distribution of implanted impurity elements in a semiconductor at the nm level, which is impossible in the prior art, the irregularities at the atomic level at the gate oxide film interface, the impurity elements inside the oxide film, and the elements of the GMR multilayer film for HDDs It is now possible to accurately evaluate the distribution.
[0014]
FIG. 2 shows a conceptual diagram of the three-dimensional element measurement device according to the present invention. Surface irregularities 2 having an interval of the longest period of 10 μm or less are artificially formed on the surface of the sample 1 by the above-described means. Then, the extraction electrode 3 and the position sensing detector 4 arranged opposite to the surface of the sample are scanned in parallel in the x and y directions in parallel with the sample to measure the element distribution from each convex portion. , The distribution of the three-dimensional elements is measured by reconstructing the distribution. In this case, a plurality of extraction electrodes 3 and a plurality of position sensing detectors 4 may be arranged so as to face the sample surface, whereby the measurement range in the xy directions can be further expanded or the measurement efficiency can be increased.
[0015]
【Example】
Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.
[0016]
Example 1
With respect to a Si substrate into which 1E14 impurities / cm 2 of B as an impurity was implanted, a cross section was formed by mirror polishing in a depth direction of the implantation. On this cross section, island-like Ta5 having an average of 5 nmΦ was formed at a density of 1E4 / μm 2 by a vacuum evaporation method (FIG. 3). Next, the projections 2 were formed randomly at an interval of about 10 nm without an alignment using Ta as a mask by anisotropic etching using a KOH aqueous solution (mass ratio 1: 1) (FIG. 4). The sample was introduced into a scanning type three-dimensional atom probe apparatus to perform three-dimensional element measurement. The extraction electrode portion of the scanning three-dimensional atom probe device used here had a cone-shaped hollow having a diameter of 8 μm, and the diameter of the W electrode portion at the bottom of the cone-shaped hollow electrode portion was 5 μmΦ. An Ni thin film having a thickness of 100 nm was attached so as to cover the hollow portion of 5 μmφ. In the center of the Ni thin film, a hole having a diameter of 50 nm was formed by FIB processing.
[0017]
As described above, the three-dimensional distribution of B in the Si substrate sample could be evaluated in the range of 500 nm × 500 nm × 10 nm.
[0018]
Example 2
A cross section was similarly formed for a Si substrate into which the same impurity B as used in Example 1 was implanted at 1E14 / cm 2 . On this cross section, grooves 7 were formed in the xy directions at intervals of 20 nm by the FIB device 6 (FIG. 5), and the convex portions 2 were formed between the grooves (FIG. 6). This sample was introduced into the same scanning type three-dimensional atom probe device as used in Example 1 to perform three-dimensional element measurement.
[0019]
As a result, the three-dimensional distribution of B in the sample could be evaluated in the same range as in Example 1.
[0020]
Example 3
A cross section was similarly formed for a Si substrate into which the same impurity B as used in Example 1 was implanted at 1E14 / cm 2 . On this cross section, grooves 7 were formed in xy directions at intervals of 20 nm by an electron beam irradiation device 8 (FIG. 7), and convex portions 2 were formed between the grooves (FIG. 8). This sample was introduced into the same scanning type three-dimensional atom probe device as used in Example 1 to perform three-dimensional element measurement.
[0021]
As a result, the three-dimensional distribution of B in the sample could be evaluated in the same range as in Example 1.
[0022]
Example 4
A 40 nm diameter carbon nanotube (length 100 nm) was placed in a 50 nmΦ hole at the center of the Ni thin film attached to the W electrode part of the extraction electrode unit 3 of the same scanning type three-dimensional atom probe device as used in Example 1. Attached. Using this apparatus, the same sample as that used in Example 1 was measured. As a result, the three-dimensional distribution of B in the Si substrate sample was evaluated in the range of 500 nm × 500 nm × 10 nm as in Example 1. (Figure 9).
[0023]
Example 5
With respect to the same sample as used in the first embodiment, the lead-out electrode part of the same scanning type three-dimensional atom probe device as that used in the first embodiment, on which the Ni thin film was attached, was moved obliquely with respect to the scanning direction (xy). The same measurement as in Example 1 was performed using the formed device.
[0024]
As a result, the evaluation of the three-dimensional distribution of B in the Si substrate sample in the same range of 500 nm × 500 nm × 10 nm as in Example 1 could be performed at a processing speed four times that in Example 1.
[0025]
Example 6
In the evaluation described in the first embodiment, the information of Si and B detected from the extraction electrode portion was sent to the central processing unit and stored in the first information storage device (memory area) for storing the first information. Next, the information about the movement in the xy directions was sent to the central processing unit, and stored in the second information storage device (memory area) for storing the second information. After the measurement was completed, the data was sent from the first and second information storage devices (memory areas) to the central processing unit, and xyz element distribution information was reconstructed from the two information. Thereby, three-dimensional element measurement could be performed with good reproducibility (FIG. 10).
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, about a multilayer thin film and a bulk sample, the distribution of the element of a three-dimensional or two-dimensional direction can be measured efficiently over a wide range.
[0027]
(Note)
The features of the present invention described above, together with various embodiments, are as follows.
[0028]
(Supplementary Note 1) In a three-dimensional element measurement device including an observation sample, an extraction electrode and a position sensing detector arranged to face the observation sample, the observation sample has a longest period of 10 μm or less. A three-dimensional element measuring device having the formed surface irregularities.
[0029]
(Supplementary note 2) The apparatus according to supplementary note 1, wherein the longest period of the interval between the surface irregularities of the observation sample is 10 nm or less.
[0030]
(Supplementary note 3) The apparatus according to supplementary note 1 or 2, wherein the surface irregularities of the observation sample are artificially formed after the sample is prepared.
[0031]
(Supplementary note 4) The apparatus according to supplementary note 3, wherein the surface irregularities of the observation sample are formed by chemical etching after the sample is prepared.
[0032]
(Supplementary note 5) The apparatus according to supplementary note 3, wherein the surface irregularities of the observation sample are formed by ion beam etching after the sample is prepared.
[0033]
(Supplementary note 6) The apparatus according to supplementary note 3, wherein the surface irregularities of the observation sample are formed by laser beam etching after the sample is manufactured.
[0034]
(Supplementary note 7) The apparatus according to supplementary note 3, wherein the surface irregularities of the observation sample are formed by electron beam etching after the sample is prepared.
[0035]
(Supplementary Note 8) The apparatus according to supplementary note 3, wherein the surface irregularities of the observation sample are formed by physical etching or chemical etching using a plasma gas after the sample is prepared.
[0036]
(Supplementary Note 9) The apparatus according to any one of Supplementary Notes 1 to 8, wherein the extraction electrode has a hollow extraction space having an opening area of 70 µm 2 or less.
[0037]
(Supplementary Note 10) opening area of the extraction space of the extraction electrode is 70 nm 2 or less, apparatus according to note 9.
[0038]
(Supplementary note 11) The apparatus according to Supplementary note 9 or 10, wherein the extraction space of the extraction electrode is a hollow space of the carbon nanotube.
[0039]
(Supplementary Note 12) The apparatus according to any one of Supplementary Notes 1 to 11, wherein there are a plurality of extraction electrodes.
[0040]
(Supplementary Note 13) The apparatus according to any one of Supplementary Notes 1 to 12, wherein the extraction electrode and the position sensing detector are two-dimensionally scanned by a raster scan or a helical scan relative to the observation sample.
[0041]
(Supplementary Note 14) A sample for observation, a lead electrode and a position sensing detector arranged to face the sample for observation, and means for relatively moving these lead electrodes and the position sensing detector in the xy directions, Information storage means for storing three-dimensional element measurement information at each point in the xy direction, information storage means for storing movement information in the xy direction, and reconstructing element distribution information in the xyz direction from these two pieces of information. The apparatus of claim 1 comprising means.
[0042]
(Supplementary Note 15) In the element measurement device including the observation sample, the extraction electrode, and the element detector arranged opposite to the observation sample, the observation sample was formed with an interval having a longest period of 10 μm or less. A two-dimensional element measurement device having surface irregularities.
[0043]
(Supplementary note 16) The apparatus according to supplementary note 15, wherein the longest period of the interval between the surface irregularities of the observation sample is 10 nm or less.
[0044]
(Supplementary note 17) The apparatus according to Supplementary note 15 or 16, wherein the surface irregularities of the observation sample are artificially formed after the sample is prepared.
[0045]
(Supplementary note 18) The apparatus according to supplementary note 17, wherein the surface irregularities of the observation sample are formed by chemical etching after the sample is prepared.
[0046]
(Supplementary note 19) The apparatus according to supplementary note 17, wherein the surface irregularities of the observation sample are formed by ion beam etching after the sample is prepared.
[0047]
(Supplementary note 20) The apparatus according to supplementary note 17, wherein the surface irregularities of the observation sample are formed by laser beam etching after the sample is manufactured.
[0048]
(Supplementary note 21) The apparatus according to supplementary note 17, wherein the surface irregularities of the observation sample are formed by electron beam etching after the sample is prepared.
[0049]
(Supplementary note 22) The apparatus according to supplementary note 17, wherein the surface irregularities of the observation sample are formed by physical etching or chemical etching using a plasma gas after the sample is prepared.
[0050]
(Supplementary note 23) The apparatus according to any one of Supplementary notes 15 to 22, wherein the extraction electrode has a hollow extraction space having an opening area of 70 µm 2 or less.
[0051]
(Supplementary Note 24) opening area of the extraction space of the extraction electrode is 70 nm 2 or less, apparatus according to note 23.
[0052]
(Supplementary note 25) The apparatus according to Supplementary note 23 or 24, wherein the extraction space of the extraction electrode is a hollow space of the carbon nanotube.
[0053]
(Supplementary Note 26) The apparatus according to any one of Supplementary Notes 15 to 25, wherein a plurality of extraction electrodes exist.
[0054]
(Supplementary note 27) The apparatus according to any one of supplementary notes 15 to 26, wherein the extraction electrode and the position-sensitive detector are two-dimensionally scanned by a raster scan or a helical scan relative to the observation sample.
[0055]
(Supplementary Note 28) Observation sample, extraction electrode and element detector arranged opposite to this observation sample, means for relatively moving these extraction electrode and element detector in the xy direction, and xy direction Information storage means for storing two-dimensional element measurement information at each point, information storage means for storing movement information in the xy directions, and means for reconstructing element distribution information in the xy directions from these two pieces of information. 16. The apparatus according to claim 15, comprising:
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a conventional three-dimensional element measurement device.
FIG. 2 is a conceptual diagram of a three-dimensional element measurement device according to the present invention.
FIG. 3 is an explanatory view of one step in an example.
FIG. 4 is an explanatory view of another one step in the embodiment.
FIG. 5 is an explanatory view of another one step in the embodiment.
FIG. 6 is an explanatory view of another step in the example.
FIG. 7 is an explanatory view of another step in the example.
FIG. 8 is an explanatory view of another step in the example.
FIG. 9 is an explanatory view of another step in the example.
FIG. 10 is a schematic view showing one embodiment of a three-dimensional element measurement device according to the present invention.

Claims (4)

観察用試料と、この観察用試料に対向して配置された引き出し電極および位置感知検出器とを含む3次元元素測定装置において、前記観察用試料が最長周期が10μm以下の間隔をもって形成された表面凹凸を有することを特徴とする3次元元素測定装置。In a three-dimensional element measuring apparatus including an observation sample, an extraction electrode and a position sensing detector arranged opposite to the observation sample, a surface on which the observation sample is formed with a longest period of 10 μm or less. A three-dimensional element measurement device having irregularities. 観察用試料と、この観察用試料に対向して配置された引き出し電極および位置感知検出器と、これらの引き出し電極および位置感知検出器をxy方向に相対的に移動させる手段と、xy方向の各点での3次元元素測定情報を格納する情報蓄積手段と、xy方向の移動情報を格納する情報蓄積手段と、およびこれらの2つの情報からxyz方向の元素分布情報を再構築する手段とを含む、請求項1に記載の装置。An observation sample, an extraction electrode and a position sensing detector arranged opposite to the observation sample, means for relatively moving the extraction electrode and the position sensing detector in the xy directions, Includes information storage means for storing three-dimensional element measurement information at points, information storage means for storing movement information in the xy directions, and means for reconstructing element distribution information in the xyz directions from these two pieces of information. The apparatus of claim 1. 観察用試料と、この観察用試料に対向して配置された引き出し電極および元素検出器とを含む元素測定装置において、前記観察用試料が最長周期が10μm以下の間隔をもって形成された表面凹凸を有することを特徴とする2次元元素測定装置。In an element measurement device including an observation sample, an extraction electrode and an element detector arranged to face the observation sample, the observation sample has surface irregularities formed with a longest period of 10 μm or less. A two-dimensional element measurement device, characterized in that: 観察用試料と、この観察用試料に対向して配置された引き出し電極および元素検出器と、これらの引き出し電極および元素検出器をxy方向に相対的に移動させる手段と、xy方向の各点での2次元元素測定情報を格納する情報蓄積手段と、xy方向の移動情報を格納する情報蓄積手段と、およびこれらの2つの情報からxy方向の元素分布情報を再構築する手段とを含む、請求項3に記載の装置。An observation sample, an extraction electrode and an element detector arranged opposite to the observation sample, means for relatively moving the extraction electrode and the element detector in the xy direction, and at each point in the xy direction. The information storage means for storing two-dimensional element measurement information, the information storage means for storing xy-direction movement information, and the means for reconstructing xy-direction element distribution information from these two pieces of information. Item 3. The apparatus according to Item 3.
JP2002283752A 2002-09-27 2002-09-27 Element-measuring apparatus Pending JP2004117287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283752A JP2004117287A (en) 2002-09-27 2002-09-27 Element-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283752A JP2004117287A (en) 2002-09-27 2002-09-27 Element-measuring apparatus

Publications (1)

Publication Number Publication Date
JP2004117287A true JP2004117287A (en) 2004-04-15

Family

ID=32277529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283752A Pending JP2004117287A (en) 2002-09-27 2002-09-27 Element-measuring apparatus

Country Status (1)

Country Link
JP (1) JP2004117287A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052967A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Sample for evaluating nanolevel structural composition, its manufacturing method, and evaluation method of nanolevel structural composition
JP2006051554A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Nanometer-level structure composition evaluating sample, observing method, observing device and manufacturing method of device having multi-layer film struture
JP2006051555A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Nanometer-level structure composition observing method, manufacturing method of multi-layer film structure having interposed insulating layer, and nanometer-level structure composition observing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052967A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Sample for evaluating nanolevel structural composition, its manufacturing method, and evaluation method of nanolevel structural composition
JP2006051554A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Nanometer-level structure composition evaluating sample, observing method, observing device and manufacturing method of device having multi-layer film struture
JP2006051555A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Nanometer-level structure composition observing method, manufacturing method of multi-layer film structure having interposed insulating layer, and nanometer-level structure composition observing device

Similar Documents

Publication Publication Date Title
Kelly et al. Atom probe tomography of electronic materials
JP4111501B2 (en) Scanning atom probe and analysis method using scanning atom probe
US7337656B2 (en) Surface characteristic analysis apparatus
KR101159074B1 (en) Conductive carbon nanotube tip, probe of scanning probe microscope comprising the same and manufacturing method of the conductive carbon nanotube tip
JP2006066064A (en) Manufacturing method for semiconductor probe with resistive chip
JP2005529754A (en) Fine structure
TWI761426B (en) Method of and system for detecting structures on or below the surface of a sample using a probe including a cantilever and a probe tip
JP2004117287A (en) Element-measuring apparatus
KR20230058475A (en) Endpoint detection for similar neighboring substances
US10541108B2 (en) Method and apparatus for transmission electron microscopy
US20060212977A1 (en) Characterizing electron beams
JP7058426B1 (en) Electron beam detector and detection method
Vurpillot et al. Modeling artifacts in the analysis of test semiconductor structures in atom probe tomography
RU2402021C1 (en) Test structure for graduating scanning probe microscopes
Celano et al. Reverse tip sample scanning for precise and high-throughput electrical characterization of advanced nodes
JP4316400B2 (en) Surface layer evaluation method
Rahman et al. Nano-and Micro-Features on Semiconductor Chips Measured Via Terahertz Reconstructive Imaging Route
JP2004093281A (en) Lattice constant determination method and material evaluation method using the same
TWI283296B (en) Method and apparatus for obtaining molecular data from a pharmaceutical specimen
Stauffer Deformation mechanisms in nanoscale brittle materials
JP3762993B2 (en) Interatomic transition energy analysis scanning probe microscopy and interatomic transition energy analysis scanning probe microscopy
Sharma et al. An Innovative Multi-Probe Tomographic Atomic Force Microscope for Materials Research and Failure Analysis
JPH0964131A (en) Measuring method of impurity-concentration distribution of semiconductor
Kelly et al. Atom probe tomography defines mainstream microscopy at the atomic scale
WO2008089950A1 (en) Mems sensor for in situ tem atomic force microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030