JP2006051063A - Wooden bat - Google Patents

Wooden bat Download PDF

Info

Publication number
JP2006051063A
JP2006051063A JP2004232901A JP2004232901A JP2006051063A JP 2006051063 A JP2006051063 A JP 2006051063A JP 2004232901 A JP2004232901 A JP 2004232901A JP 2004232901 A JP2004232901 A JP 2004232901A JP 2006051063 A JP2006051063 A JP 2006051063A
Authority
JP
Japan
Prior art keywords
synthetic resin
bat
wooden bat
wooden
fine carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232901A
Other languages
Japanese (ja)
Inventor
Kazuhiko Niitome
和彦 新留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizuno Technics Corp
Original Assignee
Mizuno Technics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizuno Technics Corp filed Critical Mizuno Technics Corp
Priority to JP2004232901A priority Critical patent/JP2006051063A/en
Publication of JP2006051063A publication Critical patent/JP2006051063A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wooden bat with practically sufficient durability/strength as a bat and excellent restitutive performance, capable of exhibiting excellent hitting feel. <P>SOLUTION: Epoxy resin whose viscosity is 50 cps is prepared as synthetic resin 4, and carbon nano-fiber with such properties that the mean fiber diameter is 150 nm, the mean fiber length is 15 μm, the aspect ratio (the mean fiber length/the mean fiber diameter) is 100, the specific surface area is 13 m<SP>2</SP>/g, and the heat conductivity at the temperature of 15 °C is 1500 W/(mK), is mixed in the synthetic resin as micro-carbon fiber 5 at a rate of 1 mass % to obtain a synthetic resin material. The obtained synthetic resin material is impregnated into a hitting area of a wooden bat body 2, and after that, the impregnated part is compression-molded to form the wooden bat. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、野球、ソフトボール等の球技に使用される木製バットに関するものである。   The present invention relates to a wooden bat used in ball games such as baseball and softball.

従来より、木製バットとしては、青ダモ材、トネリコ材、ヤチダモ材等が使用されている。一般に、青ダモ材やトネリコ材は、白木のままで使用できるが、最近ではこれらの木材資源が枯渇して入手が困難となっており、需要と供給のアンバランス化が生じている。一方、ヤチダモ材は、資源そのものは豊富であるもののヤチダモ材そのものの性質上、木材の孔圏内の導管径が大きく、又、導管が数層にもなっている為、白木の状態で使用すれば反復打球を行うことにより、前記導管部で割裂や剥離が生じるといった問題を有するものであった。   Conventionally, blue damwood, ash, yachidamo and the like have been used as wooden bats. In general, blue duck and ash can be used as white wood, but recently these wood resources are depleted, making it difficult to obtain them, resulting in an imbalance between supply and demand. On the other hand, Yachidamo wood is abundant in resources, but due to the nature of Yachidamo wood itself, the diameter of the conduit in the wood pores is large, and the number of conduits is several. For example, repeated hitting has a problem that splitting or peeling occurs in the conduit portion.

そのため、従来ではこのような問題を解決するために、木製バットの木質部及び導管部の細胞内にフェノール樹脂やエポキシ樹脂、不飽和ポリエステル樹脂等の合成樹脂を強制的に注入して硬化する樹脂注入バットや、前記合成樹脂の注入後金型等で圧縮し、加熱硬化させる所謂圧縮バットが提案され実用化されるに至っている。   Therefore, conventionally, in order to solve such a problem, resin injection forcibly injecting a synthetic resin such as phenol resin, epoxy resin or unsaturated polyester resin into the cells of the wood part and conduit part of the wooden bat So-called compression bats, which are compressed with a bat or a mold after injection of the synthetic resin and heated and cured, have been proposed and put into practical use.

ところで、このような樹脂注入バット或いは、圧縮バットにおいては、使用する合成樹脂に耐久強度を依存する度合いが高く、より優れた強度及び、耐久性を発現させるために、前記合成樹脂中に各種の強化素材を添加混入せしめる場合がある。このような合成樹脂中に添加混入せしめる強化素材としては、例えば、特許文献1に提案されるように、炭化ケイ素ウイスカや窒化ケイ素ウイスカ等のウイスカ素材が一般的である。   By the way, in such a resin injection bat or compression bat, the degree of dependence on the durability strength is high in the synthetic resin to be used, and in order to express more excellent strength and durability, In some cases, reinforcing materials may be added. As a reinforcing material to be added and mixed in such a synthetic resin, for example, as proposed in Patent Document 1, whisker materials such as silicon carbide whisker and silicon nitride whisker are generally used.

特開昭63−281670号公報JP-A 63-281670

かかる構成のバットによれば、バットの木質部及び、導管部内に注入される合成樹脂が前記ウイスカ素材により補強強化されるため、前記ウイスカ素材を添加混入せずに形成されたバットに比して耐久強度をある程度向上せしめることができた。   According to the bat having such a configuration, the wood portion of the bat and the synthetic resin injected into the conduit portion are reinforced and strengthened by the whisker material, so that it is more durable than the bat formed without adding the whisker material. The strength could be improved to some extent.

しかし、このように従来より一般的に使用されているウイスカ素材は、熱伝導率が低く放熱性に劣るという特性を有する。例えば、その代表例として、窒化ケイ素ウイスカの熱伝導率は、5〜30℃(実際にバットが使用に供される温度)の状態下で20〜30W/(m・K)、炭化ケイ素ウイスカは、1.2〜1.4W/(m・K)程度と低く、これらのウイスカ素材を合成樹脂中に添加混入して前記した樹脂注入バット或いは、圧縮バットを形成すると、バット自体の熱伝導率が低下し、ボール打撃時に生起する振動が熱エネルギーとして消費され難くなる。この結果、バットの振動減衰性が劣ってしまい、木本来が持つソフト感が喪失し、良好な打球感が得られ難くなるという問題があった。   However, the whisker material that has been generally used in this way has a characteristic of low thermal conductivity and poor heat dissipation. For example, as a typical example, the thermal conductivity of silicon nitride whisker is 20 to 30 W / (m · K) under the condition of 5 to 30 ° C. (temperature at which the bat is actually used). 1.2 to 1.4 W / (m · K) is low, and when these resin injection batts or compression bats are formed by adding and mixing these whisker materials into the synthetic resin, the thermal conductivity of the bat itself The vibration that occurs when the ball is hit is less likely to be consumed as thermal energy. As a result, the vibration attenuation of the bat is inferior, the soft feeling inherent in the wood is lost, and it is difficult to obtain a good shot feeling.

又、通常、前記ウイスカ素材は剛直な結晶体であり、これを合成樹脂中に添加して用いると、硬化成形される樹脂の靭性が乏しくなり衝撃強度が劣ってしまうと共に、樹脂の弾力性が乏しくなる為、バットの反発性能が大幅に低下してしまうことが予測される。又、本発明者が行った打撃試験の結果、この種のバットでは反復打撃を行うと、特に打球部領域においてバットが木目に沿って割裂するという欠点が発見された。これは、木製バット本体の導管部内に充填した合成樹脂が前記ウイスカ素材によって剛直化してしまう結果、ボール打撃時に前記剛直化した導管部が所謂楔作用を奏するようになり、バットが木目に沿って割裂し易くなるということが推測される。   In addition, the whisker material is usually a rigid crystal, and when added to a synthetic resin, the toughness of the resin to be cured and molded becomes poor and the impact strength is inferior, and the elasticity of the resin is low. Since it becomes poor, it is predicted that the resilience performance of the bat will be greatly reduced. Further, as a result of a hit test conducted by the present inventor, it has been found that when this type of bat is repeatedly hit, the bat splits along the grain, particularly in the hitting ball region. This is because the synthetic resin filled in the conduit portion of the wooden bat body is rigidized by the whisker material, so that the rigidized conduit portion exerts a so-called wedge action when hitting the ball, and the bat follows the grain. It is presumed that it becomes easy to split.

そこで本発明は、このような従来の問題点に鑑み、バットとして実用上十分な耐久強度を有し、且つ、反発性能に優れ、しかも、良好な打球感が発現できる木製バットを提供することを目的とするものである。   Therefore, in view of such conventional problems, the present invention provides a wooden bat that has a practically sufficient durability as a bat, has excellent resilience performance, and can exhibit a good shot feeling. It is the purpose.

上記目的を達成するために、本発明は以下のような構成とした。
即ち、本発明の請求項1に係る木製バットは、木製バット本体の少なくとも一部が合成樹脂により強化された木製バットにおいて、前記合成樹脂に、炭素六角網面の結晶が円筒形に巻かれる単層構造或いは、多層構造を成し、その中心部に微細な中空部を有する結晶素材であって、平均繊維径が10〜300nmの範囲内に設定される微細炭素繊維が混入されていることを特徴とするものである。
In order to achieve the above object, the present invention is configured as follows.
That is, the wooden bat according to claim 1 of the present invention is a wooden bat in which at least a part of the wooden bat main body is reinforced with a synthetic resin. It is a crystal material having a layer structure or a multilayer structure and having a fine hollow part in the center part, and that fine carbon fibers whose average fiber diameter is set within a range of 10 to 300 nm are mixed. It is a feature.

又、請求項2は、前記請求項1に係る木製バットであって、前記合成樹脂の常温における粘度が、10〜500cpsの範囲内に設定されると共に、該合成樹脂に前記微細炭素繊維が0.1質量%以上、10質量%以下の割合で混入されていることを特徴とするものである。   Moreover, Claim 2 is the wooden bat according to Claim 1, wherein the viscosity of the synthetic resin at normal temperature is set in a range of 10 to 500 cps, and the fine carbon fiber is 0 in the synthetic resin. It is mixed at a ratio of 1 mass% or more and 10 mass% or less.

請求項3は、前記請求項1又は、2に係る木製バットであって、前記木製バット本体の打球部が、前記微細炭素繊維を混入した合成樹脂により強化されていることを特徴とするものである。   A third aspect of the present invention is the wooden bat according to the first or second aspect, wherein the hitting portion of the wooden bat main body is reinforced with a synthetic resin mixed with the fine carbon fibers. is there.

請求項4は、前記請求項1、2又は、3に係る木製バットであって、前記木製バットが、前記微細炭素繊維を混入した合成樹脂を木製バット本体に注入硬化せしめた樹脂注入バットであることを特徴とするものである。   A fourth aspect of the present invention is the wooden bat according to the first, second, or third aspect, wherein the wooden bat is a resin-injected bat in which the synthetic resin mixed with the fine carbon fibers is injected and cured into a wooden bat body. It is characterized by this.

請求項5は、前記請求項1、2又は、3に係る木製バットであって、前記木製バットが、前記微細炭素繊維を混入した合成樹脂を木製バット本体に注入含浸後、圧縮硬化せしめた圧縮バットであることを特徴とするものである。   Claim 5 is the wooden bat according to claim 1, 2, or 3, wherein the wooden bat is compression-cured after injecting and impregnating the wooden bat body with the synthetic resin mixed with the fine carbon fiber. It is characterized by being a bat.

以上のように、本発明では、木製バット本体の少なくとも一部が合成樹脂により強化される木製バットにおいて、前記合成樹脂中に、炭素六角網面の結晶が円筒形に巻かれる単層構造或いは、多層構造を成し、その中心部に微細な中空部を有する結晶素材であって、平均繊維径が10〜300nmの範囲内に設定される微細炭素繊維が混入されていることにより、木製バット本体の木質部或いは、導管部内に充填した合成樹脂を効果的に補強できるため、剪断強度を著しく向上でき、この結果、格段に優れた強度及び、耐久性を発現させることができる。   As described above, in the present invention, in a wooden bat in which at least a part of the wooden bat main body is reinforced with a synthetic resin, a single layer structure in which crystals of a carbon hexagonal mesh surface are wound in a cylindrical shape in the synthetic resin, or It is a crystal material that has a multilayer structure and has a fine hollow part at the center, and a fine carbon fiber whose average fiber diameter is set within a range of 10 to 300 nm is mixed, so that the wooden bat body Since the synthetic resin filled in the wood part or the conduit part can be effectively reinforced, the shear strength can be remarkably improved. As a result, the strength and durability can be remarkably improved.

又、前記微細炭素繊維は、熱伝導率が極めて高く、木製バット自体の熱伝導率を高めることができる。この結果、ボール打撃時に木製バットに生起する振動が素早く熱エネルギーとして消費されるようになるため、振動減衰性が高まり、合成樹脂で強化されたバットでありながらも木本来が持つソフトで良好な打球感を得ることができる。   The fine carbon fiber has a very high thermal conductivity, and can increase the thermal conductivity of the wooden bat itself. As a result, the vibration that occurs in the wooden bat at the time of hitting the ball is quickly consumed as thermal energy, so the vibration damping is increased and the soft and good nature of the tree is good even though it is a bat reinforced with synthetic resin. A feel at impact can be obtained.

更に、前記微細炭素繊維は、優れた反発特性を有し、硬化成形される合成樹脂に適度な弾力性を与えるため、木製バット自体の反発性能を大幅に向上させることができる。又、このように硬化した合成樹脂が適度な弾力性を有するため、バット本体の導管部が剛直化するようなことがない。従って、ボール打撃時に前記導管部が楔作用を奏するような問題はなく、反復打撃を行っても木目が容易に割裂してしまうことがない。   Furthermore, since the fine carbon fiber has excellent resilience characteristics and gives appropriate elasticity to the synthetic resin to be cured and molded, the resilience performance of the wooden bat itself can be greatly improved. Further, since the cured synthetic resin has an appropriate elasticity, the conduit portion of the bat body does not become rigid. Therefore, there is no problem that the conduit portion has a wedge action when the ball is hit, and the grain is not easily split even when repeated hitting.

以下、本発明の好適な実施例を図面に基づき詳細に説明する。
図1は、本実施例の木製バット1の外観図を示し、図2は、図1のA部領域における要部構成説明図を示す。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an external view of a wooden bat 1 according to the present embodiment, and FIG. 2 shows an explanatory diagram of a main part configuration in a region A of FIG.

即ち、本実施例の木製バット1は、図1乃至図2に示すように、青ダモ材、トネリコ材、ヤチダモ材等の木材をバット形状に切削することによって形成された木製バット本体2の打球部3領域が合成樹脂4により強化された構成となっている。かかる木製バット1では、木製バット本体2の打球部3領域に合成樹脂4を注入含浸後、圧縮成形することによって、該部を構成する木質部及び、導管部内に前記合成樹脂4が含浸硬化した樹脂含浸部を構成している。   That is, the wooden bat 1 of this embodiment is a ball hitting the wooden bat main body 2 formed by cutting a wood such as a blue damwood material, an ash material, a yachidamo material into a bat shape as shown in FIGS. The portion 3 region is reinforced with the synthetic resin 4. In such a wooden bat 1, the synthetic resin 4 is injected and impregnated into the striking ball 3 region of the wooden bat main body 2, and then compression-molded, so that the synthetic resin 4 is impregnated and cured in the wood portion and the conduit portion. The impregnation part is constituted.

そして、本実施例の木製バット1では、前記した樹脂含浸部を形成する合成樹脂4に、以下に説明する微細炭素繊維5を強化素材として混入している。   And in the wooden bat 1 of a present Example, the fine carbon fiber 5 demonstrated below is mixed in the synthetic resin 4 which forms the above-mentioned resin impregnation part as a reinforced material.

前記微細炭素繊維5は、例えば、気相成長法、アーク放電法、レーザーアブレーション法、プラズマ合成法等の方法によって生成され、炭素六角網面の結晶が円筒形に巻かれる単層構造或いは、多層構造を成し、その中心部に微細な中空部を有する結晶素材であって、ナノメートルオーダーの繊維径を有する非常に微細な炭素繊維素材から成る。かかる微細炭素繊維5としては、カーボンナノチューブ或いは、カーボンナノファイバー等が使用される。   The fine carbon fiber 5 is generated by a method such as a vapor deposition method, an arc discharge method, a laser ablation method, a plasma synthesis method, and the like, and a single layer structure in which a crystal of a carbon hexagonal mesh surface is wound in a cylindrical shape or a multilayer structure It is a crystalline material having a structure and a fine hollow portion at the center thereof, and is made of a very fine carbon fiber material having a fiber diameter of nanometer order. As such fine carbon fibers 5, carbon nanotubes or carbon nanofibers are used.

この種の微細炭素繊維5は、軽量で比強度に優れる微細な繊維であり、これを前記合成樹脂中4に混入させた場合、前記微細炭素繊維5が前記合成樹脂4を補強するフィラーとしての役目を果たす。特に、木製バット本体2の木質部或いは、導管部内に充填した合成樹脂4を効果的に補強できるため、剪断強度を著しく向上でき、この結果、格段に優れた強度及び、耐久性を発現させることができる。   This type of fine carbon fiber 5 is a fine fiber that is lightweight and excellent in specific strength. When this is mixed into the synthetic resin 4, the fine carbon fiber 5 serves as a filler that reinforces the synthetic resin 4. Play a role. In particular, since the synthetic resin 4 filled in the wood portion or the conduit portion of the wooden bat body 2 can be effectively reinforced, the shear strength can be remarkably improved, and as a result, a particularly excellent strength and durability can be expressed. it can.

又、前記微細炭素繊維5は、熱伝導率が他の公知素材と比較して極めて高く、木製バット1自体の熱伝導率を高めることができる。この結果、ボール打撃時に木製バット1に生起する振動が素早く熱エネルギーとして消費されるようになるため、振動減衰性が高まり、合成樹脂4で強化された木製バット1でありながらも木本来が持つソフトで良好な打球感を得ることが可能となる。   The fine carbon fiber 5 has an extremely high thermal conductivity compared to other known materials, and can increase the thermal conductivity of the wooden bat 1 itself. As a result, the vibration generated in the wooden bat 1 at the time of hitting the ball is quickly consumed as thermal energy, so that the vibration damping is improved and the original wood has the wooden bat 1 reinforced with the synthetic resin 4. It is possible to obtain a soft and good shot feeling.

更に、前記微細炭素繊維5は、優れた反発特性を有し、硬化成形される合成樹脂4に適度な弾力性を与えるため、木製バット1自体の反発性能を大幅に向上させることができる。これは、前記微細炭素繊維5が、その中心部に微細な中空部を備えた結晶構造を有するためと推測される。又、このように硬化した合成樹脂4が適度な弾力性を有するため、木製バット本体2の導管部が剛直化するようなことがない。この結果、ボール打撃時に前記導管部が楔作用を奏することがなく、反復打撃を行っても木目が容易に割裂してしまうことがない。   Furthermore, since the fine carbon fiber 5 has excellent resilience characteristics and gives appropriate elasticity to the synthetic resin 4 to be cured and molded, the resilience performance of the wooden bat 1 itself can be greatly improved. This is presumed to be because the fine carbon fiber 5 has a crystal structure having a fine hollow portion at the center thereof. Further, since the cured synthetic resin 4 has an appropriate elasticity, the conduit portion of the wooden bat main body 2 does not become rigid. As a result, the conduit portion does not exhibit a wedge action when the ball is hit, and the grain does not easily split even when hit repeatedly.

前記微細炭素繊維5は、その繊維径が小さいもの程、優れた補強効果を発現し、且つ熱伝導率が高くなる傾向にある。又、前記中空部の孔径が大きい程、優れた反発性能を発揮し、且つ衝撃強度を高めることができる。本実施例では、木製バット本体2を強化するのに適したものとして、その平均繊維径は、10〜300nmの範囲内、とりわけ20〜200nmの範囲内に設定し、平均繊維長が2〜30μm、とりわけ5〜20μmの範囲内にあるものが使用される。又、熱伝導率は、5〜30℃(実際にバットが使用に供される温度)の状態下で1000〜3000W/(m・K)の範囲内、とりわけ1500〜2000W/(m・K)の範囲内にあるものが使用される。更に、前記中空部の孔径は、前記平均繊維径の10〜60%の範囲内、とりわけ30〜50%の範囲内にあるものが好適に使用される。   The fine carbon fiber 5 has a tendency that the smaller the fiber diameter, the better the reinforcing effect and the higher the thermal conductivity. Moreover, the larger the hole diameter of the hollow part, the better the resilience performance and the higher the impact strength. In this embodiment, the average fiber diameter is set within the range of 10 to 300 nm, particularly within the range of 20 to 200 nm, and the average fiber length is 2 to 30 μm, as suitable for reinforcing the wooden bat body 2. In particular, those in the range of 5 to 20 μm are used. The thermal conductivity is within a range of 1000 to 3000 W / (m · K), particularly 1500 to 2000 W / (m · K) under the condition of 5 to 30 ° C. (temperature at which the bat is actually used). Those within the range are used. Furthermore, the pore diameter of the hollow portion is preferably within the range of 10 to 60% of the average fiber diameter, particularly 30 to 50%.

上記において、前記微細炭素繊維5の平均繊維径の上限値を300nmに設定したのは、前記繊維径がこれよりも大きくなると、木製バット本体2の木質部或いは、導管部の内部に前記微細炭素繊維5を効率よく進入させ難くなり、木製バット本体2に含浸させた合成樹脂4の補強効果を十分に発現できず、木製バット1として満足のできる強度及び、耐久性能を得ることができなくなると共に、熱伝導率が低くなり良好な振動減衰性を発現できなくなるからである。又、下限値を10nmに設定したのは、前記繊維径がこれよりも小さくなると、取り扱い性が難しくなり、合成樹脂4中に斑なく均等に含有させることができず、木製バット1の品質にバラツキが生じる恐れがあるからである。   In the above, the upper limit value of the average fiber diameter of the fine carbon fibers 5 is set to 300 nm because when the fiber diameter is larger than this, the fine carbon fibers are placed inside the woody part of the wooden vat body 2 or the conduit part. 5 cannot efficiently enter, the reinforcing effect of the synthetic resin 4 impregnated in the wooden bat body 2 cannot be sufficiently exhibited, and satisfactory strength and durability performance as the wooden bat 1 cannot be obtained. This is because the thermal conductivity becomes low and good vibration damping cannot be expressed. Also, the lower limit is set to 10 nm because when the fiber diameter is smaller than this, the handling becomes difficult, and it cannot be contained uniformly in the synthetic resin 4 and the quality of the wooden bat 1 is improved. This is because variations may occur.

又、前記平均繊維長の上限値を30μmに設定したのは、前記平均繊維長がこれよりも大きくなると、木製バット本体2の木質部或いは、導管部の内部に前記微細炭素繊維5を効率よく進入させ難くなるからであり、又、下限値を2μmに設定したのは、前記平均繊維長がこれよりも小さくなると、取り扱いが難しくなるからである。   In addition, the upper limit of the average fiber length is set to 30 μm because when the average fiber length is larger than this, the fine carbon fibers 5 efficiently enter the wood portion or the conduit portion of the wooden bat body 2. The lower limit is set to 2 μm because the handling becomes difficult when the average fiber length is smaller than this.

前記熱伝導率の上限値を3000W/(m・K)に設定したのは、現在知り得る微細炭素繊維5において、前記平均繊維径の設定範囲の中で得ることのできる上限値がこの値であるからであり、又、下限値を1000W/(m・K)に設定したのは、熱伝導率がこれより小さくなると、木製バット1の振動減衰性が劣ってしまい、良好な打球感が発現できなくなるからである。   The upper limit value of the thermal conductivity is set to 3000 W / (m · K). In the fine carbon fiber 5 that can be known at present, this value is the upper limit value that can be obtained within the setting range of the average fiber diameter. This is because the lower limit is set to 1000 W / (m · K). If the thermal conductivity is smaller than this, the vibration damping property of the wooden bat 1 is inferior, and a good shot feeling is exhibited. Because it becomes impossible.

又、前記中空部の孔径の上限値を、上記のように前記平均繊維径の60%に設定したのは、現在知り得る微細炭素繊維5の中で良好な品質を確保して生成し得ることのできる上限値がこの値であるからであり、又、下限値を10%に設定したのは、これよりも小さいと良好な反発性能及び、衝撃強度を発現し難くなるからである。   In addition, the upper limit value of the hole diameter of the hollow portion is set to 60% of the average fiber diameter as described above, so that it can be produced while ensuring good quality among the fine carbon fibers 5 that can be known at present. This is because the upper limit value that can be obtained is this value, and the lower limit value is set to 10% because if it is smaller than this value, it will be difficult to develop good resilience performance and impact strength.

更に、前記微細炭素繊維5は、常温での粘度が10〜500cpsの範囲内に設定された合成樹脂4中に0.1質量%以上、10質量%以下、とりわけ3質量%以上、7質量%以下の割合で混入されることが好ましい。
前記微細炭素繊維5の使用量が0.1質量%よりも少ないと、合成樹脂4の補強効果が十分に発現できず、木製バット1として満足のできる強度及び、耐久性能を得ることができなくなると共に、振動減衰性及び、反発性能を十分に高めることができない。又、10質量%よりも多いと、合成樹脂4中に均等に混入させ難くなるという問題が生じると共に、前記10質量%を境として、これよりも多く微細炭素繊維5を使用しても木製バット1の耐久性、振動減衰性、反発特性等において良好な評価は得られなかった。
Further, the fine carbon fiber 5 is 0.1% by mass or more and 10% by mass or less, particularly 3% by mass or more and 7% by mass in the synthetic resin 4 whose viscosity at normal temperature is set within a range of 10 to 500 cps. It is preferable to mix in the following ratio.
If the amount of the fine carbon fiber 5 used is less than 0.1% by mass, the reinforcing effect of the synthetic resin 4 cannot be sufficiently exhibited, and satisfactory strength and durability performance as the wooden bat 1 cannot be obtained. At the same time, vibration damping and resilience performance cannot be sufficiently improved. Further, if the amount is more than 10% by mass, there is a problem that it is difficult to mix evenly in the synthetic resin 4, and the wooden bat is used even if the fine carbon fiber 5 is used more than 10% by mass. No good evaluation was obtained in the durability, vibration damping property, resilience property, and the like.

又、前記微細炭素繊維5を合成樹脂4中に混入すると、前記木製バット本体2に含浸せしめた合成樹脂4が外に流れ出す量を抑制することができる。即ち、樹脂のフロー制御が行えるため、木製バット本体2の木質部及び、導管部への浸透性に優れた10〜500cpsといった比較的低粘度の合成樹脂4を用いてバットを成形することができる。これにより、木製バット本体2への樹脂の含浸性を高め、しかも、成形時に樹脂の流出が抑えられることから、成形後のバット表面にボイドやピンホール等が生じ難く、後工程で手直しを要しない成形品質に優れた木製バット1を得ることができる。種々実験を行った結果、前記合成樹脂4の粘度が、500cpsより高いと、木製バット本体2の木質部及び、導管部の内部へ合成樹脂4が含浸し難くなり、十分な設計強度が得られ難くなるという問題があり、又、10cpsより低いと、フロー制御を十分に行うことが難しくなり、合成樹脂4が多く流出し、成形後の後工程で手直しが必要となる。前記合成樹脂4の粘度は、とりわけ30〜70cpsが好ましい。又、使用可能な合成樹脂4の種類としては、例えば、エポキシ樹脂、フェノール樹脂、ナイロン樹脂、不飽和ポリエステル樹脂等が挙げられるが、強度、耐久性、成形性の点でエポキシ樹脂が好適である。   Moreover, when the fine carbon fiber 5 is mixed in the synthetic resin 4, the amount of the synthetic resin 4 impregnated in the wooden bat main body 2 flowing out can be suppressed. That is, since the flow control of the resin can be performed, the bat can be formed using the synthetic resin 4 having a relatively low viscosity such as 10 to 500 cps, which has excellent permeability to the wood part and the conduit part of the wooden bat body 2. This enhances the resin impregnation into the wooden bat body 2 and further suppresses resin outflow during molding, so that voids and pinholes are unlikely to form on the molded bat surface, requiring reworking in a later process. A wooden bat 1 having excellent molding quality can be obtained. As a result of various experiments, when the viscosity of the synthetic resin 4 is higher than 500 cps, it is difficult to impregnate the synthetic resin 4 into the woody portion and the inside of the conduit portion of the wooden bat main body 2, and it is difficult to obtain sufficient design strength. In addition, if it is lower than 10 cps, it is difficult to sufficiently control the flow, so that a large amount of the synthetic resin 4 flows out, and reworking is necessary in a post-process after molding. The viscosity of the synthetic resin 4 is particularly preferably 30 to 70 cps. Examples of the synthetic resin 4 that can be used include an epoxy resin, a phenol resin, a nylon resin, and an unsaturated polyester resin. An epoxy resin is preferable in terms of strength, durability, and moldability. .

又更に、前記微細炭素繊維5は、その生成温度により繊維の表面状態が種々異なる。本実施例では、前記合成樹脂4とのぬれ性を考慮して、その比表面積が11〜15m/gの範囲内にあるものが好適に使用される。
前記比表面積が15m/gよりも大きいと、合成樹脂4中に均等に混入させ難くなるという問題が生じ、又、前記比表面積が11m/gよりも小さいと、合成樹脂4とのぬれ性が悪くなり、補強効果が乏しくなる問題が生じる。
Still further, the surface state of the fine carbon fiber 5 varies depending on the generation temperature. In the present embodiment, in consideration of wettability with the synthetic resin 4, those having a specific surface area in the range of 11 to 15 m 2 / g are preferably used.
When the specific surface area is larger than 15 m 2 / g, there arises a problem that it is difficult to uniformly mix in the synthetic resin 4, and when the specific surface area is smaller than 11 m 2 / g, wetting with the synthetic resin 4 occurs. The problem is that the property is poor and the reinforcing effect is poor.

このような本実施例の木製バット1を製造するには、例えば、図3に示すように、木製バット本体2を樹脂含浸装置6内に配置し、真空又は、加圧等の方法により、木製バット本体2の打球部3領域に合成樹脂4を含浸させる。その後、前記木製バット本体2を樹脂含浸装置6から取り出し、図4に示すように、断面半円形状の一対の金型7で樹脂を含浸せしめた打球部3領域を加熱加圧して樹脂を硬化せしめるといった圧縮バットの通常の製造法において、前記木製バット本体2に含浸せしめる合成樹脂4中に前記した微細炭素繊維5を混入させて成形する手段が講じられる。   In order to manufacture such a wooden bat 1 of this embodiment, for example, as shown in FIG. 3, the wooden bat main body 2 is placed in a resin impregnation apparatus 6, and the wooden bat 1 is made by a method such as vacuum or pressurization. A synthetic resin 4 is impregnated in the hitting ball 3 region of the bat body 2. Thereafter, the wooden bat main body 2 is taken out from the resin impregnation apparatus 6 and, as shown in FIG. 4, the hitting ball portion 3 region impregnated with the resin with a pair of semicircular molds 7 is heated and pressurized to cure the resin. In a normal manufacturing method of a compression bat such as caulking, means for mixing the above-mentioned fine carbon fibers 5 in a synthetic resin 4 impregnated in the wooden bat body 2 is provided.

尚、上記実施例では、木製バット本体2の打球部3領域を前記した微細炭素繊維5を混入した合成樹脂4で強化する例を示したが、本発明はこれに限定されず、木製バット本体2全体を前記微細炭素繊維5を混入せしめた合成樹脂4で強化する構成とすることもできる。   In the above-described embodiment, the example in which the hitting portion 3 region of the wooden bat main body 2 is reinforced with the synthetic resin 4 mixed with the fine carbon fiber 5 is described. However, the present invention is not limited to this, and the wooden bat main body is not limited thereto. 2 may be configured to be reinforced with the synthetic resin 4 in which the fine carbon fibers 5 are mixed.

又、本発明の木製バット1は、上記実施例で説明したような圧縮バットである他、加圧圧縮手段を伴わない樹脂注入バットであっても良い。   The wooden bat 1 of the present invention may be a compression bat as described in the above embodiment, or may be a resin injection bat without a pressure compression means.

(実施例1)
合成樹脂4として、粘度が50cpsのエポキシ樹脂を準備し、これに微細炭素繊維5として、平均繊維径が150nm、平均繊維長が15μm、アスペクト比(平均繊維長/平均繊維径)が100であり、その比表面積が13m2/g、熱伝導率が15℃の温度状態下で1500W/(m・K)の特性を示すカーボンナノファイバー(昭和電工株式会社製:VGCF−焼成タイプ)を1質量%の割合で混入せしめた合成樹脂素材8を得た。これを図3に示すように、樹脂含浸装置6内に収めた。
又、木製バット本体2としては、ヤチダモ材をバット形状に切削したものを用意した。
Example 1
An epoxy resin having a viscosity of 50 cps is prepared as the synthetic resin 4, and an average fiber diameter of 150 nm, an average fiber length of 15 μm, and an aspect ratio (average fiber length / average fiber diameter) of 100 as fine carbon fibers 5 are prepared. 1% by mass of carbon nanofibers (Showa Denko Co., Ltd .: VGCF-fired type) exhibiting characteristics of 1500 W / (m · K) under a temperature state of a specific surface area of 13 m 2 / g and a thermal conductivity of 15 ° C. Synthetic resin material 8 mixed in the ratio was obtained. This was stored in a resin impregnation apparatus 6 as shown in FIG.
Moreover, as the wooden bat body 2, a Yachidamo material cut into a bat shape was prepared.

本実施例では、先ず、図3に示すように、前記木製バット本体2を樹脂含浸装置6内に配置し、打球部3領域を前記合成樹脂素材8に浸漬せしめる。この浸漬工程は、加圧状態(8kgf/cm)下で概ね2分間行われる。
次に、前記木製バット本体2を樹脂含浸装置6から取り出して常温で暫く静置し、前記木製バット本体2の木質部及び、導管部内に前記合成樹脂素材8をしっかりと馴染ませる。
その後、図4に示すように、前記木製バット本体2の打球部3領域を金型7内に配置し、100℃の温度で約20分間加熱圧縮成形することによって、本実施例の木製バット1を得た。
In this embodiment, first, as shown in FIG. 3, the wooden bat body 2 is placed in the resin impregnation device 6, and the hitting ball portion 3 region is immersed in the synthetic resin material 8. This dipping process is performed for approximately 2 minutes under a pressurized state (8 kgf / cm 2 ).
Next, the wooden bat main body 2 is taken out from the resin impregnation device 6 and allowed to stand at room temperature for a while, so that the synthetic resin material 8 is thoroughly blended into the woody portion and the conduit portion of the wooden bat main body 2.
Thereafter, as shown in FIG. 4, the hitting portion 3 region of the wooden bat main body 2 is placed in the mold 7, and is heated and compressed at a temperature of 100 ° C. for about 20 minutes, whereby the wooden bat 1 of the present embodiment. Got.

上記のように硬化成形された木製バット1は、表面にボイドやピンホール等が生じることがなく、成形品質に優れ、後工程での手直しを要することがなかった。   The wooden bat 1 cured and molded as described above did not cause voids or pinholes on the surface, had excellent molding quality, and did not require reworking in a subsequent process.

(実施例2)
上記実施例1で使用した微細炭素繊維5に替え、平均繊維径が30nm、平均繊維長が30μm、アスペクト比(平均繊維長/平均繊維径)が1000であり、熱伝導率が15℃の温度状態下で1700W/(m・K)の特性を示すカーボンナノチューブ(CNRI社製)を合成樹脂に1質量%の割合で混入せしめた合成樹脂素材8を用いて木製バットを形成した。
(Example 2)
In place of the fine carbon fiber 5 used in Example 1, the average fiber diameter is 30 nm, the average fiber length is 30 μm, the aspect ratio (average fiber length / average fiber diameter) is 1000, and the thermal conductivity is 15 ° C. A wooden bat was formed using a synthetic resin material 8 in which carbon nanotubes (CNRI) having a characteristic of 1700 W / (m · K) under the state were mixed in a synthetic resin at a ratio of 1% by mass.

上記のように硬化成形された木製バットは、実施例1と同様、表面にボイドやピンホール等が生じることがなく、成形品質に優れ、後工程での手直しを要することがなかった。   As in Example 1, the wooden bat cured and molded as described above had no voids or pinholes on its surface, was excellent in molding quality, and did not require reworking in a subsequent process.

(比較例1)
前記微細炭素繊維5を混入していない合成樹脂素材を準備し、これを使用して実施例1、2と同様な方法で木製バットを形成した。
(Comparative Example 1)
A synthetic resin material in which the fine carbon fiber 5 was not mixed was prepared, and a wooden vat was formed in the same manner as in Examples 1 and 2 using this material.

尚、このバットの成形時、合成樹脂素材が金型の外へ多く流出し、硬化成形された木製バットの表面には、ボイドやピンホールが多く発生し、後工程で多くの手直しを要した。   In addition, when this bat was molded, a lot of synthetic resin material flowed out of the mold, and many voids and pinholes were generated on the surface of the cured wooden bat, which required a lot of reworking in the subsequent process. .

(比較例2)
実施例1で使用した微細炭素繊維5に替え、平均繊維径が1.0μm、平均繊維長が50μm、アスペクト比(平均繊維長/平均繊維径)が50であり、熱伝導率が15℃の温度状態下で5.3W/(m・K)の特性を示すチタン酸カリウムウイスカ(大塚化学株式会社製:ティスモD)を混入させた合成樹脂素材を用いて木製バットを形成した。
(Comparative Example 2)
In place of the fine carbon fiber 5 used in Example 1, the average fiber diameter is 1.0 μm, the average fiber length is 50 μm, the aspect ratio (average fiber length / average fiber diameter) is 50, and the thermal conductivity is 15 ° C. A wooden bat was formed using a synthetic resin material mixed with potassium titanate whisker (manufactured by Otsuka Chemical Co., Ltd .: Tismo D) having a characteristic of 5.3 W / (m · K) under temperature conditions.

これらの実施例1、2と、比較例1、2の木製バットに関して、ボール打撃時の振動減衰性と反発特性及び、耐久性能を確認するために実打試験を行った。この実打試験では、一般のアマチュアプレーヤーを対象にして、実際に実施例1、2と、比較例1、2の木製バットでボールを打撃し、その際、プレーヤーが体感した打撃時のフィーリング(手に伝播される振動)や、反発性(飛び)等の官能評価を行うと共に、木製バットが破損するまでの打撃数から耐久強度を求めた。この時の結果を以下の表1に示す。   With respect to the wooden bats of Examples 1 and 2 and Comparative Examples 1 and 2, an actual hit test was performed in order to confirm the vibration damping property and rebound characteristics at the time of ball hitting and the durability performance. In this actual hitting test, a general amateur player was hit with the wooden bats of Examples 1 and 2 and Comparative Examples 1 and 2, and the feeling of hitting felt by the player at that time. While performing sensory evaluations such as (vibration transmitted to the hand) and resilience (flying), the durability was determined from the number of hits until the wooden bat was damaged. The results at this time are shown in Table 1 below.

Figure 2006051063
Figure 2006051063

このような試験結果より、本実施例1、2の木製バットでは、比較例1、2の木製バットに比し、十分な耐久性能が得られると共に、ボール打撃時の振動減衰性が高く、しかも、反発特性に優れたバットであることが確認できた。   From these test results, the wooden bats of Examples 1 and 2 have sufficient durability performance compared to the wooden bats of Comparative Examples 1 and 2, and high vibration damping when hitting the ball. It was confirmed that the bat had excellent resilience characteristics.

本実施例の木製バットの外観説明図。The external appearance explanatory drawing of the wooden bat of a present Example. 図1のA部領域における構成説明図。FIG. 2 is an explanatory diagram of a configuration in a region A of FIG. 1. 本実施例の木製バットの製造方法を表す説明図。Explanatory drawing showing the manufacturing method of the wooden bat of a present Example. 本実施例の木製バットの製造方法を表す説明図。Explanatory drawing showing the manufacturing method of the wooden bat of a present Example.

符号の説明Explanation of symbols

1 木製バット
2 木製バット本体
3 打球部
4 合成樹脂
5 微細炭素繊維
6 樹脂含浸装置
7 金型
8 合成樹脂素材
DESCRIPTION OF SYMBOLS 1 Wooden bat 2 Wooden bat main body 3 Hitting ball part 4 Synthetic resin 5 Fine carbon fiber 6 Resin impregnation apparatus 7 Mold 8 Synthetic resin material

Claims (5)

木製バット本体の少なくとも一部が合成樹脂により強化された木製バットにおいて、前記合成樹脂に、炭素六角網面の結晶が円筒形に巻かれる単層構造或いは、多層構造を成し、その中心部に微細な中空部を有する結晶素材であって、平均繊維径が10〜300nmの範囲内に設定される微細炭素繊維が混入されていることを特徴とする木製バット。   In a wooden bat in which at least a part of the wooden bat body is reinforced with a synthetic resin, the synthetic resin has a single layer structure or a multilayer structure in which a crystal of a carbon hexagonal mesh surface is wound into a cylindrical shape, A wooden bat, which is a crystalline material having a fine hollow portion and is mixed with fine carbon fibers whose average fiber diameter is set within a range of 10 to 300 nm. 前記合成樹脂の常温における粘度が、10〜500cpsの範囲内に設定されると共に、該合成樹脂に前記微細炭素繊維が0.1質量%以上、10質量%以下の割合で混入されていることを特徴とする請求項1記載の木製バット。   The viscosity of the synthetic resin at normal temperature is set within a range of 10 to 500 cps, and the fine carbon fibers are mixed in the synthetic resin at a ratio of 0.1% by mass or more and 10% by mass or less. The wooden bat according to claim 1. 前記木製バット本体の打球部が、前記微細炭素繊維を混入した合成樹脂により強化されていることを特徴とする請求項1又は、2記載の木製バット。   The wooden bat according to claim 1 or 2, wherein a hitting portion of the wooden bat main body is reinforced by a synthetic resin mixed with the fine carbon fibers. 前記木製バットが、前記微細炭素繊維を混入した合成樹脂を木製バット本体に注入硬化せしめた樹脂注入バットであることを特徴とする請求項1、2又は、3記載の木製バット。   4. The wooden bat according to claim 1, 2, or 3, wherein the wooden bat is a resin-injected bat in which a synthetic resin mixed with the fine carbon fiber is injected and cured in a wooden bat body. 前記木製バットが、前記微細炭素繊維を混入した合成樹脂を木製バット本体に注入含浸後、圧縮硬化せしめた圧縮バットであることを特徴とする請求項1、2又は、3記載の木製バット。
The wooden bat according to claim 1, 2 or 3, wherein the wooden bat is a compression bat in which a synthetic resin mixed with the fine carbon fiber is injected and impregnated into a main body of the wooden bat and then compression-cured.
JP2004232901A 2004-08-10 2004-08-10 Wooden bat Pending JP2006051063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232901A JP2006051063A (en) 2004-08-10 2004-08-10 Wooden bat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232901A JP2006051063A (en) 2004-08-10 2004-08-10 Wooden bat

Publications (1)

Publication Number Publication Date
JP2006051063A true JP2006051063A (en) 2006-02-23

Family

ID=36028910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232901A Pending JP2006051063A (en) 2004-08-10 2004-08-10 Wooden bat

Country Status (1)

Country Link
JP (1) JP2006051063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285454A (en) * 2008-04-30 2009-12-10 Lonwood:Kk Baseball bat
JP2011148214A (en) * 2010-01-22 2011-08-04 Doshisha Fiber-reinforced composite

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149370U (en) * 1986-03-12 1987-09-21
JPS62215677A (en) * 1986-03-17 1987-09-22 Showa Denko Kk Friction material reinforced with carbon fiber by gaseous phase method
JPS63281670A (en) * 1987-05-14 1988-11-18 東芝セラミツクス株式会社 Bat
JPH0735251B2 (en) * 1986-07-14 1995-04-19 昭和電工株式会社 Graphite fine powder
JPH07223271A (en) * 1993-12-16 1995-08-22 Toray Ind Inc Bent pipe and method and apparatus for producing the same
JPH09132846A (en) * 1995-11-01 1997-05-20 Showa Denko Kk Carbon fiber material and its production
JP2002146634A (en) * 2000-11-10 2002-05-22 Showa Denko Kk Fine carbon fiber and method for producing the same
JP2002191739A (en) * 2000-12-25 2002-07-10 Mizuno Corp Wooden pat
JP2004202004A (en) * 2002-12-26 2004-07-22 Mizuno Technics Kk Bat made of fiber reinforced plastic

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149370U (en) * 1986-03-12 1987-09-21
JPS62215677A (en) * 1986-03-17 1987-09-22 Showa Denko Kk Friction material reinforced with carbon fiber by gaseous phase method
JPH0735251B2 (en) * 1986-07-14 1995-04-19 昭和電工株式会社 Graphite fine powder
JPS63281670A (en) * 1987-05-14 1988-11-18 東芝セラミツクス株式会社 Bat
JPH07223271A (en) * 1993-12-16 1995-08-22 Toray Ind Inc Bent pipe and method and apparatus for producing the same
JPH09132846A (en) * 1995-11-01 1997-05-20 Showa Denko Kk Carbon fiber material and its production
JP2002146634A (en) * 2000-11-10 2002-05-22 Showa Denko Kk Fine carbon fiber and method for producing the same
JP2002191739A (en) * 2000-12-25 2002-07-10 Mizuno Corp Wooden pat
JP2004202004A (en) * 2002-12-26 2004-07-22 Mizuno Technics Kk Bat made of fiber reinforced plastic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285454A (en) * 2008-04-30 2009-12-10 Lonwood:Kk Baseball bat
JP2011148214A (en) * 2010-01-22 2011-08-04 Doshisha Fiber-reinforced composite

Similar Documents

Publication Publication Date Title
US4124670A (en) Method of producing a composite high strength to weight structure having a shell and weight controlled cellular core
US7442135B2 (en) Ball bat including a focused flexure region
US4399992A (en) Structural member having a high strength to weight ratio and method of making same
US4212461A (en) Composite high strength to weight structure having shell and weight controlled core
EP2889438B1 (en) Sandwich panel and method for manufacturing same
JP5117779B2 (en) Composite material
JPH07213662A (en) Composite ball bat made of imitation wood
US9656130B2 (en) Sporting goods with graphene material
JP2004229869A (en) Golf club head
TW201711730A (en) Composite ball bat including a barrel with structural regions separated by a porous non-adhesion layer
JP2006051063A (en) Wooden bat
JPH0747152A (en) Fiber-reinforced resin racket frame
CN108544809A (en) A kind of sandwich structure composite material and preparation method thereof
US9504891B1 (en) Baseball bat
JP2004202004A (en) Bat made of fiber reinforced plastic
JP5589465B2 (en) Fiber reinforced plastic for automotive parts
US20050003912A1 (en) Racket frame
JP2004202001A (en) Racket frame
JP2009019089A (en) Fiber-reinforced plastic and reinforced heat-insulating composite material using the same
JP2004182923A5 (en) Prepreg, method for producing the same, and method for producing fiber-reinforced composite material using the prepreg
JP3486592B2 (en) Baseball or softball bat
JP2003275355A (en) Golf shaft
KR101951205B1 (en) Fiber reinforced composite material and method of manufacturing the same
JPH0314205Y2 (en)
JP5980569B2 (en) Compressed bat for baseball or softball, and method for producing compressed bat for baseball or softball

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100506