JPH0735251B2 - Graphite fine powder - Google Patents

Graphite fine powder

Info

Publication number
JPH0735251B2
JPH0735251B2 JP61163720A JP16372086A JPH0735251B2 JP H0735251 B2 JPH0735251 B2 JP H0735251B2 JP 61163720 A JP61163720 A JP 61163720A JP 16372086 A JP16372086 A JP 16372086A JP H0735251 B2 JPH0735251 B2 JP H0735251B2
Authority
JP
Japan
Prior art keywords
graphite
fine powder
powder
particle size
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61163720A
Other languages
Japanese (ja)
Other versions
JPS6321208A (en
Inventor
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61163720A priority Critical patent/JPH0735251B2/en
Publication of JPS6321208A publication Critical patent/JPS6321208A/en
Publication of JPH0735251B2 publication Critical patent/JPH0735251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は音響用テープ、ビデオテープ、ペイント等の潤
滑剤、導電剤および各種複合材用添加剤等に有用な黒鉛
微粉に関するものである。
TECHNICAL FIELD The present invention relates to a fine graphite powder useful as a lubricant for audio tapes, video tapes, paints, etc., a conductive agent, an additive for various composite materials, and the like.

(従来の技術) 黒鉛微粉は従来、黒鉛ブロック、黒鉛板または黒鉛棒等
を粉砕、分級することによって製造されていたが、黒鉛
自体が柔かく、滑り易い性質をもつために粉砕は困難な
ものであった。
(Prior Art) Conventionally, fine graphite powder was manufactured by crushing and classifying a graphite block, a graphite plate, a graphite rod, etc. However, crushing is difficult because graphite itself is soft and slippery. there were.

したがって、例えば人造黒鉛電極を加工する際に発生す
る粒径100〜1000μmの黒鉛粉を出発原料としてボール
ミル等で粉砕する場合、部分的には粒径1μm以下のサ
ブミクロン級粒子も生成されるが全体として粒径1μm
以下の微粉とすることは不可能であった。
Therefore, for example, when graphite powder having a particle size of 100 to 1000 μm generated when processing an artificial graphite electrode is pulverized by a ball mill etc., submicron particles having a particle size of 1 μm or less are also partially produced. Overall particle size 1 μm
It was impossible to make the following fine powders.

(発明が解決しようとする問題点) 一般に黒鉛加工屑は擬球体または楕円体であるためこれ
を出発原料として粉砕する場合、三次元方向のいづれの
方向についても小さくしなければならないが元来粉砕し
難い黒鉛を三方向に小さくすることは技術的に困難であ
り、粉砕エネルギーも極めて多く必要とする。
(Problems to be solved by the invention) Generally, graphite processing scraps are pseudospheres or ellipsoids, and therefore, when grinding them as a starting material, it is necessary to reduce the size in any of the three-dimensional directions, but it is originally ground. It is technically difficult to reduce the size of graphite, which is difficult to do in three directions, and it requires an extremely large amount of grinding energy.

黒鉛化粉の製造方法として、粉砕し易い炭素質粉末、た
とえばコークス等を粉砕したのちこれを黒鉛化する方法
もあるが、この場合、黒鉛化の際に粉体が再凝固するた
め結果的にはサブミクロン級の微粉は得ることが困難で
ある。
As a method for producing graphitized powder, there is also a method of crushing carbonaceous powder that is easy to crush, for example, coke and then graphitizing this, but in this case, the powder re-solidifies during graphitization, which results in It is difficult to obtain fine powder of submicron grade.

(問題点を解決するための手段) 本発明は上記のような従来技術で不可能である原因にか
んがみ出発原料の転換を検討した結果、粉砕を一層容易
にするため出発原料として炭素繊維を選ぶことに想到し
た。
(Means for Solving the Problems) In the present invention, as a result of studying the conversion of the starting material in view of the reason that the above-mentioned conventional technology is impossible, carbon fiber is selected as the starting material in order to make the pulverization easier. I thought about it.

気相法によって生成した炭素繊維は繊維径0.01〜0.5μ
m、長さ数mm程度のものを容易、安価に製造することが
できる。この繊維を黒鉛化後粉砕すれば目的とする黒鉛
粉は従来法に比していちじるしく容易に効率的に製造し
うる。この場合、繊維の粉砕は実質的にはむしろ繊維の
微切断を伴う粉砕と言うべきがふさわしい。
Carbon fiber produced by the vapor phase method has a fiber diameter of 0.01 to 0.5μ
It is possible to easily and inexpensively manufacture a product having a length of m and a length of several mm. If this fiber is graphitized and then pulverized, the target graphite powder can be produced significantly more easily and efficiently than in the conventional method. In this case, it is appropriate to say that the crushing of the fibers is substantially rather crushing accompanied by fine cutting of the fibers.

斯様な繊維は粉砕(切断)するに先立ち予め黒鉛化して
おくことにより、前記したような従来法による粉体同士
の再凝固を防止することができ、しかも繊維軸方向にお
ける電気抵抗値は極めて低いため導電性付与の目的には
効率良く作用することが解消された他、摺動性において
も極めて良好であることが知られた。
By pre-graphitizing such fibers prior to crushing (cutting), it is possible to prevent re-solidification of the powder particles by the conventional method as described above, and the electric resistance value in the fiber axis direction is extremely high. Since it is low, it has been solved that it efficiently acts for the purpose of imparting conductivity, and it is also known that the sliding property is extremely good.

本発明は、黒鉛化した気相法炭素繊維の粒径1μm以下
の粉砕微粉にある。
The present invention resides in pulverized fine powder of graphitized vapor grown carbon fiber having a particle size of 1 μm or less.

本発明における気相法炭素繊維の製法はたとえば特開昭
58−180615号、特公昭58−22571号等で知られているが
具体的には次の通りである。
The method of producing the vapor grown carbon fiber in the present invention is described in, for example, JP
It is known in Japanese Patent No. 58-180615, Japanese Patent Publication No. 58-22571, etc., but it is specifically as follows.

ベンゼンを炭素源とし、種子として鉄等を含む有機化合
物もしくはFe等を直操蒸発させたものを用い1000〜1300
℃の雰囲気において気相法炭素繊維を成長させる。この
際、成長時間を5分以内に設定しておけば最大径0.5μ
m、長さ数mmの繊維が成長する。これを炉外に取り出し
Ar等の雰囲気中において2500℃以上にて熱処理して黒鉛
化する。
1000 to 1300 using benzene as a carbon source and organic compounds containing iron etc. as seeds or direct evaporation of Fe etc.
Grow vapor grown carbon fibers in an atmosphere of ° C. At this time, if the growth time is set within 5 minutes, the maximum diameter is 0.5μ.
Fibers of m and length of several mm grow. Take this out of the furnace
Graphitize by heat treatment at 2500 ° C or higher in an atmosphere such as Ar.

かくて例えば真比重2.15〜2.20g/cm3、電気比抵抗値50
〜80/μΩ・cmの炭素繊維が得られるので、これを次に
粉砕する。
Thus, for example, the true specific gravity is 2.15 to 2.20 g / cm 3 and the electrical resistivity is 50.
A carbon fiber of ˜80 / μΩ · cm is obtained, which is then ground.

すなわち本発明においては炭素繊維の黒鉛化は粉砕前に
実施することが望ましい。これは粉砕後に黒鉛化すると
粉体が凝集し団子状となり粒径1μm以下の微粉が得ら
れないからである。斯様にして得られた黒鉛微粉は微細
な点ではカーンブラックに類似しているように見られる
が、カーボンブラックは電気比抵抗が大であり、かつ黒
鉛化していないハードカーボンである点において本発明
の黒鉛微粉はカーボンブラックとは本質的に異るもので
ある。
That is, in the present invention, it is desirable that the graphitization of the carbon fiber is carried out before the pulverization. This is because when pulverized and graphitized, the powder agglomerates into a dumpling and a fine powder having a particle size of 1 μm or less cannot be obtained. The graphite fine powder thus obtained seems to be similar to Khan black in terms of fineness, but carbon black has a large electric resistivity and is non-graphitized hard carbon. The graphite fine powder of the invention is essentially different from carbon black.

粉砕には湿式または乾式ボールミルも使用できるが、粉
砕時間がかかり粉砕用ボールの摩耗による汚染が甚だし
いためその除去工程が必要となる。
Although a wet or dry ball mill can be used for pulverization, it takes a long time for pulverization, and the contamination due to abrasion of the pulverizing balls is serious, so that a removing step is required.

気流粉砕法はこの点、比較的効率が良く汚染も少いので
本発明に適用すれば効果的である。たとえば市販ジェッ
トミル等は最適である。
In this respect, the air flow pulverization method is relatively efficient and less polluting, and is effective when applied to the present invention. For example, a commercial jet mill or the like is optimal.

黒鉛化繊維をコーヒーミル等により簡単にほぐしてジェ
ットミルに供給し数回リサイクル粉砕すれば目的粒度の
微粉を得ることができる。
The graphitized fiber can be easily loosened by a coffee mill or the like, supplied to a jet mill, and recycled and pulverized several times to obtain a fine powder having a target particle size.

(実施例) 炭化水素とキャリアガスとの混合ガスより周知の方法に
従って気相法炭素繊維を製造し、この炭素繊維を非酸化
性雰囲気において2400℃以上にて黒鉛化したのちジェッ
トミルにて粉砕して黒鉛微粉を得た。
(Example) A vapor grown carbon fiber was produced from a mixed gas of a hydrocarbon and a carrier gas according to a well-known method, and the carbon fiber was graphitized at 2400 ° C or higher in a non-oxidizing atmosphere and then pulverized by a jet mill. Then, fine graphite powder was obtained.

この黒鉛微粉はSEM測定の結果、長径の最大値は0.8μ
m、短径は0.01〜0.3μmであった。この場合、微粉化
の機構は粉砕および/もしくは一部切断によるものであ
った。
As a result of SEM measurement, the maximum value of major axis of this fine graphite powder was 0.8μ.
m, and the minor axis was 0.01 to 0.3 μm. In this case, the mechanism of micronization was by crushing and / or partial cutting.

(試料1):上記黒鉛微粉を下記配合により混和し、ポ
リエステルフィルム上に塗布、乾燥し、乾燥後の塗布厚
さを3μmとした。
(Sample 1): The above graphite fine powder was mixed in the following formulation, coated on a polyester film and dried, and the coating thickness after drying was set to 3 μm.

黒鉛微粉 5部(重量) トルエン 50部( 〃) MEX 50部( 〃) 酢酸ビニール 25部( 〃) (試料2):試料1において黒鉛微粉の代りに天然黒鉛
粉〔日本黒鉛(株)製CSSP、平均粒径1μm〕を(1)
を同量使用した。
Graphite fine powder 5 parts (weight) Toluene 50 parts (〃) MEX 50 parts (〃) Vinyl acetate 25 parts (〃) (Sample 2): Natural graphite powder [Nippon Graphite Co., Ltd. CSSP in Sample 1 instead of graphite fine powder , Average particle size 1 μm] (1)
Was used in the same amount.

(試料3):試料1において黒鉛微粉の代りにカーボン
ブラック〔旭サーマル(株)製、平均粒径90μm〕を
(1)と同量使用した。
(Sample 3): Carbon black [Asahi Thermal Co., Ltd., average particle size 90 μm] was used in the same amount as in (1) instead of the graphite fine powder in Sample 1.

上記各試料それぞれの厚さ3μmの部分について光透過
性、表面電気抵抗および摩擦係数を測定した結果、次表
に示す成績を得た。
The results shown in the following table were obtained as a result of measuring the light transmittance, the surface electric resistance, and the coefficient of friction of the portion of each sample having a thickness of 3 μm.

ただし、光透過性に関する測定法はJIS C6290により、
表面電気抵抗はJIS K6911に準じた方法により、また摩
擦係数は荷重と引張力の比から求めたものである。
However, the measurement method for light transmittance is according to JIS C6290,
The surface electric resistance is obtained by a method according to JIS K6911, and the friction coefficient is obtained from the ratio of load and tensile force.

上記成績で明らかなように、本発明黒鉛微粉(試料1)
は天然黒鉛(試料2)およびカーボンブラック(試料
3)にくらべて光透過性低く、表面電気抵抗、摩擦係数
ともに低く、このような性質はテープ等のバック・コー
トに特に好適なものである。
As is clear from the above results, the graphite fine powder of the present invention (Sample 1)
Is lower in light transmission than natural graphite (Sample 2) and carbon black (Sample 3), and has low surface electric resistance and low friction coefficient. Such properties are particularly suitable for a back coat such as a tape.

(発明の効果) 上記によって明らかな通り本発明の黒鉛微粉は気相法炭
素繊維から出発するため粒径1μm以下の粉砕微粉が容
易に得られるのみならず、粒径が極めて微細であるため
コーティング表面は滑らかで摺動性良好であり、光透過
性、表面電気抵抗、摩擦係数等の機能性にすぐれるため
音響用テープ、ビデオテープ等の塗布剤としてその性能
向上に及ぼす効果は大である。
(Effect of the invention) As is clear from the above, the graphite fine powder of the present invention starts from vapor grown carbon fiber, so that not only pulverized fine powder having a particle size of 1 μm or less can be easily obtained, but also because the particle size is extremely fine, coating The surface is smooth and has good slidability, and because it has excellent functionality such as light transmission, surface electrical resistance, and friction coefficient, it has a great effect on its performance as a coating agent for audio tapes, video tapes, etc. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】黒鉛化した気相法炭素繊維の粒径1μm以
下の粉砕微粉。
1. A pulverized fine powder of graphitized vapor grown carbon fiber having a particle size of 1 μm or less.
JP61163720A 1986-07-14 1986-07-14 Graphite fine powder Expired - Lifetime JPH0735251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163720A JPH0735251B2 (en) 1986-07-14 1986-07-14 Graphite fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163720A JPH0735251B2 (en) 1986-07-14 1986-07-14 Graphite fine powder

Publications (2)

Publication Number Publication Date
JPS6321208A JPS6321208A (en) 1988-01-28
JPH0735251B2 true JPH0735251B2 (en) 1995-04-19

Family

ID=15779372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163720A Expired - Lifetime JPH0735251B2 (en) 1986-07-14 1986-07-14 Graphite fine powder

Country Status (1)

Country Link
JP (1) JPH0735251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051063A (en) * 2004-08-10 2006-02-23 Mizuno Technics Kk Wooden bat

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3502490B2 (en) * 1995-11-01 2004-03-02 昭和電工株式会社 Carbon fiber material and method for producing the same
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
JP2002329494A (en) * 2001-02-28 2002-11-15 Kashima Oil Co Ltd Graphite material for negative electrode of lithium ion secondary battery and production process thereof
JP2006315893A (en) * 2005-05-11 2006-11-24 Sumitomo Precision Prod Co Ltd Method for producing carbon nanotube-dispersed composite material
JP4908858B2 (en) 2006-01-31 2012-04-04 保土谷化学工業株式会社 Method for producing fine carbon fiber aggregate
JP6088811B2 (en) * 2012-12-13 2017-03-01 昭和電工株式会社 Sputtering target manufacturing method and magnetic recording medium manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051063A (en) * 2004-08-10 2006-02-23 Mizuno Technics Kk Wooden bat

Also Published As

Publication number Publication date
JPS6321208A (en) 1988-01-28

Similar Documents

Publication Publication Date Title
JP6367865B2 (en) Method for producing graphite powder with increased bulk density
Nakamizo et al. Laser Raman studies on carbons
Puchy et al. Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures
JP4362276B2 (en) Fine carbon fiber, its production method and its use
Jager et al. Optical properties of carbonaceous dust analogues
US7390593B2 (en) Fine carbon fiber, method for producing the same and use thereof
KR102468088B1 (en) Wet-milled and dried carbonaceous shear nanoleaf
US20060035081A1 (en) Carbonaceous material for forming electrically conductive matrail and use thereof
JP2004221071A (en) Carbonaceous material for conductive composition and its usage
US7150911B2 (en) Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
CN108565437A (en) Si-C composite material and its preparation method and application
JPH0735251B2 (en) Graphite fine powder
CN102933306A (en) Methods of making carbonaceous particles
CN108565438A (en) Complex carbon material and its preparation method and application
Selvakumar et al. Electrical resistivity, tribological behaviour of multiwalled carbon nanotubes and nanoboron carbide particles reinforced copper hybrid composites for pantograph application
Lee et al. Solid solubility in isolated nanometer-sized alloy particles in the Sn-Pb system
JP2001200211A (en) Electroconductive coating material
Balázsi Silicon nitride composites with different nanocarbon additives
Kavitha et al. Synthesis and characterization of nano silicon carbide powder from agricultural waste
Zhao et al. Tribological properties of fullerenes C60 and C70 microparticles
Maity et al. Electrical conduction in nanocomposites of copper in silicate glasses
Saminathan et al. Improved thermoelectric properties of Fe doped Si-rich higher manganese silicide
JP2005053752A (en) Modified graphite particle and paint with which the modified graphite particle is compounded
Song et al. Electrical and mechanical properties as a processing condition in polyvinylchloride multi walled carbon nanotube composites
JPH08217434A (en) Production of flaky graphite fine powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term