JP2006049351A - Light emitting device and its manufacturing method - Google Patents

Light emitting device and its manufacturing method Download PDF

Info

Publication number
JP2006049351A
JP2006049351A JP2004223982A JP2004223982A JP2006049351A JP 2006049351 A JP2006049351 A JP 2006049351A JP 2004223982 A JP2004223982 A JP 2004223982A JP 2004223982 A JP2004223982 A JP 2004223982A JP 2006049351 A JP2006049351 A JP 2006049351A
Authority
JP
Japan
Prior art keywords
layer
light emitting
film
light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004223982A
Other languages
Japanese (ja)
Inventor
Kenji Goto
謙次 後藤
Takuya Kawashima
卓也 川島
Nobuo Tanabe
信夫 田辺
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004223982A priority Critical patent/JP2006049351A/en
Priority to EP05767213A priority patent/EP1780806A4/en
Priority to US11/572,547 priority patent/US7683379B2/en
Priority to KR1020077003264A priority patent/KR20070046108A/en
Priority to TW094125395A priority patent/TWI266436B/en
Priority to PCT/JP2005/013698 priority patent/WO2006011497A1/en
Publication of JP2006049351A publication Critical patent/JP2006049351A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device having little variation in intensity of light according to directions on the light emitting surface. <P>SOLUTION: The light emitting device 1 comprises: at least a laminate consisting of the layer 5 of a first conductivity type, and the layer 7 of a second conductivity type which are stacked via a light emitting portion 6; a metal thin film layer 9 formed on the layer 7 of the second conductivity type which constitutes the laminate; and a transparent conductor 12 formed on the metal thin film layer 9. The transparent conductor 12 consists of a single layer of transparent conductive film 10. The crystal grain diameter in the light emitting surface 10' of the transparent conductive film 10 is not less than 30 nm nor more than 300 nm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、化合物半導体層から光を取り出す化合物半導体の発光素子に関し、特に、透明導電膜を窓極として利用した化合物半導体の発光素子及びその製造方法に関する。   The present invention relates to a compound semiconductor light emitting device that extracts light from a compound semiconductor layer, and more particularly to a compound semiconductor light emitting device using a transparent conductive film as a window electrode and a method for manufacturing the same.

GaN、AlGaN、InGaN及びInGaAlN等の窒化ガリウム系化合物半導体は、緑色や青色等の可視光発光デバイスとして注目されている。   Gallium nitride compound semiconductors such as GaN, AlGaN, InGaN, and InGaAlN are attracting attention as visible light emitting devices such as green and blue.

これら窒化ガリウム系化合物半導体を用いた光デバイスの製造においては、窒化ガリウム系化合物半導体と格子整合する基板が少ないことから、通常、サファイアが結晶成長用の基板として用いられる。そして、サファイアのような絶縁性の基板を用いる場合は、他のGaAsやInP等の導電性を有する半導体基板を用いた発光素子とは異なり、基板側から電極を取り出すことができないので、半導体層に設けるp側電極およびn側電極は、半導体層を積層させる基板の一面側に形成することになる。   In the manufacture of optical devices using these gallium nitride compound semiconductors, sapphire is usually used as a substrate for crystal growth because there are few substrates that lattice match with gallium nitride compound semiconductors. When an insulating substrate such as sapphire is used, an electrode cannot be taken out from the substrate side unlike a light emitting element using a conductive semiconductor substrate such as GaAs or InP. The p-side electrode and the n-side electrode provided in are formed on one side of the substrate on which the semiconductor layers are stacked.

そこで、発光する光の透過性の低下を抑制するために、透光性の電極を設けた窒化ガリウム系化合物半導体発光素子が提案されている(例えば、特許文献1参照)。   Accordingly, a gallium nitride-based compound semiconductor light-emitting element provided with a translucent electrode has been proposed in order to suppress a decrease in the transmissivity of emitted light (see, for example, Patent Document 1).

図3は、透光性電極を設けた従来の窒化ガリウム系化合物半導体発光素子の一例を示す断面図である。窒化ガリウム系化合物半導体発光素子300は、サファイア基板301の一方の面(図3の上面)にGaNバッファ層303を介してn型GaN層305が設けられ、このn型GaN層305の一方の面(図3の上面)に、p型ドーパントであるMgを含むp型GaN層307とTi/Au等からなるn側電極309が設けられている。そして、n側電極309は、その周囲をSiO膜311aで囲まれてp型GaN層307と電気的に絶縁されている。 FIG. 3 is a cross-sectional view showing an example of a conventional gallium nitride compound semiconductor light emitting device provided with a translucent electrode. In the gallium nitride-based compound semiconductor light emitting device 300, an n-type GaN layer 305 is provided on one surface (upper surface in FIG. 3) of the sapphire substrate 301 via a GaN buffer layer 303, and one surface of the n-type GaN layer 305 is provided. A p-type GaN layer 307 containing Mg as a p-type dopant and an n-side electrode 309 made of Ti / Au or the like are provided on the upper surface of FIG. The n-side electrode 309 is electrically insulated from the p-type GaN layer 307 by surrounding the n-side electrode 309 with a SiO 2 film 311a.

一方、p型GaN層307上にはSiO膜311bとMg入りの金属薄膜層313が設けられ、さらにこの金属薄膜層313上には電流拡散用としてスズ添加酸化インジウム(ITO)膜からなる厚さ100nmの透明導電膜315が設けられ、SiO膜311b上と透明導電膜315の一部を覆うようにTi/Au等からなるp側電極317が設けられている。 On the other hand, a SiO 2 film 311b and a Mg-containing metal thin film layer 313 are provided on the p-type GaN layer 307, and a thickness of a tin-added indium oxide (ITO) film for current diffusion is provided on the metal thin film layer 313. A transparent conductive film 315 having a thickness of 100 nm is provided, and a p-side electrode 317 made of Ti / Au or the like is provided so as to cover the SiO 2 film 311b and a part of the transparent conductive film 315.

つまり、この構成においては、n型GaN層305とp型GaN層307との接合界面から発光される光を、透明導電膜315を通して取り出すことができる。なお、図3において、点線は、p側電極317から透明導電膜315を通って接合界面へ流れる電流の流れを示す。一方、一点鎖線は、接合界面から発光される光が主に透明導電膜315を通って、外部へ放射される状況を示す。   That is, in this configuration, light emitted from the junction interface between the n-type GaN layer 305 and the p-type GaN layer 307 can be extracted through the transparent conductive film 315. In FIG. 3, the dotted line shows the flow of current flowing from the p-side electrode 317 through the transparent conductive film 315 to the junction interface. On the other hand, the alternate long and short dash line indicates a state in which light emitted from the bonding interface is emitted to the outside mainly through the transparent conductive film 315.

また、p型ドーパントであるMgをドープしたp型GaN層の上に、電流拡散層として、一層目に真空蒸着法によってスズ添加酸化インジウム(ITO)膜を形成し、その上にスパッタ法により二層目のスズ添加酸化インジウム(ITO)膜を形成して透明導電膜を設けたものが提案されている(例えば、特許文献2参照)。   In addition, a tin-doped indium oxide (ITO) film is formed as a current diffusion layer on the first layer by vacuum deposition on the p-type GaN layer doped with Mg, which is a p-type dopant, and two layers are formed thereon by sputtering. There has been proposed a layer in which a tin-added indium oxide (ITO) film is formed and a transparent conductive film is provided (see, for example, Patent Document 2).

図4は、このような二層のスズ添加酸化インジウムを形成した窒化ガリウム系化合物半導体発光素子400の断面図である。サファイア基板410の一方の面にAlNバッファ層420、厚さ約1.2μmのSiドープGaN層430、n型GaNとn型InGaNの多重量子井戸(MQW)からなる厚さ約40nmの活性層440、AlNとp型GaNの超格子からなる厚さ約20nmのキャップ層450、厚さ約200nmのMgドープGaN層460、厚さ数nmのZn膜470が順に設けられ、この上に、厚さ約10nmの下側透明導電膜である下側スズ添加酸化インジウム膜481と、この下側スズ添加酸化インジウム膜481の上に、上側透明導電膜である厚さ約500nmの上側スズ添加酸化インジウム膜482が形成されて透明導電膜480が設けられ、さらに、一部露出させたSiドープGaN層430上にn型電極491が、上側スズ添加酸化インジウム膜482上にp型電極492が設けられている。   FIG. 4 is a cross-sectional view of a gallium nitride-based compound semiconductor light emitting device 400 in which such two layers of tin-doped indium oxide are formed. On one surface of the sapphire substrate 410, an AlN buffer layer 420, a Si-doped GaN layer 430 having a thickness of about 1.2 μm, and an active layer 440 having a thickness of about 40 nm made of n-type GaN and n-type InGaN multiple quantum wells (MQW). , A cap layer 450 having a thickness of about 20 nm made of a superlattice of AlN and p-type GaN, a Mg-doped GaN layer 460 having a thickness of about 200 nm, and a Zn film 470 having a thickness of several nm are sequentially provided. A lower tin-added indium oxide film 481 which is a lower transparent conductive film of about 10 nm, and an upper tin-added indium oxide film having a thickness of about 500 nm which is an upper transparent conductive film on the lower tin-added indium oxide film 481 482 is formed and a transparent conductive film 480 is provided. Further, an n-type electrode 491 is formed on the partially exposed Si-doped GaN layer 430 by upper tin-added oxidation. p-type electrode 492 is provided on the indium film 482.

下側スズ添加酸化インジウム膜481を真空蒸着法で形成し、上側スズ添加酸化インジウム膜482をスパッタ法で形成していることから、スパッタ法のみによって透明導電膜480を形成した場合に比べると、下側スズ添加酸化インジウム膜481を真空蒸着法で形成した方が、MgドープGaN層460の損傷が少なくなり、動作電圧が低く、光の外部への取出し効率が良い化合物半導体発光素子400が得られると記載されている。   Since the lower tin-added indium oxide film 481 is formed by a vacuum deposition method and the upper tin-added indium oxide film 482 is formed by a sputtering method, compared to the case where the transparent conductive film 480 is formed only by the sputtering method, When the lower tin-added indium oxide film 481 is formed by the vacuum evaporation method, the compound-doped light-emitting device 400 is obtained in which the Mg-doped GaN layer 460 is less damaged, the operating voltage is low, and the light extraction efficiency is good. It is stated that

さらに、スズ添加酸化インジウムからなる透明導電膜ではなく、金属よりなる透光性の電極を設けた窒化ガリウム系化合物半導体発光素子が提案されている(例えば、特許文献3参照)。   Furthermore, a gallium nitride-based compound semiconductor light-emitting element in which a translucent electrode made of metal is provided instead of a transparent conductive film made of tin-added indium oxide has been proposed (for example, see Patent Document 3).

図5は、この一例として、Ni、Auを蒸着して透光性電極505を形成した窒化ガリウム系化合物半導体発光素子500の断面図である。サファイア基板501の一方の面にn型GaN層502、p型GaN層503が順に設けられ、p型GaN層上にNi/Auからなる金属の透光性電極505が設けられている。透光性電極505は、蒸着装置にて、p型GaN層503の上にNiを30nm、Niの上にAuを70nmの厚さで蒸着し、蒸着後、アニーリング装置で、500℃で10分間アニーリングして合金化するとともに透光性にしたものであり、発光効率、製造歩留まりの良い発光ダイオードが製造できると記載されている。
特許第3207773号公報 特許第3394488号公報 特許第2803742号公報
FIG. 5 is a cross-sectional view of a gallium nitride compound semiconductor light emitting device 500 in which Ni and Au are vapor-deposited to form a translucent electrode 505 as an example. An n-type GaN layer 502 and a p-type GaN layer 503 are sequentially provided on one surface of the sapphire substrate 501, and a metal translucent electrode 505 made of Ni / Au is provided on the p-type GaN layer. The translucent electrode 505 is formed by depositing Ni on the p-type GaN layer 503 at a thickness of 30 nm and Au on the Ni at a thickness of 70 nm using a vapor deposition apparatus. After vapor deposition, the annealing apparatus is used at 500 ° C. for 10 minutes. It is described that a light-emitting diode can be manufactured by annealing and alloying and making it light-transmitting and having good luminous efficiency and manufacturing yield.
Japanese Patent No. 3207773 Japanese Patent No. 3394488 Japanese Patent No. 2803742

しかしながら、上記の窒化ガリウム系化合物半導体発光素子300、400、500においては、透明導電体315、480や透光性電極505の屈折率が約2.0で、空気層の屈折率が約1.0であるため、発光層で発光した光が透明導電体や透光性電極を通って空気層に出光される際に、透明導電体や透光性電極と空気層との界面(出光面)における全反射の比率が大きくなり、方位により光の強度が異なるという問題がある。
本発明は、このような事情に鑑みてなされたもので、透明導電体からなる出光面において全反射の比率を抑え、方位による光の強度のバラツキの少ない発光素子を提供することを課題とする。
However, in the gallium nitride compound semiconductor light emitting devices 300, 400, and 500 described above, the refractive index of the transparent conductors 315 and 480 and the translucent electrode 505 is about 2.0, and the refractive index of the air layer is about 1. Since the light emitted from the light emitting layer is emitted to the air layer through the transparent conductor or translucent electrode, the interface between the transparent conductor or translucent electrode and the air layer (light exit surface) There is a problem that the ratio of total reflection in the light beam increases and the light intensity varies depending on the orientation.
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a light-emitting element that suppresses the ratio of total reflection on the light-emitting surface made of a transparent conductor and has less variation in light intensity depending on the orientation. .

上記課題を解決するために、本発明に係る発光素子は、発光部を介して第一導電型層と第二導電型層を配してなる積層体と、該積層体をなす第二導電型層上に設けた金属薄膜層と、該金属薄膜層上に設けた透明導電体とを少なくとも備えてなる発光素子であって、前記透明導電体は、単層の透明導電膜からなり、該透明導電膜の出光面における結晶粒径が30nm以上300nm以下であることを特徴としている。   In order to solve the above-described problems, a light-emitting element according to the present invention includes a laminated body in which a first conductive type layer and a second conductive type layer are arranged via a light emitting portion, and a second conductive type forming the laminated body. A light emitting device comprising at least a metal thin film layer provided on a layer and a transparent conductor provided on the metal thin film layer, wherein the transparent conductor comprises a single-layer transparent conductive film, The crystal grain size at the light exit surface of the conductive film is 30 nm to 300 nm.

かかる構成において、発光部とは、第一導電型層と第二導電型層との間に位置する層、又は第一導電型層と第二導電型層の界面を意味する。   In such a configuration, the light emitting part means a layer located between the first conductivity type layer and the second conductivity type layer, or an interface between the first conductivity type layer and the second conductivity type layer.

本発明に係る発光素子の製造方法は、発光部を介して第一導電型層と第二導電型層を配してなる積層体と、該積層体をなす第二導電型層上に設けた金属薄膜層と、該金属薄膜層上に設けた単層の透明導電膜からなる透明導電体とを少なくとも備えてなる発光素子の製造方法であって、前記透明導電膜の膜厚を変えることにより、該透明導電膜の出光面における結晶粒径を制御することを特徴としている。   The method for manufacturing a light-emitting element according to the present invention is provided on a laminated body in which a first conductive type layer and a second conductive type layer are arranged via a light emitting portion, and on a second conductive type layer forming the laminated body. A method for manufacturing a light emitting device comprising at least a metal thin film layer and a transparent conductor made of a single transparent conductive film provided on the metal thin film layer, wherein the film thickness of the transparent conductive film is changed. The crystal grain size at the light exit surface of the transparent conductive film is controlled.

本発明に係る発光素子は、発光部で発光した光が、透明導電体から空気層に出光する際、その出光面の結晶粒の大きさによる凹凸や結晶粒界により散乱されるために、多方向に強度のバラツキの少ない光が発光される。
また、本発明に係る発光素子の製造方法は、透明導電体の膜厚を変えることにより出光面における結晶粒径を制御し、出向される光のバラツキを少なくできる。
In the light emitting device according to the present invention, when the light emitted from the light emitting part is emitted from the transparent conductor to the air layer, it is scattered by unevenness or crystal grain boundaries due to the size of the crystal grains on the light emitting surface. Light with less intensity variation in the direction is emitted.
Moreover, the manufacturing method of the light emitting element which concerns on this invention can control the crystal grain diameter in a light emission surface by changing the film thickness of a transparent conductor, and can reduce the variation of the light to be sent out.

図1は、本発明に係る発光素子の実施形態の一例を示す断面図である。
なお、以下においては、発光部が層をなす場合について述べるが、界面発光の場合には、第一導電型層と第二導電型層の界面が発光部として機能する。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a light emitting device according to the present invention.
In the following, the case where the light emitting part forms a layer will be described. In the case of interface light emission, the interface between the first conductive type layer and the second conductive type layer functions as the light emitting part.

本発明の発光素子1は、サファイア基板2の一方の面(図1の上面)にGaNバッファ層3を介してSiをドーパントとするn型GaN層4が設けられ、このn型GaN層4を介してSiをドーパントとするn型AlGaN層(主たる第一導電型層)5が設けられている。そして、このn型AlGaN層5を介してInGaNとGaNの多重量子井戸(MQW)構造となる発光部6、発光部6を介してp型ドーパントであるMgを含むp型AlGaN層(主たる第二導電型層)7、p型AlGaN層7を介して、同じくMgをドーパントとするp型GaN層8、p型GaN層8を介してNiからなる金属薄膜層9、金属薄膜層9を介して単層の透明導電膜10からなる透明導電体12が設けられている。そして、この透明導電体12の表面の周縁の一部にはp側電極11が設けられ、一方、n型GaN層4の周縁部の一部の上に積層された各層が除去されて、露出したn型GaN層4上にn側電極14が設けられている。   In the light emitting device 1 of the present invention, an n-type GaN layer 4 having Si as a dopant is provided on one surface (upper surface in FIG. 1) of a sapphire substrate 2 with a GaN buffer layer 3 interposed therebetween. An n-type AlGaN layer (main first conductivity type layer) 5 using Si as a dopant is provided. Then, a light emitting part 6 having an InGaN and GaN multiple quantum well (MQW) structure through the n-type AlGaN layer 5 and a p-type AlGaN layer containing Mg as a p-type dopant through the light emitting part 6 (main second Conductive layer) 7, p-type AlGaN layer 7, p-type GaN layer 8 with Mg as a dopant, p-type GaN layer 8 through Ni thin film layer 9, and metal thin film layer 9 A transparent conductor 12 made of a single-layer transparent conductive film 10 is provided. Then, the p-side electrode 11 is provided on a part of the peripheral edge of the surface of the transparent conductor 12, while each layer laminated on a part of the peripheral part of the n-type GaN layer 4 is removed and exposed. An n-side electrode 14 is provided on the n-type GaN layer 4.

ここで、透明導電体12は、スズ添加酸化インジウム(以下、ITO膜という)、酸化スズ(以下、TO膜という)、酸化亜鉛(以下、ZnO膜という)、アンチモン添加酸化亜鉛(以下、AZO膜という)又はフッ素添加酸化スズ(以下、FTO膜という)の何れか1種の金属酸化物からなり、スプレー熱分解法、CVD法、スパッタ法、真空蒸着法、ゾルゲル法、ペースト塗布法等で成膜されるが、膜厚を厚くすることにより結晶粒径が大きくなる。   Here, the transparent conductor 12 includes tin-doped indium oxide (hereinafter referred to as ITO film), tin oxide (hereinafter referred to as TO film), zinc oxide (hereinafter referred to as ZnO film), antimony-doped zinc oxide (hereinafter referred to as AZO film). ) Or fluorine-added tin oxide (hereinafter referred to as FTO film), which is formed by spray pyrolysis method, CVD method, sputtering method, vacuum deposition method, sol-gel method, paste coating method, etc. Although the film is formed, the crystal grain size is increased by increasing the film thickness.

本発明に係る発光素子は、出光面の結晶粒径が100nm以上200nm以下であることによって、さらに効率よく散乱されるため、発光される光の強度のバラツキがより少なくなる。   The light emitting element according to the present invention is more efficiently scattered when the crystal grain size of the light exit surface is not less than 100 nm and not more than 200 nm, so that the variation in intensity of emitted light is further reduced.

以下、スプレー熱分解法で、ITO膜からなる透明導電体の膜厚をいろいろと変えて発光素子を作製した。スプレー熱分解法による、ITO成膜条件は、塩化インジウム(水和物)と塩化スズ(水和物)を、スズの添加量がインジウムに対して元素比で5at%となるように配合してエタノール液に溶解した液を350℃に加熱した金属薄膜層9に噴霧しておこなった。   Hereinafter, a light emitting device was manufactured by changing the film thickness of the transparent conductor made of the ITO film by spray pyrolysis. The conditions for ITO film formation by spray pyrolysis are as follows: indium chloride (hydrate) and tin chloride (hydrate) are blended so that the amount of tin added is 5 at% in terms of element ratio with respect to indium. The solution dissolved in the ethanol solution was sprayed on the metal thin film layer 9 heated to 350 ° C.

[実施例1]
サファイア基板2の一方の面にn型GaN層4、n型AlGaN層5、InGaNとGaNの多重量子井戸(MQW)構造となる発光部6、p型AlGaN層7、p型GaN層8、Niからなる金属薄膜層9の順に積層されたウエハを用意し、この金属薄膜層9上に厚さ100nmのITO膜からなる透明導電膜10を形成した。ITO膜からなる透明導電膜10の表面(出光面10´)の結晶粒径は30nmであった。
[Example 1]
On one surface of the sapphire substrate 2, an n-type GaN layer 4, an n-type AlGaN layer 5, a light emitting part 6 having a multiple quantum well (MQW) structure of InGaN and GaN, a p-type AlGaN layer 7, a p-type GaN layer 8, Ni A wafer laminated in the order of the metal thin film layers 9 was prepared, and a transparent conductive film 10 made of an ITO film having a thickness of 100 nm was formed on the metal thin film layer 9. The crystal grain size of the surface (light-emitting surface 10 ′) of the transparent conductive film 10 made of an ITO film was 30 nm.

次に、透明導電体12上にマスクを形成後、n型GaN層4の一方の面の周縁部が露出するまでエッチングを行い、露出したn型GaN層4上にAlを厚さ約0.4μm蒸着してn側電極14を形成した。一方、マスクを剥がした透明導電体12(透明導電膜10)上の周縁の一部に蒸着法により、Alを厚さ約0.8μm蒸着してp側電極13を設けた。   Next, after forming a mask on the transparent conductor 12, etching is performed until the peripheral portion of one surface of the n-type GaN layer 4 is exposed, and Al is deposited on the exposed n-type GaN layer 4 to a thickness of about 0. The n-side electrode 14 was formed by vapor deposition of 4 μm. On the other hand, Al was deposited to a thickness of about 0.8 μm by a vapor deposition method on a part of the periphery on the transparent conductor 12 (transparent conductive film 10) from which the mask was peeled off to provide the p-side electrode 13.

この窒化ガリウム系化合物層を形成したサファイア基板2を300μm角にダイシングしてベアチップとし、このベアチップをステム上にダイボンディングにより実装し、ワイヤボンディングにより配線して発光素子1を作製した。   The sapphire substrate 2 on which this gallium nitride compound layer was formed was diced to 300 μm square to form a bare chip, and this bare chip was mounted on the stem by die bonding, and the light emitting element 1 was fabricated by wiring by wire bonding.

[実施例2]
実施例1におけるITO膜の膜厚を320nm、出光面の結晶粒径を100nmとした以外は実施例1と同様にして発光素子2を作製した。
[Example 2]
A light-emitting element 2 was produced in the same manner as in Example 1 except that the thickness of the ITO film in Example 1 was 320 nm and the crystal grain size of the light exit surface was 100 nm.

[実施例3]
実施例1におけるITO膜の膜厚を850nm、出光面の結晶粒径を200nmとした以外は実施例1と同様にして発光素子3を作製した。
[Example 3]
A light emitting device 3 was produced in the same manner as in Example 1 except that the thickness of the ITO film in Example 1 was 850 nm and the crystal grain size of the light exit surface was 200 nm.

[実施例4]
実施例1におけるITO膜の膜厚を1000nm、出光面の結晶粒径を300nmとした以外は実施例1と同様にして発光素子4を作製した。
[Example 4]
A light emitting device 4 was produced in the same manner as in Example 1 except that the thickness of the ITO film in Example 1 was 1000 nm and the crystal grain size on the light exit surface was 300 nm.

[比較例1]
実施例1におけるITO膜の膜厚を40nm、出光面の結晶粒径を10nmとした以外は実施例1と同様にして発光素子を作製した。
[Comparative Example 1]
A light emitting device was produced in the same manner as in Example 1 except that the thickness of the ITO film in Example 1 was 40 nm and the crystal grain size on the light emitting surface was 10 nm.

[比較例2]
実施例1におけるITO膜の膜厚を1200nm、出光面の結晶粒径を400nmとした以外は実施例1と同様にして発光素子を作製した。
[Comparative Example 2]
A light emitting device was produced in the same manner as in Example 1 except that the thickness of the ITO film in Example 1 was 1200 nm and the crystal grain size of the light exit surface was 400 nm.

[評価及び評価結果]
実施例1〜4と比較例1、2で作製した発光素子を発光させて、図2に示すように、90°(鉛直)方向の光の強度と30°方向の光の強度を測定し、90°(鉛直)方向の光の強度(I90)に対する30°方向の光の強度(I30)の比(I30/I90)が0.2未満を×、0.2以上且つ0.5未満を△、0.5以上を○として評価した。すなわち、比(I30/I90)が大きいほど、方位による光の偏りが小さくなっていると言える。評価結果を表1に示す。
[Evaluation and evaluation results]
The light emitting devices manufactured in Examples 1 to 4 and Comparative Examples 1 and 2 were caused to emit light, and as shown in FIG. 2, the light intensity in the 90 ° (vertical) direction and the light intensity in the 30 ° direction were measured, When the ratio (I 30 / I 90 ) of the light intensity (I 30 ) in the 30 ° direction to the light intensity (I 90 ) in the 90 ° (vertical) direction is less than 0.2, ×, 0.2 or more and 0. Evaluation was made with a value of less than 5 as Δ and a value of 0.5 or more as ○. That is, it can be said that the larger the ratio (I 30 / I 90 ), the smaller the deviation of the light due to the orientation. The evaluation results are shown in Table 1.

Figure 2006049351
Figure 2006049351

透明導電体12を、ITO膜に代えて、TO膜、ZnO膜、AZO膜又はFTO膜からなる透明導電膜10としたが、いずれもITO膜と同様な結果が得られた。また、透明導電膜10をスプレー熱分解法に代えて、CVD法、スパッタ法、真空蒸着法、ゾルゲル法、ペースト塗布法で成膜したが、スプレー熱分解法と同様な結果が得られた。   Instead of the ITO film, the transparent conductor 12 was a transparent conductive film 10 made of a TO film, a ZnO film, an AZO film, or an FTO film, and all obtained the same results as the ITO film. Further, the transparent conductive film 10 was formed by a CVD method, a sputtering method, a vacuum deposition method, a sol-gel method, or a paste coating method instead of the spray pyrolysis method, and the same results as the spray pyrolysis method were obtained.

本発明の実施例に係る発光素子の実施形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the light emitting element which concerns on the Example of this invention. 本発明の評価方法を示す図である。It is a figure which shows the evaluation method of this invention. 従来の窒化ガリウム系化合物半導体発光素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional gallium nitride type compound semiconductor light emitting element. 従来の窒化ガリウム系化合物半導体発光素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional gallium nitride type compound semiconductor light emitting element. 従来の窒化ガリウム系化合物半導体発光素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional gallium nitride type compound semiconductor light emitting element.

符号の説明Explanation of symbols

1 発光素子、5 第一導電型層、6 発光部、7 第二導電型層、9 金属薄膜層、10 透明導電膜、10´ 出光面、12 透明導電体。

DESCRIPTION OF SYMBOLS 1 Light emitting element, 5 1st conductivity type layer, 6 Light emission part, 7 2nd conductivity type layer, 9 Metal thin film layer, 10 Transparent electrically conductive film, 10 'Outgoing surface, 12 Transparent conductor.

Claims (3)

発光部を介して第一導電型層と第二導電型層を配してなる積層体と、該積層体をなす第二導電型層上に設けた金属薄膜層と、該金属薄膜層上に設けた透明導電体とを少なくとも備えてなる発光素子であって、
前記透明導電体は、単層の透明導電膜からなり、該透明導電膜の出光面における結晶粒径が30nm以上300nm以下であることを特徴とする発光素子。
A laminated body in which a first conductive type layer and a second conductive type layer are arranged via a light emitting part, a metal thin film layer provided on the second conductive type layer forming the laminated body, and on the metal thin film layer A light emitting device comprising at least a transparent conductor provided,
The light-emitting element, wherein the transparent conductor is composed of a single-layer transparent conductive film, and a crystal grain size on a light exit surface of the transparent conductive film is 30 nm or more and 300 nm or less.
前記結晶粒径が100nm以上200nm以下であることを特徴とする請求項1に記載の発光素子。   The light emitting device according to claim 1, wherein the crystal grain size is 100 nm or more and 200 nm or less. 発光部を介して第一導電型層と第二導電型層を配してなる積層体と、該積層体をなす第二導電型層上に設けた金属薄膜層と、該金属薄膜層上に設けた単層の透明導電膜からなる透明導電体とを少なくとも備えてなる発光素子の製造方法であって、
前記透明導電膜の膜厚を変えることにより、該透明導電膜の出光面における結晶粒径を制御することを特徴とする発光素子の製造方法。




A laminated body in which a first conductive type layer and a second conductive type layer are arranged via a light emitting part, a metal thin film layer provided on the second conductive type layer forming the laminated body, and on the metal thin film layer A method for producing a light emitting device comprising at least a transparent conductor comprising a single-layer transparent conductive film provided,
A method for manufacturing a light-emitting element, wherein the crystal grain size on the light exit surface of the transparent conductive film is controlled by changing the film thickness of the transparent conductive film.




JP2004223982A 2004-07-30 2004-07-30 Light emitting device and its manufacturing method Withdrawn JP2006049351A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004223982A JP2006049351A (en) 2004-07-30 2004-07-30 Light emitting device and its manufacturing method
EP05767213A EP1780806A4 (en) 2004-07-30 2005-07-27 Light emitting element and manufacturing method thereof
US11/572,547 US7683379B2 (en) 2004-07-30 2005-07-27 Light emitting element and manufacturing method thereof
KR1020077003264A KR20070046108A (en) 2004-07-30 2005-07-27 Light emitting element and manufacturing method thereof
TW094125395A TWI266436B (en) 2004-07-30 2005-07-27 Light-emitting device and method for manufacturing the same
PCT/JP2005/013698 WO2006011497A1 (en) 2004-07-30 2005-07-27 Light emitting element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223982A JP2006049351A (en) 2004-07-30 2004-07-30 Light emitting device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006049351A true JP2006049351A (en) 2006-02-16

Family

ID=36027595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223982A Withdrawn JP2006049351A (en) 2004-07-30 2004-07-30 Light emitting device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006049351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038903A (en) * 2010-08-06 2012-02-23 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2012156503A (en) * 2012-01-13 2012-08-16 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038903A (en) * 2010-08-06 2012-02-23 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
US9412910B2 (en) 2010-08-06 2016-08-09 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
JP2012156503A (en) * 2012-01-13 2012-08-16 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5251121B2 (en) Gallium nitride semiconductor light emitting device and method for manufacturing the same
KR100631840B1 (en) Nitride semiconductor light emitting device for flip chip
KR101449030B1 (en) group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
US6914268B2 (en) LED device, flip-chip LED package and light reflecting structure
CN101656260B (en) Antistatic GaN-based luminescent device and preparation method thereof
TWI720026B (en) Light-emitting device
CN104022205B (en) Light emitting device and a fabrication method thereof
US8022430B2 (en) Nitride-based compound semiconductor light-emitting device
WO2006011497A1 (en) Light emitting element and manufacturing method thereof
JP2006066903A (en) Positive electrode for semiconductor light-emitting element
JP2008218878A (en) GaN BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
KR20110096680A (en) Light emitting device, method for fabricating the light emitting device and light emitting device package
US20130146920A1 (en) Ultraviolet light emitting device
JP2019207925A (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
EP2290709A2 (en) Semiconductor light-emitting device
JP2011034989A (en) Semiconductor light-emitting element and method for manufacturing the same, lamp, electronic apparatus, and mechanical apparatus
US20050224990A1 (en) High reflectivity p-contacts for group III-nitride light emitting diodes
US9209356B2 (en) Light-emitting element including a light-emitting stack with an uneven upper surface
US9178110B2 (en) Light-emitting device and method for manufacturing same
US10181550B2 (en) Method for fabricating high-efficiency light emitting diode having light emitting window electrode structure
CN106229400A (en) A kind of light emitting diode and preparation method thereof
JP4622426B2 (en) Semiconductor light emitting device
TWI575783B (en) Optoelectronic semiconductor chip and method for manufacturing optoelectronic semiconductor chip
CN108365056A (en) A kind of light emitting diode with vertical structure and its manufacturing method
JP2006049350A (en) Light emitting device and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002