JP2006049270A - Heater, and wafer heater and wafer heating device using it - Google Patents

Heater, and wafer heater and wafer heating device using it Download PDF

Info

Publication number
JP2006049270A
JP2006049270A JP2005020256A JP2005020256A JP2006049270A JP 2006049270 A JP2006049270 A JP 2006049270A JP 2005020256 A JP2005020256 A JP 2005020256A JP 2005020256 A JP2005020256 A JP 2005020256A JP 2006049270 A JP2006049270 A JP 2006049270A
Authority
JP
Japan
Prior art keywords
heating element
resistance heating
wafer
plate
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005020256A
Other languages
Japanese (ja)
Other versions
JP4693429B2 (en
Inventor
Tsunehiko Nakamura
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005020256A priority Critical patent/JP4693429B2/en
Priority to US11/138,943 priority patent/US7361865B2/en
Priority to CN 200510074602 priority patent/CN1708190B/en
Priority to KR1020050044514A priority patent/KR101098798B1/en
Publication of JP2006049270A publication Critical patent/JP2006049270A/en
Priority to US11/852,162 priority patent/US20080017632A1/en
Application granted granted Critical
Publication of JP4693429B2 publication Critical patent/JP4693429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein it is difficult to reduce the temperature difference in a wafer surface down to be within 0.3°C, because the temperature difference on the wafer surface is very large. <P>SOLUTION: This heater has a strip-like resistance heating element formed on a plate-shaped body, the strip, formed by the resistance heating element, has grooves that are nearly in parallel with the longitudinal direction, and the grooves are positioned eccentrically on the center side of the plate-shaped body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、抵抗発熱体に通電し加熱するヒータに関するもので、主にウェハを加熱する際に用いるウェハ加熱装置に使用され、例えば半導体ウェハや液晶装置あるいは回路基板等のウェハ上に薄膜を形成したり、上記ウェハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成する際に好適なヒータに関するものである。   The present invention relates to a heater that energizes and heats a resistance heating element, and is mainly used in a wafer heating apparatus used when heating a wafer. For example, a thin film is formed on a wafer such as a semiconductor wafer, a liquid crystal device, or a circuit board. And a heater suitable for forming a resist film by drying and baking a resist solution applied on the wafer.

半導体製造装置の製造工程における、半導体薄膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等においては、半導体ウェハ(以下、ウェハと略す)を加熱するためのセラミック製のヒータが用いられている。   Ceramic heaters for heating semiconductor wafers (hereinafter abbreviated as “wafers”) are used in semiconductor thin film deposition processing, etching processing, resist film baking processing, and the like in the manufacturing process of semiconductor manufacturing equipment. .

従来の半導体製造装置は、複数のウェハを一括して加熱するバッチ式と、1枚ずつ加熱する枚様式とがあり、枚葉式には、温度制御性に優れているので、半導体素子の配線の微細化とウェハ熱処理温度の精度向上が要求されるに伴い、セラミック製のヒータが広く使用されている。   The conventional semiconductor manufacturing apparatus has a batch type that heats a plurality of wafers at once and a sheet type that heats one wafer at a time. The single wafer type has excellent temperature controllability, so wiring of semiconductor elements is possible. Ceramic heaters are widely used in accordance with demands for miniaturization of wafers and improvement in accuracy of wafer heat treatment temperature.

このようなセラミック製のヒータとして、例えば特許文献1や特許文献2には、図6に示すようなセラミック製のヒータが提案されている。   As such a ceramic heater, for example, Patent Document 1 and Patent Document 2 propose a ceramic heater as shown in FIG.

このセラミックヒータ71は、板状セラミックス体72、金属ケース79、を主要な構成要素としたもので、アルミニウム等の金属からなる有底状の金属ケース79の開口部に、窒化物セラミックスや炭化物セラミックスからなる板状セラミックス体72を樹脂製の断熱性の接続部材74を介してボルト80で固定され、その上面をウェハWを載せる載置面73とするとともに、板状セラミックス体72の下面に、例えば図7に示すような同心円状の抵抗発熱体75を備えるようになっていた。   The ceramic heater 71 includes a plate-shaped ceramic body 72 and a metal case 79 as main components, and nitride ceramics or carbide ceramics are formed in an opening of a bottomed metal case 79 made of a metal such as aluminum. The plate-shaped ceramic body 72 is fixed with a bolt 80 via a heat insulating connecting member 74 made of resin, and the upper surface thereof is used as a mounting surface 73 on which the wafer W is placed, and the lower surface of the plate-shaped ceramic body 72 is For example, a concentric resistance heating element 75 as shown in FIG. 7 is provided.

さらに、抵抗発熱体75の端子部には、給電端子77がロウ付けされており、この給電端子77が金属ケース79の底部79aに形成されたリード線引出し用の孔76に挿通されたリード線78と電気的に接続されるようになっていた。   Furthermore, a power supply terminal 77 is brazed to the terminal portion of the resistance heating element 75, and the power supply terminal 77 is inserted into a lead wire drawing hole 76 formed in the bottom portion 79 a of the metal case 79. 78 to be electrically connected.

ところで、このようなセラミックヒータ71において、ウェハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質にするためには、ウェハの温度分布を均一にすることが重要である。その為、これまでウェハの面内の温度差を小さくするため、抵抗発熱体75の抵抗分布を調整したり、抵抗発熱体75の温度を分割制御することが行われている。しかし、印刷法で作製した抵抗発熱体は膜厚がばらつき設計通りの抵抗値が得られないとの問題があり、そこで、上記抵抗分布を調整する方法として特許文献3、特許文献4や特許文献5に記載のようなレーザビームで溝を形成して抵抗調整する方法が開示されている。   By the way, in such a ceramic heater 71, it is important to make the temperature distribution of the wafer uniform in order to form a homogeneous film on the entire surface of the wafer W and to make the heating reaction state of the resist film uniform. is there. Therefore, until now, in order to reduce the temperature difference in the surface of the wafer, the resistance distribution of the resistance heating element 75 is adjusted, or the temperature of the resistance heating element 75 is divided and controlled. However, the resistance heating element produced by the printing method has a problem that the film thickness varies and a resistance value as designed cannot be obtained. Therefore, as a method for adjusting the resistance distribution, Patent Document 3, Patent Document 4 and Patent Document 5, a method of adjusting the resistance by forming a groove with a laser beam is disclosed.

また、特許文献6のように抵抗発熱体を波状にし、波状部をレーザにてトリミングする方法や、図8に示すように抵抗発熱体の帯の端にレーザで複数の溝mを形成し、抵抗調整をしたセラミックヒータによりウェハWの温度分布を良くする方法が特許文献7に開示されている。
特開2001−203156号公報 特開2001−313249号公報 特開2001−244059号公報 特開2002−141159号公報 特開2002−151235号公報 特開2002−43031号公報 特開2002−203666号公報
In addition, a method of making the resistance heating element corrugated and trimming the corrugated portion with a laser as in Patent Document 6, or forming a plurality of grooves m with a laser at the end of the band of the resistance heating element as shown in FIG. Patent Document 7 discloses a method of improving the temperature distribution of the wafer W by using a ceramic heater with resistance adjustment.
JP 2001-203156 A JP 2001-313249 A JP 2001-244059 A JP 2002-141159 A JP 2002-151235 A JP 2002-43031 A JP 2002-203666 A

しかしながら、特許文献6や特許文献7のような方法では、部分的に抵抗発熱体の抵抗値を調整し、該部分の近傍における均熱精度を得ることはできたが、ウェハ表面全体の温度分布を均一にし、ウェハ表面の温度差を0.3℃にまで小さくすることは困難であった。   However, in the methods such as Patent Document 6 and Patent Document 7, it is possible to partially adjust the resistance value of the resistance heating element and obtain the soaking accuracy in the vicinity of the portion, but the temperature distribution over the entire wafer surface. It was difficult to make the temperature uniform and to reduce the temperature difference on the wafer surface to 0.3 ° C.

また、上記方法で形成したセラミックヒータは加熱・冷却を繰り返すうちに、上記した各部分同士で抵抗値に微差が生じ、そのことによりウェハ表面の均熱バランスが崩れ、温度差が大きくなるとの問題があった。   In addition, the ceramic heater formed by the above method has a slight difference in resistance value between the above-mentioned parts while heating and cooling are repeated, and this causes the heat balance on the wafer surface to collapse and the temperature difference to increase. There was a problem.

そこで、本発明者は上記の課題について鋭意検討した結果、本発明のヒータは、板状体の表面に帯状の抵抗発熱体を備え、該抵抗発熱体は長手方向に略並行な溝を有し、該溝を上記板状体の中心側に偏在させたことを特徴とする。   Therefore, as a result of intensive studies on the above problems, the inventor of the present invention has a strip-like resistance heating element on the surface of the plate-like body, and the resistance heating element has grooves substantially parallel to the longitudinal direction. The groove is unevenly distributed on the center side of the plate-like body.

また、板状体の表面に帯状の抵抗発熱体を備え、該抵抗発熱体は長手方向に略並行な溝を有し、該溝を上記板状体の外周側に偏在させたことを特徴とする。   The plate-like body is provided with a strip-like resistance heating element, the resistance heating element has a groove substantially parallel to the longitudinal direction, and the groove is unevenly distributed on the outer peripheral side of the plate-like body. To do.

また、上記溝は上記抵抗発熱体の抵抗値を調整可能な溝であることを特徴とする。   The groove may be a groove capable of adjusting a resistance value of the resistance heating element.

また、上記溝は抵抗発熱体の長手方向に略並行に複数備えられ、互いに隣接する複数の溝からなる群を形成することを特徴とする。   Further, a plurality of the grooves are provided substantially in parallel with the longitudinal direction of the resistance heating element, and a group of a plurality of grooves adjacent to each other is formed.

また、上記群は上記抵抗発熱体の帯の長手方向にそって複数に分割され、上記群と群との間隔が上記帯の幅よりも小さいことを特徴とする。   The group is divided into a plurality along the longitudinal direction of the band of the resistance heating element, and the distance between the group and the group is smaller than the width of the band.

また、上記群の長さは、該群が形成されている1つの上記帯の中心線の総長さの30〜97%であることを特徴とする。   Further, the length of the group is 30 to 97% of the total length of the center line of the one band in which the group is formed.

また、上記抵抗発熱体が略同心円状に配設した円弧状の帯と、それらを繋ぐ折り返し円弧状の帯とからなるとともに、少なくとも1箇所で同一円周上に位置する一対の折り返し円弧状の帯の間の距離が略同心円状に配設した円弧状の帯の間の距離よりも小さいことを特徴とする。   In addition, the resistance heating element includes an arc-shaped band disposed substantially concentrically and a folded arc-shaped band connecting them, and a pair of folded arc-shaped positions located on the same circumference in at least one place. The distance between the bands is smaller than the distance between the arc-shaped bands disposed substantially concentrically.

また、上記抵抗発熱体の同一円周上に位置する一対の折り返し円弧状の帯の間の距離が全ての箇所で略同心円状に配設した円弧状の帯の間の距離よりも小さいことを特徴とする。   The distance between the pair of folded arc-shaped bands located on the same circumference of the resistance heating element is smaller than the distance between the arc-shaped bands disposed substantially concentrically at all locations. Features.

また、上記同一円周上に位置する一対の折り返し円弧状の帯の間の距離が、略同心円状に配設した円弧状の帯の間の距離の30〜80%であることを特徴とする
また、略同心円状に形成された上記抵抗発熱体は、同心円状の最外周の抵抗発熱体の帯とその内側の帯との間隔が、上記最外周の抵抗発熱体を除く抵抗発熱体の同心円状の帯の間隔より小さいことを特徴とする。
The distance between the pair of folded arc-shaped bands located on the same circumference is 30 to 80% of the distance between the arc-shaped bands disposed substantially concentrically. In addition, the resistance heating element formed in a substantially concentric circle has a concentric circular outermost resistance heating element with a concentric circle of the resistance heating element excluding the outermost resistance heating element. It is characterized by being smaller than the interval between the strips.

そして、本発明のウェハ加熱用ヒータは、板状体の一方の主面をウェハ載置面とし、上記板状体の他方の主面に帯状の抵抗発熱体を備え、該抵抗発熱体は略同心円状に配設する円弧状の帯と、それらを繋ぐ折り返し帯とからなるとともに、長手方向に略並行な溝を有し、同心円状に配設する円弧状の帯に形成された上記溝を上記板状体の中心側に偏在させたことを特徴とする。   The heater for heating a wafer according to the present invention has one main surface of the plate-like body as a wafer mounting surface, and a belt-like resistance heating element on the other main surface of the plate-like body, Consisting of an arc-shaped band disposed concentrically and a folded band connecting them, the groove formed in the arc-shaped band disposed concentrically with a groove substantially parallel to the longitudinal direction. It is characterized by being unevenly distributed on the center side of the plate-like body.

また、板状体の一方の主面をウェハ載置面とし、上記板状体の他方の主面に帯状の抵抗発熱体を備え、該抵抗発熱体は略同心円状に配設する円弧状の帯と、それらを繋ぐ折り返し帯とからなるとともに、長手方向に略並行な溝を有し、同心円状に配設する円弧状の帯に形成された上記溝を上記板状体の外周側に偏在させたことを特徴とする。   Also, one main surface of the plate-like body is used as a wafer mounting surface, and the other main surface of the plate-like body is provided with a belt-like resistance heating element, and the resistance heating element is arranged in an arc shape arranged substantially concentrically. It is composed of a band and a folded band connecting them, and has a groove substantially parallel to the longitudinal direction, and the groove formed in an arc-shaped band arranged concentrically is unevenly distributed on the outer peripheral side of the plate-like body It was made to be characterized.

また、上記溝は上記抵抗発熱体の抵抗値を調整可能な溝であることを特徴とする。   The groove may be a groove capable of adjusting a resistance value of the resistance heating element.

また、上記抵抗発熱体の同一円周上に位置する一対の折り返し円弧状の帯の間の距離が少なくとも1箇所で略同心円状に配設した円弧状の帯の間の距離よりも小さいことを特徴とする。   Further, the distance between the pair of folded arc-shaped bands located on the same circumference of the resistance heating element is smaller than the distance between the arc-shaped bands disposed substantially concentrically at one place. Features.

また、上記抵抗発熱体の同一円周上に位置する一対の折り返し円弧状の帯の間の距離が全ての箇所で略同心円状に配設した円弧状の帯の間の距離よりも小さいことを特徴とすることを特徴とする。   The distance between the pair of folded arc-shaped bands located on the same circumference of the resistance heating element is smaller than the distance between the arc-shaped bands disposed substantially concentrically at all locations. It is a characteristic.

また、上記抵抗発熱体の同一円周上に位置する一対の折り返し円弧状の帯の間の距離が、略同心円状に配設した円弧状の帯の間の距離の30〜80%であることを特徴とする。   The distance between the pair of folded arc-shaped bands located on the same circumference of the resistance heating element is 30 to 80% of the distance between the arc-shaped bands disposed substantially concentrically. It is characterized by.

また、略同心円状に形成された上記抵抗発熱体は、同心円状の最外周の抵抗発熱体の帯とその内側の帯との間隔が、上記最外周の抵抗発熱体を除く抵抗発熱体の同心円状の帯の間隔より小さいことを特徴とする。   In addition, the resistance heating element formed in a substantially concentric circle has a concentric circular outermost resistance heating element with a concentric circle of the resistance heating element excluding the outermost resistance heating element. It is characterized by being smaller than the interval between the strips.

また、上記溝は上記抵抗発熱体の抵抗値を調整可能な溝であることを特徴とする。   The groove may be a groove capable of adjusting a resistance value of the resistance heating element.

そして、本発明のウェハ加熱装置は、上記抵抗発熱体を独立して加熱できる給電部を有する抵抗発熱体ゾーンと、上記給電部を囲む金属ケースとを有し、上記抵抗発熱体ゾーンは、中心部に備えた円形の抵抗発熱体ゾーンと、該円形の抵抗発熱体ゾーンを包囲する円環状の抵抗発熱体ゾーンとからなることを特徴とする。   The wafer heating apparatus of the present invention includes a resistance heating element zone having a power feeding part capable of independently heating the resistance heating element, and a metal case surrounding the power feeding part. It comprises a circular resistance heating element zone provided in the section and an annular resistance heating element zone surrounding the circular resistance heating element zone.

このように、本発明のヒータやウェハ加熱用ヒータは、板状体の表面に帯状の抵抗発熱体を備え、該抵抗発熱体は長手方向に略並行な溝を有し、該溝を上記板状体の中心側、もしくは外周側に偏在させたことにより、ヒータの急速加熱、および強制冷却を繰り返して上記溝の近傍から抵抗発熱体の幅方向に発生するクラックの進行を上記溝で防止することができるため抵抗発熱体の断線等の重大な故障を防止できるとともに、抵抗発熱体の抵抗値変化を抑制することができる。さらに、対称性よく溝を配置して抵抗発熱体の抵抗値の調整しているため、抵抗発熱体の発熱域をほぼ均一な温度に維持することができる。さらには、ウェハに対し中心対称に形成された帯状の抵抗発熱体を配するウェハ加熱用ヒータに適用すれば、ウェハ面内の温度差を小さくできるため、ウェハ面内の温度差が0.3℃以下と小さい均熱性に優れたウェハ加熱用ヒータを提供できる。   As described above, the heater of the present invention and the heater for heating a wafer are provided with a strip-like resistance heating element on the surface of the plate-like body, the resistance heating element has a groove substantially parallel to the longitudinal direction, and the groove is formed on the plate. Due to the uneven distribution on the center side or the outer peripheral side of the body, rapid heating and forced cooling of the heater are repeated to prevent the progress of cracks generated in the width direction of the resistance heating element from the vicinity of the groove. Therefore, a serious failure such as disconnection of the resistance heating element can be prevented, and a change in the resistance value of the resistance heating element can be suppressed. Furthermore, since the resistance value of the resistance heating element is adjusted by arranging the grooves with good symmetry, the heating area of the resistance heating element can be maintained at a substantially uniform temperature. Furthermore, since the temperature difference in the wafer surface can be reduced by applying it to a wafer heating heater having a strip-like resistance heating element formed symmetrically with respect to the wafer, the temperature difference in the wafer surface is 0.3. It is possible to provide a heater for heating a wafer that is excellent in heat uniformity as small as below.

しかも、上記ヒータの製造歩留まりが良く、大量生産が容易で安価なヒータを提供できる。   In addition, it is possible to provide a heater with a good manufacturing yield of the heater, easy to mass-produce and inexpensive.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は本発明に係るヒータ1と、そのヒータ1を利用して作製されたウェハ加熱用ヒータ110、および該ウェハ加熱用ヒータ110を用いたウェハ加熱装置111の一例を示す断面図であり、板状体2の一方の主面をウェハWを載せるウェハ載置面3とするとともに、他方の主面に抵抗発熱体5を形成し、該抵抗発熱体5に電気的に導通できる金や銀、パラジウム、白金等の材質からなる給電部6を具備した後に、抵抗発熱体5に複数の溝mを設けて抵抗値を調整すると、ヒータ1を利用したウェハ加熱用ヒータ110を作製できる。   FIG. 1 is a cross-sectional view showing an example of a heater 1 according to the present invention, a wafer heating heater 110 manufactured using the heater 1, and a wafer heating device 111 using the wafer heating heater 110. One main surface of the plate-like body 2 is a wafer mounting surface 3 on which the wafer W is placed, and a resistance heating element 5 is formed on the other main surface, and gold or silver which can be electrically connected to the resistance heating element 5 When the resistance heating element 5 is provided with a plurality of grooves m and the resistance value is adjusted after the feeding portion 6 made of a material such as palladium or platinum is provided, the heater 110 for heating the wafer using the heater 1 can be manufactured.

次に、給電部6を囲む金属ケース19が、ヒータ1と直接接触しないように接続部材17を介して、ヒータ1の他方の主面の周辺部に固定する。   Next, the metal case 19 surrounding the power feeding unit 6 is fixed to the peripheral portion of the other main surface of the heater 1 through the connection member 17 so as not to directly contact the heater 1.

次に、金属ケース19開口部近傍の外周にボルト16を貫通させ、金属ケース19側より弾性体18を介在させてナット20を螺着することにより弾性的に固定している。これにより、ヒータ1の温度が変動した場合に金属ケース19が変形しても、弾性体18によって上記変形力を吸収し、これにより板状体2の反りを抑制し、ウェハW表面に、板状体2の反りに起因する温度ばらつきが発生することを防止できるようになる。   Next, the bolt 16 is passed through the outer periphery in the vicinity of the opening of the metal case 19 and is elastically fixed by screwing the nut 20 through the elastic body 18 from the metal case 19 side. Thereby, even if the metal case 19 is deformed when the temperature of the heater 1 fluctuates, the deformation force is absorbed by the elastic body 18, thereby suppressing the warpage of the plate-like body 2, It is possible to prevent the occurrence of temperature variations due to warping of the body 2.

ここで、金属ケース19は底面21と側壁部22を有し、板状体2はその有底の金属ケース19の開口部を覆うように設置してある。また、金属ケース19の底面21には、板状体2を冷却するためのガス噴射口24と、冷却ガスを排出するための孔23が施されており、ヒータ1に給電するための給電部6に導通するための給電端子11、ヒータ1の温度を測定するための測温素子27を設置すると本発明のウェハ加熱装置111を作製できる。   Here, the metal case 19 has a bottom surface 21 and a side wall portion 22, and the plate-like body 2 is installed so as to cover the opening of the bottomed metal case 19. Further, the bottom surface 21 of the metal case 19 is provided with a gas injection port 24 for cooling the plate-like body 2 and a hole 23 for discharging the cooling gas, and a power supply unit for supplying power to the heater 1. When the power supply terminal 11 for conducting to 6 and the temperature measuring element 27 for measuring the temperature of the heater 1 are installed, the wafer heating apparatus 111 of the present invention can be manufactured.

そして、ヒータ1を貫通する貫通孔26を通してリフトピン25を設け、搬送アーム(不図示)にて載置面3の上方まで運ばれたウェハWをリフトピン25にて支持したあと、リフトピン25を降下させてウェハWを載置面3上に載せる。そして、給電部6に給電端子11が接続し外部から電力が供給され、測温素子27で板状体2の温度を測定しながらウェハWを加熱することができる。   Then, lift pins 25 are provided through the through holes 26 penetrating the heater 1, and the lift pins 25 are lowered after the wafer W carried to the upper side of the mounting surface 3 by the transfer arm (not shown) is supported by the lift pins 25. The wafer W is then placed on the placement surface 3. Then, the power supply terminal 11 is connected to the power supply unit 6 and electric power is supplied from the outside, and the wafer W can be heated while the temperature measuring element 27 measures the temperature of the plate-like body 2.

尚、ウェハWは、ウェハ支持ピン8により載置面3から浮かした状態で保持され、ウェハWの片当たり等によって生じる温度バラツキを防止するようにしている。また、抵抗発熱体5を複数のゾーンに分割する場合、それぞれのゾーンの温度を独立に測定し各抵抗発熱体5を制御することにより、各給電部6の給電端子11に電力を供給し、各測温素子27の温度が各設定値となるように給電端子11に加える電力を調整し、載置面3に載せたウェハWの表面温度が均一となるようにしている。   The wafer W is held in a state of being lifted from the mounting surface 3 by the wafer support pins 8 so as to prevent temperature variations caused by, for example, contact of the wafer W with one piece. Further, when the resistance heating element 5 is divided into a plurality of zones, the temperature of each zone is independently measured and each resistance heating element 5 is controlled to supply power to the power supply terminals 11 of each power supply unit 6. The power applied to the power supply terminal 11 is adjusted so that the temperature of each temperature measuring element 27 becomes each set value, so that the surface temperature of the wafer W placed on the mounting surface 3 becomes uniform.

そして、ウェハWを加工処理した後、ガイド部材10を介してリフトピン25によりウェハWを持ち上げ、搬送アームで搬出することができる。   Then, after processing the wafer W, the wafer W can be lifted by the lift pins 25 through the guide member 10 and carried out by the transfer arm.

また、図2(a)は本発明のヒータ1の一例を示す平面図であり、板状体2の一方の主面にスクリーン印刷法等で形成された帯状の抵抗発熱体5を設けている。   FIG. 2A is a plan view showing an example of the heater 1 of the present invention, and a strip-like resistance heating element 5 formed by a screen printing method or the like is provided on one main surface of the plate-like body 2. .

ここで、抵抗発熱体5からなる帯は、ほぼ同一線幅を有する円弧状の帯5i、5j、5k、5m、5n、5o、および5pと、それらを繋ぐ折り返し円弧状の帯5q、5r、5s、5t、5u、および5vとを連続させて略同心円状に構成し、円弧状の帯5i、5jの端部を給電部6としてある。その為、円弧状の帯5iと円弧状の帯5j、円弧状の帯5kと円弧状の帯5m、円弧状の帯5nと円弧状の帯5o、及び円弧状の帯5pがそれぞれ円を構成するように配置され、各円が同心円状に配置されていることから、抵抗発熱体5を発熱させれば、載置面3の温度分布を中心から周縁部に向かって同心円状に分布させることができる。   Here, the band formed of the resistance heating element 5 includes arc-shaped bands 5i, 5j, 5k, 5m, 5n, 5o, and 5p having substantially the same line width, and folded arc-shaped bands 5q, 5r that connect them. 5s, 5t, 5u, and 5v are continuously formed in a concentric shape, and the end portions of the arc-shaped bands 5i and 5j are used as the power feeding unit 6. Therefore, the arc-shaped band 5i and the arc-shaped band 5j, the arc-shaped band 5k and the arc-shaped band 5m, the arc-shaped band 5n and the arc-shaped band 5o, and the arc-shaped band 5p each constitute a circle. Since each circle is arranged concentrically, if the resistance heating element 5 is heated, the temperature distribution of the mounting surface 3 is distributed concentrically from the center toward the peripheral edge. Can do.

また、半径方向に隣り合う円弧状の帯5i、5jと円弧状の帯5k、5m、円弧状の帯5k、5mと円弧状の帯5n、5o、円弧状の帯5n、5oと円弧状の帯5pとの距離L4、L5、Lrをそれぞれほぼ等間隔に配置してあることから、各円弧状の帯5i〜5pにおける単位体積当たりの発熱量を等しくすることができるため、載置面3における半径方向の発熱ムラを抑えることができる。   Further, arc-shaped bands 5i and 5j adjacent to each other in the radial direction and arc-shaped bands 5k and 5m, arc-shaped bands 5k and 5m, arc-shaped bands 5n and 5o, and arc-shaped bands 5n and 5o Since the distances L4, L5, and Lr from the belt 5p are arranged at substantially equal intervals, the calorific value per unit volume in each of the arc-shaped belts 5i to 5p can be equalized. In the radial direction, heat generation unevenness in the radial direction can be suppressed.

ヒータ1は、抵抗発熱体5の帯の長手方向に略並行で、長さが同等な複数の溝m1、m2・・・からなる群gをなし、前記群gは帯の幅の中央部にあることが好ましい。ここで、群gが抵抗発熱体5の帯の中央部にあるとは、群gの幅方向の中心が前記帯の中央にあることを示すもので、より具体的には群gの幅方向の中心が帯を幅方向に4等分した領域の中央の2つの領域つまり中央部50%より小さい範囲にあることがより好ましい。   The heater 1 has a group g composed of a plurality of grooves m1, m2,... Substantially parallel to the longitudinal direction of the band of the resistance heating element 5 and the group g is formed at the center of the band width. Preferably there is. Here, the fact that the group g is at the center of the band of the resistance heating element 5 indicates that the center of the group g in the width direction is at the center of the band, and more specifically, the width direction of the group g. It is more preferable that the center of the region is in a range smaller than two regions at the center of the region obtained by dividing the belt into four equal parts in the width direction, that is, the central portion is 50%.

このように抵抗発熱体5の少なくともその一部に溝mを形成することにより、抵抗調整部を設け、抵抗発熱体5の発熱量を調整することによりヒータ1の温度を均一にしてウェハWの面内温度差が小さくなるようにすることもできる。   Thus, by forming the groove m in at least a part of the resistance heating element 5, a resistance adjustment unit is provided, and by adjusting the heat generation amount of the resistance heating element 5, the temperature of the heater 1 is made uniform. It is also possible to reduce the in-plane temperature difference.

抵抗発熱体5の帯の長手方向に垂直な断面図では群gで分けた抵抗発熱体5の帯の両側の抵抗発熱体5の帯の断面積がほぼ等しくなる。すなわち両側の抵抗発熱体5の帯の抵抗値が略等しくなる。そのため抵抗発熱体5の帯の幅方向で左右略均等の発熱量となり、群gを形成して抵抗発熱体5の部分的な抵抗値のバラツキを調整しても抵抗発熱体5の帯の幅方向の中心線が設計位置から大きく変わることがなく、設計した抵抗発熱体5パターンに溝を形成して抵抗調整することでヒータ1を均一に加熱することができることから例えばウェハ加熱用として用いられるウェハ加熱用ヒータ110としてW面内の温度差を小さくすることができる。   In the cross-sectional view perpendicular to the longitudinal direction of the band of the resistance heating element 5, the sectional areas of the bands of the resistance heating element 5 on both sides of the band of the resistance heating element 5 divided by the group g are substantially equal. That is, the resistance values of the bands of the resistance heating elements 5 on both sides are substantially equal. For this reason, the heating amount of the resistance heating element 5 is approximately equal to the left and right in the width direction, and the width of the band of the resistance heating element 5 is adjusted even if the group g is formed to adjust the variation in the partial resistance value of the resistance heating element 5. The center line of the direction does not change greatly from the design position, and the heater 1 can be heated uniformly by adjusting the resistance by forming a groove in the designed resistance heating element 5 pattern. As the wafer heating heater 110, the temperature difference in the W plane can be reduced.

一方、図8や図9のように群gの幅方向の中心が抵抗発熱体5の幅方向の中央からずれた場合、抵抗発熱体5の帯の断面積の大きな面に大きな電流が流れ、その部分が発熱し易くなる。そのため抵抗発熱体5の帯の幅方向で左右の発熱バランスが崩れ幅方向で温度差が生じることから、ウェハWの面内温度差が大きくなる虞がある。   On the other hand, when the center in the width direction of the group g is shifted from the center in the width direction of the resistance heating element 5 as shown in FIGS. That part is likely to generate heat. For this reason, the right and left heat generation balance is lost in the width direction of the band of the resistance heating element 5 and a temperature difference is generated in the width direction, so that the in-plane temperature difference of the wafer W may be increased.

本発明のヒータ1は、図2(a)に示すように、板状体2の表面に帯状の抵抗発熱体5を備え、該抵抗発熱体5は長手方向に略並行な複数の溝mを有し、該溝mを板状体2の中心側に偏在させたことを特徴とする。または、図2(b)に示すように、上記溝mを板状体2の外周側に偏在させたことを特徴とする。これは、抵抗値を調整するための溝mを抵抗発熱体5の不規則な場所に設けると、ヒータを急速に加熱したり、強制冷却を繰り返すことにより抵抗発熱体5が板状体2から剥離したり、抵抗発熱体5の抵抗値にバラツキが生じ易いからである。特に、抵抗発熱体5の幅方向に発生するクラックが抵抗発熱体5の中央部まで進行、成長して抵抗発熱体が断線しヒータ1の重大な故障の原因となる虞があるからである。さらには、たとえ、抵抗発熱体5を板状体2の表面に対称性良く配設しても、溝mの位置により微妙に抵抗発熱体5の発熱域が変化しやすくなるため、ウェハWの面内温度差が大きくなる虞がある。   As shown in FIG. 2A, the heater 1 of the present invention includes a strip-like resistance heating element 5 on the surface of a plate-like body 2, and the resistance heating element 5 has a plurality of grooves m substantially parallel to the longitudinal direction. And the groove m is unevenly distributed on the center side of the plate-like body 2. Alternatively, as shown in FIG. 2 (b), the groove m is unevenly distributed on the outer peripheral side of the plate-like body 2. This is because when the groove m for adjusting the resistance value is provided in an irregular place of the resistance heating element 5, the resistance heating element 5 is removed from the plate-like body 2 by rapidly heating the heater or repeating forced cooling. This is because peeling or the resistance value of the resistance heating element 5 tends to vary. This is because, in particular, cracks that occur in the width direction of the resistance heating element 5 travel and grow to the central portion of the resistance heating element 5 and the resistance heating element is disconnected, which may cause a serious failure of the heater 1. Furthermore, even if the resistance heating element 5 is disposed on the surface of the plate-like body 2 with good symmetry, the heating area of the resistance heating element 5 is likely to change slightly depending on the position of the groove m. The in-plane temperature difference may be increased.

これに対して、抵抗発熱体5に形成する溝mを板状体2の中心側に偏在、もしくは外周側に偏在するように形成すると、上記クラックの進行を防止して抵抗値のバラツキを抑制するとともに、対称性よく溝mを配置することができるため、抵抗発熱体5の加熱域をほぼ均一な温度に維持することが可能であり、ウェハW面内の温度差を0.3℃以内にすることができる。   On the other hand, when the groove m formed in the resistance heating element 5 is formed so as to be unevenly distributed on the center side of the plate-like body 2 or unevenly distributed on the outer peripheral side, the progress of the crack is prevented and the variation of the resistance value is suppressed. In addition, since the grooves m can be arranged with good symmetry, the heating region of the resistance heating element 5 can be maintained at a substantially uniform temperature, and the temperature difference within the wafer W surface is within 0.3 ° C. Can be.

また、円板状のウェハを加熱する際には、ヒータ1を構成する板状体も円板状に形成し、ウェハを均一に加熱するには、ウェハの中心に対し中心対称に加熱できるように、上記板状体に抵抗発熱体を形成することが好ましい。これは、ウェハの中心に対し中心対称性が崩れるとヒータ1を収納する容器や周辺部材への放熱を調整できないことからウェハ面内の温度差が大きくなる虞があるからである。そこで、ウェハに対し中心対称に形成された帯状の抵抗発熱体に対し、帯に形成された溝がウェハの中心に対し、帯の外側に偏在・形成したり、内側に偏在・形成してウェハを加熱する抵抗発熱体5の発熱量を中心対称とすることでウェハ面内の温度差を小さくすることができる。なお、上記クラックの進行を効果的に抑制するために、溝mを板状体2の中心側と外周側に略均等で上記帯に形成してもよい。   Further, when heating the disk-shaped wafer, the plate-shaped body constituting the heater 1 is also formed in a disk shape, and in order to heat the wafer uniformly, it can be heated symmetrically with respect to the center of the wafer. In addition, it is preferable to form a resistance heating element on the plate-like body. This is because if the center symmetry with respect to the center of the wafer is lost, the heat difference to the container for housing the heater 1 and peripheral members cannot be adjusted, so that the temperature difference in the wafer surface may increase. Therefore, for the strip-shaped resistance heating element formed symmetrically with respect to the wafer, the groove formed in the belt is unevenly distributed on the outside of the belt or formed on the inside of the wafer. By making the calorific value of the resistance heating element 5 that heats the center symmetrical, the temperature difference in the wafer surface can be reduced. In order to effectively suppress the progress of the cracks, the grooves m may be formed in the band substantially equally on the center side and the outer peripheral side of the plate-like body 2.

ここで、溝mを板状体2の中心側もしくは外周側に偏在させるとは、抵抗発熱体5の長手方向における中心線より上記中心側に寄せて溝mを設ける、もしくは上記外周側に寄せて溝mを設けることを意味している。また、溝mの幅が抵抗発熱体5の帯の幅(短手方向)の半分以上であると、溝mは上記中心線を跨るが、この場合は、抵抗発熱体5上で溝mの面積を多く占有している方を偏在している方向とする。また、下記で詳細に説明するが、溝mが群Gを構成する場合でも、同様の考え方をすればよい。   Here, when the groove m is unevenly distributed on the center side or the outer periphery side of the plate-like body 2, the groove m is provided closer to the center side than the center line in the longitudinal direction of the resistance heating element 5, or closer to the outer periphery side. This means that the groove m is provided. Further, if the width of the groove m is half or more of the width of the resistance heating element 5 (short direction), the groove m straddles the center line. In this case, the groove m on the resistance heating element 5 The direction that occupies a large area is the uneven distribution direction. Further, as will be described in detail below, even when the grooves m constitute the group G, the same idea may be taken.

また、抵抗発熱体5の帯の幅は0.5〜8mmで作製することがウェハWの面内温度差を小さくする上で好ましい。帯の幅が0.5mm以下では印刷法で形成すると線幅が細か過ぎて滲み等が発生し好ましくない。また、8mmを越えると帯の湾曲部の内外周で発熱量が大きく異なり均一に発熱させることが困難である。より好ましくは1〜4mmである。   Further, it is preferable that the width of the band of the resistance heating element 5 is 0.5 to 8 mm in order to reduce the in-plane temperature difference of the wafer W. When the width of the band is 0.5 mm or less, it is not preferable to form by a printing method because the line width is too small and bleeding occurs. On the other hand, if the thickness exceeds 8 mm, the amount of heat generated varies greatly between the inner and outer circumferences of the curved portion of the band, and it is difficult to generate heat uniformly. More preferably, it is 1-4 mm.

また、溝mは図3に示すように、帯の長手方向に略並行に複数備えられ、互いに隣接する複数の溝m1、m2・・・からなる群G1を形成することが好ましい。これは、このような帯に対し溝mの幅は数十μm程度と小さく、その深さも帯の厚みの20〜80%程度と小さいことから、一本の溝で区間の抵抗値を調整できる量は0.025〜1.6%程である。そこで、これらの溝mを上記帯の長手方向に略並行に複数備え、互いに隣接する複数の溝m1、m2・・・からなる群G1を有することで、各区間の抵抗値を精度良く調整できるとともに、例え10%程度の抵抗バラツキが各区間で生じても複数の溝mを多数形成することで抵抗値を所定の値に調整することができる。   Further, as shown in FIG. 3, it is preferable that a plurality of grooves m are provided substantially in parallel with the longitudinal direction of the belt, and a group G1 including a plurality of grooves m1, m2,. This is because the width of the groove m is as small as several tens of μm for such a band and the depth is as small as about 20 to 80% of the thickness of the band, so that the resistance value of the section can be adjusted with a single groove. The amount is about 0.025 to 1.6%. Therefore, by providing a plurality of these grooves m substantially parallel to the longitudinal direction of the band and having a group G1 composed of a plurality of grooves m1, m2,... Adjacent to each other, the resistance value of each section can be adjusted with high accuracy. In addition, even if resistance variation of about 10% occurs in each section, the resistance value can be adjusted to a predetermined value by forming a plurality of grooves m.

また、図3に示すように、群G1〜G3は抵抗発熱体5の帯の長手方向に略並行に沿って複数に分割され、上記群G1と群G2との間隔Ggが上記帯の幅Whより小さいことが好ましい。これは、間隔Ggが帯の幅Whより大きいと、この部分で抵抗が小さくなり発熱量が低下してクールスポットを形成する虞があるからである。尚、間隔Ggを設けないと、1つの群Gの長さが大きくなるため、図9に示すように、微妙な位置ずれが拡大する。そして、始点P1で中心に合わせても終点P2では帯の幅の中心からずれた箇所に群Gが形成される。そのため、群Gの終点P2に隣接する抵抗発熱体5の断面の左右で電流通路となる断面積が大きく異なり、抵抗発熱体5の帯の断面において、帯の左右で発熱量が異なりウェハWの面内温度差が大きくなる虞が生じる。   Further, as shown in FIG. 3, the groups G1 to G3 are divided into a plurality along the longitudinal direction of the band of the resistance heating element 5, and the interval Gg between the group G1 and the group G2 is the width Wh of the band. Preferably it is smaller. This is because if the gap Gg is larger than the width Wh of the band, the resistance is reduced at this portion, and the amount of heat generation is reduced, so that a cool spot may be formed. If the interval Gg is not provided, the length of one group G increases, so that a slight positional deviation increases as shown in FIG. And even if it matches with the center at the start point P1, the group G is formed at the position deviated from the center of the band width at the end point P2. Therefore, the cross-sectional areas serving as current paths are greatly different on the left and right of the cross section of the resistance heating element 5 adjacent to the end point P2 of the group G, and the amount of heat generation is different on the left and right of the band in the cross section of the band of the resistance heating element 5. There is a risk that the in-plane temperature difference becomes large.

また、上記群Gの長さは、各群Gが形成されている1つの上記帯の中心線の総長さの30〜97%であることが好ましい。これは、溝mや群Gを帯の長さ方向の投影線の総長さが30%未満では、スクリーン印刷法で作製した帯の厚みバラツキを溝mや群Gで調整することが困難であり、97%を越えると帯の湾曲部に形成する溝の作製が困難であり、実用的でない。好ましくは60〜90%であり、更に好ましくは70〜85%である。   Moreover, it is preferable that the length of the said group G is 30 to 97% of the total length of the centerline of one said band in which each group G is formed. This is because it is difficult to adjust the thickness variation of the band produced by the screen printing method with the groove m or the group G if the total length of the projection line in the length direction of the band of the groove m or the group G is less than 30%. If it exceeds 97%, it is difficult to produce a groove formed in the curved portion of the band, which is not practical. Preferably it is 60 to 90%, More preferably, it is 70 to 85%.

また、上記帯は略同心円状に配設する円弧状の帯5i〜5pと、それらを繋ぐ折り返し円弧状の帯5q〜5vとからなるとともに、少なくとも1箇所で同一円周上に位置する一対の折り返し円弧状5u〜5vの帯の間の距離Lmが、上記円弧状の帯5n〜5p、5o〜5pの間の距離Lrよりも小さいことが好ましい。   The belt is composed of arc-shaped belts 5i to 5p arranged substantially concentrically and folded arc-shaped belts 5q to 5v connecting them, and a pair of belts located on the same circumference at least at one place. The distance Lm between the folded arcuate bands 5u to 5v is preferably smaller than the distance Lr between the arcuate bands 5n to 5p and 5o to 5p.

これは、距離Lmが距離Lrよりも大きいと、このような円弧状の帯5n〜5pと折り返し円弧状の帯5u〜5vとの折り返し部周辺の空隙部Qの発熱密度が小さくなるために、ウェハWの面内温度差が大きくなり均熱性が損なわれる虞があるからである。   This is because when the distance Lm is larger than the distance Lr, the heat generation density of the gap portion Q around the folded portion between the arc-shaped bands 5n to 5p and the folded arc-shaped bands 5u to 5v becomes small. This is because the in-plane temperature difference of the wafer W becomes large and the heat uniformity may be impaired.

これに対し、距離Lmが距離Lrよりもそれぞれ小さくすると、空隙部Qの発熱量が相対する折り返し円弧状の帯5u〜5vからの発熱で補われ、空隙部Qでの温度低下を抑えることができるため、載置面3に載せたウェハWの面内温度差を小さくすることができ、均熱性を高めることができる。   On the other hand, when the distance Lm is smaller than the distance Lr, the amount of heat generated in the gap Q is compensated by the heat generated from the opposed arcuate bands 5u to 5v, and the temperature drop in the gap Q is suppressed. Therefore, the in-plane temperature difference of the wafer W placed on the placement surface 3 can be reduced, and the thermal uniformity can be improved.

更に、上記抵抗発熱体5の同一円周上に位置する一対の折り返し円弧状の帯5q〜5vの間の距離L1、L2、Lmが全ての箇所で略同心円状に配設した円弧状の帯5i〜5pの間の距離L4、L5、Lrよりも小さいと更に好ましい。   Further, arc-shaped bands in which the distances L1, L2, and Lm between the pair of folded arc-shaped bands 5q to 5v located on the same circumference of the resistance heating element 5 are arranged substantially concentrically at all points. More preferably, it is smaller than the distances L4, L5 and Lr between 5i and 5p.

特に、上記同一円周上に位置する一対の折り返し円弧状の帯5q〜5vの間の距離L1、L2、Lmが、略同心円状に配設した円弧状5i〜5pの帯の間の距離L4、L5、Lrの30〜80%、より好ましくは40〜60%とすれば、載置面3における均熱性をさらに高めることができる。尚、距離L1〜Lmはそれぞれ各抵抗発熱体5間を数箇所で測定し、その平均距離を算出したものである。   In particular, the distances L1, L2, and Lm between the pair of folded arc-shaped bands 5q to 5v located on the same circumference are distances L4 between the arc-shaped bands 5i to 5p disposed substantially concentrically. , L5, Lr 30 to 80%, more preferably 40 to 60%, it is possible to further improve the thermal uniformity on the mounting surface 3. The distances L1 to Lm are obtained by measuring the distance between the resistance heating elements 5 at several locations and calculating the average distance.

また、略同心円状に形成された上記抵抗発熱体5は、同心円状の最外周の抵抗発熱体の帯5pとその内側の帯5o、5nとの間隔Lrが、上記最外周の抵抗発熱体を除く抵抗発熱体の同心円状の帯の間隔L5、L4より小さいことが好ましい。ヒータ1の周辺部はその周辺部への熱の放射や対流により熱が奪われやすく、ヒータ1の周辺部の温度が低下する虞があるが、最外周の抵抗発熱体の帯5pとその内側の帯5o、5nとの間隔Lrを小さくすることで、周辺部の発熱量を大きくする事ができるからである。そして、ヒータ1に被加熱物を載せ加熱すると被加熱物の面内を均一に加熱できるからである。   In addition, the resistance heating element 5 formed in a substantially concentric shape has an interval Lr between the outermost resistance heating element band 5p and the inner bands 5o, 5n of the concentric circular outer resistance heating element. It is preferable that the distance between the concentric strips L5 and L4 of the resistance heating element to be removed is smaller. The peripheral part of the heater 1 is easily deprived of heat by radiating heat or convection to the peripheral part, and the temperature of the peripheral part of the heater 1 may be lowered. This is because the amount of heat generated in the peripheral portion can be increased by reducing the distance Lr between the bands 5o and 5n. This is because when the object to be heated is placed on the heater 1 and heated, the surface of the object to be heated can be heated uniformly.

また、本発明のウェハ加熱用ヒータ111は、板状体2の一方の主面をウェハ載置面3とし、上記板状体2の他方の主面に帯状の抵抗発熱体5を備え、該抵抗発熱体5は略同心円状に配設する円弧状の帯5i〜5pと、それらを繋ぐ折り返し帯5q〜5vとからなるとともに、長手方向に略並行な溝mを有し、同心円状に配設する円弧状の帯5i〜5pに形成された上記溝mを上記板状体2の中心側に偏在させたことを特徴とする。これは、板状体2の中心を中心とする略同心円状に配設する円弧状の帯は板状体2の中心に対して中心対称に発熱させることが重要であり、同心円状に配設する円弧状の帯5i〜5pの溝mが中心側に偏在していることで、ヒータを急速に加熱したり、強制冷却を繰り返すことにより抵抗発熱体5が板状体2から剥離したり、抵抗発熱体5の抵抗値にバラツキを抑制できる。また、ヒータの急速加熱、および強制冷却を繰り返して上記溝の近傍から抵抗発熱体の幅方向に発生するクラックの進行を上記溝で防止できることから重大な故障を回避することができる。更に、対称性よく溝mを配置することができるため、抵抗発熱体5の発熱域をほぼ均一な温度に維持することが可能であり、ウェハW面内の温度差を0.3℃以内に小さくすることができる。尚、略同心円状に配設する円弧状の帯5i〜5pとそれらを繋ぐ折り返し帯5q〜5uは、図2に示すような円弧状であっても不図示の直線状であっても良い。   Further, the heater 111 for heating a wafer according to the present invention has one main surface of the plate-like body 2 as a wafer mounting surface 3, and the other main surface of the plate-like body 2 includes a strip-like resistance heating element 5, The resistance heating element 5 includes arc-shaped bands 5i to 5p arranged substantially concentrically and folded bands 5q to 5v connecting them, and has a groove m substantially parallel to the longitudinal direction, and is arranged concentrically. The groove m formed in the arc-shaped bands 5i to 5p to be provided is unevenly distributed on the center side of the plate-like body 2. This is because it is important that the arc-shaped strips arranged substantially concentrically around the center of the plate-like body 2 generate heat symmetrically with respect to the center of the plate-like body 2 and are arranged concentrically. The arcs 5i to 5p of the grooves m are unevenly distributed on the center side, so that the heater is rapidly heated, or the resistance heating element 5 is peeled off from the plate-like body 2 by repeating forced cooling, Variations in the resistance value of the resistance heating element 5 can be suppressed. Further, the rapid heating and forced cooling of the heater can be repeated to prevent the progress of cracks generated in the width direction of the resistance heating element from the vicinity of the groove, so that a serious failure can be avoided. Furthermore, since the grooves m can be arranged with good symmetry, it is possible to maintain the heat generating area of the resistance heating element 5 at a substantially uniform temperature, and the temperature difference in the wafer W plane is within 0.3 ° C. Can be small. Note that the arc-shaped bands 5i to 5p arranged substantially concentrically and the folded bands 5q to 5u connecting them may be arc-shaped as shown in FIG. 2 or linear (not shown).

また、同様に板状体2の一方の主面をウェハ載置面3とし、上記板状体2の他方の主面に帯状の抵抗発熱体5を備え、該抵抗発熱体5は略同心円状に配設する円弧状の帯5i〜5pと、それらを繋ぐ折り返し帯5q〜5vとからなるとともに、長手方向に略並行な溝mを有し、同心円状に配設する円弧状の帯5i〜5pに形成された上記溝mを上記板状体2の外周側に偏在させたことを特徴とする。このように外周側に偏在させることで、上述した溝mを板状体の中心側に偏在させたものと同様に、クラックの進行を防止するとともに、ウェハW面内の温度差を小さくすることができる。なお、略同心円状に配置された1つの抵抗発熱体5の帯において、抵抗発熱体5を板状体2へ投影した投影面で板状体2と発熱抵抗体5の境界線では、熱膨張により抵抗発熱体5の帯の外側の境界線から該帯の内部を通過して板状体の中心側に伸びるクラックが抵抗発熱体5に発生し易いが、上記溝が外周側に偏在しているとこの溝でクラックの伸展が抑えることができることから、抵抗発熱体の抵抗変化を小さく抑えることができきるとともに抵抗発熱体の断線を防止する効果が大きい。従って、上記溝は外周側に偏在させるほうがより好ましい。   Similarly, one main surface of the plate-like body 2 is a wafer mounting surface 3, and the other main surface of the plate-like body 2 is provided with a strip-like resistance heating element 5, and the resistance heating element 5 is substantially concentric. Arc-shaped bands 5i to 5p arranged on the inner side and folded bands 5q to 5v connecting them, and having grooves m substantially parallel to the longitudinal direction, and arranged in a concentric manner. The groove m formed in 5p is unevenly distributed on the outer peripheral side of the plate-like body 2. By making the groove m unevenly distributed on the outer peripheral side in this way, the progress of cracks can be prevented and the temperature difference in the wafer W plane can be reduced, as in the case where the groove m described above is unevenly distributed on the center side of the plate-like body. Can do. It should be noted that, in the band of one resistance heating element 5 arranged substantially concentrically, thermal expansion occurs at the boundary line between the plate-like body 2 and the heating resistance 5 on the projection surface obtained by projecting the resistance heating element 5 onto the plate-like body 2. Due to this, cracks extending from the outer boundary line of the resistance heating element 5 to the center side of the plate-like body through the inside of the band are likely to occur in the resistance heating element 5, but the groove is unevenly distributed on the outer peripheral side. In this case, since the extension of cracks can be suppressed by this groove, the resistance change of the resistance heating element can be suppressed to a small value and the effect of preventing disconnection of the resistance heating element is great. Therefore, it is more preferable that the groove is unevenly distributed on the outer peripheral side.

また、上記溝mは上記抵抗発熱体5の抵抗値を調整可能な溝mであることが好ましい。   The groove m is preferably a groove m capable of adjusting the resistance value of the resistance heating element 5.

ここで溝mは、貴金属からなる導電性物質とガラス質の結合剤とで形成される抵抗発熱体5をレーザ光線により溶融除去することで形成できる。また、レーザ光線であれば、細い溝mを精度よく形成することが容易であり好ましい。レーザ光の大きさは5〜100μmが好ましくより好ましくは30〜80μm、更に好ましくは50〜70μmである。レーザビーム等で溝mを形成するが、溝mの大きさはレーザビームの出力と照射時間で決まり、通常溝mを加工中は出力や照射時間は変更されないことから、溝mの深さは略同等となる。そこで、周辺部の厚みの小さな領域を除く抵抗発熱体5の帯の幅の90%以内の箇所に溝mを形成した場合、溝mが抵抗発熱体5を貫通する虞がなく、溝mの底部にクラックを発生する虞が小さく好ましい。しかしながら抵抗発熱体5の帯の幅の90%を越えて溝mを形成した場合、抵抗発熱体5の両端の膜厚が薄い箇所に溝mが形成されることから、溝mが抵抗発熱体5を貫通したりレーザビームが板状体2に照射されて、微小クラックが生じる虞がある。 Here, the groove m can be formed by melting and removing the resistance heating element 5 formed of a conductive material made of a noble metal and a glassy binder with a laser beam. In addition, a laser beam is preferable because it is easy to accurately form the narrow groove m. The size of the laser beam is preferably 5 to 100 μm, more preferably 30 to 80 μm, and still more preferably 50 to 70 μm. The groove m is formed by a laser beam or the like, but the size of the groove m is determined by the output of the laser beam and the irradiation time, and since the output and the irradiation time are not normally changed during processing of the groove m, the depth of the groove m is It is almost equivalent. Therefore, when the groove m is formed in a location within 90% of the width of the band of the resistance heating element 5 excluding the region having a small thickness at the peripheral portion, there is no possibility that the groove m penetrates the resistance heating element 5, and the groove m The possibility of generating cracks at the bottom is small and preferable. However, when the groove m is formed so as to exceed 90% of the width of the band of the resistance heating element 5, the groove m is formed in a portion where the film thickness at both ends of the resistance heating element 5 is thin. There is a possibility that microcracks may be caused by penetrating 5 or irradiating the plate-like body 2 with a laser beam.

また、図5に示すように上記抵抗発熱体5の同一円周上に位置する一対の折り返し円弧状の帯の間の距離Lm、Lm2が少なくとも1箇所で略同心円状に配設した円弧状の帯の間の距離Lr、Lr2よりも小さいことが好ましい。距離Lm、Lm2が距離Lr、Lr2より小さいとLm付近の例えばQの位置での温度低下を防止することができることからウェハ面内の温度差を小さくすることができる。   Further, as shown in FIG. 5, the distances Lm and Lm2 between the pair of folded arc-shaped strips located on the same circumference of the resistance heating element 5 are arranged in a substantially concentric circle at least at one place. It is preferable to be smaller than the distances Lr and Lr2 between the bands. If the distances Lm and Lm2 are smaller than the distances Lr and Lr2, the temperature drop in the vicinity of Lm, for example, at the Q position can be prevented, so that the temperature difference in the wafer surface can be reduced.

また、上記抵抗発熱体の同一円周上に位置する一対の折り返し円弧状の帯の間の距離Lm、Lm2が全ての箇所で略同心円状に配設した円弧状の帯の間の距離Lr、Lr2よりも小さいことが好ましい。このようにそれぞれの距離Lm、Lm2がそれぞれに対応して
距離Lr、Lr2よりも小さいとウェハの全ての表面域で温度差のバラツキが小さくなり好ましい。
Further, a distance Lm between a pair of folded arc-shaped bands located on the same circumference of the resistance heating element, Lm2 is a distance Lr between arc-shaped bands disposed substantially concentrically at all locations, It is preferably smaller than Lr2. Thus, it is preferable that the distances Lm and Lm2 are smaller than the distances Lr and Lr2 corresponding to the distances, respectively, because variations in temperature difference are reduced in all surface areas of the wafer.

そして、上記同一円周上に位置する一対の折り返し円弧状の帯の間の距離Lm、Lm2が、略同心円状に配設した円弧状の帯の間の距離Lr、Lr2の30〜80%、より好ましくは40〜60%とすれば、載置面3における均熱性をさらに高めることができる。尚、距離L1〜Lmはそれぞれ各抵抗発熱体5間を数箇所で測定し、その平均距離を算出したものである。   The distances Lm and Lm2 between the pair of folded arc-shaped bands located on the same circumference are 30 to 80% of the distances Lr and Lr2 between the arc-shaped bands disposed substantially concentrically. More preferably, if it is 40 to 60%, the thermal uniformity on the mounting surface 3 can be further enhanced. The distances L1 to Lm are obtained by measuring the distance between the resistance heating elements 5 at several locations and calculating the average distance.

また、略同心円状に形成された上記抵抗発熱体5は、同心円状の最外周の抵抗発熱体の帯とその内側の帯との間隔Lrが、上記最外周の抵抗発熱体を除く抵抗発熱体の同心円状の帯の間隔L4、Lr5、Lr2より小さいことが好ましい。ウェハ加熱用ヒータ110の周辺部はその周辺部への熱の放射や対流により熱が奪われやすく、ウェハ加熱用ヒータ110の周辺部の温度が低下する虞があるが、最外周の抵抗発熱体の帯5pとその内側の帯5o、5nとの間隔Lrを小さくすることで、周辺部の発熱量を大きくする事ができるからである。そして、載置面3にウェハを載せ加熱するとウェハの面内を均一に加熱できるからである。   Further, the resistance heating element 5 formed in a substantially concentric shape has a distance Lr between a concentric outermost resistance heating element band and an inner band of the resistance heating element excluding the outermost resistance heating element. It is preferable that the distance between the concentric strips L4, Lr5 and Lr2 is smaller. The peripheral portion of the wafer heating heater 110 is easily deprived of heat by radiating heat or convection to the peripheral portion, and the temperature of the peripheral portion of the wafer heating heater 110 may be lowered. This is because the amount of heat generated in the peripheral portion can be increased by reducing the distance Lr between the band 5p and the inner bands 5o, 5n. This is because when the wafer is placed on the placement surface 3 and heated, the inside of the wafer can be heated uniformly.

以上本発明の特徴に付いて説明したが、関連するその他の構成を説明する。   Having described the features of the present invention, other related configurations will be described.

群Gの幅Wgは抵抗発熱体5の帯の幅Whの90%以内にあることが好ましい。これは、通常微細で複雑な抵抗発熱体5はスクリーン印刷法で形成されることから、スクリーン印刷法で形成された抵抗発熱体5の断面積は図7のように抵抗発熱体5の帯の幅の左右5%の領域の厚みが小さくなっているからである。また、レーザビーム等で溝mを形成するが、溝mの大きさはレーザビームの出力と照射時間で決まり、通常溝mを加工中は出力や照射時間は変更されないことから、溝mの深さは略同等となる。そこで、周辺部の厚みの小さな領域を除く抵抗発熱体5の帯の幅の90%以内の箇所に溝mを形成した場合、溝mが抵抗発熱体5を貫通する虞がなく、溝mの底部にクラックを発生する虞が小さく好ましい。しかしながら抵抗発熱体5の帯の幅の90%を越えて溝mを形成した場合、抵抗発熱体5の両端の膜厚が薄い箇所に溝mが形成されることから、溝mが抵抗発熱体5を貫通したりレーザビームが板状体2に照射されて、微小クラックが生じる虞があるからである。   The width Wg of the group G is preferably within 90% of the width Wh of the band of the resistance heating element 5. This is because the fine and complicated resistance heating element 5 is usually formed by the screen printing method, so that the cross-sectional area of the resistance heating element 5 formed by the screen printing method is the band of the resistance heating element 5 as shown in FIG. This is because the thickness of the region 5% left and right of the width is small. The groove m is formed by a laser beam or the like. The size of the groove m is determined by the output of the laser beam and the irradiation time, and the output and irradiation time are not changed during processing of the normal groove m. This is almost the same. Therefore, when the groove m is formed in a location within 90% of the width of the band of the resistance heating element 5 excluding the region having a small thickness at the peripheral portion, there is no possibility that the groove m penetrates the resistance heating element 5, and the groove m The possibility of generating cracks at the bottom is small and preferable. However, when the groove m is formed so as to exceed 90% of the width of the band of the resistance heating element 5, the groove m is formed in a portion where the film thickness at both ends of the resistance heating element 5 is thin. This is because there is a possibility that micro cracks may be caused by penetrating 5 or irradiating the plate-like body 2 with a laser beam.

また、上記溝mの群Gをなす各溝m1、m2・・の深さは、その溝mの幅Wmの20〜75%の範囲であることが好ましい(溝深さ/溝幅=20〜75%)。なぜなら20%未満であると、一本の溝mの形成による抵抗値の変化が小さく抵抗値の調整範囲も小さくなることからウェハWの面内温度差を充分に小さくすることが困難になるからである。   Further, the depth of each of the grooves m1, m2,... Constituting the group G of the grooves m is preferably in the range of 20 to 75% of the width Wm of the grooves m (groove depth / groove width = 20 to 75%). This is because if it is less than 20%, the change in resistance value due to the formation of one groove m is small and the adjustment range of the resistance value is also small, so it becomes difficult to sufficiently reduce the in-plane temperature difference of the wafer W. It is.

また、溝mの深さが幅Wmの75%を超えると、レーザのファーストパルスのエネルギーが大きく抵抗発熱体5の底部にマイクロクラックが発生し、加熱・冷却を繰り返すとマイクロクラックが成長し、抵抗発熱体5の抵抗値の変化が生じ、抵抗値が変化するとウェハWの面内温度差が大きくなり均熱性を保てなくなる虞があるからである。   Further, when the depth of the groove m exceeds 75% of the width Wm, the energy of the first pulse of the laser is large and microcracks are generated at the bottom of the resistance heating element 5, and microcracks grow when heating and cooling are repeated. This is because a change in the resistance value of the resistance heating element 5 occurs, and if the resistance value changes, the in-plane temperature difference of the wafer W becomes large and it may not be possible to maintain the thermal uniformity.

また、レーザトリミングは通常大気中で実施するので、抵抗発熱体5中に含まれる導通成分として、耐熱性および耐酸化性に良好な貴金属であるPtやAuもしくはこれらの合金を主成分とするものを使用することが好ましい。抵抗発熱体5としては絶縁層との密着性および抵抗発熱体自体の焼結性を向上させるために、30〜70重量%のガラス成分を混合することが好ましい。   In addition, since laser trimming is normally performed in the atmosphere, the main component is Pt, Au, or an alloy thereof, which is a noble metal having good heat resistance and oxidation resistance, as a conduction component contained in the resistance heating element 5. Is preferably used. As the resistance heating element 5, it is preferable to mix 30 to 70% by weight of a glass component in order to improve adhesion to the insulating layer and sinterability of the resistance heating element itself.

抵抗発熱体5のパターン形状の一例としては、図4(a)に示すように、板状体2の外周部に位置する同心円状で環状の複数の抵抗発熱体5からなるゾーン(以下、抵抗発熱体ゾーン)と、中心部の同心円状の抵抗発熱体5からなる抵抗発熱体ゾーンとからなっている。また、図4(b)には、板状体2の外周辺部に4個と中心部に4個のゾーンからなる合計8個の抵抗発熱体ゾーンになるように抵抗発熱体5を分割している。尚、各抵抗発熱体ゾーンはそれぞれ給電部6を有しているため、各抵抗発熱体ゾーンを独立して加熱することができる。また、図5は4個の抵抗発熱体ゾーンからなるウェハ加熱用ヒータの一例を示す。   As an example of the pattern shape of the resistance heating element 5, as shown in FIG. 4A, a zone (hereinafter referred to as resistance) consisting of a plurality of concentric and annular resistance heating elements 5 located on the outer peripheral portion of the plate-like body 2. A heating element zone) and a resistance heating element zone comprising a concentric resistance heating element 5 in the center. Further, in FIG. 4B, the resistance heating element 5 is divided so that a total of eight resistance heating element zones comprising four zones at the outer peripheral portion of the plate-like body 2 and four zones at the central portion are formed. ing. In addition, since each resistance heating element zone has the electric power feeding part 6, each resistance heating element zone can be heated independently. FIG. 5 shows an example of a wafer heating heater comprising four resistance heating element zones.

図4(a)は、板状体2の一方の主面に複数の抵抗発熱体ゾーン4を備え、中心部に円形の抵抗発熱体ゾーン4aと、その外側の同心円の3つの円環内に抵抗発熱体ゾーン4b、4c、および4dを備えている。これは、抵抗発熱体5を4個の抵抗発熱体ゾーンに対応して分割することにより、ウェハWの均熱性を改善するためである。   FIG. 4A includes a plurality of resistance heating element zones 4 on one main surface of the plate-like body 2, and a circular resistance heating element zone 4 a at the center and three concentric rings on the outer side thereof. Resistance heating element zones 4b, 4c, and 4d are provided. This is to improve the thermal uniformity of the wafer W by dividing the resistance heating element 5 corresponding to the four resistance heating element zones.

また、板状体2の中心部に位置する抵抗発熱体ゾーン4aの外径D1は最外周部にある抵抗発熱体ゾーン4dの外径Dの20〜40%、抵抗発熱体ゾーン4aの外側にある抵抗発熱体ゾーン4bの外径D2は外径Dの40〜55%で、さらに、抵抗発熱体ゾーン4bの外側にある抵抗発熱体ゾーン4cの外径D3は外径Dの55〜85%とすることによりウェハWの面内温度差を小さくすることができて好ましい。   Further, the outer diameter D1 of the resistance heating element zone 4a located at the center of the plate-like body 2 is 20 to 40% of the outer diameter D of the resistance heating element zone 4d at the outermost peripheral part, outside the resistance heating element zone 4a. The outer diameter D2 of a certain resistance heating element zone 4b is 40 to 55% of the outer diameter D, and the outer diameter D3 of the resistance heating element zone 4c outside the resistance heating element zone 4b is 55 to 85% of the outer diameter D. This is preferable because the in-plane temperature difference of the wafer W can be reduced.

更に好ましくは、外径D1は最外周部にある抵抗発熱体ゾーン4dの外径Dの23〜33%、抵抗発熱体ゾーン4aの外側にある抵抗発熱体ゾーン4bの外径D2は外径Dの45〜55%で、さらに、抵抗発熱体ゾーン4bの外側にある抵抗発熱体ゾーン4cの外径D3は外径Dの63〜83%とすることによりウェハWの面内温度差を更に小さくすることができて好ましい。   More preferably, the outer diameter D1 is 23 to 33% of the outer diameter D of the resistance heating element zone 4d at the outermost periphery, and the outer diameter D2 of the resistance heating element zone 4b outside the resistance heating element zone 4a is the outer diameter D. Further, the outer diameter D3 of the resistance heating element zone 4c outside the resistance heating element zone 4b is 63 to 83% of the outer diameter D, thereby further reducing the in-plane temperature difference of the wafer W. This is preferable.

尚、最外周部の抵抗発熱体ゾーン4dの外径Dとは、板状体2の他方の主面に平行な投影面でみて、抵抗発熱体ゾーン4dを構成する抵抗発熱体を囲む外接円の直径である。尚、外接円は給電部6に接続する抵抗発熱体5の突出部を除き同心円状の円弧に沿って求めることができる。   The outer diameter D of the outermost resistance heating element zone 4d is a circumscribed circle surrounding the resistance heating element constituting the resistance heating element zone 4d when viewed from a projection plane parallel to the other main surface of the plate-like body 2. Is the diameter. The circumscribed circle can be obtained along a concentric circular arc except for the protruding portion of the resistance heating element 5 connected to the power feeding unit 6.

ここで、外径D1がDの20%未満では中心部の抵抗発熱体ゾーン4aの外径が小さ過ぎることから抵抗発熱体ゾーン4aの発熱量を大きくしても、抵抗発熱体ゾーン4aの中心部の温度が上がらず中心部の温度が低下する虞がある。また、外径D1が40%を越えると中心部の抵抗発熱体ゾーン4aの外径が大き過ぎることから、中心部の温度を上げた際に抵抗発熱体ゾーン4aの周辺部の温度も上がり、抵抗発熱体ゾーン4aの周辺部の温度が高くなり過ぎる虞があるからである。尚、好ましくは、外径D1はDの20〜35%であり、更に好ましくは、外径D1はDの23〜33%とすることでウェハWの面内温度差を更に小さくすることができる。   Here, if the outer diameter D1 is less than 20% of D, the outer diameter of the resistance heating element zone 4a at the center is too small. Therefore, even if the heating value of the resistance heating element zone 4a is increased, the center of the resistance heating element zone 4a is increased. There is a possibility that the temperature of the central part does not rise and the temperature of the central part decreases. Further, if the outer diameter D1 exceeds 40%, the outer diameter of the resistance heating element zone 4a at the center is too large, so when the temperature at the center is increased, the temperature at the periphery of the resistance heating element zone 4a also increases. This is because the temperature around the resistance heating element zone 4a may become too high. Preferably, the outer diameter D1 is 20 to 35% of D, and more preferably the outer diameter D1 is 23 to 33% of D, so that the in-plane temperature difference of the wafer W can be further reduced. .

また、外径D2が外径Dの40%未満では、ヒータ1の周辺部が冷却されやすいことから、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4cの発熱量を増大した際に、ウェハWの中心に近い抵抗発熱体ゾーン4cの内側の温度が高くなり、ウェハWの面内温度差が大きくなる虞がある。また、外径D2が外径Dの55%を越えると、ウェハW周辺の温度の低下を防ぐために抵抗発熱体ゾーン4cの発熱量を大きくしても、抵抗発熱体ゾーン4cdの温度は上がるが、ウェハW周辺の温度の低下の影響が抵抗発熱体ゾーン4bに達し、抵抗発熱体ゾーン4bの外側の温度が低くなる虞がある。好ましくは、外径D2が外径Dの41〜55%であり、更に好ましくは45〜55%とするとウェハWの面内温度差は更に小さくできた。   Further, when the outer diameter D2 is less than 40% of the outer diameter D, the peripheral portion of the heater 1 is easily cooled. Therefore, when the amount of heat generated in the resistance heating element zone 4c is increased in order to prevent a decrease in the temperature around the wafer W. In addition, the temperature inside the resistance heating element zone 4c close to the center of the wafer W may be increased, and the in-plane temperature difference of the wafer W may be increased. When the outer diameter D2 exceeds 55% of the outer diameter D, the temperature of the resistance heating element zone 4cd increases even if the heating value of the resistance heating element zone 4c is increased in order to prevent the temperature around the wafer W from decreasing. There is a risk that the temperature decrease around the wafer W reaches the resistance heating element zone 4b, and the temperature outside the resistance heating element zone 4b is lowered. Preferably, when the outer diameter D2 is 41 to 55% of the outer diameter D, and more preferably 45 to 55%, the in-plane temperature difference of the wafer W can be further reduced.

また、外径D3が外径Dの55%未満では、ヒータ1の周辺部が冷却され易いことから、ウェハW周辺温度の低下を防ぐために抵抗発熱体ゾーン4dの発熱量を増大した際に、ウェハWの中心に近い抵抗発熱体ゾーン4dの内側の温度が高くなり、ウェハWの面内温度差が大きくなる虞があった。また、外径D3が外径Dの85%を越えると、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4dの発熱量を大きくしても、抵抗発熱体ゾーン4ehの温度は上がるが、ウェハW周辺の温度の低下の影響が抵抗発熱体ゾーン4cに達し、抵抗発熱体ゾーン4cの外側の温度が低くなる虞があった。好ましくは、外径D3が外径Dの60〜85%であり、更に好ましくは63〜83%とするとウェハWの面内温度差は更に小さくできた。   Further, when the outer diameter D3 is less than 55% of the outer diameter D, the peripheral portion of the heater 1 is easily cooled. Therefore, when the amount of heat generated in the resistance heating element zone 4d is increased in order to prevent the temperature around the wafer W from being lowered, There is a possibility that the temperature inside the resistance heating element zone 4d close to the center of the wafer W becomes high and the in-plane temperature difference of the wafer W becomes large. When the outer diameter D3 exceeds 85% of the outer diameter D, the temperature of the resistance heating element zone 4eh increases even if the heating value of the resistance heating element zone 4d is increased so as to prevent the temperature around the wafer W from being lowered. However, there is a possibility that the temperature decrease around the wafer W reaches the resistance heating element zone 4c and the temperature outside the resistance heating element zone 4c is lowered. Preferably, when the outer diameter D3 is 60 to 85% of the outer diameter D, and more preferably 63 to 83%, the in-plane temperature difference of the wafer W can be further reduced.

さらに、図4(b)は、3つの円環状の抵抗発熱体ゾーン4b、4c、4dのうち、最も内側の抵抗発熱体ゾーン4bは、円環からなる抵抗発熱体ゾーン4bであり、その外側の抵抗発熱体ゾーン4cは、円環を円周方向に2等分した2個の扇状の抵抗発熱体ゾーン4c1、4c2であり、その外側の抵抗発熱体ゾーン4dは、円環を円周方向に4等分した4個の扇状の抵抗発熱体ゾーン4d1、4d2、4d3、4d4からなっていることがウェハWの表面温度を均一にする上で好ましい。   Further, FIG. 4 (b) shows that among the three annular resistance heating element zones 4b, 4c, 4d, the innermost resistance heating element zone 4b is a resistance heating element zone 4b formed of an annular shape, and the outer side thereof. The resistance heating element zone 4c is two fan-like resistance heating element zones 4c1 and 4c2 obtained by dividing the ring into two in the circumferential direction, and the outer resistance heating element zone 4d is arranged in the circumferential direction. In order to make the surface temperature of the wafer W uniform, it is preferably composed of four fan-like resistance heating element zones 4d1, 4d2, 4d3 and 4d4.

尚、円環状の抵抗発熱体ゾーン4c、4dはそれぞれ放射方向に2分割、4分割したが、これに限るものではない。   The annular resistance heating element zones 4c and 4d are divided into two and four in the radial direction, respectively, but the invention is not limited to this.

図4(b)によると、抵抗発熱体ゾーン4c、4dをそれぞれ分割する境界線は直線であるが、必ずしも直線である必要はなく、波線であっても良く、抵抗発熱体ゾーン4c、4dが同心円の発熱体ゾーンの中心に対して中心対称であることが好ましい。   According to FIG. 4B, the boundary lines dividing the resistance heating element zones 4c and 4d are straight lines, but they are not necessarily straight lines, and may be wavy lines. It is preferably centrosymmetric with respect to the center of the concentric heating element zone.

上記の各抵抗発熱体5を印刷法等で作製し、抵抗発熱体5の帯は1〜5mmの幅で、厚みが5〜50μmで形成することが好ましい。一度に印刷する印刷面が大きくなると印刷面の左右や前後でスキージとスクリーンとの間の圧力の違いから印刷厚みが一定とならない虞が生じる。特に、抵抗発熱体5の大きさが大きくなると、抵抗発熱体5の左右前後の厚みが異なり設計した発熱量がバラつく虞があった。発熱量がバラつくとウェハWの面内温度差が大きくなり好ましくない。この抵抗発熱体の厚みのバラツキから生じる温度バラツキを防ぐには、一つの抵抗発熱体からなる外径の大きな個々の抵抗発熱体5を分割することにより、低減することができる。   It is preferable that each of the resistance heating elements 5 is manufactured by a printing method or the like, and the band of the resistance heating element 5 is formed with a width of 1 to 5 mm and a thickness of 5 to 50 μm. When the printing surface to be printed at one time becomes large, there is a concern that the printing thickness may not be constant due to the difference in pressure between the squeegee and the screen on the left and right or front and back of the printing surface. In particular, when the size of the resistance heating element 5 is increased, the thickness of the resistance heating element 5 on the left and right sides is different, and the designed heat generation may vary. If the amount of generated heat varies, the in-plane temperature difference of the wafer W increases, which is not preferable. In order to prevent the temperature variation resulting from the variation in thickness of the resistance heating element, it can be reduced by dividing each resistance heating element 5 having a large outer diameter, which is composed of one resistance heating element.

また、図5に示すように、独立して加熱できる複数の帯状の抵抗発熱体5a、5b、5c、5d、5e、5f、5g、5hのうち、少なくとも1つは、同一円周上に位置する一対の折り返し円弧状の帯の間の距離が、上記抵抗発熱体5の帯の間の距離よりも小さいことが好ましい。これにより、空隙部Q周辺における温度低下を抑制することができるため、ウェハW面内の温度差を小さくすることができる。   As shown in FIG. 5, at least one of the plurality of strip-like resistance heating elements 5a, 5b, 5c, 5d, 5e, 5f, 5g, and 5h that can be heated independently is located on the same circumference. The distance between the pair of folded arc-shaped bands is preferably smaller than the distance between the bands of the resistance heating element 5. Thereby, since the temperature fall in the space | gap part Q periphery can be suppressed, the temperature difference in the wafer W surface can be made small.

また、上記複数の抵抗発熱体5a、5b、5c、5d、5e、5f、5g、5hの全てにおいて、同一円周上に位置する円弧状の帯と、それらを繋ぐ折り返し円弧状の帯とからなるとともに、同一円周上に位置する一対の折り返し円弧状の帯の間の距離が、上記円弧状の帯の間の距離よりも小さいことがウェハW面内の温度差を小さくする上でより好ましい。   Further, in all of the plurality of resistance heating elements 5a, 5b, 5c, 5d, 5e, 5f, 5g, and 5h, an arc-shaped band positioned on the same circumference and a folded arc-shaped band that connects them. In addition, the distance between the pair of folded arc-shaped bands located on the same circumference is smaller than the distance between the arc-shaped bands, in order to reduce the temperature difference in the wafer W plane. preferable.

また、抵抗発熱体5は、同心円状に独立して加熱できる複数の発熱体からなり、同心円状の最外周の抵抗発熱体の帯とその内側の帯との間隔が、上記最外周の独立した抵抗発熱体を除く抵抗発熱体の同心円状の帯の間隔より小さいことが好ましい。このような構成とすることで、板状体2の周辺部の発熱量を増大させることができることから周辺部の熱引けによるウェハW周辺部の温度低下を防止することができて好ましい。   Further, the resistance heating element 5 is composed of a plurality of heating elements that can be heated concentrically independently, and the distance between the outermost resistance heating element strip in the concentric circle and the inner band is independent of the outermost periphery. It is preferable that it is smaller than the interval between the concentric bands of the resistance heating element excluding the resistance heating element. By adopting such a configuration, the amount of heat generated in the peripheral portion of the plate-like body 2 can be increased, and therefore, a temperature drop in the peripheral portion of the wafer W due to thermal shrinkage in the peripheral portion can be prevented.

また、板状体2の外周の最も近傍にある抵抗発熱体5の外接円Cの直径Dが上記板状体2の直径DPの90〜97%であることが好ましい。これは、抵抗発熱体5の外接円Cの直径Dが板状体2の直径DPの90%より小さいと、ウェハWを急速に昇温したり急速に降温させる時間が大きくなりウェハWの温度応答特性が劣る。また、ウェハWの周辺部の温度を下げないようウェハWの表面温度を均一に加熱するには、直径DはウェハWの直径の1.02倍程度が好ましいことから、ウェハWの大きさに対して板状体2の直径DPが大きくなり、均一に加熱できるウェハWの大きさが板状体2の直径DPに比較して小さくなり、ウェハWを加熱する投入電力に対しウェハWを加熱する加熱効率が悪くなる。更に、板状体2が大きくなることからウェハ製造装置の設置面積が大きくなり、最小の設置面積で最大の生産を行う必要がある半導体製造装置の設置面積に対する稼働率を低下させ好ましくない。   In addition, it is preferable that the diameter D of the circumscribed circle C of the resistance heating element 5 closest to the outer periphery of the plate-like body 2 is 90 to 97% of the diameter DP of the plate-like body 2. This is because if the diameter D of the circumscribed circle C of the resistance heating element 5 is smaller than 90% of the diameter DP of the plate-like body 2, the time for rapidly raising or lowering the temperature of the wafer W increases and the temperature of the wafer W increases. Response characteristics are inferior. In order to uniformly heat the surface temperature of the wafer W so as not to lower the temperature at the periphery of the wafer W, the diameter D is preferably about 1.02 times the diameter of the wafer W. On the other hand, the diameter DP of the plate-like body 2 is increased, and the size of the wafer W that can be uniformly heated is smaller than the diameter DP of the plate-like body 2, and the wafer W is heated with respect to the input power for heating the wafer W. Heating efficiency is reduced. Furthermore, since the plate-like body 2 becomes large, the installation area of the wafer manufacturing apparatus becomes large, which is not preferable because the operation rate with respect to the installation area of the semiconductor manufacturing apparatus that needs to perform the maximum production with the minimum installation area is lowered.

一方で、抵抗発熱体5の外接円Cの直径Dが板状体2の直径DPの97%より大きいと接触部材17と抵抗発熱体5の外周との間隔が小さく抵抗発熱体5の外周部から熱が接触部材17に不均一に流れ、特に、外周部の外接円Cに接する円弧状抵抗発熱体ゾーン51が存在しない部分からも熱が流れ、外周部の円弧状抵抗発熱体ゾーン51が板状体2の中心部へ曲がっていることから抵抗発熱体5を囲む外接円Cに沿って円弧状抵抗発熱体ゾーン51が欠落する空隙部Qの温度が低下しウェハWの面内温度差を大きくする虞がある。より好ましくは、抵抗発熱体5の外接円Cの直径Dが板状体2の直径DPの92〜95%である。   On the other hand, if the diameter D of the circumscribed circle C of the resistance heating element 5 is larger than 97% of the diameter DP of the plate-like body 2, the distance between the contact member 17 and the outer periphery of the resistance heating element 5 is small. Heat flows unevenly from the contact member 17 to the contact member 17. In particular, heat flows from a portion where the arc-shaped resistance heating element zone 51 in contact with the outer circumscribed circle C does not exist, and the arc-shaped resistance heating element zone 51 on the outer periphery is formed. Since the bent portion 2 is bent toward the center of the plate-like body 2, the temperature of the gap Q where the arc-shaped resistance heating element zone 51 is missing decreases along the circumscribed circle C surrounding the resistance heating element 5, and the in-plane temperature difference of the wafer W is reduced. May increase. More preferably, the diameter D of the circumscribed circle C of the resistance heating element 5 is 92 to 95% of the diameter DP of the plate-like body 2.

また、板状体2の外周の最も近傍に位置する抵抗発熱体5e、5f、5gおよび5hの有する折り返し円弧状の帯間の距離Lmは、板状体2の直径DPと外接円Cの直径Dとの差(以下、LLと略する)より小さいことが好ましい。距離L10がLLより大きいと空隙部Qの熱が板状体2の周辺部へ流れ空隙部Qの温度が下がる虞がある。しかし、距離L10がLLより小さいと空隙部Qの温度が下がり難く板状体2の載置面3に載せたウェハWの周辺部の一部の温度が低下せずウェハW面内の温度差が小さくなり好ましい。   The distance Lm between the folded arc-shaped bands of the resistance heating elements 5e, 5f, 5g, and 5h located closest to the outer periphery of the plate-like body 2 is the diameter DP of the plate-like body 2 and the diameter of the circumscribed circle C. It is preferably smaller than the difference from D (hereinafter abbreviated as LL). If the distance L10 is larger than LL, the heat of the gap portion Q flows to the peripheral portion of the plate-like body 2 and the temperature of the gap portion Q may be lowered. However, if the distance L10 is smaller than LL, the temperature of the gap Q is difficult to decrease, and the temperature of a part of the periphery of the wafer W placed on the mounting surface 3 of the plate-like body 2 does not decrease, and the temperature difference within the wafer W surface. Is preferable.

また、板厚が1〜7mmの板状体2の一方の主面側を、ウェハを載せる載置面3とするとともに、上記板状体2の下面に抵抗発熱体5を備えたヒータ1において、上記抵抗発熱体5の厚みが5〜50μmであるとともに、上記板状体2の主面に平行な投影面で見て、上記抵抗発熱体5を囲む外接円Cの面積に対し、上記外接円Cに占める抵抗発熱体5の面積の比率が5〜30%であることが好ましい。これは、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率を5%未満とすると、一対の折り返し円弧状抵抗発熱体5の帯の間の距離Lm、L1、・・・が大きくなり過ぎることから、空隙部Qに対応した載置面3の表面温度が他の部分と比較して小さくなり、載置面3の温度を均一にすることが困難になる。   In addition, in the heater 1 in which the one main surface side of the plate-like body 2 having a plate thickness of 1 to 7 mm is used as the mounting surface 3 on which the wafer is placed, and the lower surface of the plate-like body 2 includes the resistance heating element 5. The resistance heating element 5 has a thickness of 5 to 50 μm, and the circumscribed circle C is surrounded by the area of the circumscribed circle C surrounding the resistance heating element 5 when viewed in a projection plane parallel to the main surface of the plate-like body 2. The area ratio of the resistance heating element 5 to the circle C is preferably 5 to 30%. When the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is less than 5%, the band of the pair of folded arc resistance heating elements 5 is formed. Since the distances Lm, L1,... Between them become too large, the surface temperature of the mounting surface 3 corresponding to the gap portion Q becomes smaller than the other portions, and the temperature of the mounting surface 3 is made uniform. It becomes difficult to do.

また、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率が30%を超えると、板状体2と抵抗発熱体5との間の熱膨張差を2.0×10−6/℃以下に近似させたとしても、両者の間に作用する熱応力が大きすぎることから、板状体2は変形し難いが、板厚が1〜7mmと薄いことから抵抗発熱体5を発熱させると、載置面3側が凹となるように板状体2に反りが発生する虞がある。その結果、ウェハWの中心部の温度が周縁よりも小さくなり、温度バラツキが大きくなる虞がある。 When the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 exceeds 30%, the space between the plate-like body 2 and the resistance heating element 5 is increased. Even when the thermal expansion difference is approximated to 2.0 × 10 −6 / ° C. or less, the thermal stress acting between the two is too large, so that the plate-like body 2 is hardly deformed, but the plate thickness is 1 to 1 If the resistance heating element 5 is heated because it is as thin as 7 mm, the plate-like body 2 may be warped so that the mounting surface 3 side is concave. As a result, the temperature of the central portion of the wafer W becomes lower than the peripheral edge, and there is a possibility that the temperature variation becomes large.

なお、好ましくは、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率を7〜20%、さらには8〜15%とすることが好ましい。   The ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is preferably 7 to 20%, more preferably 8 to 15%. .

より具体的には、距離L1は0.5mm以上で、上記板状体2の板厚の3倍以下であることが好ましい。距離L1が0.5mm以下では抵抗発熱体5を印刷し形成する際に抵抗発熱体5の対抗領域でひげ状の突起が発生しその部分が短絡する虞がある。また、距離L1が板状体2の厚みの3倍を越えると、距離L1に対応するウェハWの表面にクールスポットが発生しウェハWの面内温度差を大きくする虞があるからである。   More specifically, the distance L1 is preferably 0.5 mm or more and 3 times or less the plate thickness of the plate-like body 2. When the distance L1 is 0.5 mm or less, when the resistance heating element 5 is printed and formed, a whisker-like protrusion may be generated in the opposing region of the resistance heating element 5 and the portion may be short-circuited. Further, if the distance L1 exceeds three times the thickness of the plate-like body 2, a cool spot may be generated on the surface of the wafer W corresponding to the distance L1, and the in-plane temperature difference of the wafer W may be increased.

さらに、このような効果を効率良く発現させるには、抵抗発熱体5の膜厚を5〜50μmとすることが好ましい。これは、抵抗発熱体5の膜厚が5μmを下回ると、抵抗発熱体5をスクリーン印刷法で膜厚を均一に印刷することが困難となるからであり、また、抵抗発熱体5の厚みが50μmを越えると、外接円Cに対し、抵抗発熱体5の占める面積の比率を30%以下としても抵抗発熱体5の厚みが大きく、抵抗発熱体5の剛性が大きくなり、板状セラミック体5の温度変化により抵抗発熱体5の伸び縮みによる影響で板状体2が変形する虞がある。好ましくは抵抗発熱体5の厚みを10〜30μmとするのがよい。   Furthermore, in order to efficiently exhibit such an effect, the thickness of the resistance heating element 5 is preferably set to 5 to 50 μm. This is because if the thickness of the resistance heating element 5 is less than 5 μm, it is difficult to print the resistance heating element 5 uniformly by screen printing. If it exceeds 50 μm, even if the ratio of the area occupied by the resistance heating element 5 to the circumscribed circle C is 30% or less, the thickness of the resistance heating element 5 is increased, the rigidity of the resistance heating element 5 is increased, and the plate-like ceramic body 5 There is a possibility that the plate-like body 2 is deformed due to the influence of expansion and contraction of the resistance heating element 5 due to the temperature change. Preferably, the thickness of the resistance heating element 5 is 10 to 30 μm.

以下、本発明のヒータ、ウェハ加熱用ヒータおよびウェハ加熱装置に用いる部材について説明する。   Hereinafter, members used for the heater, the wafer heating heater, and the wafer heating apparatus of the present invention will be described.

板状体2の材質としては、100〜200℃におけるヤング率が200〜450MPa程度を有するアルミナ、窒化珪素、サイアロン、窒化アルミニウムおよび炭化珪素を用いることができ、この中でも特に窒化アルミニウムは50W/(m・K)以上、さらには100W/(m・K)以上の高い熱伝導率を有するとともに、フッ素系や塩素系等の腐食性ガスに対する耐食性や耐プラズマ性にも優れることから、好適である。   As the material of the plate-like body 2, alumina, silicon nitride, sialon, aluminum nitride and silicon carbide having a Young's modulus at 100 to 200 ° C. of about 200 to 450 MPa can be used. m · K) or higher, more preferably 100 W / (m · K) or higher, and excellent corrosion resistance and plasma resistance against corrosive gases such as fluorine and chlorine. .

また、板状体2は、上記のセラミックス材料に代えて金属板を使用することもできる。金属板の材質としてはタングステン、モリブデンや、Fe−Ni−Co合金やSUS等が使用できる。しかし、ヤング率が小さな金属材料では板状体2に補強部材を備えたり、板状体2をセラミックス製板状体2より厚くすることが好ましい。   In addition, the plate-like body 2 can use a metal plate instead of the ceramic material. As the material of the metal plate, tungsten, molybdenum, Fe—Ni—Co alloy, SUS, or the like can be used. However, for a metal material having a small Young's modulus, it is preferable that the plate-like body 2 is provided with a reinforcing member, or the plate-like body 2 is thicker than the ceramic plate-like body 2.

一方で、ヒータ1をレジスト膜形成用として使用する場合は、板状体2の主成分を炭化珪素にすると、大気中の水分等と反応してガスを発生させることもないため、ウェハW上へのレジスト膜の貼付に用いたとしても、レジスト膜の組織に悪影響を与えることがなく、微細な配線を高密度に形成することが可能である。この際、焼結助剤に水と反応してアンモニアやアミンを形成する可能性のある窒化物を含まないようにすることが必要である。   On the other hand, when the heater 1 is used for forming a resist film, if the main component of the plate-like body 2 is made of silicon carbide, it does not react with moisture in the atmosphere and does not generate gas. Even if it is used for applying a resist film to the substrate, fine wirings can be formed at a high density without adversely affecting the structure of the resist film. At this time, it is necessary that the sintering aid does not contain nitrides that may react with water to form ammonia or amines.

なお、板状体2を炭化珪素質焼結体形成する場合は、主成分の炭化珪素に対し、焼結助剤として硼素(B)と炭素(C)を添加したり、もしくはアルミナ(Al)イットリア(Y)のような金属酸化物を添加して十分混合し、平板状に加工したのち、1900〜2100℃で焼成することにより得られる。炭化珪素はα型を主体とするものあるいはβ型を主体とするもののいずれであっても構わない。 When the silicon carbide sintered body is formed as the plate-like body 2, boron (B) and carbon (C) are added as sintering aids to the main component silicon carbide, or alumina (Al 2 It can be obtained by adding a metal oxide such as O 3 ) yttria (Y 2 O 3 ), mixing it well, processing it into a flat plate, and firing it at 1900-2100 ° C. Silicon carbide may be either mainly α-type or β-type.

このとき、板状体2と抵抗発熱体5との間の絶縁を保つ絶縁層としては、ガラス又は樹脂を用いることが可能であり、ガラスを用いる場合、その厚みが100μm未満では耐電圧が1.5kVを下回り絶縁性が保てず、逆に厚みが400μmを越えると、板状体2を形成する炭化珪素質焼結体との熱膨張差が大きくなり過ぎるために、クラックが発生して絶縁層として機能しなくなる。その為、絶縁層としてガラスを用いる場合、絶縁層4の厚みは100〜400μmの範囲で形成することが好ましく、望ましくは200〜350μmの範囲とすることが良い。   At this time, as the insulating layer for maintaining insulation between the plate-like body 2 and the resistance heating element 5, glass or resin can be used. When glass is used, the withstand voltage is 1 when the thickness is less than 100 μm. If the insulation is not maintained below 0.5 kV and the thickness exceeds 400 μm, the thermal expansion difference from the silicon carbide sintered body forming the plate-like body 2 becomes too large, and cracks are generated. It will not function as an insulating layer. Therefore, when glass is used as the insulating layer, the thickness of the insulating layer 4 is preferably formed in the range of 100 to 400 μm, and more preferably in the range of 200 to 350 μm.

さらに、板状体2の載置面3と反対側の主面は、ガラスや樹脂からなる絶縁層4との密着性を高める観点から、平面度20μm以下、面粗さを中心線平均粗さ(Ra)で0.1〜0.5μmに研磨しておくことが好ましい。   Furthermore, the main surface opposite to the mounting surface 3 of the plate-like body 2 has a flatness of 20 μm or less and a surface roughness with a centerline average roughness from the viewpoint of improving the adhesion with the insulating layer 4 made of glass or resin. It is preferable to polish it to 0.1 to 0.5 μm with (Ra).

また、板状体2を、窒化アルミニウムを主成分とする焼結体で形成する場合は、主成分の窒化アルミニウムに対し、焼結助剤としてYやYb等の希土類元素酸化物と必要に応じてCaO等のアルカリ土類金属酸化物を添加して十分混合し、平板状に加工した後、窒素ガス中1900〜2100℃で焼成することにより得られる。板状体2に対する抵抗発熱体5の密着性を向上させるために、ガラスからなる絶縁層を形成することもある。ただし、抵抗発熱体5の中に十分なガラスを添加し、これにより十分な密着強度が得られる場合は、省略することが可能である。 Further, when the plate-like body 2 is formed of a sintered body containing aluminum nitride as a main component, a rare earth element such as Y 2 O 3 or Yb 2 O 3 as a sintering aid with respect to the main component aluminum nitride. It is obtained by adding an oxide and an alkaline earth metal oxide such as CaO as necessary and mixing them well, processing them into a flat plate, and then firing at 1900 to 2100 ° C. in nitrogen gas. In order to improve the adhesion of the resistance heating element 5 to the plate-like body 2, an insulating layer made of glass may be formed. However, when sufficient glass is added in the resistance heating element 5 and sufficient adhesion strength can be obtained by this, it can be omitted.

板状体2の厚みは、2〜5mmが好ましい。板状体2の厚みが2mmより薄いと、板状体2の強度がなくなり抵抗発熱体5の発熱による加熱時、ガス噴射口24からの冷却エアーを吹き付けた際に、冷却時の熱応力に耐えきれず、板状体2にクラックが発生する虞があるからである。また、板状体2の厚みが5mmを越えると、板状体2の熱容量が大きくなるので加熱および冷却時の温度が安定するまでの時間が長くなる虞がある。   The thickness of the plate-like body 2 is preferably 2 to 5 mm. When the thickness of the plate-like body 2 is less than 2 mm, the strength of the plate-like body 2 is lost, and when the cooling air from the gas injection port 24 is blown when the resistance heating element 5 is heated by heat generation, It is because it cannot endure and there exists a possibility that the crack may generate | occur | produce in the plate-shaped body 2. FIG. On the other hand, if the thickness of the plate-like body 2 exceeds 5 mm, the heat capacity of the plate-like body 2 increases, so that there is a possibility that the time until the temperature during heating and cooling becomes stable becomes longer.

上記絶縁層を形成するガラスの特性としては、結晶質又は非晶質のいずれでも良く、耐熱温度が200℃以上でかつ0〜200℃の温度域における熱膨張係数が板状体2を構成するセラミックスの熱膨張係数に対し−5〜+5×10−7/℃の範囲にあるものを適宜選択して用いることが好ましい。即ち、熱膨張係数が上記範囲を外れたガラスを用いると、板状体2を形成するセラミックスとの熱膨張差が大きくなりすぎるため、ガラスの焼付け後の冷却時においてクラックや剥離等の欠陥が生じ易いからである。 The glass forming the insulating layer may be crystalline or amorphous, and the thermal expansion coefficient in the temperature range of 200 ° C. or higher and 0 to 200 ° C. constitutes the plate-like body 2. It is preferable to appropriately select and use a ceramic having a thermal expansion coefficient in the range of −5 to + 5 × 10 −7 / ° C. That is, if a glass having a thermal expansion coefficient outside the above range is used, the difference in thermal expansion from the ceramic forming the plate-like body 2 becomes too large, so that there are defects such as cracks and peeling during cooling after baking the glass. It is because it is easy to occur.

なお、ガラスからなる絶縁層を板状体2上に被着する手段としては、上記ガラスペーストを板状体2の中心部に適量落とし、スピンコーティング法にて伸ばして均一に塗布するか、あるいはスクリーン印刷法、ディッピング法、スプレーコーティング法等にて均一に塗布したあと、ガラスペーストを600℃以上の温度で焼き付けすれば良い。また、絶縁層としてガラスを用いる場合、予め炭化珪素質焼結体又は窒化アルミニウム質焼結体からなる板状体2を850〜1300℃程度の温度に加熱し、絶縁層を被着する表面を酸化処理しておくことで、ガラスからなる絶縁層との密着性を高めることができる。   In addition, as means for depositing an insulating layer made of glass on the plate-like body 2, an appropriate amount of the glass paste is dropped on the center of the plate-like body 2 and stretched by a spin coating method, or applied uniformly. After applying uniformly by a screen printing method, dipping method, spray coating method or the like, the glass paste may be baked at a temperature of 600 ° C. or higher. Moreover, when using glass as an insulating layer, the plate-like body 2 made of a silicon carbide sintered body or an aluminum nitride sintered body is heated to a temperature of about 850 to 1300 ° C. in advance, and the surface on which the insulating layer is deposited is formed. By performing the oxidation treatment, the adhesion with the insulating layer made of glass can be enhanced.

本発明の抵抗発熱体5の抵抗発熱体ゾーン形状としては、図4に示すような複数のブロックに分割され、個々のブロックが円弧状の抵抗発熱体ゾーンと直線状の抵抗発熱体ゾーンとからなる渦巻き状やジグザクな折り返し形状をしたもので、本願発明のヒータ1はウェハWを均一に加熱することが重要であることから、これらの抵抗発熱体ゾーン形状は帯状の抵抗発熱体5の各部の密度が均一なことが好ましい。   The resistance heating element zone shape of the resistance heating element 5 of the present invention is divided into a plurality of blocks as shown in FIG. 4, and each block is composed of an arc-shaped resistance heating element zone and a linear resistance heating element zone. Since the heater 1 of the present invention is important to uniformly heat the wafer W, these resistance heating element zone shapes are the parts of the belt-like resistance heating element 5. It is preferable that the density is uniform.

また、抵抗発熱体5を複数のブロックに分割する場合、それぞれのブロックの温度を独立に制御することにより、載置面3上のウェハWを均一に加熱することが好ましい。   Further, when the resistance heating element 5 is divided into a plurality of blocks, it is preferable to uniformly heat the wafer W on the mounting surface 3 by independently controlling the temperature of each block.

抵抗発熱体5は、導電性の金属粒子にガラスフリットや金属酸化物を含む電極ペーストを印刷法で板状体2に印刷、焼き付けしたもので、金属粒子としては、比較的電気抵抗が小さいAu、Ag、Cu、Pd、Pt、Rhの少なくとも一種の金属を用いることが好ましく、またガラスフリットとしては、B、Si、Znを含む酸化物からなり、板状体2の熱膨張係数より小さな4.5×10−6/℃以下の低膨張ガラスを用いることが好ましく、さらに金属酸化物としては、酸化珪素、酸化ホウ素、アルミナ、チタニアから選ばれた少なくとも一種を用いることが好ましい。 The resistance heating element 5 is obtained by printing and baking an electrode paste containing glass frit or metal oxide on conductive metal particles on the plate-like body 2 by a printing method. As the metal particles, Au having a relatively low electrical resistance is used. , Ag, Cu, Pd, Pt, Rh are preferably used, and the glass frit is made of an oxide containing B, Si, Zn, and is smaller than the thermal expansion coefficient of the plate-like body 4. It is preferable to use a low expansion glass having a size of 5 × 10 −6 / ° C. or less, and it is preferable to use at least one selected from silicon oxide, boron oxide, alumina, and titania as the metal oxide.

また、上記ガラスフリットとして、B、Si、Znを含む酸化物からなり、抵抗発熱体5を構成する金属粒子の熱膨張係数が板状体2の熱膨張係数より大きいことから、抵抗発熱体5の熱膨張係数を板状体2の熱膨張係数に近づけるには、板状体2の熱膨張係数より小さな4.5×10−6/℃以下の低膨張ガラスを用いることが好ましいからである。 The glass frit is made of an oxide containing B, Si, Zn, and the thermal expansion coefficient of the metal particles constituting the resistance heating element 5 is larger than the thermal expansion coefficient of the plate-like body 2. This is because it is preferable to use a low expansion glass having a thermal expansion coefficient of 4.5 × 10 −6 / ° C. or less, which is smaller than the thermal expansion coefficient of the plate-like body 2, in order to bring the thermal expansion coefficient of .

また、上記金属酸化物としては、酸化珪素、酸化ホウ素、アルミナ、チタニアから選ばれた少なくとも一種を用いるのは、抵抗発熱体5の中の金属粒子と密着性が優れ、しかも熱膨張係数が板状体2の熱膨張係数と近く、板状体2との密着性も優れるからである。   Further, as the metal oxide, at least one selected from silicon oxide, boron oxide, alumina, and titania is used because it has excellent adhesion to the metal particles in the resistance heating element 5 and has a coefficient of thermal expansion. This is because the thermal expansion coefficient is close to that of the plate-like body 2 and the adhesion to the plate-like body 2 is also excellent.

ただし、抵抗発熱体5に対し、金属酸化物の含有量が80%を超えると、板状体2との密着力は増すものの、抵抗発熱体5の抵抗値が大きくなり好ましくない。その為、金属酸化物の含有量は60%以下とすることが良い。   However, if the content of the metal oxide exceeds 80% with respect to the resistance heating element 5, the adhesion with the plate-like body 2 is increased, but the resistance value of the resistance heating element 5 is not preferable. Therefore, the content of the metal oxide is preferably 60% or less.

そして、導電性の金属粒子とガラスフリットや金属酸化物からなる抵抗発熱体5は、板状体2との熱膨張差が3.0×10−6/℃以下であるものを用いることが好ましい。 The resistance heating element 5 made of conductive metal particles and glass frit or metal oxide preferably has a thermal expansion difference of 3.0 × 10 −6 / ° C. or less with respect to the plate-like body 2. .

即ち、抵抗発熱体5と板状体2との熱膨張差を0.1×10−6/℃とすることは製造上難しく、逆に抵抗発熱体5と板状体2との熱膨張差が3.0×10−6/℃を超えると、抵抗発熱体5を発熱させた時、板状体2との間に作用する熱応力によって、載置面3側が凹状に反る恐れがあるからである。 That is, it is difficult to make the difference in thermal expansion between the resistance heating element 5 and the plate-like body 2 0.1 × 10 −6 / ° C. On the contrary, the difference in thermal expansion between the resistance heating element 5 and the plate-like body 2 is difficult. If the temperature exceeds 3.0 × 10 −6 / ° C., when the resistance heating element 5 is heated, the mounting surface 3 side may be warped in a concave shape due to thermal stress acting between the resistance heating element 5 and the plate-like body 2. Because.

リング状の接触部材17の断面は多角形や円形のいずれでも良いが、板状体2と接触部材17が平面で接触する場合において、板状体2と接触部材17の接する接触部の幅は0.1〜13mmであれば、板状体2の熱が接触部材17を介して有底の金属ケース19に流れ量を小さくすることができる。そして、ウェハWの面内の温度差が小さくウェハWを均一に加熱することができる。更に好ましくは0.1〜8mmである。接触部材17の接触部の幅が0.1mm以下では、板状体2と接触固定した際に接触部が変形し、接触部材が破損する虞がある。また、接触部材17の接触部の幅が13mmを越える場合には、板状体2の熱が接触部材に流れ、板状体2の周辺部の温度が低下しウェハWを均一に加熱することが難しくなる。好ましくは接触部材17と板状体2の接触部の幅は0.1〜8mmであり、更に好ましくは0.1〜2mmである。   The cross section of the ring-shaped contact member 17 may be either polygonal or circular. However, when the plate-like body 2 and the contact member 17 are in contact with each other in a plane, the width of the contact portion where the plate-like body 2 and the contact member 17 are in contact is as follows. If it is 0.1-13 mm, the amount of heat of the plate-like body 2 can be reduced to the bottomed metal case 19 via the contact member 17. And the temperature difference in the surface of the wafer W is small, and the wafer W can be heated uniformly. More preferably, it is 0.1-8 mm. If the width of the contact portion of the contact member 17 is 0.1 mm or less, the contact portion may be deformed when the contact member 17 is fixed in contact with the plate-like body 2, and the contact member may be damaged. When the width of the contact portion of the contact member 17 exceeds 13 mm, the heat of the plate-like body 2 flows to the contact member, the temperature of the peripheral portion of the plate-like body 2 is lowered, and the wafer W is heated uniformly. Becomes difficult. Preferably, the width of the contact portion between the contact member 17 and the plate-like body 2 is 0.1 to 8 mm, more preferably 0.1 to 2 mm.

また、接触部材17の熱伝導率は板状体2の熱伝導率より小さいことが好ましい。接触部材17の熱伝導率が板状体2の熱伝導率より小さければ板状体2に載せたウェハW面内の温度分布を均一に加熱することができると共に、板状体2の温度を上げたり下げたりする際に、接触部材17との熱の伝達量が小さく有底の金属ケース19との熱的干渉が少なく、迅速に温度を変更することが容易となる。   Further, the thermal conductivity of the contact member 17 is preferably smaller than the thermal conductivity of the plate-like body 2. If the thermal conductivity of the contact member 17 is smaller than the thermal conductivity of the plate-like body 2, the temperature distribution in the surface of the wafer W placed on the plate-like body 2 can be heated uniformly, and the temperature of the plate-like body 2 can be changed. When raising or lowering, the amount of heat transfer with the contact member 17 is small, and there is little thermal interference with the bottomed metal case 19, making it easy to change the temperature quickly.

接触部材17の熱伝導率が板状体2の熱伝導率の10%より小さいヒータ1では、板状体2の熱が有底の金属ケース19に流れ難く、板状体2から有底の金属ケース19に熱が、雰囲気ガス(ここでは空気)による伝熱や輻射伝熱により流れる熱が多くなり逆に効果が小さい。   In the heater 1 in which the thermal conductivity of the contact member 17 is smaller than 10% of the thermal conductivity of the plate-like body 2, it is difficult for the heat of the plate-like body 2 to flow into the bottomed metal case 19. The heat of the metal case 19 increases due to heat transfer by atmospheric gas (here, air) or radiation heat transfer, and the effect is small.

接触部材17の熱伝導率が板状体2の熱伝導率より大きい場合には、板状体2の周辺部の熱が接触部材17を介して有底の金属ケース19に流れ、有底の金属ケース19を加熱すると共に、板状体2の周辺部の温度が低下しウェハW面内の温度差が大きくなり好ましくない。また、有底の金属ケース19が加熱されることからガス噴射口24からエアを噴射し板状体2を冷却しようとしても有底の金属ケース19の温度が高いことから冷却する時間が大きくなったり、一定温度に加熱する際に一定温度になるまでの時間が大きくなる虞があった。   When the thermal conductivity of the contact member 17 is larger than the thermal conductivity of the plate-like body 2, the heat of the peripheral part of the plate-like body 2 flows to the bottomed metal case 19 through the contact member 17, While heating the metal case 19, the temperature of the peripheral part of the plate-shaped body 2 falls and the temperature difference in the wafer W surface becomes large, which is not preferable. In addition, since the bottomed metal case 19 is heated, even if it is attempted to cool the plate-like body 2 by injecting air from the gas injection port 24, the cooling time increases because the temperature of the bottomed metal case 19 is high. When heating to a constant temperature, there is a concern that the time until the temperature reaches a certain temperature may increase.

一方、上記接触部材17を構成する材料としては、小さな接触部を保持するために、接触部材のヤング率は1GPa以上が好ましく、更に好ましくは10GPa以上である。このようなヤング率とすることで、接触部の幅が0.1〜8mmと小さく、板状体2を有底の金属ケース19に接触部材17を介してボルト16で固定しても、接触部材17が変形することが無く、板状体2が位置ズレしたり平行度が変化したりすることなく、精度良く保持することができる。   On the other hand, as a material constituting the contact member 17, the Young's modulus of the contact member is preferably 1 GPa or more, and more preferably 10 GPa or more in order to hold a small contact portion. With such a Young's modulus, even if the width of the contact portion is as small as 0.1 to 8 mm and the plate-like body 2 is fixed to the bottomed metal case 19 with the bolt 16 via the contact member 17, the contact The member 17 is not deformed, and the plate-like body 2 can be held with high accuracy without being displaced or changing the parallelism.

尚、特許文献2に記載のような、フッ素系樹脂やガラス繊維を添加した樹脂からなる接触部材では得られない精度を達成することができる。   In addition, the precision which cannot be obtained with the contact member which consists of resin which added fluororesin and glass fiber like patent document 2 can be achieved.

上記接触部材17の材質としては鉄とカーボンからなる炭素鋼やニッケル、マンガン、クロムを加えた特殊鋼等の金属はヤング率が大きく好ましい。また、熱伝導率の小さな材料としては、ステンレス鋼やFe―Ni−Co系合金の所謂コバールが好ましく、板状体2の熱伝導率より小さくなるように接触部材17の材料を選択することが好ましい。   As the material of the contact member 17, metals such as carbon steel made of iron and carbon and special steel added with nickel, manganese, and chromium are preferable because of their large Young's modulus. Further, as the material having low thermal conductivity, so-called Kovar such as stainless steel or Fe—Ni—Co alloy is preferable, and the material of the contact member 17 may be selected so as to be smaller than the thermal conductivity of the plate-like body 2. preferable.

更に、接触部材17と板状体2との接触部を小さく、且つ接触部が小さくても接触部が欠損しパーティクルを発生する虞が小さく安定な接触部を保持できるために、板状体2に垂直な面で切断した接触部材17の断面は多角形より円形が好ましく、断面の直径1mm以下の円形のワイヤを接触部材17として使用すると板状体2と有底の金属ケース19の位置が変化することなくウェハWの表面温度を均一にしかも迅速に昇降温することが可能である。   Furthermore, since the contact portion between the contact member 17 and the plate-like body 2 is small, and the contact portion is small, there is no possibility of the contact portion being lost and particles are generated, so that the stable contact portion can be held. The cross-section of the contact member 17 cut along a plane perpendicular to the polygonal shape is preferably circular rather than polygonal. When a circular wire having a cross-sectional diameter of 1 mm or less is used as the contact member 17, the position of the plate-like body 2 and the bottomed metal case 19 is It is possible to raise and lower the temperature of the wafer W uniformly and quickly without changing.

なお、有底の金属ケース19の深さは10〜50mmで、底面21は、板状体2から10〜50mmの距離に設置することが望ましい。更に好ましくは20〜30mmである。これは、板状体2と有底の金属ケース19相互の輻射熱により載置面3の均熱化が容易となると同時に、外部との断熱効果があるので、載置面3の温度が一定で均一な温度となるまでの時間が短くなるためである。   In addition, the depth of the bottomed metal case 19 is 10 to 50 mm, and the bottom surface 21 is desirably installed at a distance of 10 to 50 mm from the plate-like body 2. More preferably, it is 20-30 mm. This is because heat equalization of the mounting surface 3 is facilitated by radiant heat between the plate-like body 2 and the bottomed metal case 19, and at the same time, there is a heat insulating effect from the outside, so the temperature of the mounting surface 3 is constant. This is because the time until the temperature is uniform is shortened.

更に、抵抗発熱体5への給電方法については、有底の金属ケース19に設置した給電端子11を板状体2の表面に形成した給電部6にバネ(不図示)で押圧することにより接続を確保し給電する。これは、2〜5mmの厚みの板状体2に金属からなる端子部を埋設して形成すると、該端子部の熱容量により均熱性が悪くなるからである。そのため、本発明のように、給電端子11をバネで押圧して電気的接続を確保することにより、板状体2とその有底の金属ケース19の間の温度差による熱応力を緩和し、高い信頼性で電気的導通を維持できる。さらに、接点が点接触となるのを防止するため、弾性のある導体を中間層として挿入しても構わない。この中間層は単に箔状のシートを挿入するだけでも効果がある。そして、給電端子11の給電部6側の径は、1.5〜5mmとすることが好ましい。   Further, regarding the method of feeding power to the resistance heating element 5, the feeding terminal 11 installed on the bottomed metal case 19 is connected to the feeding part 6 formed on the surface of the plate-like body 2 by pressing it with a spring (not shown). Secure and supply power. This is because when the terminal portion made of metal is embedded in the plate-like body 2 having a thickness of 2 to 5 mm, the thermal uniformity is deteriorated due to the heat capacity of the terminal portion. Therefore, as in the present invention, by pressing the power supply terminal 11 with a spring to ensure electrical connection, the thermal stress due to the temperature difference between the plate-like body 2 and the bottomed metal case 19 is relaxed, Electrical continuity can be maintained with high reliability. Further, an elastic conductor may be inserted as an intermediate layer in order to prevent the contact from becoming a point contact. This intermediate layer is effective by simply inserting a foil-like sheet. And it is preferable that the diameter by the side of the electric power feeding part 6 of the electric power feeding terminal 11 shall be 1.5-5 mm.

また、板状体2の温度は、板状体2にその先端が埋め込まれた熱電対27により測定する。熱電対27としては、その応答性と保持の作業性の観点から、外径0.8mm以下のシース型の熱電対27を使用することが好ましい。この熱電対27の先端部は、板状体2に孔が形成され、この中に設置された固定部材により孔の内壁面に押圧固定することが測温の信頼性を向上させるために好ましい。同様に素線の熱電対やPt等の測温抵抗体を埋設して測温を行うことも可能である。   Further, the temperature of the plate-like body 2 is measured by a thermocouple 27 whose tip is embedded in the plate-like body 2. As the thermocouple 27, it is preferable to use a sheath-type thermocouple 27 having an outer diameter of 0.8 mm or less from the viewpoint of responsiveness and workability of holding. In order to improve the reliability of temperature measurement, it is preferable that the tip of the thermocouple 27 has a hole formed in the plate-like body 2 and is fixed to the inner wall surface of the hole by a fixing member installed therein. Similarly, it is also possible to perform temperature measurement by embedding a temperature measuring resistor such as a thermocouple of a wire or Pt.

なお、板状体2の一方の主面には、図1に示すように、複数の支持ピン8を設け、板状体2の一方の主面より一定の距離をおいてウェハWを保持するようにしても構わない。   As shown in FIG. 1, a plurality of support pins 8 are provided on one main surface of the plate-like body 2 to hold the wafer W at a certain distance from the one main surface of the plate-like body 2. It doesn't matter if you do.

また、図1では板状体2の他方の主面3に抵抗発熱体5のみを備えたヒータ1について示したが、本発明は、主面3と抵抗発熱体5との間に静電吸着用やプラズマ発生用としての電極を埋設したものであっても良いことは言うまでもない。   1 shows the heater 1 having only the resistance heating element 5 on the other main surface 3 of the plate-like body 2. However, the present invention provides an electrostatic adsorption between the main surface 3 and the resistance heating element 5. Needless to say, the electrodes may be embedded for use in plasma generation.

本発明のウェハ加熱用ヒータ110およびそれを用いたウェハ加熱装置111を以下のように作製した。   The wafer heating heater 110 of the present invention and the wafer heating apparatus 111 using the same were manufactured as follows.

(実施例1)熱伝導率が80W/(m・K)の炭化珪素質焼結体に研削加工を施し、板厚4mm、外径230mmの円板状をした板状体を複数制作し、各板状体の一方の主面に絶縁層を被着するため、ガラス粉末に対してバインダーとしてのエチルセルロースと有機溶剤としてのテルピネオールを混練して作製したガラスペーストをスクリーン印刷法にて敷設し、150℃に加熱して有機溶剤を乾燥させた後、550℃で30分間脱脂処理を施し、さらに700〜900℃の温度で焼付けを行うことにより、ガラスからなる厚み200μmの絶縁層を形成した。次いで絶縁層上に抵抗発熱体を被着させるため、導電材として20重量%のAu粉末と10重量%のPt粉末と70重量%のガラスを所定量の抵抗発熱体ゾーン形状に印刷した後、150℃に加熱して有機溶剤を乾燥させ、さらに450℃で30分間脱脂処理を施した後、500〜700℃の温度で焼付けを行うことにより、厚みが50μmの抵抗発熱体を形成した。抵抗発熱体は、円弧状の帯と、それらを繋ぐ折り返し円弧からなり、板状体の中心部と外周部を周方向に4分割した8つの抵抗発熱体ゾーン構成とした。   (Example 1) A silicon carbide sintered body having a thermal conductivity of 80 W / (m · K) is ground to produce a plurality of plate-shaped bodies having a plate thickness of 4 mm and an outer diameter of 230 mm, In order to deposit an insulating layer on one main surface of each plate-like body, a glass paste prepared by kneading ethyl cellulose as a binder and terpineol as an organic solvent with respect to glass powder is laid by a screen printing method, After drying the organic solvent by heating to 150 ° C., degreasing treatment was performed at 550 ° C. for 30 minutes, and baking was further performed at a temperature of 700 to 900 ° C. to form an insulating layer made of glass having a thickness of 200 μm. Next, in order to deposit a resistance heating element on the insulating layer, 20 wt% Au powder, 10 wt% Pt powder, and 70 wt% glass as a conductive material are printed in a predetermined amount of resistance heating element zone shape, The organic solvent was dried by heating to 150 ° C., degreased at 450 ° C. for 30 minutes, and then baked at a temperature of 500 to 700 ° C. to form a resistance heating element having a thickness of 50 μm. The resistance heating element is composed of an arc-shaped band and a folded arc connecting them, and has a configuration of eight resistance heating element zones in which the central portion and the outer peripheral portion of the plate-like body are divided into four in the circumferential direction.

そして、こうして作製した抵抗発熱体の各抵抗発熱体ゾーンをそれぞれ50箇所前後に分割し、各箇所で設計した抵抗値と実測抵抗値との差をなくすために、レーザビームを照射して複数の溝からなる群を形成して抵抗調整した。尚、上述した抵抗値の調整は、各抵抗発熱体ゾーンの抵抗値を測定し最大の抵抗値を基準に設計値より小さいものについて行った。   Then, each resistance heating element zone of the resistance heating element thus manufactured is divided into about 50 locations, and in order to eliminate the difference between the resistance value designed at each location and the actually measured resistance value, a plurality of laser beams are irradiated to irradiate a plurality of resistance heating element zones. A group of grooves was formed to adjust the resistance. The above-described adjustment of the resistance value was performed for a resistance smaller than the design value based on the maximum resistance value measured by measuring the resistance value of each resistance heating element zone.

ここで、複数の溝mからなる群Gの形成位置としては、抵抗発熱体の長手方向中心線より板状体2の中心側(試料No.1)と、抵抗発熱体5の長手方向中心線より板状体2の外周側(試料No.2)に設けたウェハ加熱用ヒータをそれぞれ作製した。   Here, as the formation position of the group G composed of a plurality of grooves m, the center side of the plate-like body 2 (sample No. 1) from the longitudinal center line of the resistance heating element and the longitudinal center line of the resistance heating element 5 Further, wafer heaters provided on the outer peripheral side (sample No. 2) of the plate-like body 2 were produced.

また、比較例として、複数の溝からなる群の形成位置を抵抗発熱体上で、上記中心側と上記外周側、もしくは抵抗発熱体の中央部などランダムに設けたヒータ(試料No.3)を作製した。   Further, as a comparative example, a heater (sample No. 3) in which a group consisting of a plurality of grooves is randomly provided on the resistance heating element, such as the center side and the outer peripheral side, or the central portion of the resistance heating element is provided. Produced.

上記溝の形成方法としては日本電気製のYAGレーザを使用した。レーザビームは、波長が1.06μm、パルス周波数1KHz、レーザ出力0.4W、加工速度5mm/secとして照射した。   As a method for forming the groove, a YAG laser manufactured by NEC was used. The laser beam was irradiated with a wavelength of 1.06 μm, a pulse frequency of 1 KHz, a laser output of 0.4 W, and a processing speed of 5 mm / sec.

尚、上記条件で作製された溝の幅は約50〜60μmで深さは約20〜25μmであった。そして、各群に形成された溝と溝との間隔であるピッチは約65μmで最大の溝の数は13個であった。   In addition, the width | variety of the groove | channel produced on the said conditions was about 50-60 micrometers, and the depth was about 20-25 micrometers. And the pitch which is the space | interval of the groove | channel formed in each group was about 65 micrometers, and the number of the largest groove | channels was 13.

そして、上記で作製されたウェハ加熱用ヒータ110を金属ケースに取り付け、測温素子や給電端子等を取り付けてウェハ加熱装置111を作製した。   Then, the wafer heating heater 110 manufactured as described above was attached to a metal case, and a temperature measuring element, a power supply terminal, and the like were attached to manufacture a wafer heating apparatus 111.

作製したウェハ加熱装置の評価は、測温抵抗体が29箇所に埋設された直径300mmの測温用ウェハを用いて行った。夫々のウェハ加熱装置に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWを取り除き、室温の測温ウェハWを載置面に載せ、ウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。また、30℃から200℃に5分で昇温し5分間保持した後、30分間冷却する温度サイクルを1000サイクル繰り返した後、室温から200℃に設定し10分後のウェハ温度の最大値と最小値の差をウェハW面内の温度差として測定した。結果は表1に示すとおりである。

Figure 2006049270
Evaluation of the produced wafer heating apparatus was performed using a temperature measuring wafer having a diameter of 300 mm in which temperature measuring resistors were embedded in 29 locations. A power supply is attached to each wafer heating device, the temperature of the wafer W is raised from 25 ° C. to 200 ° C. in 5 minutes, the temperature of the wafer W is set to 200 ° C., the wafer W is removed, and a temperature measuring wafer W at room temperature is mounted. The time until the average temperature of the wafer W became constant in the range of 200 ° C. ± 0.5 ° C. was measured as a response time. Further, after the temperature cycle of 30 ° C. to 200 ° C. in 5 minutes and holding for 5 minutes and then cooling for 30 minutes is repeated 1000 cycles, the temperature is set from room temperature to 200 ° C. and the maximum value of the wafer temperature after 10 minutes The difference between the minimum values was measured as a temperature difference in the wafer W plane. The results are as shown in Table 1.
Figure 2006049270

表1に示すように、比較例である試料No.3のウェハ加熱用ヒータは、溝mからなる群Gが抵抗発熱体上にランダムに設けたため、上記の温度サイクルによって発生したクラックが成長し、抵抗発熱体5の抵抗値に若干のバラツキが生じるとともに、溝mの板状体2に対する対称性が悪くなったため、各抵抗発熱体の発熱域で温度差が生じ、ウェハ面内の温度差が0.38℃と大きくなり均熱性が悪くなった。   As shown in Table 1, sample No. In the heater 3 for heating the wafer, since the group G consisting of the grooves m is randomly provided on the resistance heating element, cracks generated by the above temperature cycle grow, and the resistance value of the resistance heating element 5 slightly varies. At the same time, since the symmetry of the groove m with respect to the plate-like body 2 is deteriorated, a temperature difference is generated in the heat generation region of each resistance heating element, and the temperature difference in the wafer surface is increased to 0.38 ° C., so that the heat uniformity is deteriorated. .

これに対して、本発明の実施例である試料No.1、2のウェハ加熱用ヒータは、抵抗発熱体5上の溝mを板状体の中心に対し一方の方向に偏在させて設けたため、上記クラックの成長を防止して抵抗値変化を抑制するとともに、溝mの板状体2に対する対称性がよく、各抵抗発熱体5の発熱域における温度差を低減することができたので、ウェハ面内の温度差を小さくすることができた。   On the other hand, sample No. which is an embodiment of the present invention. The heaters for heating the wafers 1 and 2 are provided with the groove m on the resistance heating element 5 being unevenly distributed in one direction with respect to the center of the plate-like body. At the same time, the symmetry of the groove m with respect to the plate-like body 2 is good, and the temperature difference in the heat generation region of each resistance heating element 5 can be reduced, so that the temperature difference in the wafer surface can be reduced.

(実施例2)上述した実施例1と同様の方法で、抵抗発熱体5の帯を1.5mm幅で形成し、レーザにより複数の溝mからなる群Gを板状体2の中心側に偏在させた抵抗発熱体5を形成した。   (Example 2) In the same manner as in Example 1 described above, the band of the resistance heating element 5 is formed with a width of 1.5 mm, and a group G of a plurality of grooves m is formed on the center side of the plate-like body 2 by laser. An unevenly distributed resistance heating element 5 was formed.

そして、複数の群G同士の間隔と抵抗発熱体5の幅との関連について検証した。   And the relationship between the space | interval of several groups G and the width | variety of the resistance heating element 5 was verified.

尚、上記した群G同士の間隔とは、各抵抗発熱体ゾーンの中で最も小さい群と群との間隔で示すことができる。   The interval between the groups G described above can be indicated by the interval between the smallest group in each resistance heating element zone.

そして、実施例1と同様の方法でウェハW面内の温度差を測定した。結果は表2に示すとおりである。

Figure 2006049270
And the temperature difference in the wafer W surface was measured by the method similar to Example 1. FIG. The results are as shown in Table 2.
Figure 2006049270

表2に示すように、群Gの間隔が抵抗発熱体5からなる帯の幅より大きい試料No.24では、該間隔における温度を他の部分と同一にすることが困難になり、ウェハ面内の温度差が0.26℃とやや大きかった。   As shown in Table 2, the sample No. 1 in which the gap between the groups G is larger than the width of the band made of the resistance heating element 5 is used. 24, it was difficult to make the temperature at the interval the same as the other portions, and the temperature difference in the wafer surface was slightly large at 0.26 ° C.

これに対して、試料No.21〜24は、群Gの間隔が抵抗発熱体5からなる帯の幅より小さかったため、ウェハ面内の温度差をさらに低減することができた。   In contrast, sample no. In Nos. 21 to 24, the gap between the groups G was smaller than the width of the band made of the resistance heating element 5, and therefore the temperature difference in the wafer plane could be further reduced.

(実施例3)まず、窒化アルミニウム粉末に対し、重量換算で1.0質量%の酸化イットリウムを添加し、さらにイソプロピルアルコールとウレタンボールを用いてボールミルにより48時間混練することにより窒化アルミニウムのスラリーを製作した。   (Example 3) First, 1.0% by mass of yttrium oxide in terms of weight is added to aluminum nitride powder, and further, kneaded for 48 hours by a ball mill using isopropyl alcohol and urethane balls to obtain an aluminum nitride slurry. Produced.

次に、窒化アルミニウムのスラリーを200メッシュに通し、ウレタンボールやボールミル壁の屑を取り除いた後、防爆乾燥機にて120℃で24時間乾燥した。   Next, the aluminum nitride slurry was passed through 200 mesh to remove urethane balls and ball mill wall debris, and then dried at 120 ° C. for 24 hours in an explosion-proof dryer.

次いで、得られた窒化アルミニウム粉末にアクリル系のバインダーと溶媒を混合して窒化アルミニウムのスリップを作製し、ドクターブレード法にて窒化アルミニウムのグリーンシートを複数枚製作した。   Next, an acrylic binder and a solvent were mixed into the obtained aluminum nitride powder to produce an aluminum nitride slip, and a plurality of aluminum nitride green sheets were produced by a doctor blade method.

そして、得られた窒化アルミニウムのグリーンシートを複数枚積層熱圧着にて積層体を形成した。   Then, a laminate was formed by laminating a plurality of obtained aluminum nitride green sheets.

しかる後、積層体を非酸化性ガス気流中にて500℃の温度で5時間脱脂を施した後、非酸化性雰囲気にて1900℃の温度で5時間の焼成を行い各種の熱伝導率を有する窒化アルミニウム焼結体を製作した。   Thereafter, the laminate is degreased at a temperature of 500 ° C. for 5 hours in a non-oxidizing gas stream, and then fired at a temperature of 1900 ° C. for 5 hours in a non-oxidizing atmosphere to obtain various thermal conductivities. An aluminum nitride sintered body having this was manufactured.

そして、上記窒化アルミニウム焼結体に研削加工を施し、板厚3mm、直径330mmの円盤状をした板状セラミックス体を複数枚製作し、更に中心から60mmの同心円上に均等に3箇所貫通孔を形成した。貫通口径は、4mmとした。   Then, the aluminum nitride sintered body is ground to produce a plurality of disk-shaped ceramic bodies having a disk thickness of 3 mm and a diameter of 330 mm, and three through holes are evenly formed on a concentric circle 60 mm from the center. Formed. The through-hole diameter was 4 mm.

次いで板状体2の表面に抵抗発熱体5を被着するため、導電材としてAu粉末とPd粉末と、上記同様の組成からなるバインダーを添加したガラスペーストを混練して作製した導電体ペーストをスクリーン印刷法にて所定のパターン形状に印刷したあと、150℃に加熱して有機溶剤を乾燥させ、さらに550℃で30分間脱脂処理を施したあと、700〜900℃の温度で焼き付けを行うことにより、厚みが50μmの抵抗発熱体5を形成した。   Next, in order to deposit the resistance heating element 5 on the surface of the plate-like body 2, a conductor paste prepared by kneading a glass paste to which Au powder, Pd powder and a binder having the same composition as described above are added as a conductive material is prepared. After printing in a predetermined pattern shape by screen printing, heating to 150 ° C. to dry the organic solvent, degreasing treatment at 550 ° C. for 30 minutes, and baking at 700 to 900 ° C. Thus, the resistance heating element 5 having a thickness of 50 μm was formed.

尚、抵抗発熱体5は図5に示すように、略同心円状に円弧状の帯からなる抵抗発熱体5と、それらを繋ぐ折り返し円弧状の帯からなるパターン形状に印刷するとともに、抵抗値を調整するための溝mを板状体2の中心側に偏在させて設けた。   As shown in FIG. 5, the resistance heating element 5 is printed in a pattern shape consisting of a resistance heating element 5 consisting of arc-shaped strips in a substantially concentric circular shape, and a folded arc-shaped strip connecting them, and the resistance value is A groove m for adjustment is provided so as to be unevenly distributed on the center side of the plate-like body 2.

また、上述した抵抗発熱体5を分割する抵抗発熱体ゾーンの配置は、図4に示すように、板状体2の中心部に板状体2の直径Dの25%の円形の1つに抵抗発熱体ゾーン4aを形成し、その外側に円環の抵抗発熱体ゾーン4bを形成し、その外側に外径がDの45%の円環を2つの抵抗発熱体ゾーン41c、42cに分割し、さらに、外径がDの70%の円環を4つの抵抗発熱体ゾーン41d、42d、43d、44dに分割した計8個の抵抗発熱体ゾーン構成とし、外径Dを310mmとして試料を作製した。   Further, as shown in FIG. 4, the arrangement of the resistance heating element zones that divide the resistance heating element 5 described above is arranged in a circular shape of 25% of the diameter D of the plate-like body 2 at the center of the plate-like body 2. A resistance heating element zone 4a is formed, an annular resistance heating element zone 4b is formed on the outer side thereof, and a 45% outer ring having an outer diameter D is divided on the outer side thereof into two resistance heating element zones 41c and 42c. In addition, a 70% outer diameter D ring was divided into four resistance heating element zones 41d, 42d, 43d, and 44d, for a total of eight resistance heating element zones, and a sample was prepared with an outer diameter D of 310 mm. did.

しかる後、抵抗発熱体5に給電部6をロウ付けし固着させることにより、ウェハ加熱用ヒータ110を製作した。尚、本実施例では中心部の抵抗発熱体ゾーンとその外側の円環状の抵抗発熱体ゾーンを並列接続し同時に加熱制御を行った。   After that, the heater 110 for heating the wafer was manufactured by brazing and fixing the feeding portion 6 to the resistance heating element 5. In this embodiment, the central resistance heating element zone and the outer annular resistance heating element zone are connected in parallel, and heating control is performed simultaneously.

そして、同一円周上に位置する一対の折り返し円弧状の帯の距離Lmと、該折り返し円弧状の帯と繋がる2つの円弧状の帯の間の距離Lrについて、Lm/Lr×100%としてその比率を変えたヒータ1を作製した。   A distance Lm between a pair of folded arc-shaped bands located on the same circumference and a distance Lr between two arc-shaped bands connected to the folded arc-shaped band are expressed as Lm / Lr × 100%. The heater 1 having different ratios was produced.

その後、金属ケース19の開口部にウェハ加熱用ヒータ110を設置し、その外周部にボルトを貫通させ、ヒータ1と金属ケース19が直接当たらないように、リング状の接触部材17を介在させ、ナット20を螺着することにより固定してウェハ加熱装置111とした。   Thereafter, a heater 110 for heating the wafer is installed in the opening of the metal case 19, a bolt is passed through the outer periphery thereof, and the ring-shaped contact member 17 is interposed so that the heater 1 and the metal case 19 do not directly contact each other, The wafer heating device 111 was fixed by screwing the nut 20.

また、金属ケース19の底面21の厚みは2.0mmのアルミニウムと側壁部を構成する厚み1.0mmのアルミニウムからなり、底面21に、ガス噴射口24、熱電対27、給電端子11を所定の位置に取り付けた。また、底面21からヒータ1までの距離は20mmとした。   The bottom surface 21 of the metal case 19 is made of 2.0 mm of aluminum and 1.0 mm of aluminum constituting the side wall, and the gas injection port 24, the thermocouple 27, and the power supply terminal 11 are provided on the bottom surface 21 with a predetermined thickness. Installed in position. The distance from the bottom surface 21 to the heater 1 was 20 mm.

尚、接触部材17の断面はL字形状で、環状とした。L字形状の段部上面とヒータ1の下面と円環状に接触し、ヒータ1との接触面の幅は3mmとした。また、接触部材の材質は耐熱性樹脂を用いた。   The cross section of the contact member 17 is L-shaped and annular. The upper surface of the L-shaped stepped portion, the lower surface of the heater 1 and the lower surface of the heater 1 are in annular contact, and the width of the contact surface with the heater 1 is 3 mm. Moreover, the material of the contact member was a heat resistant resin.

上述で作製したウェハ加熱装置に、Lm/Lrの比率を変化させたウェハ加熱用ヒータ1を備えたものを試料No.31〜39とした。   Samples Nos. 31 to 39 were prepared by providing the wafer heating apparatus prepared above with the wafer heating heater 1 in which the ratio of Lm / Lr was changed.

そして、実施例1と同様の方法でウェハW面内の温度差を測定した。結果は表3に示すとおりである。

Figure 2006049270
And the temperature difference in the wafer W surface was measured by the method similar to Example 1. FIG. The results are as shown in Table 3.
Figure 2006049270

表3に示すように、試料No.37はLm/Lrの比率が120%と大きかったため、同一円周上に位置する一対の折り返し円弧状の帯間の周辺における空隙部Qが広がり、抵抗発熱体5を具備していない空隙部Qの温度が下がってしまい、ウェハW面内の温度差を効率よく低減できなかった。   As shown in Table 3, Sample No. 37 has a large Lm / Lr ratio of 120%, so that the gap Q between the pair of folded arc-shaped bands located on the same circumference widens, and the gap Q that does not have the resistance heating element 5 is provided. As a result, the temperature difference in the wafer W surface could not be reduced efficiently.

これに対して、試料No.31〜38はLm/Lrの比率が100%より小さくウェハの温度差は0.22℃以下と小さく好ましいことが分った。   In contrast, sample no. Nos. 31 to 38 have a ratio of Lm / Lr of less than 100% and a wafer temperature difference of 0.22 ° C. or less is preferable.

また、試料No.32〜36はLm/Lrの比率が30〜80%であっため、ウェハ面内の均熱性に優れていたため、ウェハW面内の温度差を小さくでき、また、Lm/Lrの比率が40〜60%である試料No.33〜35では、さらに上記温度差を小さくすることができた。   Sample No. In Nos. 32-36, the Lm / Lr ratio was 30-80%, and the temperature uniformity within the wafer surface was excellent because the temperature uniformity in the wafer surface was excellent, and the Lm / Lr ratio was 40--40. Sample No. 60% In 33 to 35, the temperature difference could be further reduced.

本発明のウェハ加熱装置を示す断面図である。It is sectional drawing which shows the wafer heating apparatus of this invention. 本発明のヒータにおける抵抗発熱体に設けた溝を示すもので、(a)板状体の中心側に溝を偏在した平面図であり、(b)は板状体の外周側に溝を偏在した平面図である。The groove | channel provided in the resistance heating element in the heater of this invention is shown, (a) It is the top view which unevenly distributed the groove | channel on the center side of a plate-shaped object, (b) is unevenly distributed in the outer peripheral side of a plate-shaped object. FIG. 本発明のヒータにおける抵抗発熱体の帯の一部を示す拡大図である。It is an enlarged view which shows a part of belt | band | zone of the resistance heating element in the heater of this invention. 本発明のヒータにおける抵抗発熱体のゾーンを示す平面図である。It is a top view which shows the zone of the resistance heating element in the heater of this invention. (a)は本発明のヒータにおける抵抗発熱体を示す平面図である。(b)はその部分拡大図である。(A) is a top view which shows the resistance heating element in the heater of this invention. (B) is a partially enlarged view thereof. 従来のウェハ加熱装置を示す断面図である。It is sectional drawing which shows the conventional wafer heating apparatus. 従来のヒータにおける抵抗発熱体を示す平面図である。It is a top view which shows the resistance heating element in the conventional heater. 従来のヒータにおける抵抗発熱体の断面図である。It is sectional drawing of the resistance heating element in the conventional heater. 従来のヒータにおける抵抗発熱体に形成された溝を示す拡大図である。It is an enlarged view which shows the groove | channel formed in the resistance heating element in the conventional heater.

符号の説明Explanation of symbols

W:ウェハ
m:溝
G:溝からなる群
1、71:ヒータ
2、72:板状体
3、73:載置面
5、75:抵抗発熱体
6:給電部
8:支持ピン
10:測温素子
11、77:給電端子
12:ガス噴射口
16、80:ボルト
18:弾性体
19、79:金属ケース
20:ナット
25:リフトピン
26:貫通孔
27:測温素子
110:ウェハ加熱用ヒータ
111:ウェハ加熱装置
W: Wafer m: Groove G: Group of grooves
DESCRIPTION OF SYMBOLS 1, 71: Heater 2, 72: Plate-like body 3, 73: Mounting surface 5, 75: Resistance heating element 6: Power supply part 8: Support pin 10: Temperature measuring element 11, 77: Power supply terminal 12: Gas injection port 16, 80: Bolt 18: Elastic body 19, 79: Metal case 20: Nut 25: Lift pin 26: Through hole 27: Temperature measuring element 110: Heater for wafer heating 111: Wafer heating device

Claims (18)

板状体の表面に帯状の抵抗発熱体を備え、該抵抗発熱体は長手方向に略並行な溝を有し、該溝を上記板状体の中心側に偏在させたことを特徴とするヒータ。 A heater comprising a strip-like resistance heating element on the surface of a plate-like body, the resistance heating element having a groove substantially parallel to the longitudinal direction, and the groove being unevenly distributed on the center side of the plate-like body . 板状体の表面に帯状の抵抗発熱体を備え、該抵抗発熱体は長手方向に略並行な溝を有し、該溝を上記板状体の外周側に偏在させたことを特徴とするヒータ。 A heater comprising a strip-like resistance heating element on the surface of a plate-like body, the resistance heating element having a groove substantially parallel to the longitudinal direction, and the groove being unevenly distributed on the outer peripheral side of the plate-like body . 上記溝は上記抵抗発熱体の抵抗値を調整可能な溝であることを特徴とする請求項1または2に記載のヒータ。 The heater according to claim 1, wherein the groove is a groove capable of adjusting a resistance value of the resistance heating element. 上記溝は上記抵抗発熱体の長手方向に略並行に複数備えられ、互いに隣接する複数の溝からなる群を形成することを特徴とする請求項1〜3のいずれかに記載のヒータ。 The heater according to any one of claims 1 to 3, wherein a plurality of the grooves are provided substantially in parallel with the longitudinal direction of the resistance heating element to form a group of a plurality of grooves adjacent to each other. 上記群は上記抵抗発熱体の帯の長手方向にそって複数に分割され、上記群と群との間隔が上記帯の幅よりも小さいことを特徴とする請求項4に記載のヒータ。 The heater according to claim 4, wherein the group is divided into a plurality along the longitudinal direction of the band of the resistance heating element, and the interval between the group and the group is smaller than the width of the band. 上記群の長さは、各群が形成されている1つの上記帯の中心線の総長さの30〜97%であることを特徴とする請求項4または5に記載のヒータ。 The heater according to claim 4 or 5, wherein the length of the group is 30 to 97% of the total length of the center line of one of the bands in which each group is formed. 上記抵抗発熱体が略同心円状に配設した円弧状の帯と、それらを繋ぐ折り返し円弧状の帯とからなるとともに、少なくとも1箇所で同一円周上に位置する一対の折り返し円弧状の帯の間の距離が略同心円状に配設した円弧状の帯の間の距離よりも小さいことを特徴とする請求項1〜6のいずれかに記載のヒータ。 The resistance heating element is composed of an arc-shaped band disposed substantially concentrically and a folded arc-shaped band connecting them, and a pair of folded arc-shaped bands positioned on the same circumference at least at one place. The heater according to any one of claims 1 to 6, wherein a distance between them is smaller than a distance between arc-shaped strips arranged substantially concentrically. 上記抵抗発熱体の同一円周上に位置する一対の折り返し円弧状の帯の間の距離が全ての箇所で略同心円状に配設した円弧状の帯の間の距離よりも小さいことを特徴とする請求項7に記載のヒータ。 The distance between the pair of folded arc-shaped bands located on the same circumference of the resistance heating element is smaller than the distance between the arc-shaped bands disposed substantially concentrically at all locations. The heater according to claim 7. 上記同一円周上に位置する一対の折り返し円弧状の帯の間の距離が、略同心円状に配設した円弧状の帯の間の距離の30〜80%であることを特徴とする請求項7または8に記載のヒータ。 The distance between the pair of folded arc-shaped bands located on the same circumference is 30 to 80% of the distance between the arc-shaped bands disposed substantially concentrically. The heater according to 7 or 8. 略同心円状に形成された上記抵抗発熱体は、同心円状の最外周の抵抗発熱体の帯とその内側の帯との間隔が、上記最外周の抵抗発熱体を除く抵抗発熱体の同心円状の帯の間隔より小さいことを特徴とする請求項7〜9のいずれかに記載のヒータ。 The resistance heating element formed in a substantially concentric shape has a concentric circular outermost resistance heating element band and an inner band whose interval is concentric with the resistance heating element excluding the outermost resistance heating element. The heater according to any one of claims 7 to 9, wherein the heater is smaller than the interval between the bands. 板状体の一方の主面をウェハ載置面とし、上記板状体の他方の主面に帯状の抵抗発熱体を備え、該抵抗発熱体は略同心円状に配設する円弧状の帯と、それらを繋ぐ折り返し帯とからなるとともに、長手方向に略並行な溝を有し、同心円状に配設する円弧状の帯に形成された上記溝を上記板状体の中心側に偏在させたことを特徴とするウェハ加熱用ヒータ。 One main surface of the plate-like body is a wafer mounting surface, and the other main surface of the plate-like body is provided with a belt-like resistance heating element, and the resistance heating element is provided with an arc-shaped band disposed substantially concentrically. In addition to the folded band connecting them, the groove formed in the arc-shaped band having a substantially parallel groove in the longitudinal direction and arranged in a concentric circle shape is unevenly distributed on the center side of the plate-like body A heater for heating a wafer. 板状体の一方の主面をウェハ載置面とし、上記板状体の他方の主面に帯状の抵抗発熱体を備え、該抵抗発熱体は略同心円状に配設する円弧状の帯と、それらを繋ぐ折り返し帯とからなるとともに、長手方向に略並行な溝を有し、同心円状に配設する円弧状の帯に形成された上記溝を上記板状体の外周側に偏在させたことを特徴とするウェハ加熱用ヒータ。 One main surface of the plate-like body is a wafer mounting surface, and the other main surface of the plate-like body is provided with a belt-like resistance heating element, and the resistance heating element is provided with an arc-shaped band disposed substantially concentrically. In addition to the folded band connecting them, the groove formed in the arc-shaped band having a substantially parallel groove in the longitudinal direction and arranged in a concentric circle is unevenly distributed on the outer peripheral side of the plate-like body A heater for heating a wafer. 上記溝は上記抵抗発熱体の抵抗値を調整可能な溝であることを特徴とする請求項11または12に記載のヒータ。 The heater according to claim 11 or 12, wherein the groove is a groove capable of adjusting a resistance value of the resistance heating element. 上記抵抗発熱体の同一円周上に位置する一対の折り返し円弧状の帯の間の距離が少なくとも1箇所で略同心円状に配設した円弧状の帯の間の距離よりも小さいことを特徴とする請求項11〜13のいずれかに記載のウェハ加熱用ヒータ。 The distance between the pair of folded arc-shaped bands located on the same circumference of the resistance heating element is smaller than the distance between the arc-shaped bands disposed substantially concentrically at one place. The heater for heating a wafer according to any one of claims 11 to 13. 上記抵抗発熱体の同一円周上に位置する一対の折り返し円弧状の帯の間の距離が全ての箇所で略同心円状に配設した円弧状の帯の間の距離よりも小さいことを特徴とする請求項14に記載のウェハ加熱用ヒータ。 The distance between the pair of folded arc-shaped bands located on the same circumference of the resistance heating element is smaller than the distance between the arc-shaped bands disposed substantially concentrically at all locations. The heater for heating a wafer according to claim 14. 上記抵抗発熱体の同一円周上に位置する一対の折り返し円弧状の帯の間の距離が、略同心円状に配設した円弧状の帯の間の距離の30〜80%であることを特徴とする請求項14または15に記載のウェハ加熱用ヒータ。 The distance between the pair of folded arc-shaped bands located on the same circumference of the resistance heating element is 30 to 80% of the distance between the arc-shaped bands disposed substantially concentrically. The heater for heating a wafer according to claim 14 or 15. 略同心円状に形成された上記抵抗発熱体は、同心円状の最外周の抵抗発熱体の帯とその内側の帯との間隔が、上記最外周の抵抗発熱体を除く抵抗発熱体の同心円状の帯の間隔より小さいことを特徴とする請求項11〜16のいずれかに記載のウェハ加熱用ヒータ。 The resistance heating element formed in a substantially concentric shape has a concentric circular outermost resistance heating element band and an inner band whose interval is concentric with the resistance heating element excluding the outermost resistance heating element. The heater for heating a wafer according to any one of claims 11 to 16, wherein the heater is smaller than the interval between the bands. 請求項11〜17のいずれかに記載したウェハ加熱用ヒータを備えたウェハ加熱装置であって、上記抵抗発熱体を独立して加熱できる給電部を有する抵抗発熱体ゾーンと、上記給電部を囲む金属ケースとを有し、上記抵抗発熱体ゾーンは、中心部に備えた円形の抵抗発熱体ゾーンと、該円形の抵抗発熱体ゾーンを包囲する円環状の抵抗発熱体ゾーンとからなることを特徴とするウェハ加熱装置。 A wafer heating apparatus comprising the wafer heating heater according to any one of claims 11 to 17, wherein the resistance heating element zone having a power feeding portion capable of independently heating the resistance heating body, and the power feeding portion are surrounded. The resistance heating element zone includes a circular resistance heating element zone provided in the center, and an annular resistance heating element zone surrounding the circular resistance heating element zone. Wafer heating device.
JP2005020256A 2003-08-27 2005-01-27 Heater, wafer heating heater and wafer heating apparatus using the same Active JP4693429B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005020256A JP4693429B2 (en) 2004-06-28 2005-01-27 Heater, wafer heating heater and wafer heating apparatus using the same
US11/138,943 US7361865B2 (en) 2003-08-27 2005-05-25 Heater for heating a wafer and method for fabricating the same
CN 200510074602 CN1708190B (en) 2004-05-26 2005-05-26 Heater and device for heating a wafer and method for fabricating the same
KR1020050044514A KR101098798B1 (en) 2004-05-26 2005-05-26 Heater, wafer heating device and method for fabricating the heater
US11/852,162 US20080017632A1 (en) 2004-05-26 2007-09-07 Heater For Heating a Wafer and Method For Fabricating The Same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004190556 2004-06-28
JP2004190556 2004-06-28
JP2005020256A JP4693429B2 (en) 2004-06-28 2005-01-27 Heater, wafer heating heater and wafer heating apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006049270A true JP2006049270A (en) 2006-02-16
JP4693429B2 JP4693429B2 (en) 2011-06-01

Family

ID=36027551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020256A Active JP4693429B2 (en) 2003-08-27 2005-01-27 Heater, wafer heating heater and wafer heating apparatus using the same

Country Status (1)

Country Link
JP (1) JP4693429B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220595A (en) * 2006-02-20 2007-08-30 Toshiba Ceramics Co Ltd Planar heater
WO2009090816A1 (en) * 2008-01-18 2009-07-23 Komatsu Ltd. Stage for substrate temperature control apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952593U (en) * 1982-09-29 1984-04-06 株式会社潤工社 flat heating element
JPS6059497U (en) * 1983-09-30 1985-04-25 株式会社潤工社 Flat heater using electric wire
JPH06229564A (en) * 1992-09-03 1994-08-16 Ego Elektro Geraete Blanc & Fischer Heater
JPH11191535A (en) * 1997-12-26 1999-07-13 Kyocera Corp Wafer heating equipment
JPH11283730A (en) * 1998-03-31 1999-10-15 Kyocera Corp Disk heater
JPH11317283A (en) * 1998-05-06 1999-11-16 Kyocera Corp Ceramic heater
JP2000340343A (en) * 1999-05-28 2000-12-08 Kyocera Corp Disc heater
JP2002203666A (en) * 2000-12-28 2002-07-19 Ibiden Co Ltd Ceramic heater and manufacturing method of the same
JP2004031593A (en) * 2002-06-25 2004-01-29 Kyocera Corp Wafer supporting member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952593U (en) * 1982-09-29 1984-04-06 株式会社潤工社 flat heating element
JPS6059497U (en) * 1983-09-30 1985-04-25 株式会社潤工社 Flat heater using electric wire
JPH06229564A (en) * 1992-09-03 1994-08-16 Ego Elektro Geraete Blanc & Fischer Heater
JPH11191535A (en) * 1997-12-26 1999-07-13 Kyocera Corp Wafer heating equipment
JPH11283730A (en) * 1998-03-31 1999-10-15 Kyocera Corp Disk heater
JPH11317283A (en) * 1998-05-06 1999-11-16 Kyocera Corp Ceramic heater
JP2000340343A (en) * 1999-05-28 2000-12-08 Kyocera Corp Disc heater
JP2002203666A (en) * 2000-12-28 2002-07-19 Ibiden Co Ltd Ceramic heater and manufacturing method of the same
JP2004031593A (en) * 2002-06-25 2004-01-29 Kyocera Corp Wafer supporting member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220595A (en) * 2006-02-20 2007-08-30 Toshiba Ceramics Co Ltd Planar heater
WO2007097193A1 (en) * 2006-02-20 2007-08-30 Covalent Materials Corporation Planar heater
US8143557B2 (en) 2006-02-20 2012-03-27 Covalent Materials Corporation Plane heater
WO2009090816A1 (en) * 2008-01-18 2009-07-23 Komatsu Ltd. Stage for substrate temperature control apparatus
JP2009170739A (en) * 2008-01-18 2009-07-30 Komatsu Ltd Stage for substrate temperature control device

Also Published As

Publication number Publication date
JP4693429B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP2006127883A (en) Heater and wafer heating device
KR101098798B1 (en) Heater, wafer heating device and method for fabricating the heater
WO2006006391A1 (en) Wafer heating equipment and semiconductor manufacturing equipment
JP4794140B2 (en) Heater, wafer heating apparatus and manufacturing method thereof
US20030160042A1 (en) Ceramic board
JP4658913B2 (en) Wafer support member
JP3904986B2 (en) Wafer support member
JP4845389B2 (en) Heater and wafer heating device
JP3929879B2 (en) Wafer support member
JP3981300B2 (en) Wafer support member
JP4693429B2 (en) Heater, wafer heating heater and wafer heating apparatus using the same
JP4931360B2 (en) Wafer heating device
JP2002184557A (en) Heater for semiconductor manufacturing and inspecting device
JP3909266B2 (en) Wafer support member
JP3894871B2 (en) Wafer support member
JP4463035B2 (en) Wafer support member and semiconductor manufacturing apparatus using the same
JP4646502B2 (en) Wafer support member
JP2005019477A (en) Wafer heating equipment
JP3563728B2 (en) Wafer heating device
JP3924513B2 (en) Wafer support member
JP4789790B2 (en) Wafer support member
JP2010278461A (en) Wafer heating device
JP4671592B2 (en) Ceramic heater
JP4721658B2 (en) Wafer support member
JP4809171B2 (en) Wafer heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150