JP2006049244A - Polymer fuel cell and its manufacturing method - Google Patents

Polymer fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2006049244A
JP2006049244A JP2004232384A JP2004232384A JP2006049244A JP 2006049244 A JP2006049244 A JP 2006049244A JP 2004232384 A JP2004232384 A JP 2004232384A JP 2004232384 A JP2004232384 A JP 2004232384A JP 2006049244 A JP2006049244 A JP 2006049244A
Authority
JP
Japan
Prior art keywords
electrode
catalyst
conductive carbon
polymer electrolyte
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004232384A
Other languages
Japanese (ja)
Other versions
JP4819331B2 (en
Inventor
Motokazu Kobayashi
本和 小林
Shinji Eritate
信二 襟立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004232384A priority Critical patent/JP4819331B2/en
Publication of JP2006049244A publication Critical patent/JP2006049244A/en
Application granted granted Critical
Publication of JP4819331B2 publication Critical patent/JP4819331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer fuel cell enabling an efficient power generation for a long period of time with extremely few fall-off of electrode catalyst. <P>SOLUTION: Of the polymer fuel cell provided with a polymer electrolyte film 1, a pair of electrodes 3a, 3b and electrode catalysts 2a, 2b fitted between the polymer electrolyte film and the electrodes, the electrode catalysts 2a, 2b contain conductive carbon carrying catalyst, and the conductive carbon is chemically bonded with at least either the polymer electrolyte film 1 or the electrodes 3a, 3b. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は高分子型燃料電池およびその製造方法に関し、特に燃料として水素、改質水素、メタノール、ジメチルエーテルなどを用い、空気や酸素を酸化剤として用いる高分子型燃料電池およびその製造方法に関するものである。   The present invention relates to a polymer fuel cell and a method for manufacturing the same, and more particularly to a polymer fuel cell using hydrogen, reformed hydrogen, methanol, dimethyl ether or the like as a fuel and using air or oxygen as an oxidant and a method for manufacturing the same. is there.

高分子型燃料電池は、2つの電極即ち、燃料極(アノード)と空気極(カソード)とが高分子電解質膜を挟持する層構造を有する。この燃料極と空気極は触媒となる白金などの貴金属や有機金属錯体が導電性炭素に担持された電極触媒と電解質、バインダーなどとの混合物よりなる。   The polymer fuel cell has a layer structure in which two electrodes, that is, a fuel electrode (anode) and an air electrode (cathode) sandwich a polymer electrolyte membrane. The fuel electrode and the air electrode are composed of a mixture of an electrode catalyst in which a noble metal such as platinum or an organometallic complex serving as a catalyst is supported on conductive carbon, an electrolyte, a binder, and the like.

燃料極に供給された燃料は、電極中の細孔を通過して電極触媒に達し、電極触媒中の触媒により電子を放出して水素イオンとなる。水素イオンは両電極間にある電解質膜を通過して空気極に達し、空気極に供給された酸素と外部回路より流れ込む電子と反応して水が生成される。燃料より放出された電子は、電極触媒中の触媒や触媒が担持されている導電性炭素を通過して外部回路へ導き出され、外部回路より空気極へ流れ込む。この結果、外部回路では燃料極から空気極へ向かって電子が流れ電力が取り出される。   The fuel supplied to the fuel electrode passes through the pores in the electrode, reaches the electrode catalyst, releases electrons by the catalyst in the electrode catalyst, and becomes hydrogen ions. Hydrogen ions pass through the electrolyte membrane between the two electrodes and reach the air electrode, and react with oxygen supplied to the air electrode and electrons flowing from the external circuit to generate water. The electrons released from the fuel pass through the catalyst in the electrode catalyst and the conductive carbon on which the catalyst is supported, are led to the external circuit, and flow into the air electrode from the external circuit. As a result, in the external circuit, electrons flow from the fuel electrode toward the air electrode to extract electric power.

従来、この高分子電解質膜を挟持する電極の形成方法としては、貴金属や有機金属錯体が導電性炭素に担持された電極触媒とバインダー、電解質などを溶媒中に混合、分散し触媒ペーストとする。次にこの触媒ペーストを高分子電解質膜または多孔質導電体に塗工、乾燥した後、高分子電解質膜と多孔質導電体の触媒ペースト塗工面を張り合わせてホットプレスして接合し形成する方法が知られている。   Conventionally, as an electrode forming method for sandwiching the polymer electrolyte membrane, an electrode catalyst in which a noble metal or an organometallic complex is supported on conductive carbon, a binder, an electrolyte, and the like are mixed and dispersed in a solvent to obtain a catalyst paste. Next, this catalyst paste is applied to a polymer electrolyte membrane or a porous conductor and dried, and then the polymer electrolyte membrane and the surface of the porous conductor on which the catalyst paste is applied are bonded together and hot pressed to form a joint. Are known.

また、触媒粒子を分散させたインクを高分子電解質膜上または多孔質導電体上にスプレー塗布して多孔体とし触媒層を形成している例が知られている。例えば、特許文献1参照)
特開2001−068119号公報
Further, there is known an example in which a catalyst layer is formed by spray-coating an ink in which catalyst particles are dispersed on a polymer electrolyte membrane or a porous conductor to form a porous body. For example, see Patent Document 1)
JP 2001-068119 A

高分子電解質膜は、水素イオンの伝導体であり、発生した水素イオンを燃料極側から空気極側へ伝導する。また同時に発生した電子は、電極触媒中の触媒上または導電性炭素のスタックを通って電極に集まり外部回路へと流れていく。つまり電極触媒は、高分子電解質と電極の両方に接触している必要があり、接触していない電極触媒はその反応に寄与しないことになる。   The polymer electrolyte membrane is a hydrogen ion conductor, and conducts the generated hydrogen ions from the fuel electrode side to the air electrode side. At the same time, the generated electrons gather on the electrode on the catalyst in the electrode catalyst or through the conductive carbon stack and flow to the external circuit. That is, the electrode catalyst needs to be in contact with both the polymer electrolyte and the electrode, and the electrode catalyst that is not in contact does not contribute to the reaction.

従来の方法、例えば電極触媒が塗工された多孔質導電体と高分子電解質膜の接合にホットプレスを用いた場合、作成当初は良好な発電特性を示す。しかし、長時間の発電による高分子電解質膜の形状変化(膨潤、収縮)、燃料との接触、通過などによって電極触媒が高分子電解質膜や電極から脱落してしまい効率のよい発電ができなくなってしまうおそれがあった。   When a conventional method, for example, a hot press is used to join a porous conductor coated with an electrode catalyst and a polymer electrolyte membrane, good power generation characteristics are exhibited at the beginning. However, the electrode catalyst falls out of the polymer electrolyte membrane and electrode due to changes in the shape (swelling and shrinkage) of the polymer electrolyte membrane due to long-term power generation, contact with fuel, and passage, making it impossible to generate efficient electricity. There was a risk of it.

また、特許文献1の方法でも電極触媒と電解質膜が物理的に接触しているだけであるので同様に電解質膜や電極から脱落してしまい効率のよい発電ができなくなってしまうおそれがあった。   Further, in the method of Patent Document 1, since the electrode catalyst and the electrolyte membrane are only in physical contact, the electrolyte membrane and the electrode are similarly dropped, and there is a possibility that efficient power generation cannot be performed.

本発明は上記従来の課題を解決するもので、電極触媒中の触媒を担持している導電性炭素を修飾し、さらにその電極触媒を高分子電解質膜および/または電極と化学結合させるものである。電極触媒が高分子電解質膜および/または電極と化学結合しているため、電極触媒の脱落が極めて少なくなり、長時間にわたって効率のよい発電が可能となる高分子型燃料電池を提供するものである。   The present invention solves the above-mentioned conventional problems, and modifies the conductive carbon carrying the catalyst in the electrode catalyst, and further chemically bonds the electrode catalyst to the polymer electrolyte membrane and / or the electrode. . Provided is a polymer fuel cell in which the electrode catalyst is chemically bonded to the polymer electrolyte membrane and / or the electrode, so that the electrode catalyst is prevented from dropping off, and efficient power generation is possible over a long period of time. .

かかる目的を達成するために、本発明の高分子型燃料電池は、高分子電解質膜と、一対の電極と、前記高分子電解質膜と電極の間に設けられた電極触媒を有する高分子型燃料電池において、前記電極触媒は触媒を担持する導電性炭素を含有し、前記導電性炭素は高分子電解質膜および電極の少なくとも1つと化学結合していることを特徴とする。   In order to achieve the above object, a polymer fuel cell of the present invention comprises a polymer electrolyte membrane, a pair of electrodes, and an electrode catalyst provided between the polymer electrolyte membrane and the electrodes. In the battery, the electrode catalyst contains conductive carbon supporting a catalyst, and the conductive carbon is chemically bonded to at least one of a polymer electrolyte membrane and an electrode.

また、本発明の高分子型燃料電池の製造方法は、導電性炭素に触媒を担持させて電極触媒を得る工程、前記電極触媒の導電性炭素に化学結合可能な官能基を有する化合物を付加する工程、前記導電性炭素の化学結合可能な官能基を有する化合物と高分子電解質膜および電極の少なくとも1つとを化学結合する工程を有することを特徴とする。   The method for producing a polymer fuel cell of the present invention includes a step of obtaining an electrode catalyst by supporting a catalyst on conductive carbon, and adding a compound having a functional group capable of being chemically bonded to the conductive carbon of the electrode catalyst. And a step of chemically bonding the compound having a functional group capable of chemically bonding to conductive carbon and at least one of a polymer electrolyte membrane and an electrode.

また本発明の高分子型燃料電池の製造方法は、化学結合可能な官能基がビニル基、メタクリロキシ基、アクリロキシ基のどれかであることを特徴とする。
また本発明の高分子型燃料電池の製造方法は、触媒が担持された導電性炭素粒子に化学結合した官能基を、高分子電解質膜および/または電極と化学結合する工程に熱または高エネルギー線を用いることを特徴とする製造方法にある。
The polymer fuel cell production method of the present invention is characterized in that the functional group capable of chemical bonding is any one of a vinyl group, a methacryloxy group, and an acryloxy group.
The method for producing a polymer fuel cell according to the present invention also includes a heat or high energy ray in a step of chemically bonding a functional group chemically bonded to conductive carbon particles carrying a catalyst to a polymer electrolyte membrane and / or an electrode. In the manufacturing method characterized by using.

本発明の高分子型燃料電池は、電極触媒中の触媒を担持している導電性炭素を修飾しさらに、その電極触媒を高分子電解質膜および/または電極と化学結合させることにより、電極触媒の脱落が極めて少なくなり、長時間にわたって効率のよい発電が可能となる。   The polymer fuel cell of the present invention is obtained by modifying the conductive carbon carrying the catalyst in the electrode catalyst and further chemically bonding the electrode catalyst with the polymer electrolyte membrane and / or the electrode. Dropout is extremely small and efficient power generation is possible over a long period of time.

本発明の高分子型燃料電池は、高分子電解質膜、および前記高分子電解質膜を挟む一対の電極を具備し、前記電極は電極触媒を具備し、前記電極触媒は触媒を担持した導電性炭素粒子を含み、前記導電性炭素粒子は、前記高分子電解質膜および/または前記電極と化学結合していることを特徴とする。   The polymer fuel cell of the present invention comprises a polymer electrolyte membrane and a pair of electrodes sandwiching the polymer electrolyte membrane, the electrodes comprise an electrode catalyst, and the electrode catalyst comprises conductive carbon carrying a catalyst. The conductive carbon particles include particles, and the conductive carbon particles are chemically bonded to the polymer electrolyte membrane and / or the electrode.

また、本発明の高分子型燃料電池の製造方法は、導電性炭素粒子に触媒を担持し電極触媒を作成する工程、電極触媒に化学結合可能な官能基を有する化合物を付加する工程、前記触媒が担持されかつ化学結合可能な官能基を有する化合物を付加した導電性炭素を高分子電解質膜および/または電極と化学結合する工程を有することを特徴とする。   The method for producing a polymer fuel cell of the present invention includes a step of preparing an electrode catalyst by supporting a catalyst on conductive carbon particles, a step of adding a compound having a functional group capable of chemically bonding to the electrode catalyst, the catalyst It is characterized in that it comprises a step of chemically bonding conductive carbon to which a compound having a functional group capable of being chemically bonded is added to a polymer electrolyte membrane and / or an electrode.

以下図面を用いて本発明を詳細に説明する。
図1は本発明の高分子型燃料電池の一例を示す部分概略図である。
図1において、高分子電解質膜1の両面に電極触媒層2a、2bが設けられその外側に電極として拡散層3a、3bと集電体4a、4bが設けられる。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a partial schematic view showing an example of a polymer fuel cell of the present invention.
In FIG. 1, electrode catalyst layers 2a and 2b are provided on both surfaces of a polymer electrolyte membrane 1, and diffusion layers 3a and 3b and current collectors 4a and 4b are provided as electrodes on the outside thereof.

図2は本発明の電極触媒の構造の一例を示す概略図である。
本発明の高分子型燃料電池において、電極触媒10は触媒7を担持した導電性炭素8の粒子を含み、電極の拡散層9と高分子電解質膜5の間に設けられ、前記導電性炭素8は、電極の拡散層9と高分子電解質膜5と化学結合6により結合していることを特徴とする。
FIG. 2 is a schematic view showing an example of the structure of the electrode catalyst of the present invention.
In the polymer fuel cell of the present invention, the electrode catalyst 10 includes particles of conductive carbon 8 carrying the catalyst 7, and is provided between the electrode diffusion layer 9 and the polymer electrolyte membrane 5, and the conductive carbon 8. Is characterized in that it is bonded to the electrode diffusion layer 9 and the polymer electrolyte membrane 5 by a chemical bond 6.

高分子電解質膜1は、水素イオン導電性を有する官能基、例えばスルホン酸基、スルフィン酸基、カルボン酸基、ホスホン酸基、ホスフィン酸基をもつ化合物より製造した高分子膜を広く用いることができる。またゾルゲル法で作成した無機電解質と高分子膜のハイブリッド電解質膜なども用いることができる。   As the polymer electrolyte membrane 1, a polymer membrane manufactured from a compound having a functional group having hydrogen ion conductivity, for example, a sulfonic acid group, a sulfinic acid group, a carboxylic acid group, a phosphonic acid group, or a phosphinic acid group is widely used. it can. A hybrid electrolyte membrane of an inorganic electrolyte and a polymer membrane prepared by a sol-gel method can also be used.

電極触媒層2a、2bは、少なくとも白金などの貴金属触媒が担持された導電性炭素よりなる。
本発明において用いられる貴金属触媒は、導電性炭素の表面に担持されていることが好ましい。担持された触媒の粒子径は細かいことが好ましく、具体的には、平均粒子径が1nm〜10nmの範囲が好ましい。1nm未満の場合には、触媒粒子単体で活性が高すぎ、取り扱いが困難となる。また10nmを越えると、触媒の表面積が減少して反応部位が減少するために、活性が低下するおそれがある。
The electrode catalyst layers 2a and 2b are made of conductive carbon carrying at least a noble metal catalyst such as platinum.
The noble metal catalyst used in the present invention is preferably supported on the surface of conductive carbon. The particle diameter of the supported catalyst is preferably small, and specifically, the average particle diameter is preferably in the range of 1 nm to 10 nm. In the case of less than 1 nm, the activity of the catalyst particles alone is too high, and handling becomes difficult. On the other hand, if the thickness exceeds 10 nm, the surface area of the catalyst decreases and the number of reaction sites decreases, which may reduce the activity.

貴金属触媒としては、白金、ロジウム、ルテニウム、イリジウム、パラジウム、およびオスミウムなどの白金族金属を用いたり、白金とそれら金属の合金を用いたりしても構わない。特に燃料としてメタノールを用いる場合は、白金とルテニウムの合金を用いることが好ましい。   As the noble metal catalyst, a platinum group metal such as platinum, rhodium, ruthenium, iridium, palladium, and osmium, or an alloy of platinum and these metals may be used. In particular, when methanol is used as the fuel, it is preferable to use an alloy of platinum and ruthenium.

本発明に用いることのできる導電性炭素は、カーボンブラック、カーボンファイバー、グラファイト、カーボンナノチューブなどから選ぶことができる。
また、導電性炭素の平均粒子径が5nm〜1000nmの範囲であることが好ましく、更には10nm〜100nmの範囲であることが好ましい。また前述した触媒を担持させるため、比表面積はある程度大きい方が良く、BET比表面積が50m2 /g〜3000m2 /g更には、100m2 /g〜2000m2 /gが好ましい。
The conductive carbon that can be used in the present invention can be selected from carbon black, carbon fiber, graphite, carbon nanotube, and the like.
The average particle diameter of the conductive carbon is preferably in the range of 5 nm to 1000 nm, and more preferably in the range of 10 nm to 100 nm. Further in order to carry the above-mentioned catalyst, the specific surface area may large to some degree, the BET specific surface area of 50m 2 / g~3000m 2 / g Further, 100m 2 / g~2000m 2 / g are preferred.

導電性炭素表面への触媒の担持方法は、公知の方法を広く用いることができる。例えば白金および他の金属の溶液に導電性炭素を含浸した後これら貴金属イオンを還元し導電性炭素表面に担持させる方法などが知られており、特開平2−111440号公報、特開2000−003712号公報などに開示されている。また担持させたい貴金属をターゲットとし導電性炭素にスパッタなどの真空成膜方法により担持させても構わない。   A known method can be widely used as a method for supporting the catalyst on the conductive carbon surface. For example, a method is known in which a solution of platinum and other metals is impregnated with conductive carbon, and then these noble metal ions are reduced and supported on the surface of the conductive carbon, as disclosed in JP-A-2-111440 and JP-A-2000-003712. And the like. Alternatively, a noble metal to be supported may be used as a target and supported on conductive carbon by a vacuum film forming method such as sputtering.

本発明において用いる電極触媒は、さらに高分子電解質膜および/または電極と化学結合により密着している。
化学結合させる方法は、まず貴金属触媒の担持された導電性炭素にビニル基、エポキシ基、イソシアネート基、アミノ基、アクリロキシ基、メタクリロキシ基などの熱または高エネルギー線に対し反応性を有する官能基を有する化合物を付加して電極触媒を用意しておく。特に、これらの官能基の中でも、ビニル基、メタクリロキシ基、アクリロキシ基が扱いやすく好ましい。さらに高分子電解質膜表面、電極表面にも、同様に導電性炭素の反応性基と反応する官能基を有する化合物をあらかじめ設けておく。
The electrode catalyst used in the present invention is in close contact with the polymer electrolyte membrane and / or the electrode by chemical bonding.
In the chemical bonding method, first, a functional group having reactivity to heat or high energy rays such as a vinyl group, an epoxy group, an isocyanate group, an amino group, an acryloxy group, and a methacryloxy group is formed on the conductive carbon on which the noble metal catalyst is supported. An electrode catalyst is prepared by adding a compound having the same. In particular, among these functional groups, a vinyl group, a methacryloxy group, and an acryloxy group are preferable because they are easy to handle. Further, a compound having a functional group that reacts with the reactive group of conductive carbon is also provided in advance on the surface of the polymer electrolyte membrane and the electrode surface.

次に反応性基を有する電極触媒を、反応性基を有する高分子電解質膜などの上に塗工した後、加熱、高エネルギー線、例えば電子線、紫外線などを照射し反応させ、両者の間に化学結合を形成し固定化する。   Next, after coating the electrode catalyst having a reactive group on a polymer electrolyte membrane having a reactive group, the reaction is performed by heating, irradiating with a high energy beam such as an electron beam or ultraviolet ray, and the like. A chemical bond is formed on and immobilized.

貴金属触媒の担持された導電性炭素にビニル基、エポキシ基、イソシアネート基、アミノ基、アクリロキシ基、メタクリロキシ基などの官能基を導入するのは、例えば上記の官能基を有するシランカップリング剤を導電性炭素と反応させ、上記官能基を導入すればよい。   The introduction of a functional group such as vinyl group, epoxy group, isocyanate group, amino group, acryloxy group, or methacryloxy group into the conductive carbon on which the noble metal catalyst is supported is for example to conduct a silane coupling agent having the above functional group. The functional group may be introduced by reacting with carbon.

このようなシランカップリング剤として、官能基にビニル基を有するものは、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、官能基にエポキシ基を有するものは、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、官能基にイソシアネート基を有するものは、3−イソシアネートプロピルトリエトキシシラン、アミノ基を有するものは、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、アクリロキシ基を有するものは、3−アクリロキシプロピルトリメトキシシラン、メタクリロキシ基を有するものは、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシランなどがある。   As such silane coupling agents, those having a vinyl group in the functional group are vinyl trichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, and those having an epoxy group in the functional group are 3-glycidoxypropyltri Methoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, those having an isocyanate group as a functional group, 3-isocyanatopropyltriethoxysilane, those having an amino group are N -(Aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and those having an acryloxy group are 3-acryloxypropyltrimethoxysilane , Methacrylo Those having a sheet group, 3-methacryloxypropyl methyl dimethoxy silane, 3-methacryloxypropyl trimethoxy silane, and the like 3-methacryloxypropyl methyl diethoxy silane.

シランカップリング剤以外にも導電性炭素と反応する官能基を有しさらにビニル基、エポキシ基、イソシアネート基、アミノ基、アクリロキシ基、メタクリロキシ基などの官能基を有するものであれば用いることができる。例えばグリシジルメタクリラートのグリシジル基を導電性炭素と反応させるとメタクリロキシ基を有する導電性炭素が得られる。またメタクリルオキシエチルアセトアセテートなどを用いることも可能である。   In addition to the silane coupling agent, any functional group capable of reacting with conductive carbon and further having a functional group such as a vinyl group, an epoxy group, an isocyanate group, an amino group, an acryloxy group, or a methacryloxy group can be used. . For example, when a glycidyl group of glycidyl methacrylate is reacted with conductive carbon, conductive carbon having a methacryloxy group is obtained. It is also possible to use methacryloxyethyl acetoacetate or the like.

導電性炭素表面にこれらのシランカップリング剤を付加するためには、シランカップリング剤を溶解または分散した溶液に導電性炭素粒子を添加する。シランカップリング剤のアルコキシ基が導電性炭素表面の水酸基などの官能基と反応し結合を形成する。   In order to add these silane coupling agents to the conductive carbon surface, conductive carbon particles are added to a solution in which the silane coupling agent is dissolved or dispersed. The alkoxy group of the silane coupling agent reacts with a functional group such as a hydroxyl group on the surface of the conductive carbon to form a bond.

導電性炭素へのビニル基、エポキシ基、イソシアネート基、アミノ基、アクリロキシ基、メタクリロキシ基、水酸基、カルボキシル基などの官能基の導入量は、0.001ミリモル/g〜10ミリモル/gが好ましい。0.001ミリモル/g未満では化学結合の効果が発現されず、10ミリモル/gをこえると、導電性が阻害されるため好ましくない。   The amount of the functional group such as vinyl group, epoxy group, isocyanate group, amino group, acryloxy group, methacryloxy group, hydroxyl group and carboxyl group introduced into the conductive carbon is preferably 0.001 mmol / g to 10 mmol / g. If it is less than 0.001 mmol / g, the effect of chemical bonding is not exhibited, and if it exceeds 10 mmol / g, the conductivity is inhibited, which is not preferable.

導電性炭素に官能基を結合させる工程および触媒を担持させる工程の順序は特に問わない。
このようにして作製した電極触媒は、単独でまたはバインダー、高分子電解質、撥水剤、導電性炭素、溶剤などと混合しペーストとし、高分子電解質膜または電極との結合に用いる。
The order of the step of bonding the functional group to the conductive carbon and the step of supporting the catalyst is not particularly limited.
The electrode catalyst thus produced is used alone or in combination with a binder, polymer electrolyte, water repellent, conductive carbon, solvent, etc. to form a paste, which is used for bonding to the polymer electrolyte membrane or electrode.

次に、高分子電解質膜と化学結合させる方法の例について説明する。
高分子電解質膜をモノマーから成膜する場合、例えば電極触媒に付加されている官能基と反応する官能基を高分子電解質モノマー中に混合しておく。電解質モノマーを基材に塗工した後その表面に電極触媒のペーストを塗工する。その後熱または活性光線を照射することにより電解質モノマーと電極触媒間で結合が生成する。
Next, an example of a method for chemically bonding with the polymer electrolyte membrane will be described.
When the polymer electrolyte membrane is formed from a monomer, for example, a functional group that reacts with a functional group added to the electrode catalyst is mixed in the polymer electrolyte monomer. After the electrolyte monomer is applied to the substrate, an electrode catalyst paste is applied to the surface. Thereafter, a bond is formed between the electrolyte monomer and the electrode catalyst by irradiation with heat or actinic light.

次に、電極と化学結合させる方法の例について説明する。
まず電極にシランカップリング剤を塗工し反応させ、官能基例えばビニル基を表面に形成しておく。次に電極触媒のペーストを塗工、乾燥した後、熱または活性光線を照射することにより電極と電極触媒間で結合が生成する。
Next, an example of a method for chemically bonding with an electrode will be described.
First, a silane coupling agent is applied to the electrode and reacted to form a functional group such as a vinyl group on the surface. Next, after the electrode catalyst paste is applied and dried, a bond is formed between the electrode and the electrode catalyst by irradiation with heat or actinic light.

高分子電解質膜または電極が含有する官能基、すなわち電極触媒に付加されている官能基と反応する官能基には、ビニル基、エポキシ基、イソシアネート基、アミノ基、アクリロキシ基、メタクリロキシ基、水酸基、カルボキシル基等が挙げられる。   The functional group contained in the polymer electrolyte membrane or the electrode, that is, the functional group that reacts with the functional group added to the electrode catalyst includes vinyl group, epoxy group, isocyanate group, amino group, acryloxy group, methacryloxy group, hydroxyl group, A carboxyl group etc. are mentioned.

本発明において、化学結合とは、例えば炭素原子と炭素原子間での共有結合、窒素原子と炭素原子間での共有結合等の結合が挙げられる。具体的には、ビニル基とビニル基の付加重合による結合、メタクリロキシ基とメタクリロキシ基の付加重合による結合が挙げられる。   In the present invention, the chemical bond includes, for example, a bond such as a covalent bond between a carbon atom and a carbon atom and a covalent bond between a nitrogen atom and a carbon atom. Specific examples include a bond by addition polymerization of a vinyl group and a vinyl group, and a bond by addition polymerization of a methacryloxy group and a methacryloxy group.

電極とした拡散層3a、3bは、燃料である水素、改質水素、メタノール、ジメチルエーテルおよび酸化剤である空気や酸素を効率よく、均一に電極触媒層に導入できかつ電極に接触し電子の受け渡しを行えるものである。一般的には、導電性の多孔質膜が好ましく、カーボンペーパー、カーボンクロス、カーボンとポリテトラフルオロエチレンとの複合シートなどを用いる。   Diffusion layers 3a and 3b used as electrodes can efficiently and uniformly introduce hydrogen, reformed hydrogen, methanol, dimethyl ether, and oxidant, such as air and oxygen, into the electrode catalyst layer and contact the electrodes to transfer electrons. Can be done. In general, a conductive porous film is preferable, and carbon paper, carbon cloth, a composite sheet of carbon and polytetrafluoroethylene, or the like is used.

この拡散層の表面および内部をフッソ系塗料でコーティングし撥水化処理をして用いても構わない。
電極4a、4bは各拡散層に燃料、酸化剤を効率よく供給できかつ拡散層と電子の授受が行えるものであれば従来から用いられているものを特に限定することなく用いることができる。
The surface and the inside of the diffusion layer may be coated with a fluorine-based paint and subjected to a water repellent treatment.
The electrodes 4a and 4b can be used without particular limitation as long as they can efficiently supply fuel and oxidant to each diffusion layer and can exchange electrons with the diffusion layer.

本発明における燃料電池は、高分子電解質、電極触媒層、拡散層、電極を図1のように積層して作成するが、その形状は任意であり作製方法についても特に限定はなく従来の方法を用いることができる。   The fuel cell in the present invention is formed by laminating a polymer electrolyte, an electrode catalyst layer, a diffusion layer, and an electrode as shown in FIG. 1, but the shape thereof is arbitrary, and the production method is not particularly limited, and a conventional method is used. Can be used.

以下、実施例により本発明をさらに詳しく説明する。本発明は以下の実施例に限定されるものではない。
電極触媒の製造例
製造例1
導電性炭素としてバルカンXC72−R(キャボット社製)を用い、その表面に白金(30重量%)−ルテニウム(15重量%)を担持させ電極触媒を得た。この電極触媒30gにビニルトリエトキシシラン(信越化学(株)製、KBE1003)10mlを反応させた。遠心分離により溶液と電極触媒を分離し、洗浄、乾燥を経て表面にビニル基が結合された電極触媒を得た。
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
Production example of electrode catalyst Production example 1
Vulcan XC72-R (manufactured by Cabot) was used as the conductive carbon, and platinum (30% by weight) -ruthenium (15% by weight) was supported on the surface thereof to obtain an electrode catalyst. 30 ml of this electrode catalyst was reacted with 10 ml of vinyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE1003). The solution and the electrode catalyst were separated by centrifugation, and after washing and drying, an electrode catalyst having a vinyl group bonded to the surface was obtained.

元素分析の結果、導電性炭素1gあたり0.08ミリモルのビニル基が結合していた。
得られた電極触媒5gに5%ナフィオン117溶液(和光純薬工業(株)製)25g添加、混合しペーストとした。
As a result of elemental analysis, 0.08 mmol of vinyl groups were bonded per 1 g of conductive carbon.
25 g of 5% Nafion 117 solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 5 g of the obtained electrode catalyst and mixed to obtain a paste.

製造例2
電極触媒として、IEPC40(石福金属興業(株)製、白金40重量%)を用いた。この電極触媒30gに3−メタクリロキシプロピルトリメトキシシラン(信越化学(株)製 KBM−503)15mlを反応させた。遠心分離により溶液と電極触媒を分離し、洗浄、乾燥を経て表面にメタクリロキシ基が結合された電極触媒を得た。
Production Example 2
As an electrode catalyst, IEPC40 (Ishifuku Metal Industry Co., Ltd., platinum 40% by weight) was used. 30 ml of this electrode catalyst was reacted with 15 ml of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.). The solution and the electrode catalyst were separated by centrifugation, and after washing and drying, an electrode catalyst having a methacryloxy group bonded to the surface was obtained.

元素分析の結果導電性炭素1gあたり0.1ミリモルのメタクリロキシ基が結合していた。
得られた電極触媒5gに5%ナフィオン117溶液(和光純薬工業(株)製)25g添加、混合しペーストとした
製造例3
電極触媒として、IEPC40A−II(石福金属興業(株)製、白金40重量% ルテニウム20重量%)を用いた。この電極触媒30gに3−アクリロキシプロピルトリメトキシシラン(信越化学(株)製、KBM−5103)30mlを反応させた。遠心分離により溶液と電極触媒を分離し、洗浄、乾燥を経て表面にアクリロキシ基が結合された電極触媒を得た。
As a result of elemental analysis, 0.1 mmol of methacryloxy group was bonded per 1 g of conductive carbon.
25 g of 5% Nafion 117 solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added to and mixed with 5 g of the obtained electrode catalyst.
As the electrode catalyst, IEPC40A-II (Ishifuku Metal Industry Co., Ltd., platinum 40% by weight ruthenium 20% by weight) was used. 30 ml of 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-5103) was reacted with 30 g of this electrode catalyst. The solution and the electrode catalyst were separated by centrifugation, and after washing and drying, an electrode catalyst having an acryloxy group bonded to the surface was obtained.

元素分析の結果導電性炭素1gあたり3ミリモルのビニル基が結合していた。
得られた電極触媒5gに5%ナフィオン117溶液(和光純薬工業(株)製)25g添加、混合しペーストとした
As a result of elemental analysis, 3 mmol of vinyl groups were bonded per 1 g of conductive carbon.
25 g of 5% Nafion 117 solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added to 5 g of the obtained electrode catalyst and mixed to obtain a paste.

高分子電解質膜用塗工液の製造例
製造例4
2−メタクリロイロキシエチルアシッドホスフェート(共栄社化学(株)製、ライトエステルP−1M)30gにグリセリンジメタクリレート(共栄社化学(株)製、ライトエステルG−101P)2gを添加しよく混合し塗工液を得た。
Production Example of Coating Solution for Polymer Electrolyte Membrane Production Example 4
2-Methacryloyloxyethyl acid phosphate (manufactured by Kyoeisha Chemical Co., Ltd., Light Ester P-1M) was added to 2 g of glycerol dimethacrylate (manufactured by Kyoeisha Chemical Co., Ltd., Light Ester G-101P) and mixed well for coating. A liquid was obtained.

製造例5
2−メタクリロイロキシエチルアシッドホスフェート(共栄社化学(株)製、ライトエステルP−1M)30gにビスフェノールAのエチレンオキサイド付加物ジメタクリレート(共栄社化学(株)製 ライトエステルBP−2EM)1.5gを添加しよく混合し塗工液を得た。
Production Example 5
30 g of 2-methacryloyloxyethyl acid phosphate (manufactured by Kyoeisha Chemical Co., Ltd., light ester P-1M) and 1.5 g of ethylene oxide adduct dimethacrylate of bisphenol A (Kyoeisha Chemical Co., Ltd., light ester BP-2EM) It was added and mixed well to obtain a coating solution.

実施例1
製造例1で得られたペーストを、電極とした拡散層(厚さ0.1mmのカーボンペーパー東レ(株)製)に塗布し、室温で乾燥した後、50℃で乾燥させ、電極触媒および電極とした。この時の白金−ルテニウム合金の塗布量は約10mg/cm2 であった。
Example 1
The paste obtained in Production Example 1 was applied to a diffusion layer (manufactured by Carbon Paper Toray Co., Ltd. having a thickness of 0.1 mm), dried at room temperature, then dried at 50 ° C., and electrode catalyst and electrode It was. The amount of platinum-ruthenium alloy applied at this time was about 10 mg / cm 2 .

また製造例2で得られたペーストを、電極とした拡散層(厚さ0.1mmのカーボンペーパー、東レ(株)製)に塗布し、室温で乾燥した後、50℃で乾燥させ電極触媒および電極とした。この時の白金の塗布量は約6mg/cm2 であった。 The paste obtained in Production Example 2 was applied to a diffusion layer (carbon paper with a thickness of 0.1 mm, manufactured by Toray Industries, Inc.) as an electrode, dried at room temperature, and then dried at 50 ° C. to form an electrode catalyst and An electrode was obtained. The amount of platinum applied at this time was about 6 mg / cm 2 .

次に製造例4で得られた塗工液を上記2種類の拡散層の触媒を設けた側に塗工し、塗工液の厚みが80μmとなるようにした。その後200kVで150kGyの電子線を拡散層に照射し塗工液と電極触媒を反応させ密着させた。   Next, the coating solution obtained in Production Example 4 was applied to the side of the two types of diffusion layers provided with the catalyst so that the thickness of the coating solution was 80 μm. Thereafter, the diffusion layer was irradiated with an electron beam of 150 kGy at 200 kV to cause the coating solution and the electrode catalyst to react and adhere to each other.

実施例2
製造例3で得られたペーストを、電極とした拡散層(厚さ0.1mmのカーボンペーパー、東レ(株)製)に塗布し、室温で乾燥した後、50℃で乾燥させ電極触媒および電極とした。この時の白金−ルテニウム合金の塗布量は約10mg/cm2 であった。
Example 2
The paste obtained in Production Example 3 was applied to a diffusion layer (carbon paper with a thickness of 0.1 mm, manufactured by Toray Industries, Inc.), dried at room temperature, and then dried at 50 ° C. It was. The amount of platinum-ruthenium alloy applied at this time was about 10 mg / cm 2 .

また製造例2で得られたペーストを、電極とした拡散層(厚さ0.1mmのカーボンペーパー、東レ(株)製)に塗布し、室温で乾燥した後、50℃で乾燥させ電極触媒および電極とした。この時の白金の塗布量は約8mg/cm2 であった。 The paste obtained in Production Example 2 was applied to a diffusion layer (carbon paper with a thickness of 0.1 mm, manufactured by Toray Industries, Inc.) as an electrode, dried at room temperature, and then dried at 50 ° C. to form an electrode catalyst and An electrode was obtained. The amount of platinum applied at this time was about 8 mg / cm 2 .

次に製造例5で得られた塗工液を上記2種類の拡散層の触媒を設けた側に塗工し、塗工液の厚みが80μmとなるようにした。その後200kVで150kGyの電子線を拡散層に照射し塗工液と電極触媒を反応させ密着させた。   Next, the coating solution obtained in Production Example 5 was applied to the side of the two types of diffusion layers provided with the catalyst so that the thickness of the coating solution was 80 μm. Thereafter, the diffusion layer was irradiated with an electron beam of 150 kGy at 200 kV to cause the coating solution and the electrode catalyst to react and adhere to each other.

実施例3
電極とした拡散層(厚さ0.1mmのカーボンペーパー、東レ(株)製)を、3−アクリロキシプロピルトリメトキシシラン(信越化学(株)製、KBM−5103)で処理した。カーボンペーパー1cm2 あたり0.1gの3−アクリロキシプロピルトリメトキシシランが付加された。
Example 3
A diffusion layer (carbon paper having a thickness of 0.1 mm, manufactured by Toray Industries, Inc.) serving as an electrode was treated with 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-5103). 0.1 g of 3-acryloxypropyltrimethoxysilane was added per cm 2 of carbon paper.

次に上記3−アクリロキシプロピルトリメトキシシランで処理された拡散層に製造例3で得られたペーストを塗布し、室温で乾燥した後50℃で乾燥させ電極触媒および電極とした。この時の白金−ルテニウム合金の塗布量は約10mg/cm2 であった。 Next, the paste obtained in Production Example 3 was applied to the diffusion layer treated with 3-acryloxypropyltrimethoxysilane, dried at room temperature, and then dried at 50 ° C. to obtain an electrode catalyst and an electrode. The amount of platinum-ruthenium alloy applied at this time was about 10 mg / cm 2 .

また、製造例2で得られたペーストを、同様に3−アクリロキシプロピルトリメトキシシランで処理された拡散層に塗布し、室温で乾燥した後、50℃で乾燥させ電極触媒および電極とした。この時の白金の塗布量は約8mg/cm2 であった。 Further, the paste obtained in Production Example 2 was similarly applied to a diffusion layer treated with 3-acryloxypropyltrimethoxysilane, dried at room temperature, and then dried at 50 ° C. to obtain an electrode catalyst and an electrode. The amount of platinum applied at this time was about 8 mg / cm 2 .

次に製造例5で得られた塗工液を上記2種類の拡散層の触媒を設けた側に塗工し、塗工液の厚みが80μmとなるようにした。その後200kVで150kGyの電子線を拡散層に照射し塗工液と電極触媒を反応させ密着させた。   Next, the coating solution obtained in Production Example 5 was applied to the side of the two types of diffusion layers provided with the catalyst so that the thickness of the coating solution was 80 μm. Thereafter, the diffusion layer was irradiated with an electron beam of 150 kGy at 200 kV to cause the coating solution and the electrode catalyst to react and adhere to each other.

実施例4
製造例3で得られたペーストを、電極とした拡散層(厚さ0.1mmのカーボンペーパー、東レ(株)製)に塗布し、室温で乾燥した後、50℃で乾燥させ電極触媒および電極とした。この時の白金−ルテニウム合金の塗布量は約10mg/cm2 であった。
Example 4
The paste obtained in Production Example 3 was applied to a diffusion layer (carbon paper with a thickness of 0.1 mm, manufactured by Toray Industries, Inc.), dried at room temperature, and then dried at 50 ° C. It was. The amount of platinum-ruthenium alloy applied at this time was about 10 mg / cm 2 .

また製造例2で得られたペーストを、電極とした拡散層(厚さ0.1mmのカーボンペーパー、東レ(株)製)に塗布し、室温で乾燥した後、50℃で乾燥させ電極触媒および電極とした。この時の白金の塗布量は約8mg/cm2 であった。 The paste obtained in Production Example 2 was applied to a diffusion layer (carbon paper with a thickness of 0.1 mm, manufactured by Toray Industries, Inc.) as an electrode, dried at room temperature, and then dried at 50 ° C. to form an electrode catalyst and An electrode was obtained. The amount of platinum applied at this time was about 8 mg / cm 2 .

次に製造例5で得られた塗工液を膜厚70μm、目開き20μm、線径30μmのナイロン製のメッシュ(メッシュ508、東京スクリーン(株)製)に塗工し、さらに上記2種類の拡散層の触媒を設けた側で挟んだ。その後200kVで150kGyの電子線を拡散層に照射し塗工液と電極触媒を反応させ密着させた。   Next, the coating solution obtained in Production Example 5 was applied to a nylon mesh (mesh 508, manufactured by Tokyo Screen Co., Ltd.) having a film thickness of 70 μm, an opening of 20 μm, and a wire diameter of 30 μm. The diffusion layer was sandwiched on the side where the catalyst was provided. Thereafter, the diffusion layer was irradiated with an electron beam of 150 kGy at 200 kV to cause the coating solution and the electrode catalyst to react and adhere to each other.

比較製造例1
製造例1においてビニルトリエトキシシラン(信越化学(株)製 KBE1003)を用いての処理を行わないでペーストを作製した。
Comparative production example 1
In Production Example 1, a paste was produced without performing treatment using vinyltriethoxysilane (KBE1003 manufactured by Shin-Etsu Chemical Co., Ltd.).

比較製造例2
製造例2において3−メタクリロキシプロピルトリメトキシシラン(信越化学(株)製、KBM−503)を用いての処理を行わないでペーストを作製した。
Comparative production example 2
In Production Example 2, a paste was prepared without performing treatment with 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-503).

比較例1
比較製造例1で得られたペーストを、電極とした拡散層(厚さ0.1mmのカーボンペーパー、東レ(株)製)に塗布し、室温で乾燥した後、50℃で乾燥させ電極触媒および電極とした。この時の白金−ルテニウム合金の塗布量は約10mg/cm2 であった。
Comparative Example 1
The paste obtained in Comparative Production Example 1 was applied to a diffusion layer (0.1 mm thick carbon paper, manufactured by Toray Industries, Inc.) as an electrode, dried at room temperature, and then dried at 50 ° C. An electrode was obtained. The amount of platinum-ruthenium alloy applied at this time was about 10 mg / cm 2 .

また比較製造例2で得られたペーストを、電極とした拡散層(厚さ0.1mmのカーボンペーパー、東レ(株)製)に塗布し、室温で乾燥した後、50℃で乾燥させ電極触媒および電極とした。この時の白金の塗布量は約6mg/cm2 であった。 The paste obtained in Comparative Production Example 2 was applied to a diffusion layer (carbon paper with a thickness of 0.1 mm, manufactured by Toray Industries, Inc.) as an electrode, dried at room temperature, and then dried at 50 ° C. to be an electrode catalyst. And electrodes. The amount of platinum applied at this time was about 6 mg / cm 2 .

次に製造例4で得られた塗工液を上記2種類の拡散層の触媒を設けた側に塗工し、塗工液の厚みが80μmとなるようにした。その後200kVで150kGyの電子線を拡散層に照射し塗工液と電極触媒を反応させ密着させた。   Next, the coating solution obtained in Production Example 4 was applied to the side of the two types of diffusion layers provided with the catalyst so that the thickness of the coating solution was 80 μm. Thereafter, the diffusion layer was irradiated with an electron beam of 150 kGy at 200 kV to cause the coating solution and the electrode catalyst to react and adhere to each other.

上記実施例1〜4、比較例1で作製した高分子電解質膜と拡散層の接合体を燃料電池のセルに組み込みそれぞれセルを作製した。セル面積は25cm2 である。
それぞれのセルについて、燃料極側には、4wt%のメタノール水溶液を10ml/minで供給し、空気極側には常圧の空気を200ml/minで供給し、セル全体を65℃にて保温しながら発電をおこなった。
The assembly of the polymer electrolyte membrane and the diffusion layer prepared in Examples 1 to 4 and Comparative Example 1 was incorporated in a fuel cell to prepare a cell. The cell area is 25 cm 2 .
For each cell, a 4 wt% aqueous methanol solution was supplied at 10 ml / min to the fuel electrode side, normal pressure air was supplied to the air electrode side at 200 ml / min, and the entire cell was kept at 65 ° C. While generating power.

電流密度0.20A/cm2 で放電したときの初期端子電圧および上記条件で100時間連続運転後の端子電圧を表1に示す。 Table 1 shows the initial terminal voltage when discharged at a current density of 0.20 A / cm 2 and the terminal voltage after 100 hours of continuous operation under the above conditions.

Figure 2006049244
Figure 2006049244

表1の結果から、実施例と比較例を比較すると、端子間電圧値において実施例のほうが、比較例より優れている。
実施例においては、電極触媒中の触媒を高分子電解質膜および/または電極と化学結合させたものである。そのため電極触媒の脱落が極めて少なくなり、長時間にわたって効率のよい発電が可能となった高分子型燃料電池を提供することが可能となった。
From the results of Table 1, when comparing the example and the comparative example, the example is superior to the comparative example in terms of the voltage value between terminals.
In the examples, the catalyst in the electrode catalyst is chemically bonded to the polymer electrolyte membrane and / or the electrode. For this reason, it has become possible to provide a polymer type fuel cell in which the electrode catalyst has dropped off extremely and efficient power generation is possible over a long period of time.

本発明の高分子型燃料電池は、電極触媒中の触媒を担持している導電性炭素を修飾しさらに、その電極触媒を高分子電解質膜および/または電極と化学結合させることにより、電極触媒の脱落が極めて少なくなり、長時間にわたって効率のよい発電が可能であるので、携帯型から大型の燃料電池に利用することができる。   The polymer fuel cell of the present invention is obtained by modifying the conductive carbon carrying the catalyst in the electrode catalyst and further chemically bonding the electrode catalyst with the polymer electrolyte membrane and / or the electrode. Since the dropout is extremely small and efficient power generation is possible over a long period of time, it can be used for portable to large fuel cells.

本発明の高分子型燃料電池の一例を示す部分概略図である。It is a partial schematic diagram showing an example of a polymer fuel cell of the present invention. 本発明の電極触媒の構造の一例を示す概略図である。It is the schematic which shows an example of the structure of the electrode catalyst of this invention.

符号の説明Explanation of symbols

1 高分子電解質膜
2a 電極触媒層
2b 電極触媒層
3a 電極(拡散層)
3b 電極(拡散層)
4a 集電体(燃料極)
4b 集電体(空気極)
5 高分子電解質膜
6 化学結合
7 触媒
8 導電性炭素
9 拡散層
10 電極触媒
DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2a Electrode catalyst layer 2b Electrode catalyst layer 3a Electrode (diffusion layer)
3b electrode (diffusion layer)
4a Current collector (fuel electrode)
4b Current collector (air electrode)
5 Polymer Electrolyte Membrane 6 Chemical Bond 7 Catalyst 8 Conductive Carbon 9 Diffusion Layer 10 Electrode Catalyst

Claims (5)

高分子電解質膜と、一対の電極と、前記高分子電解質膜と電極の間に設けられた電極触媒を有する高分子型燃料電池において、前記電極触媒は触媒を担持する導電性炭素を含有し、前記導電性炭素は高分子電解質膜および電極の少なくとも1つと化学結合していることを特徴とする高分子型燃料電池。   In a polymer type fuel cell having a polymer electrolyte membrane, a pair of electrodes, and an electrode catalyst provided between the polymer electrolyte membrane and the electrode, the electrode catalyst contains conductive carbon supporting the catalyst, The polymer type fuel cell, wherein the conductive carbon is chemically bonded to at least one of a polymer electrolyte membrane and an electrode. 導電性炭素に触媒を担持させて電極触媒を得る工程、前記電極触媒の導電性炭素に化学結合可能な官能基を有する化合物を付加する工程、前記導電性炭素の化学結合可能な官能基を有する化合物と高分子電解質膜および電極の少なくとも1つとを化学結合する工程を有することを特徴とする高分子型燃料電池の製造方法。   A step of obtaining an electrode catalyst by supporting a catalyst on conductive carbon, a step of adding a compound having a functional group capable of chemically bonding to the conductive carbon of the electrode catalyst, and a functional group capable of chemically bonding of the conductive carbon A method for producing a polymer fuel cell, comprising the step of chemically bonding a compound to at least one of a polymer electrolyte membrane and an electrode. 前記高分子電解質膜および電極の少なくとも1つが化学結合可能な官能基を有する請求項2記載の高分子型燃料電池の製造方法。   The method for producing a polymer fuel cell according to claim 2, wherein at least one of the polymer electrolyte membrane and the electrode has a functional group capable of chemically bonding. 前記化学結合可能な官能基がビニル基、メタクリロキシ基またはアクリロキシ基である請求項2または3記載の高分子型燃料電池の製造方法。   4. The method for producing a polymer fuel cell according to claim 2, wherein the chemically bondable functional group is a vinyl group, a methacryloxy group or an acryloxy group. 前記前記導電性炭素の化学結合可能な官能基を有する化合物と高分子電解質膜および電極の少なくとも1つとを化学結合する工程に熱または高エネルギー線を用いることを特徴とする請求項2乃至4のいずれかの項に記載の高分子型燃料電池の製造方法。   5. The heat or high energy ray is used in the step of chemically bonding the compound having a functional group capable of chemically bonding to the conductive carbon and at least one of a polymer electrolyte membrane and an electrode. A method for producing a polymer fuel cell according to any one of the items.
JP2004232384A 2004-08-09 2004-08-09 Method for producing polymer fuel cell Expired - Fee Related JP4819331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232384A JP4819331B2 (en) 2004-08-09 2004-08-09 Method for producing polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232384A JP4819331B2 (en) 2004-08-09 2004-08-09 Method for producing polymer fuel cell

Publications (2)

Publication Number Publication Date
JP2006049244A true JP2006049244A (en) 2006-02-16
JP4819331B2 JP4819331B2 (en) 2011-11-24

Family

ID=36027532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232384A Expired - Fee Related JP4819331B2 (en) 2004-08-09 2004-08-09 Method for producing polymer fuel cell

Country Status (1)

Country Link
JP (1) JP4819331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242554A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Catalyst material for fuel cell, its manufacturing method, catalyst membrane, electrode-membrane assembly, and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228204A (en) * 1999-02-05 2000-08-15 Matsushita Electric Ind Co Ltd Electrode for fuel cell and its manufacture
JP2001325963A (en) * 2000-05-18 2001-11-22 Toyota Central Res & Dev Lab Inc Electrode electrolyte film bonding laminate and its manufacture method
JP2002305000A (en) * 2001-04-03 2002-10-18 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell and its manufacturing method
JP2002313358A (en) * 2001-04-10 2002-10-25 Aisin Seiki Co Ltd Manufacturing method for film-electrode junction and solid highpolymer electrolyte fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228204A (en) * 1999-02-05 2000-08-15 Matsushita Electric Ind Co Ltd Electrode for fuel cell and its manufacture
JP2001325963A (en) * 2000-05-18 2001-11-22 Toyota Central Res & Dev Lab Inc Electrode electrolyte film bonding laminate and its manufacture method
JP2002305000A (en) * 2001-04-03 2002-10-18 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell and its manufacturing method
JP2002313358A (en) * 2001-04-10 2002-10-25 Aisin Seiki Co Ltd Manufacturing method for film-electrode junction and solid highpolymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242554A (en) * 2006-03-10 2007-09-20 Fujifilm Corp Catalyst material for fuel cell, its manufacturing method, catalyst membrane, electrode-membrane assembly, and fuel cell

Also Published As

Publication number Publication date
JP4819331B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4626514B2 (en) ELECTRODE FOR FUEL CELL, FUEL CELL, AND METHOD FOR PRODUCING THE SAME
JP2003203646A (en) Manufacturing method of fuel cell membrane-electrode- gasket joint body and fuel cell containing the same
US7763374B2 (en) Membrane fuel cell electrodes incorporated with carbon nanomaterial-supported electrocatalysts and methods of making the same
CN1877890A (en) Electrode substrate for a fuel cell, a method for preparing the same, and a membrane-electrode assembly comprising the same
JP2004185863A (en) Electrode for fuel cell, and fuel cell using it
JP5297786B2 (en) Anode catalyst layer of polymer electrolyte fuel cell
US20090042077A1 (en) Polymer electrolyte membrane and polymer electrolyte fuel cell
TWI226140B (en) Conductive carbon, electrode catalyst for fuel cell using the same, fuel cell and fuel cell apparatus
JP2009117248A (en) Fuel cell
JP5669432B2 (en) Membrane electrode assembly, fuel cell, and fuel cell activation method
WO2003088396A1 (en) Solid polymer electrolyte fuel battery having improved performance and reliability and manufacturing method thereof
JP4919005B2 (en) Method for producing electrode for fuel cell
JP2002015745A (en) Solid polymer fuel cell
JP2009037902A (en) Catalyst carrying carrier for forming electrode for fuel cell, method for manufacturing the same, and solid polymer fuel cell
JP2001076742A (en) Solid polymer fuel cell
JP4819331B2 (en) Method for producing polymer fuel cell
JP4117430B2 (en) Gas diffusion electrode and fuel cell having the same
JP2006049225A (en) Solid polymer electrolyte film and solid polymer fuel cell
JP2006086037A (en) Electrocatalyst for fuel cell and electrocatalyst layer for fuel cell using it
JP2003282074A (en) Electrode for fuel cell, and manufacturing method of the same
JP5535773B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JP2002015744A (en) Solid polymer fuel cell
JP2003308855A (en) Solid high polymer electrolyte film, and fuel cell using it
JP2006040633A (en) Electrode for fuel cell, its manufacturing method, and fuel cell using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees