JP2006047175A - Current measuring method, current measuring program, measuring device and electronic computer running above program, manufacturing apparatus equipped with them, and semiconductor integrated circuit and electronic equipment equipped with means carrying out above current measuring method - Google Patents

Current measuring method, current measuring program, measuring device and electronic computer running above program, manufacturing apparatus equipped with them, and semiconductor integrated circuit and electronic equipment equipped with means carrying out above current measuring method Download PDF

Info

Publication number
JP2006047175A
JP2006047175A JP2004230474A JP2004230474A JP2006047175A JP 2006047175 A JP2006047175 A JP 2006047175A JP 2004230474 A JP2004230474 A JP 2004230474A JP 2004230474 A JP2004230474 A JP 2004230474A JP 2006047175 A JP2006047175 A JP 2006047175A
Authority
JP
Japan
Prior art keywords
current
circuit
circuit block
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004230474A
Other languages
Japanese (ja)
Inventor
Yoshihisa Minami
善久 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004230474A priority Critical patent/JP2006047175A/en
Publication of JP2006047175A publication Critical patent/JP2006047175A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To carry out a current measurement precisely for a short time, by rapidly reducing and completing charging of current on a parasitic capacitance or the like, which flows into an element in a circuit block just after applying a supply voltage for the current measurement to the circuit block whose circuit function is turned off. <P>SOLUTION: In a circuit of a plurality of circuit blocks being always supplied with the supply voltage from one power source shared by them, when subjecting only a circuit block 1 to the current measurement in such a condition of the circuit block 1 whose circuit function is turned on, and a circuit block 2 whose circuit function is turned off, the current of the circuit block 1 becomes stable and reaches its steady state immediately after its start caused by applying the supply voltage. In the case of the current of circuit block 2, current (curve C) of a power supply terminal requires a period to arrive at a position (g) equivalent to current (curve A) of only the circuit block 1, during a transition period of time when its inner circuit comes into an appropriate off state just after the applying. The circuit block 2 is turned on (position (i)) to make a state in which the current flows after the application of the supply voltage, and is turned off (position (j)) after a certain elapse of time, thereby shortening the period up to a position (k) where the current such as parasitic charging current or the like of the circuit block 2 is nearly zero as shown by a curve D. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体集積回路を含めた電子回路等の電子機器の微弱電流を極めて短時間に測定する電流測定方法、電流測定プログラムとこれを実行する測定器および電子計算機とこれらを備えた製造装置、電流測定方法を実行する手段を備えた半導体集積回路および電子機器に関するものである。   The present invention relates to a current measuring method, a current measuring program, a measuring instrument for executing the current measuring method, an electronic computer, and a manufacturing apparatus including these, for measuring a weak current of an electronic device such as an electronic circuit including a semiconductor integrated circuit in an extremely short time. The present invention relates to a semiconductor integrated circuit and an electronic device having means for executing a current measuring method.

従来における回路の電流測定方法としては、回路に流れる電流が安定した状態をモニターして、安定したことを確認してから測定を行う回路電流の測定手法が用いられている。(例えば、特許文献1参照。)。
特開2000−227448号公報
As a conventional method for measuring a circuit current, a circuit current measuring method is used in which a state in which a current flowing in a circuit is stabilized is monitored and measurement is performed after confirming that the current is stable. (For example, refer to Patent Document 1).
JP 2000-227448 A

従来技術における問題点について、図4,図5,図6を参照して説明する。   Problems in the prior art will be described with reference to FIGS.

近年の電子機器や構成回路において、常時電源が供給された状態ではあるが必要とするとき以外の時間は回路を停止させ、また必要とする以外の回路を停止させて消費電力を減らし、待機電力の削減または待機電力の削減によるバッテリー駆動が可能な時間を延長する対策が取られることが多くなっている。   In recent electronic devices and component circuits, the power is always supplied, but the circuit is stopped when it is not necessary, and the circuits other than those necessary are stopped to reduce power consumption and standby power. In many cases, measures are taken to extend the time during which the battery can be driven by reducing power consumption or standby power.

例えば、携帯電話のシステム等の携帯端末や大規模集積回路ではシステム内の機能ごとにオンとオフに分けて、あるいは大規模集積回路においてはグループ分けした回路ブロックを多様な条件でオンのブロックとオフのブロックに分けて消費電流を測定することが多く、これに伴い検査の回数も増加し、さらに、待機状態時にオンしている回路の消費電流が微小なため、測定電流が他のオフしている回路ブロックの寄生充電電流の総和との絶対値が近づくことで、オンしている回路の微弱電流の正確な測定が可能となるまでの時間が長くなるので、検査一回一回に要する時間が長くなり、総合的検査時間が大幅に長くなっている。   For example, in mobile terminals such as mobile phone systems and large-scale integrated circuits, each function in the system is divided into on and off, or in large-scale integrated circuits, grouped circuit blocks are turned on under various conditions. In many cases, the current consumption is measured separately for the off-block, and the number of inspections increases accordingly.In addition, the current consumption of the circuit that is turned on in the standby state is very small, so the measurement current is switched off. As the absolute value of the sum of the parasitic charge currents of the circuit blocks that are close to each other approaches, it takes a long time to accurately measure the weak current of the circuit that is turned on. The time is getting longer and the overall inspection time is getting much longer.

また、待機時のすべての回路が停止している状態において、電源電流や一部の回路が作動して他の回路は停止しているような微小な電流も性能判断指標として測定し開示することが多くなってきた。   In addition, when all the circuits in standby are stopped, the power supply current or a minute current that some circuits are operating and other circuits are stopped should also be measured and disclosed as a performance judgment index. Has increased.

例えば、図5に示すような個別に回路機能のオン/オフ制御が可能な回路ブロックが2つ存在するシステム(回路)において、回路ブロック1をオン,回路ブロック2をオフ状態の電源電流を測定する場合、制御信号により回路ブロック1の制御はオン、回路ブロック2の制御はオフの制御状態で電流測定の電源電圧を供給すると、図6に示すように、最初からオンの状態に制御されている回路ブロック1の電流はカーブAのように電流測定の電源電圧の印加時に若干乱れることもあるが比較的スムーズに立ち上がり、設計値まで上昇して安定する。   For example, in a system (circuit) in which there are two circuit blocks whose circuit functions can be individually turned on / off as shown in FIG. 5, the power supply current is measured when the circuit block 1 is turned on and the circuit block 2 is turned off. When the power supply voltage for current measurement is supplied in the control state in which the control of the circuit block 1 is turned on and the control of the circuit block 2 is turned off by the control signal, as shown in FIG. The current of the circuit block 1 is slightly disturbed when the power supply voltage for current measurement is applied as shown by curve A, but rises relatively smoothly, rises to the design value, and stabilizes.

しかし、最初からオフの状態に制御されている回路ブロック2の電源電流はカーブBのように、電流測定の電源電圧の印加直後から、回路がオフ状態に定着するまでの間に多種のバイアス電流が流れる。この電流は、配線または回路素子の寄生容量への初期寄生充電電流がその割合を占めるため、充電が完了するまでしばらくの間は電流が流れる。このため、全体の正確な電源電流を測定する場合、カーブAとカーブBの合成電流であるカーブCを測定することになり寄生充電電流がほぼなくなる位置、図6に示す位置(g)までしばらく待つ必要がある。   However, the power supply current of the circuit block 2 that has been controlled to be turned off from the beginning is a variety of bias currents, as shown by curve B, immediately after application of the power supply voltage for current measurement until the circuit is fixed in the off state. Flows. Since this current accounts for a proportion of the initial parasitic charging current to the parasitic capacitance of the wiring or circuit element, the current flows for a while until the charging is completed. For this reason, when measuring the entire accurate power supply current, the curve C, which is the combined current of the curve A and the curve B, is measured, and the position where the parasitic charging current is almost eliminated, the position (g) shown in FIG. I need to wait.

次に、図4に示す電流測定対象の回路例を参照しながら電源電流について以下に説明する。図4において、MOSFETQ1のゲートはバンドギャップ基準電流源からのバイアスが供給され、順次、MOSFETQ3,Q4が作用して、差動回路に電流が供給される。この回路をオフさせる場合は、MOSFETQ1へのバンドギャップからのバイアスの供給経路を断つことと、MOSFETQ2をオンさせてMOSFETQ3のミラー回路としての作用を停止させる。   Next, the power supply current will be described below with reference to the circuit example of the current measurement target shown in FIG. In FIG. 4, a bias from a bandgap reference current source is supplied to the gate of MOSFET Q1, and MOSFETs Q3 and Q4 are sequentially operated to supply current to the differential circuit. When this circuit is turned off, the bias supply path from the band gap to the MOSFET Q1 is cut off, and the MOSFET Q2 is turned on to stop the operation of the MOSFET Q3 as a mirror circuit.

しかし、回路がオフの状態で電流測定の電源電圧(VCC)を供給した瞬間、MOSFETQ1,Q5,Q6,Q8のソースに供給され、最初はそれぞれのMOSFETのソース領域の寄生容量の充電電流が発生する、さらに、少なくとも、MOSFETQ5のVgsが発生してドレイン電流が発生し、やがてMOSFETQ5のドレイン電流は電位A点の上昇とともに減少するが、平行してMOSFETQ6のVgsも発生しているので、電位Bが上昇し、MOSFETQ8がオンし、MOSFETQ8のソースに接続されている、負荷もすべてがオフしているとしても、若干の充電電流としてMOSFETQ8のドレイン電流が流れ、やがて減少する。   However, at the moment when the power supply voltage (VCC) for current measurement is supplied with the circuit turned off, it is supplied to the sources of the MOSFETs Q1, Q5, Q6, and Q8. Furthermore, at least Vgs of the MOSFET Q5 is generated and a drain current is generated. The drain current of the MOSFET Q5 is eventually reduced as the potential A is increased, but Vgs of the MOSFET Q6 is also generated in parallel. Rises, the MOSFET Q8 is turned on, and even if all the loads connected to the source of the MOSFET Q8 are turned off, the drain current of the MOSFET Q8 flows as a slight charging current, and then decreases.

回路がオンの場合、回路電流はバンドギャップ基準電流でMOSFETQ3,Q4,Q7の各ドレイン電流が決定され、VCC供給瞬間の、同様な寄生充電電流は存在するがその絶対値は回路オン時の駆動電流(MOSFETQ3,Q4,Q7のドレイン電流)に比べ小さく、また回路が導通しているため、寄生容量への充電が速やかに完了するので、電流測定への時間的影響は極めて少ない。   When the circuit is on, the drain currents of the MOSFETs Q3, Q4, and Q7 are determined by the band gap reference current, and there is a similar parasitic charging current at the moment of VCC supply, but its absolute value is the drive when the circuit is on. Since it is smaller than the current (drain currents of the MOSFETs Q3, Q4, and Q7) and the circuit is conductive, the charging to the parasitic capacitance is completed quickly, so that the time influence on the current measurement is extremely small.

このように、従来の測定方法では正確な電流測定値を得るために、寄生容量の充電電流がなくなるまで待つ必要があり、そのために測定に必要とする時間が長くなるという問題があった。   As described above, in order to obtain an accurate current measurement value in the conventional measurement method, it is necessary to wait until the charging current of the parasitic capacitance disappears. Therefore, there is a problem that the time required for the measurement becomes long.

本発明は、前記従来技術の問題を解決することに指向するものであり、回路機能をオフしている回路ブロックに電流測定の電源電圧を印加した直後において、この回路機能をオフしている回路ブロック内の素子に流入する寄生容量等への充電電流を速やかに低減または完了させ、電流の測定を正確に短時間で行う電流測定方法、および電流測定プログラムとこれを実行する測定器または電子計算機とこれらを備えた製造装置、および電流測定方法を実行する測定手段を備えた半導体集積回路または電子機器を提供することを目的とする。   The present invention is directed to solving the problems of the prior art, and the circuit function is turned off immediately after the power supply voltage for current measurement is applied to the circuit block whose circuit function is turned off. A current measurement method that quickly reduces or completes the charging current to the parasitic capacitance flowing into the elements in the block and measures the current accurately in a short time, and a current measurement program and a measuring instrument or electronic computer that executes the current measurement program Another object of the present invention is to provide a semiconductor integrated circuit or an electronic device provided with a measuring device that executes the current measuring method and a manufacturing apparatus including these.

前記の目的を達成するために、本発明に係る電流測定方法は、同一電源を共有し、かつ同一電源からの電源供給で動作し、回路機能のオン/オフ制御を行える回路ブロックと、回路機能のオン/オフ制御を行えない回路ブロックを少なくとも各々1つずつを有する複数の回路ブロックからなる回路内において、ある特定の回路ブロック単体または特定の範囲で複数の回路ブロックの電流を測定する電流測定方法であって、第1の方法は、回路内の測定する回路ブロック以外の回路機能のオン/オフ制御を行える回路ブロックにおいて、少なくとも1回は回路機能をオンさせて回路ブロック内の素子に電流を供給し、その後、測定する回路ブロックの電流測定前にオフさせることで、回路ブロック内の隅々の容量成分に流れ込む充電電流を速やかに低減、または完了させてから前記回路ブロックの電流を測定することによって、測定する時間を短縮してより速やかに正確な電流を測定できる状態とすることができる。   In order to achieve the above object, a current measuring method according to the present invention includes a circuit block that shares the same power supply, operates with power supply from the same power supply, and can perform on / off control of a circuit function, and a circuit function Current measurement for measuring the current of a specific circuit block alone or within a specific range in a circuit composed of a plurality of circuit blocks each having at least one circuit block that cannot be turned on / off. The first method is a circuit block in which on / off control of circuit functions other than the circuit block to be measured in the circuit can be performed, and the circuit function is turned on at least once to supply current to the elements in the circuit block. Is turned off before measuring the current of the circuit block to be measured, so that the charging current flowing into the capacitance components at every corner in the circuit block can be reduced. It is reduced, or by the to complete measuring the current of the circuit block, a state capable of measuring more quickly accurate current to reduce the time to measure things.

また、第2の方法は、回路内の測定する回路ブロック以外の回路機能のオン/オフ制御を行える回路ブロックにおいて、回路機能をオフさせたままで電流測定前に、電流測定を行う電源電圧よりも高い電圧を印加して、回路ブロック内の隅々の容量成分に流れ込む充電電流を増大させて、その後、高い電圧をもとの電源電圧に戻すことで、測定前に充電電流による充電を加速し、充電電流を速やかに低減、または完了させてから前記回路ブロックの電流を測定することによって、測定する時間を短縮してより速やかに正確な電流を測定できる状態とすることができる。   In the second method, in the circuit block that can perform on / off control of the circuit functions other than the circuit block to be measured in the circuit, the current is measured before the current measurement with the circuit function turned off. By applying a high voltage to increase the charging current that flows into the capacitive components at every corner of the circuit block, and then returning the high voltage to the original power supply voltage, charging by the charging current is accelerated before measurement. By measuring the current of the circuit block after quickly reducing or completing the charging current, the time for measurement can be shortened, and a more accurate current can be measured more quickly.

また、第1,第2の方法を併用して、回路内のある特定の回路ブロック単体または特定の範囲で複数の回路ブロックの電流を測定することによって、測定する時間をさらに短縮してより速やかに正確な電流を測定できる状態とすることができる。   In addition, by using the first and second methods in combination, by measuring the current of a specific circuit block in a circuit or a plurality of circuit blocks within a specific range, the measurement time can be further shortened and more quickly It is possible to make it possible to measure an accurate current.

また、電流測定プログラムとこれを実行する測定器および電子計算機とこれらを備えた製造装置は、前記の電流測定方法に基づいて測定器を作動させて、回路の電流を電子制御により自動的に測定する手段の動作手順が記述された電流測定プログラムであって、この測定器に組み込まれ、または測定器を制御するために用いられる電子計算機に組み込まれて、動作手順に従い回路の電流を測定すること、さらに、測定器または電子計算機に電流測定プログラムが組み込まれて、電流測定プログラムを実行することで回路の電流を電子制御により自動的に測定すること、さらに、製造装置に測定器または電子計算機を構成の一部に使用して、製造する半導体集積回路または電子機器の回路に流れる電流を測定することによって、電子制御により自動的に回路の電流を測定して、総合検査時間を極めて短縮でき半導体集積回路または電子機器の製造コストを効率よく削減できる。   In addition, the current measurement program, the measuring instrument that executes the program, the electronic computer, and the manufacturing apparatus equipped with them operate the measuring instrument based on the current measuring method and automatically measure the circuit current by electronic control. A current measurement program in which the operating procedure of the means to be described is described, which is incorporated in the measuring instrument or in an electronic computer used to control the measuring instrument and measures the current of the circuit according to the operating procedure In addition, a current measurement program is incorporated into the measuring instrument or electronic computer, and the current of the circuit is automatically measured by electronic control by executing the current measuring program. Further, the measuring instrument or electronic computer is installed in the manufacturing apparatus. Used as part of the configuration, by measuring the current flowing in the semiconductor integrated circuit or electronic equipment circuit to be manufactured, by electronic control Dynamically measuring the current of the circuit can be reduced efficiently manufacturing cost extremely reduced can semiconductor integrated circuit or electronic device the overall inspection time.

また、電流測定方法を実行する手段を備えた半導体集積回路および電子機器は、前記の電流測定方法に基づいて、電流の測定を行う測定手段を備え、測定手段を内部に直接組み込んで内部に構成された回路の一部または全体の電流を測定し自己確認する機能を有する構成によって、半導体集積回路または電子機器単体において電流の測定を短時間でより正確に行うことができる。   Further, a semiconductor integrated circuit and an electronic apparatus provided with means for executing a current measuring method are provided with measuring means for measuring current based on the current measuring method, and the measuring means is directly incorporated inside and configured internally. With the configuration having a function of measuring and self-confirming the current of a part of or the entire circuit, the current can be measured more accurately in a short time in a semiconductor integrated circuit or an electronic device alone.

本発明によれば、回路機能をオフしている回路ブロックに電流測定の電源電圧を印加した直後に、この回路ブロック内の素子に流入する寄生容量等への充電電流を速やかに低減または完了させ、目的の回路ブロックの電流を精度よく短時間で測定することができ、総合的検査時間を極めて短縮することができ、製造コストの効率よい削減ができるという効果を奏する。   According to the present invention, immediately after the power supply voltage for current measurement is applied to the circuit block whose circuit function is turned off, the charging current to the parasitic capacitance flowing into the elements in the circuit block is quickly reduced or completed. The current of the target circuit block can be measured with high accuracy in a short time, the total inspection time can be extremely shortened, and the manufacturing cost can be efficiently reduced.

以下、図面を参照して本発明における実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施の形態1における電流測定方法を説明する電流特性図であり、図1と図5を参照しながら本実施の形態1を説明する。   FIG. 1 is a current characteristic diagram for explaining a current measuring method according to the first embodiment of the present invention. The first embodiment will be described with reference to FIGS.

前述の図5に示す同一電源を共有して、この同一電源から常に電源電圧が供給される複数の回路ブロックを有する回路において、回路ブロック1がオン、回路ブロック2がオフの状態で回路ブロック1のみの電源電流を測定する場合、回路ブロック1の制御信号をオン,回路ブロック2の制御信号をオフの状態で電流測定の電源電圧を印加すると、オンに制御されている回路ブロック1の電流は起動の直後に比較的安定して定常状態に到達し定電流となる。しかし、オフに制御されている回路ブロック2の電流は電流測定の電源電圧が印加された直後は内部回路の状態が適切なオフ状態になるまでの過渡期において、色々な過度応答による電流と回路素子、または素子,配線等の寄生容量への充電電流がしばらくの間流れ、電源端子に流れる電流(カーブC)が、オンに制御されている回路ブロック1のみの電流(カーブA)と同等になる位置(g)までに時間を要してしまう(図1参照)。   In the circuit having a plurality of circuit blocks that share the same power supply and are always supplied with the power supply voltage from the same power supply, the circuit block 1 is turned on and the circuit block 2 is turned off. In the case of measuring only the power supply current, when the power supply voltage for current measurement is applied with the control signal of the circuit block 1 turned on and the control signal of the circuit block 2 turned off, the current of the circuit block 1 controlled to be on is Immediately after start-up, it reaches a steady state relatively stably and becomes a constant current. However, the current of the circuit block 2 which is controlled to be off is the current and circuit due to various transient responses in the transition period until the state of the internal circuit becomes an appropriate off state immediately after the power supply voltage for current measurement is applied. The charging current to the parasitic capacitance of the element or the element, the wiring, etc. flows for a while, and the current (curve C) flowing to the power supply terminal is equivalent to the current (curve A) of only the circuit block 1 controlled to be on. It takes time to reach the position (g) (see FIG. 1).

しかし、電流測定の電源電圧の印加後にいったん回路ブロック2をオン(位置(i))させて、回路ブロック2内の回路にバイアス電圧が発生してバイアス電流が流れる状態とし、ある程度の時間オン状態を続けた後にオフ(位置(j))させる。これにより、カーブDのように回路ブロック2の寄生充電電流等の電流がほぼなくなるまでの時間を、回路ブロック2をいったんオンさせない場合の寄生電流がほぼなくなる位置(g)からいったんオンさせることでスムーズに寄生充電電流等の電流がほぼなくなる位置(k)まで短縮させることができる。   However, after the power supply voltage for current measurement is applied, the circuit block 2 is once turned on (position (i)) so that a bias voltage is generated in the circuit in the circuit block 2 so that the bias current flows, and it is turned on for a certain period of time. Is turned off (position (j)). As a result, the time until the current such as the parasitic charging current of the circuit block 2 almost disappears as shown by the curve D is once turned on from the position (g) where the parasitic current almost disappears when the circuit block 2 is not turned on once. It is possible to smoothly shorten the position to the position (k) where the current such as the parasitic charging current almost disappears.

このように、ある特定の回路ブロック単体または特定の範囲で複数回路ブロックの電流を測定する場合、回路内の測定する回路ブロック以外のオン/オフ制御を行える回路ブロックにおいては、少なくとも1回は回路機能をオンさせて、その後、目的の測定する回路ブロックの電流測定前にオフさせてから電流を測定することで、目的の回路ブロックの精密な電流の測定に要する時間を極めて短縮させることができる。   As described above, when the current of a specific circuit block alone or a plurality of circuit blocks is measured in a specific range, in a circuit block capable of on / off control other than the circuit block to be measured in the circuit, the circuit is at least once. By turning on the function and then turning it off before measuring the current of the target circuit block to be measured, the time required for precise current measurement of the target circuit block can be greatly reduced. .

なお、本実施の形態1における電流測定方法は、すべての回路ブロックがオフ時の電流を測定する場合や単独回路ブロックのオフ時のスリープ電流を測定する場合にも適応することができ、さらに回路ブロックをオフすることが不可能な回路ブロックが含まれている場合にも適応することができる。   The current measurement method according to the first embodiment can be applied to the case where all circuit blocks measure the current when the circuit block is off, or the case where the sleep current when the individual circuit block is off is measured. The present invention can also be applied to a case where a circuit block that cannot be turned off is included.

また、電流測定時にオフさせておく回路ブロックを電流測定前にオンさせる時期、期間は任意であり、電流測定の電源電圧の印加と同時にオンさせてもよい。そして、オン期間は最適化により決定、またはおおよそであってもよい。   Further, the timing and the period for turning on the circuit block to be turned off at the time of current measurement are arbitrary before the current measurement, and may be turned on simultaneously with application of the power supply voltage for current measurement. The on period may be determined by optimization or approximate.

また、複数存在する回路ブロックをあらかじめ幾つかのグループに分けて、順次、時間を変えてオンさせ、その回路ブロックをオフさせた後、外の回路ブロックのオン/オフ作業を行うようにしてもよく、幾つかのグループ分けした回路ブロックを順次オンさせておき、まとめてオフさせる、または同時にすべてをオンさせた後で、任意に各回路ブロックをオフさせてもよい。   In addition, a plurality of existing circuit blocks are divided into several groups in advance, sequentially turned on at different times, turned off, and then turned on / off for other circuit blocks. Of course, several grouped circuit blocks may be turned on sequentially and turned off collectively, or after all of them are turned on at the same time, each circuit block may be turned off arbitrarily.

図2は本発明の実施の形態2における電流測定方法を説明する電流特性図であり、図2と図5を参照しながら実施の形態2を説明する。   FIG. 2 is a current characteristic diagram for explaining a current measurement method according to the second embodiment of the present invention. The second embodiment will be described with reference to FIGS.

前述の図5に示す同一電源を共有して、この同一電源から常に電源電圧が供給される複数の回路ブロックを有する回路において、回路ブロック1がオン、回路ブロック2がオフの状態で回路ブロック1のみの電源電流を測定する場合、回路ブロック1の制御信号をオン,回路ブロック2の制御信号をオフの状態で電流測定の電源電圧を印加すると、オンに制御されている回路ブロック1の電流は起動の直後に比較的安定して定常状態に到達し定電流となる。しかし、オフに制御されている回路ブロック2の電流は電流測定の電源電圧が印加された直後は内部回路の状態が適切なオフ状態になるまでの過渡期において、色々な過度応答による電流と回路素子、または素子,配線等の寄生容量への充電電流がしばらくの間流れ、電源端子に流れる電流(カーブC)が、オンに制御されている回路ブロック1のみの電流(カーブA)と同等になる位置(g)までに時間を要してしまう(図2参照)。   In the circuit having a plurality of circuit blocks that share the same power supply and are always supplied with the power supply voltage from the same power supply, the circuit block 1 is turned on and the circuit block 2 is turned off. In the case of measuring only the power supply current, when the power supply voltage for current measurement is applied with the control signal of the circuit block 1 turned on and the control signal of the circuit block 2 turned off, the current of the circuit block 1 controlled to be on is Immediately after start-up, it reaches a steady state relatively stably and becomes a constant current. However, the current of the circuit block 2 that is controlled to be off is the current and circuit due to various transient responses in the transition period until the state of the internal circuit becomes an appropriate off state immediately after the power supply voltage for current measurement is applied. The charging current to the parasitic capacitance of the element or the element, the wiring, etc. flows for a while, and the current (curve C) flowing to the power supply terminal is equivalent to the current (curve A) of only the circuit block 1 controlled to be on. It takes time to reach the position (g) (see FIG. 2).

しかし、電流測定の電源電圧の印加後または印加時から、回路ブロック1をオンの制御、回路ブロック2をオフの制御のまま、電流測定を行うときに印加する電源電圧よりも高い電圧を加えて、オフに制御している回路ブロック2への電圧印加時の寄生電流等の充電電流を増大させて(図2中の位置(i’)から位置(j’)の増大期間)、ある程度の充電が行われた時点で、高い電圧を所定の測定時の電源電圧に戻す(位置(j’))ことで、測定時においては電流測定の電源電圧により、回路ブロック2の寄生充電電流等の電流がほぼなくなるを待った場合の電流測定が可能になる時間(位置(g))をカーブD’の位置(k’)まで改善させることができる。   However, after or at the time of applying the power supply voltage for current measurement, a voltage higher than the power supply voltage applied during current measurement is applied while the circuit block 1 is turned on and the circuit block 2 is turned off. The charging current such as a parasitic current at the time of applying a voltage to the circuit block 2 controlled to be off is increased (increase period from the position (i ′) to the position (j ′) in FIG. 2) to some extent. When the measurement is performed, the high voltage is returned to the power supply voltage at the predetermined measurement (position (j ′)), and at the time of measurement, the current such as the parasitic charge current of the circuit block 2 by the power supply voltage of the current measurement. It is possible to improve the time (position (g)) at which current measurement is possible when waiting for almost disappears to the position (k ′) of the curve D ′.

このように、複数回路ブロックからなる回路のある特定の回路ブロック単体または特定の範囲で複数回路ブロックをオン,外の回路ブロックはオフさせて、オンさせている回路ブロックの電流を測定する場合、電流を測定するまでの一定時間の間、測定するために印加する電源電圧を実際の電流測定時の電源電圧よりも高い電圧にし、オフさせている回路ブロックへの寄生充電電流を増大させることで、目的の回路ブロックの精密な電流測定が可能になるまでに要する時間を極めて短縮させることができる。   In this way, when measuring a current of a circuit block that is turned on by turning on a plurality of circuit blocks in a specific circuit block alone or a specific range of a circuit composed of a plurality of circuit blocks and turning off the other circuit blocks, For a certain period of time until the current is measured, the power supply voltage applied for measurement is set to a voltage higher than the power supply voltage at the time of actual current measurement, and the parasitic charge current to the circuit block being turned off is increased. Thus, the time required for precise current measurement of the target circuit block can be greatly shortened.

なお、本実施の形態2における電流測定方法はすべての回路ブロックがオフ時の電流を測定する場合や単独回路ブロックのオフ時のスリープ電流を測定する場合にも適応することができ、回路ブロックをオフすることが不可能な回路ブロックが含まれている場合にも適応することができる。   Note that the current measurement method according to the second embodiment can be applied to the case where all circuit blocks measure the current when the circuit block is off or the sleep current when the single circuit block is off. The present invention can also be applied to a case where a circuit block that cannot be turned off is included.

また、電流測定時に電源電圧を高くする時期、期間は任意であり、電流測定の電源電圧の印加時から電圧を高くしてもよい。   Further, the timing and period for increasing the power supply voltage during current measurement are arbitrary, and the voltage may be increased from the time of application of the power supply voltage for current measurement.

また、電流測定の電源電圧を高くしている期間は最適化により決定、またはおおよそであってもよい。さらに、そのときの高くする電圧も任意であり、構成上問題のない範囲の電圧、回路動作上に問題のない範囲で決定すればよい。   In addition, the period during which the power supply voltage for current measurement is high may be determined or optimized by optimization. Furthermore, the voltage to be increased at that time is also arbitrary, and may be determined within a range where there is no problem in configuration and within a range where there is no problem in circuit operation.

図3は本発明の実施の形態3における電流測定方法を説明する電流特性図であり、図3と図5を参照しながら実施の形態3を説明する。   FIG. 3 is a current characteristic diagram for explaining a current measuring method according to the third embodiment of the present invention. The third embodiment will be described with reference to FIGS. 3 and 5.

前述の図5に示す同一電源を共有して、この同一電源から常に電源電圧が供給される複数の回路ブロックを有する回路において、回路ブロック1がオン、回路ブロック2がオフの状態で回路ブロック1のみの電流を測定する場合、回路ブロック1の制御信号をオン,回路ブロック2の制御信号をオフの状態で電流測定の電源電圧を印加すると、オンに制御されている回路ブロック1の電流は起動の直後に比較的安定して定常状態に到達し定電流となる。しかし、オフに制御されている回路ブロック2の電流は電流測定の電源電圧が印加された直後は内部回路の状態が適切なオフ状態になるまでの過渡期において、色々な過度応答による電流と回路素子、または素子,配線等の寄生容量への充電電流がしばらくの間流れ、電源端子に流れる電流(カーブC)が、オンに制御されている回路ブロック1のみの電流(カーブA)と同等になる位置(g)までに時間を要してしまう。   In the circuit having a plurality of circuit blocks that share the same power supply and are always supplied with the power supply voltage from the same power supply, the circuit block 1 is turned on and the circuit block 2 is turned off. In the case of measuring only the current, when the power supply voltage for current measurement is applied with the control signal of the circuit block 1 turned on and the control signal of the circuit block 2 turned off, the current of the circuit block 1 controlled to be turned on is activated. Immediately after, a steady state is reached and a constant current is reached. However, the current of the circuit block 2 which is controlled to be off is the current and circuit due to various transient responses in the transition period until the state of the internal circuit becomes an appropriate off state immediately after the power supply voltage for current measurement is applied. The charging current to the parasitic capacitance of the element or the element, the wiring, etc. flows for a while, and the current (curve C) flowing to the power supply terminal is equivalent to the current (curve A) of only the circuit block 1 controlled to be on. It takes time until the position (g).

前記実施の形態1に記載の電流測定方法を用いても、図1に示すカーブDの位置(j)−(k)間に示すように少しだけ、充電電流が残る場合があり、このカーブDの部分に要する時間をさらに短縮させるために、前記実施の形態2に記載の電流測定方法を用いて、図3に示すように、電流測定前において電流測定時にはオフさせておく回路ブロックをオンさせ、その後、オフさせる。これと同時にその前後で、電流測定の電源電圧を測定時の電圧よりも高い電圧にすることで、図3のカーブEの位置(n)に示すように、オフさせた後に残る寄生充電電流を電流測定の電源電圧より高い電圧を印加していったん増大させ、その後、電流測定前に高い電圧を測定時の電圧に戻すことにより、寄生充電電流がほぼなくなるまでの時間を図3の位置(k)から位置(m)まで改善させることができる。   Even if the current measurement method described in the first embodiment is used, there is a case where a little charging current remains as shown between the positions (j)-(k) of the curve D shown in FIG. In order to further reduce the time required for this portion, the circuit block that is turned off at the time of current measurement before current measurement is turned on using the current measurement method described in the second embodiment as shown in FIG. Then, turn it off. At the same time, before and after that, by setting the power supply voltage for current measurement to a voltage higher than the voltage at the time of measurement, as shown in the position (n) of curve E in FIG. By applying a voltage higher than the power supply voltage for current measurement to increase it once, and then returning the high voltage to the voltage at the time of measurement before current measurement, the time until the parasitic charging current almost disappears is reduced to the position (k in FIG. ) To position (m).

このように、前記実施の形態1,2の測定方法を組み合わせて用いることで、さらに、目的の回路ブロックの精密な電流の測定に要する時間を極めて短縮させることができる。   Thus, by using the measurement methods of the first and second embodiments in combination, the time required for precise current measurement of the target circuit block can be greatly shortened.

なお、本実施の形態3における電流測定方法はすべての回路ブロックがオフ時の電流を測定する場合や単独回路ブロックのオフ時のスリープ電流を測定する場合にも適応することができ、回路ブロックをオフさせることが不可能な回路ブロックが含まれている場合にも適応することができる。   Note that the current measurement method according to the third embodiment can be applied to the case where all circuit blocks measure the current when the circuit block is off or the sleep current when the single circuit block is off. The present invention can also be applied to a case where a circuit block that cannot be turned off is included.

また、電流測定時にオフさせておく回路ブロックをいったんオンさせる時期、期間は前述した実施の形態1と同様に任意であり、さらに、オフ時の寄生充電電流の充電電流を増大させるために、電流測定時の電源電圧よりも印加電圧を高くする時期,期間も前記実施の形態2と同様に任意である。また、電流測定時にオフさせておく回路ブロックをオンし、その後、オフさせた後に電流測定の電源電圧を高くしてもよく、その間の間隔は任意でよく、これらはすべて、最適化等で決定すればよい。   Further, the timing and the period for turning on the circuit block to be turned off at the time of current measurement are arbitrary as in the first embodiment described above, and in order to increase the charging current of the parasitic charging current at the off time, The timing and the period for making the applied voltage higher than the power supply voltage at the time of measurement are arbitrary as in the second embodiment. In addition, the circuit block that is turned off during current measurement may be turned on and then turned off, and then the power supply voltage for current measurement may be increased. The interval between them may be arbitrary, and these are all determined by optimization, etc. do it.

また、本実施の形態1〜3において説明した電流測定方法に基づき、測定器を作動させて回路の電流を電子制御により自動的に測定する手段の動作手順を記述した電流測定プログラムとして、この電流測定プログラムを測定器やこの測定器を制御するために用いる電子計算機に組み込まれて、この動作手順に従って回路の電流を測定することにより、目的の回路ブロックの電流測定を電子制御により自動的に、かつ短時間で正確に行うことができ、また、この電流測定を実行できる測定器または電子計算機を得ることができる。   Further, based on the current measurement method described in the first to third embodiments, this current is used as a current measurement program that describes the operation procedure of means for automatically measuring the circuit current by electronic control by operating the measuring instrument. The measurement program is built into the measuring instrument and the electronic computer used to control the measuring instrument, and by measuring the circuit current according to this operation procedure, the current measurement of the target circuit block is automatically controlled electronically. In addition, it is possible to obtain a measuring instrument or an electronic computer that can be accurately performed in a short time and can perform this current measurement.

さらに、電流測定プログラムが組み込まれた測定器または電子計算機を、構成の一部に使用する製造装置を構成して、製造する半導体集積回路または電子機器の回路に流れる電流を測定することにより、電流を検査する処理時間を短縮して測定を正確に行うことができ、半導体集積回路または電子機器の製造コストを削減することができる。   Furthermore, a current measuring device or electronic computer in which a current measuring program is incorporated is configured as a manufacturing apparatus that uses a part of the configuration, and the current flowing through the circuit of the semiconductor integrated circuit or electronic device to be manufactured is measured. Thus, the measurement time can be shortened and the measurement can be performed accurately, and the manufacturing cost of the semiconductor integrated circuit or the electronic device can be reduced.

また、半導体集積回路または電子機器に、前述の実施の形態1〜3の電流測定方法に基づいて、電流測定を行う測定手段を備え、この測定手段を内部に直接組み込み構成して、内部に構成した回路の一部または全体の電流を測定し自己確認する機能を有することで、半導体集積回路または電子機器単体においても電流の測定を短時間でより正確に行うことができる。   Further, the semiconductor integrated circuit or the electronic device is provided with a measuring unit for measuring current based on the current measuring method of the first to third embodiments, and the measuring unit is directly built in and configured internally. By having a function of measuring and partially confirming the current of a part of or the entire circuit, the current can be measured more accurately in a short time even in a semiconductor integrated circuit or an electronic device alone.

本発明に係る電流測定方法、電流測定プログラムとこれを実行する測定器および電子計算機とこれらを備えた製造装置、電流測定方法を実行する手段を備えた半導体集積回路および電子機器は、回路機能をオフしている回路ブロックに電流測定の電源電圧を印加した直後の、この回路ブロック内の素子に流入する寄生容量等への充電電流を速やかに低減または完了させ、目的の回路ブロックの電流を精度よく短時間で測定できるようになり、総合的検査時間を極めて短縮することができ、半導体集積回路を含めた電子回路等の電子機器の微弱電流を極めて短時間に測定でき検査効率の向上手段として有用である。   A current measurement method, a current measurement program, a measuring instrument and an electronic computer that execute the current measuring method, a manufacturing apparatus including the current measuring method, a semiconductor integrated circuit and an electronic device including a unit that executes the current measuring method, have a circuit function. Immediately after applying the power supply voltage for current measurement to the circuit block that is turned off, the charging current to the parasitic capacitance that flows into the elements in this circuit block is quickly reduced or completed, and the current of the target circuit block is accurately As a means to improve inspection efficiency, it is possible to measure well in a short time, greatly reducing the total inspection time, and measuring weak currents in electronic devices such as electronic circuits including semiconductor integrated circuits in an extremely short time. Useful.

本発明の実施の形態1における電流測定方法を説明する電流特性図Current characteristic diagram for explaining a current measurement method in Embodiment 1 of the present invention 本発明の実施の形態2における電流測定方法を説明する電流特性図Current characteristic diagram for explaining a current measurement method in Embodiment 2 of the present invention 本発明の実施の形態3における電流測定方法を説明する電流特性図Current characteristic diagram for explaining a current measurement method in Embodiment 3 of the present invention 従来の電流測定対象の回路例を説明するための図The figure for demonstrating the example of a circuit of the conventional current measurement object 複数の回路ブロックからなる回路構成を示すブロック図Block diagram showing the circuit configuration consisting of multiple circuit blocks 従来の電流測定法を説明する電流特性図Current characteristics diagram explaining conventional current measurement method

符号の説明Explanation of symbols

1,2 回路ブロック 1, 2 circuit block

Claims (9)

同一電源を共有し、かつ前記同一電源からの電源供給で動作し、回路機能のオン/オフ制御を行える回路ブロックと、前記回路機能のオン/オフ制御を行えない回路ブロックを少なくとも各々1つずつを有する複数の回路ブロックからなる回路内において、ある特定の回路ブロック単体または特定の範囲で複数の回路ブロックの電流を測定する電流測定方法であって、
前記回路内の測定する回路ブロック以外の回路機能のオン/オフ制御を行える回路ブロックにおいて、少なくとも1回は回路機能をオンさせて回路ブロック内の素子に電流を供給し、その後、前記測定する回路ブロックの電流測定前にオフさせることで、回路ブロック内の隅々の容量成分に流れ込む充電電流を速やかに低減、または完了させてから前記回路ブロックの電流を測定することを特徴とする電流測定方法。
At least one circuit block that shares the same power supply, operates with power supply from the same power supply, and that can perform on / off control of the circuit function, and at least one circuit block that cannot perform on / off control of the circuit function A current measurement method for measuring currents of a specific circuit block alone or within a specific range in a circuit composed of a plurality of circuit blocks,
In a circuit block capable of on / off control of circuit functions other than the circuit block to be measured in the circuit, the circuit function is turned on at least once to supply current to the elements in the circuit block, and then the circuit to be measured A current measuring method comprising: turning off the current before the block current is measured to quickly reduce or complete the charging current flowing into the capacitive components in the corners of the circuit block, and then measuring the current of the circuit block. .
同一電源を共有し、かつ前記同一電源からの電源供給で動作し、回路機能のオン/オフ制御を行える回路ブロックと、前記回路機能のオン/オフ制御を行えない回路ブロックを少なくとも各々1つずつを有する複数の回路ブロックからなる回路内において、ある特定の回路ブロック単体または特定の範囲で複数の回路ブロックの電流を測定する電流測定方法であって、
前記回路内の測定する回路ブロック以外の回路機能のオン/オフ制御を行える回路ブロックにおいて、回路機能をオフさせたままで電流測定前に、前記電流測定を行う電源電圧よりも高い電圧を印加して、回路ブロック内の隅々の容量成分に流れ込む充電電流を増大させて、その後、前記高い電圧をもとの電源電圧に戻すことで、測定前に前記充電電流による充電を加速し、前記充電電流を速やかに低減、または完了させてから前記回路ブロックの電流を測定することを特徴とする電流測定方法。
At least one circuit block that shares the same power supply, operates with power supply from the same power supply, and that can perform on / off control of the circuit function, and at least one circuit block that cannot perform on / off control of the circuit function A current measurement method for measuring currents of a specific circuit block alone or within a specific range in a circuit composed of a plurality of circuit blocks,
In a circuit block that can perform on / off control of circuit functions other than the circuit block to be measured in the circuit, a voltage higher than the power supply voltage for performing the current measurement is applied before the current measurement with the circuit function turned off. , Increasing the charging current flowing into the capacitance components in the corners of the circuit block, and then returning the high voltage to the original power supply voltage, thereby accelerating the charging by the charging current before the measurement, and the charging current A current measuring method comprising: measuring the current of the circuit block after quickly reducing or completing the current.
請求項1または2記載の回路の電流測定方法を併用して、回路内のある特定の回路ブロック単体または特定の範囲で複数の回路ブロックの電流を測定することを特徴とする電流測定方法。   3. A current measuring method comprising: measuring a current of a specific circuit block in a circuit or a plurality of circuit blocks in a specific range by using the circuit current measuring method according to claim 1 or 2 together. 請求項1〜3のいずれか1項に記載の電流測定方法に基づいて測定器を作動させて、回路の電流を電子制御により自動的に測定する手段の動作手順が記述された電流測定プログラムであって、前記測定器に組み込まれ、または前記測定器を制御するために用いられる電子計算機に組み込まれて、前記動作手順に従い前記回路の電流を測定することを特徴とする電流測定プログラム。   A current measurement program in which an operation procedure of means for automatically measuring a circuit current by electronic control is described by operating a measuring instrument based on the current measurement method according to any one of claims 1 to 3. A current measurement program for measuring the current of the circuit according to the operation procedure, incorporated in the measuring instrument or incorporated in an electronic computer used to control the measuring instrument. 請求項4記載の電流測定プログラムが組み込まれて、前記電流測定プログラムを実行することで回路の電流を電子制御により自動的に測定することを特徴とする測定器。   A current measuring program according to claim 4, wherein the current of the circuit is automatically measured by electronic control by executing the current measuring program. 請求項4記載の電流測定プログラムが組み込まれて、前記電流測定プログラムを実行することで測定器を制御して回路の電流を電子制御により自動的に測定することを特徴とする電子計算機。   5. An electronic computer in which the current measurement program according to claim 4 is incorporated, and the current of the circuit is automatically measured by electronic control by controlling the measuring instrument by executing the current measurement program. 請求項5記載の測定器または請求項6記載の電子計算機を構成の一部に使用して、製造する半導体集積回路または電子機器の回路に流れる電流を測定することを特徴とする製造装置。   An apparatus for measuring a current flowing in a circuit of a semiconductor integrated circuit or an electronic device to be manufactured by using the measuring instrument according to claim 5 or the electronic computer according to claim 6 as a part of its configuration. 請求項1〜3のいずれか1項に記載の電流測定方法に基づいて、電流の測定を行う測定手段を備え、前記測定手段を内部に直接組み込んで前記内部に構成された回路の一部または全体の電流を測定し自己確認する機能を有することを特徴とする半導体集積回路。   A measurement means for measuring current based on the current measurement method according to any one of claims 1 to 3, comprising a part of a circuit configured inside the measurement means by directly incorporating the measurement means therein A semiconductor integrated circuit characterized by having a function of measuring and self-identifying the entire current. 請求項1〜3のいずれか1項に記載の電流測定方法に基づいて、電流の測定を行う測定手段を備え、前記測定手段を内部に直接組み込んで前記内部に構成された回路の一部または全体の電流を測定し自己確認する機能を有することを特徴とする電子機器。   A measurement means for measuring current based on the current measurement method according to any one of claims 1 to 3, comprising a part of a circuit configured inside the measurement means by directly incorporating the measurement means therein An electronic device having a function of measuring the entire current and self-checking.
JP2004230474A 2004-08-06 2004-08-06 Current measuring method, current measuring program, measuring device and electronic computer running above program, manufacturing apparatus equipped with them, and semiconductor integrated circuit and electronic equipment equipped with means carrying out above current measuring method Pending JP2006047175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230474A JP2006047175A (en) 2004-08-06 2004-08-06 Current measuring method, current measuring program, measuring device and electronic computer running above program, manufacturing apparatus equipped with them, and semiconductor integrated circuit and electronic equipment equipped with means carrying out above current measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230474A JP2006047175A (en) 2004-08-06 2004-08-06 Current measuring method, current measuring program, measuring device and electronic computer running above program, manufacturing apparatus equipped with them, and semiconductor integrated circuit and electronic equipment equipped with means carrying out above current measuring method

Publications (1)

Publication Number Publication Date
JP2006047175A true JP2006047175A (en) 2006-02-16

Family

ID=36025879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230474A Pending JP2006047175A (en) 2004-08-06 2004-08-06 Current measuring method, current measuring program, measuring device and electronic computer running above program, manufacturing apparatus equipped with them, and semiconductor integrated circuit and electronic equipment equipped with means carrying out above current measuring method

Country Status (1)

Country Link
JP (1) JP2006047175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177867A (en) * 2008-01-21 2009-08-06 Canon Inc Electronic apparatus and standby current inspection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177867A (en) * 2008-01-21 2009-08-06 Canon Inc Electronic apparatus and standby current inspection system

Similar Documents

Publication Publication Date Title
US10613566B2 (en) Real-time slope control apparatus for voltage regulator and operating method thereof
TWI621010B (en) Integrated circuit device and method of generating power traces
CN105242190B (en) Current detection circuit
US20130249291A1 (en) Power supply circuit
US20160109504A1 (en) Circuit and method for testing transistor(s)
US9471136B2 (en) Predictively turning off a charge pump supplying voltage for overdriving gates of the power switch header in a microprocessor with power gating
CN112649719B (en) Testing method, device and equipment for linear voltage stabilizer in chip
ITVA20080048A1 (en) CIRCUIT FOR COMPARING AN INPUT CURRENT WITH A THRESHOLD CURRENT
JP2006047175A (en) Current measuring method, current measuring program, measuring device and electronic computer running above program, manufacturing apparatus equipped with them, and semiconductor integrated circuit and electronic equipment equipped with means carrying out above current measuring method
CN116884330A (en) Reliability test method and system for display panel
US7388421B1 (en) Fused trim circuit with test emulation and reduced static current drain
JP2018097748A (en) Voltage abnormality detection circuit and semiconductor device
KR20070038676A (en) Pump control circuit of semiconductor memory apparatus
CN111158265B (en) Simulation device of power management chip
US9720026B1 (en) Radiation hardened chip level integrated recovery apparatus, methods, and integrated circuits
JP2008102094A (en) Voltage monitoring method and its device
Sleik et al. Performance enhancement of a modular test system for power semiconductors for HTOL testing by use of an embedded system
JP2010101644A (en) Semiconductor device
JP3092362B2 (en) Automatic test equipment for integrated circuits
US20070133275A1 (en) Low-power reading reference circuit for split-gate flash memory
CN110988536B (en) DC voltage rising and falling test device, test control method and device
JP2007178345A (en) Semiconductor integrated circuit, and test system of semiconductor integrated circuit
US7394241B2 (en) Method and apparatus for testing power switches using a logic gate tree
US20140188266A1 (en) Multiple manufacturing line qualification
von Rosen et al. Semiautomatic implementation of a bioinspired reliable analog task distribution architecture for multiple analog cores