JP2006046464A - Tripod type constant speed universal joint - Google Patents

Tripod type constant speed universal joint Download PDF

Info

Publication number
JP2006046464A
JP2006046464A JP2004227055A JP2004227055A JP2006046464A JP 2006046464 A JP2006046464 A JP 2006046464A JP 2004227055 A JP2004227055 A JP 2004227055A JP 2004227055 A JP2004227055 A JP 2004227055A JP 2006046464 A JP2006046464 A JP 2006046464A
Authority
JP
Japan
Prior art keywords
roller
joint member
constant velocity
tripod type
type constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004227055A
Other languages
Japanese (ja)
Inventor
Junichi Izumino
純一 五十公野
Minoru Ishijima
実 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004227055A priority Critical patent/JP2006046464A/en
Priority to EP05254620A priority patent/EP1624208B1/en
Priority to DE602005003991T priority patent/DE602005003991T2/en
Priority to US11/189,103 priority patent/US20060030413A1/en
Publication of JP2006046464A publication Critical patent/JP2006046464A/en
Priority to US12/101,195 priority patent/US7654908B2/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tripod type constant speed universal joint whose external joint member is reduced in weight while preserving boots holding force. <P>SOLUTION: A bottom 15 of each track groove 13 formed in an inner circumferential surface of the external joint member 10 is formed in a flat-surface shape and is arranged in close proximity to a roller end face 39. Among outer circumferential portions, in portions where the track grooves 13 are formed and in portions corresponding to portions between the track grooves, there are provided a first thinned portion 16 and a second thinned portion 17 which are formed in a depressed canaliform shape. While ensuring fully circumferential lengths of a maximum turning radius portion 11a of the external joint member 10 and maximum internal diametrical portion 43a of the boots 40 corresponding to the maximum turning radius portion 11a, a weight of the external joint member 10 is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば自動車の駆動系に組込まれて主に非直線上に存在する回転軸同士の間で回転力の伝達を行うのに用いられるトリポード型等速自在継手に関するものである。   The present invention relates to a tripod type constant velocity universal joint that is incorporated in, for example, a driving system of an automobile and used to transmit rotational force between rotating shafts that are mainly non-linear.

図9及び図10は、従来のトリポード型等速自在継手の一例を示している。このトリポード型等速自在継手は、図9及び図10に示すように、内周面に軸線方向に延びる三つのトラック溝51を有し、各トラック溝51の周方向両側に一対のローラ案内面52を形成した外方継手部材53と、半径方向に三つの脚軸54を延在させた内方継手部材55と、脚軸54に首振り自在に外嵌されてローラ案内面52間に転動自在に挿入されるローラ56とを具備し、外方継手部材53と内方継手部材55の角度変位及び軸方向変位を許容しつつ両部材間53,55でのトルク伝達を可能にしたものである。   9 and 10 show an example of a conventional tripod type constant velocity universal joint. As shown in FIGS. 9 and 10, this tripod type constant velocity universal joint has three track grooves 51 extending in the axial direction on the inner peripheral surface, and a pair of roller guide surfaces on both sides in the circumferential direction of each track groove 51. 52, an inner joint member 55 in which three leg shafts 54 are extended in the radial direction, and a leg shaft 54 that is swingably fitted over the roller guide surface 52. A roller 56 that is movably inserted, and that allows torque transmission between the members 53 and 55 while allowing angular displacement and axial displacement of the outer joint member 53 and the inner joint member 55. It is.

この種のトリポード型等速自在継手は、通常、継手内部の摩擦力を軽減するために潤滑材を充填して使用するものであるが、潤滑材が継手外部へ漏れたり、異物が継手内部に侵入すると、潤滑不良が発生する。このような潤滑不良を防止するため、トリポード型等速自在継手には、継手内部を密封するブーツ57を取付けてある。   This kind of tripod type constant velocity universal joint is usually filled with a lubricant in order to reduce the frictional force inside the joint, but the lubricant leaks to the outside of the joint or foreign matter enters the inside of the joint. If it enters, poor lubrication occurs. In order to prevent such poor lubrication, a boot 57 for sealing the inside of the joint is attached to the tripod type constant velocity universal joint.

また、トリポード型等速自在継手は、自動車の駆動系などに多用されており、自動車の燃費向上や高速化等の観点から軽量化が要望されている。従来は、図10に示すように、外方継手部材53の外周部のうちトラック溝51の形成箇所の相互間に対応する部分に、外方継手部材53の最大回転径Rよりも小径の第1の減肉部58を設けると共に、トラック溝底部59を外方継手部材53の外周形状に対応する断面略円弧状の凹曲面状に形成して肉薄にすることで、トリポード型等速自在継手の軽量化を図っている。   Further, tripod type constant velocity universal joints are frequently used in automobile drive systems and the like, and weight reduction is demanded from the viewpoint of improving fuel efficiency and speeding up of automobiles. Conventionally, as shown in FIG. 10, in the outer peripheral portion of the outer joint member 53, a portion having a diameter smaller than the maximum rotation diameter R of the outer joint member 53 is formed in a portion corresponding to the portion between the formation positions of the track grooves 51. The tripod type constant velocity universal joint is provided by forming the thinned portion 58 of one and forming the track groove bottom portion 59 into a concave curved surface having a substantially arcuate cross section corresponding to the outer peripheral shape of the outer joint member 53 to be thin. The weight is reduced.

一方、図11に示すトリポード型等速自在継手は、トラック溝底部59をフラット面状に形成すると共にローラ56の端面に近接配置し、外方継手部材53の外周部のうちトラック溝51の形成箇所に対応する部分に、外方継手部材53の最大回転径Rよりも小径の第2の減肉部60を設けたものである。この第2の減肉部60は、トラック溝底部59と略平行なフラット面状に形成してある(例えば特許文献1参照)。なお、外方継手部材53の最大回転径Rは、外方継手部材53の外周部のうちトラック溝51の両端付近に対応する部分の外径である。   On the other hand, in the tripod type constant velocity universal joint shown in FIG. 11, the track groove bottom portion 59 is formed in a flat surface shape and is disposed close to the end surface of the roller 56, and the track groove 51 is formed in the outer peripheral portion of the outer joint member 53. A second thinning portion 60 having a diameter smaller than the maximum rotation diameter R of the outer joint member 53 is provided at a portion corresponding to the location. The second thinned portion 60 is formed in a flat surface substantially parallel to the track groove bottom 59 (see, for example, Patent Document 1). The maximum rotation diameter R of the outer joint member 53 is the outer diameter of the portion corresponding to the vicinity of both ends of the track groove 51 in the outer peripheral portion of the outer joint member 53.

図11のトリポード型等速自在継手は、外方継手部材53のトラック溝51の形成箇所が平板状に形成されている。他方、図9及び図10に示すトリポード型等速自在継手は、外方継手部材53のトラック溝51の形成箇所が部分円筒状に形成されている。したがって、図11に示すトリポード型等速自在継手は、トラック溝51の幅が図9及び図10に示すトリポード型等速自在継手と同じであれば、トラック溝51の形成箇所における周方向長さが短くなる。さらに、トラック溝51の形成箇所における肉厚が同じであれば、トラック溝51の形成箇所における周方向長さが短い分だけ、図9及び図10に示すトリポード型等速自在継手よりも軽量になる。   In the tripod type constant velocity universal joint of FIG. 11, the track groove 51 of the outer joint member 53 is formed in a flat plate shape. On the other hand, in the tripod type constant velocity universal joint shown in FIGS. 9 and 10, the track groove 51 of the outer joint member 53 is formed in a partially cylindrical shape. Therefore, the tripod type constant velocity universal joint shown in FIG. 11 has a circumferential length at the location where the track groove 51 is formed if the width of the track groove 51 is the same as that of the tripod type constant velocity universal joint shown in FIGS. Becomes shorter. Further, if the thickness at the formation location of the track groove 51 is the same, it is lighter than the tripod type constant velocity universal joint shown in FIGS. 9 and 10 because the circumferential length at the formation location of the track groove 51 is shorter. Become.

特開2003−202034号公報JP 2003-202034 A

ところが、図11に示すトリポード型等速自在継手は、外方継手部材53の外周部のうちトラック溝51の形成箇所に対応する部分を、トラック溝底部59と略平行なフラット面状に形成してあるので、外方継手部材53の最大回転径部分の周方向長さが短くなる。外方継手部材53とブーツ57の嵌合部の軸方向のずれを防止する機構は、低コストを考慮した加工工程を前提とした場合、外方継手部材53の周方向に短い最大回転径部分のみに設定可能であるため、軸方向の保持力を大きくすることができず、外方継手部材53からブーツ57が外れやすくなるばかりか、密封性が低下して潤滑材が漏れるおそれもある。   However, the tripod type constant velocity universal joint shown in FIG. 11 forms a portion of the outer peripheral portion of the outer joint member 53 corresponding to the formation location of the track groove 51 in a flat surface shape substantially parallel to the track groove bottom 59. Therefore, the circumferential length of the maximum rotational diameter portion of the outer joint member 53 is shortened. The mechanism for preventing the axial displacement of the fitting portion between the outer joint member 53 and the boot 57 is a short maximum rotational diameter portion in the circumferential direction of the outer joint member 53, assuming a machining process considering low cost. Therefore, the holding force in the axial direction cannot be increased, and not only the boot 57 is easily detached from the outer joint member 53, but also the sealing performance is deteriorated and the lubricant may be leaked.

本発明は、斯かる実情に鑑み創案されたものであって、その目的は、ブーツの保持力を確保しつつ外方継手部材の軽量化を図ったトリポード型等速自在継手を提供することにある。   The present invention was devised in view of such circumstances, and an object of the present invention is to provide a tripod type constant velocity universal joint that reduces the weight of the outer joint member while ensuring the holding force of the boot. is there.

本発明は、上記目的を達成するため、内周面に軸線方向に延びる三つのトラック溝を有し、各トラック溝の周方向両側に一対のローラ案内面を形成した外方継手部材と、半径方向に三つの脚軸を延在させた内方継手部材と、脚軸に首振り自在に外嵌され、外方継手部材のローラ案内面間に転動自在に挿入されるローラと、一端を外方継手部材の外周部に嵌合すると共に他端を内方継手部材から延在させた軸に嵌合して継手内部を密封するブーツとを具備し、フラット面状に形成したトラック溝底部をローラの端面に近接配置し、外方継手部材の外周部のうちトラック溝の形成箇所の相互間に対応する部分に第1の減肉部を設けると共に、外方継手部材の外周部のうちトラック溝の形成箇所に対応する部分に第2の減肉部を設けたトリポード型等速自在継手において、第2の減肉部を外方継手部材の軸線方向に延びる凹溝状に形成したことを特徴としている。   In order to achieve the above object, the present invention has an outer joint member having three track grooves extending in the axial direction on the inner peripheral surface, and a pair of roller guide surfaces formed on both sides in the circumferential direction of each track groove, and a radius. An inner joint member having three leg shafts extending in the direction, a roller fitted to the leg shaft so as to swing freely, and inserted between the roller guide surfaces of the outer joint member so as to roll freely, and one end A track groove bottom formed in a flat surface shape, including a boot that fits to the outer periphery of the outer joint member and fits the other end to a shaft extending from the inner joint member to seal the inside of the joint Is disposed close to the end face of the roller, and a first thinning portion is provided in a portion corresponding to the space between the formation positions of the track groove in the outer peripheral portion of the outer joint member, and among the outer peripheral portion of the outer joint member. Tripod type with a second thinning part in the part corresponding to the track groove formation location In the constant velocity universal joint is characterized in that formed in the concave groove shape extending a second reduced thickness portion in the axial direction of the outer joint member.

上記のトリポード型等速自在継手は、第2の減肉部を、断面倒コ字状や断面凹曲線状などの凹溝状に形成しているので、外方継手部材の外周部のうちトラック溝の形成箇所に対応する部分をフラット面状に減肉した従来例の場合と減肉量が同じであれば、従来例よりも外方継手部材の最大回転径部分の周方向長さが長くなる。ここでいう減肉量は、外方継手部材の最大回転径を半径とする円筒と第2の減肉部で囲まれる空間体積である。このように外方継手部材の最大回転径部分の周方向長さが長くなると、外方継手部材に嵌合されるブーツは、最大内径部分の周方向長さが長く形成されるため、外方継手部材とブーツの嵌合部の軸方向のずれを防止する機構の周方向長さも長くなる。したがって、ブーツの保持力が向上し、また、外方継手部材とブーツの密封性も向上する。   In the above tripod type constant velocity universal joint, the second thinning portion is formed in a concave groove shape such as an inverted U-shaped cross section or a concave curved cross section. If the amount of thinning is the same as in the case of the conventional example in which the portion corresponding to the groove formation portion is thinned to a flat surface, the circumferential length of the maximum rotational diameter portion of the outer joint member is longer than in the conventional example. Become. The thinning amount here is a space volume surrounded by a cylinder having a radius of the maximum rotation diameter of the outer joint member and the second thinning portion. As described above, when the circumferential length of the maximum rotational diameter portion of the outer joint member is increased, the boot fitted to the outer joint member is formed with a longer circumferential length of the maximum inner diameter portion. The circumferential length of the mechanism that prevents axial displacement of the fitting portion between the joint member and the boot is also increased. Therefore, the holding force of the boot is improved, and the sealing performance between the outer joint member and the boot is also improved.

本発明に係るトリポード型等速自在継手は、上記の如く、外方継手部材のトラック溝底部をフラット面状に形成すると共にローラ端面に近接配置し、外方継手部材の外周部のうちトラック溝の形成箇所に対応する部分に凹溝状の第2の減肉部を設けてあるから、ブーツの保持力を確保しつつトリポード型等速自在継手の軽量化を図ることができる。   As described above, the tripod type constant velocity universal joint according to the present invention forms the track groove bottom portion of the outer joint member in a flat surface shape and is disposed close to the roller end surface, and the track groove in the outer peripheral portion of the outer joint member. Since the groove-shaped second thinned portion is provided in the portion corresponding to the formation location, the tripod constant velocity universal joint can be reduced in weight while ensuring the holding force of the boot.

以下、図面を参照しつつ本発明を実施するための最良の形態について説明する。図1は本発明に係るトリポード型等速自在継手の第1実施形態を示す軸線方向の断面図で、図2はその軸線直交方向の要部拡大断面図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is an axial sectional view showing a first embodiment of a tripod type constant velocity universal joint according to the present invention, and FIG. 2 is an enlarged sectional view of an essential part in the direction orthogonal to the axis.

図1において、符号10は外方継手部材で、一端を開口させた有底筒状のマウス部11と、連結すべき二軸のうちの一方の軸(図示略)にトルク伝達可能に接続されるステム部12とからなっている。マウス部11の内周面には、図2に示すように、周方向三等分位置の各々に軸線方向に延びる三つのトラック溝13を形成してある。各トラック溝13の周方向両側には、一対のローラ案内面14を対向配置してある。各ローラ案内面14は、断面略円弧状の凹曲面である。トラック溝底部15は、一対のローラ案内面14の半径方向外側の端部を繋ぐフラット面状に形成してある。外方継手部材10の外周部のうちトラック溝13の形成箇所の相互間に対応する部分には、外方継手部材10の最大回転径Rよりも小径の第1の減肉部16を設けてある。第1の減肉部16は、外方継手部材10の軸線方向に延びる凹曲面状の溝であって、外方継手部材10の外周部の周方向三等分位置に形成されている。また、外方継手部材10の外周部のうちトラック溝13の形成箇所に対応する部分には、外方継手部材10の最大回転径Rよりも小径の第2の減肉部17を設けてある。第2の減肉部17は、外方継手部材10の軸線直交方向における断面形状が第1の減肉部16と略同一の形状に形成されている。また、第2の減肉部17は第1の減肉部16の相互間中央部に形成されている。すなわち、第1実施形態における外方継手部材10は、外周部の周方向六等分位置に、軸線方向に延びる凹溝状の第1及び第2の減肉部16,17を交互に設けて軽量化を図ったものである。   In FIG. 1, reference numeral 10 denotes an outer joint member, which is connected to a bottomed cylindrical mouse portion 11 having one end opened and one of two shafts (not shown) to be coupled so as to transmit torque. Stem portion 12. As shown in FIG. 2, three track grooves 13 extending in the axial direction are formed on the inner circumferential surface of the mouse portion 11 at each of the circumferentially divided positions. A pair of roller guide surfaces 14 are disposed opposite to each other in the circumferential direction of each track groove 13. Each roller guide surface 14 is a concave curved surface having a substantially arc-shaped cross section. The track groove bottom portion 15 is formed in a flat surface shape that connects the radially outer ends of the pair of roller guide surfaces 14. A first thinned portion 16 having a smaller diameter than the maximum rotation diameter R of the outer joint member 10 is provided in a portion corresponding to the space between the formation positions of the track grooves 13 in the outer peripheral portion of the outer joint member 10. is there. The first thinned portion 16 is a groove having a concave curved surface extending in the axial direction of the outer joint member 10, and is formed at a circumferentially divided position of the outer peripheral portion of the outer joint member 10. In addition, a second thinned portion 17 having a diameter smaller than the maximum rotation diameter R of the outer joint member 10 is provided in a portion corresponding to the formation location of the track groove 13 in the outer peripheral portion of the outer joint member 10. . The second thinned portion 17 is formed so that the cross-sectional shape of the outer joint member 10 in the direction orthogonal to the axis is substantially the same as that of the first thinned portion 16. Further, the second thinning portion 17 is formed at the central portion between the first thinning portions 16. That is, the outer joint member 10 according to the first embodiment is provided with the first and second thinned portions 16 and 17 in the shape of concave grooves extending in the axial direction alternately at the circumferentially equally divided position of the outer peripheral portion. It is intended to reduce weight.

各図において、符号20は内方継手部材で、環状に形成されたボス部21と、ボス部21の外周面の周方向三等分位置の各々から半径方向に突出した脚軸22とからなり、ボス部21のセレーション孔23に連結すべき二軸のうちの他方の軸Sがトルク伝達可能に嵌合される。脚軸22は、内方継手部材20を外方継手部材10に挿入した際に、トラック溝13内に延在するように形成されている。脚軸22の先端部外周には、脚軸22の半径方向に略凸球面状に形成された球状部24を設けてある。   In each figure, reference numeral 20 denotes an inner joint member, which includes a boss portion 21 formed in an annular shape, and a leg shaft 22 protruding in a radial direction from each of the three circumferential positions of the outer peripheral surface of the boss portion 21. The other shaft S of the two shafts to be connected to the serration hole 23 of the boss portion 21 is fitted so that torque can be transmitted. The leg shaft 22 is formed so as to extend into the track groove 13 when the inner joint member 20 is inserted into the outer joint member 10. A spherical portion 24 formed in a substantially convex spherical shape in the radial direction of the leg shaft 22 is provided on the outer periphery of the distal end portion of the leg shaft 22.

各図において、符号30はローラで、脚軸22に首振り自在に外嵌され、外方継手部材10のローラ案内面14間に転動自在に挿入されるものである。このローラ30は、インナローラ31及びアウタローラ32の二つのローラを有するダブルローラタイプのものである。   In each figure, reference numeral 30 denotes a roller, which is fitted on the leg shaft 22 so as to be swingable, and is inserted between the roller guide surfaces 14 of the outer joint member 10 so as to be able to roll. This roller 30 is of a double roller type having two rollers, an inner roller 31 and an outer roller 32.

インナローラ31は、略凹球面状の内周面33を有する円環状の部材である。インナローラ内周面33は、ローラ30を脚軸22に取付けた際、脚軸22の球状部24と球面嵌合するように、その母線曲率半径を球状部24の母線曲率半径と略同一にしている。これによりインナローラ31は、脚軸22に対して首振り回動自在となる。   The inner roller 31 is an annular member having a substantially concave spherical inner peripheral surface 33. The inner roller inner peripheral surface 33 has a generatrix curvature radius substantially the same as the generatrix curvature radius of the spherical portion 24 so that when the roller 30 is attached to the leg shaft 22, it is spherically fitted to the spherical portion 24 of the leg shaft 22. Yes. As a result, the inner roller 31 is swingable with respect to the leg shaft 22.

アウタローラ32は、断面凸円弧状の外周面34を有する円環状の部材である。アウタローラ外周面34は、トルク負荷状態でローラ案内面14にベタ当りするように、その母線曲率半径をローラ案内面14の母線曲率半径と略同一にしている。   The outer roller 32 is an annular member having an outer peripheral surface 34 having a convex arc shape in cross section. The outer peripheral surface 34 of the outer roller has a generatrix radius of curvature substantially the same as that of the roller guide surface 14 so as to make a solid contact with the roller guide surface 14 in a torque load state.

また、インナローラ31の円筒状外周面35とアウタローラ32の円筒状内周面36との間には複数の針状ころ37を介在させている。詳しくは、アウタローラ32の円筒状内周面36の両縁端全周に亘ってリテーナ38を設け、このリテーナ38間に複数の針状ころ37が、若干の軸線方向移動可能でかつ回動自在に収容されている。これにより、インナローラ31とアウタローラ32は、相対回転および脚軸方向相対移動が可能になる。   A plurality of needle rollers 37 are interposed between the cylindrical outer peripheral surface 35 of the inner roller 31 and the cylindrical inner peripheral surface 36 of the outer roller 32. Specifically, a retainer 38 is provided over the entire circumference of both edges of the cylindrical inner peripheral surface 36 of the outer roller 32, and a plurality of needle rollers 37 are movable between the retainers 38 in a slight axial direction and are rotatable. Is housed in. Thereby, the inner roller 31 and the outer roller 32 can be relatively rotated and relatively moved in the leg axis direction.

各図において、符号40はブーツで、一端を外方継手部材10のマウス部11に嵌合すると共に他端を内方継手部材20から延在させた軸Sに嵌合して、継手内部を密封するものである。このブーツ40は、ゴムや合成樹脂等の弾性材を蛇腹状に形成し、両端部をブーツバンド41,42で締付け固定してある。外方継手部材10に対するブーツ40の嵌合部43は、内周形状を外方継手部材10の外周形状と略同一にしてある。   In each figure, reference numeral 40 denotes a boot, one end of which is fitted to the mouth portion 11 of the outer joint member 10 and the other end is fitted to a shaft S extending from the inner joint member 20, It is to be sealed. The boot 40 is formed of an elastic material such as rubber or synthetic resin in a bellows shape, and both ends are fastened and fixed by boot bands 41 and 42. The fitting portion 43 of the boot 40 with respect to the outer joint member 10 has an inner peripheral shape substantially the same as the outer peripheral shape of the outer joint member 10.

第1実施形態におけるトリポード型等速自在継手は、上記の如く、トラック溝底部15を、一対のローラ案内面14の半径方向外側の端部を繋ぐフラット面状に形成すると共に、ローラ案内面14間に収容されるアウタローラ32の端面39に近接配置してあるので、トラック溝底部15の中央部における内径と外方継手部材10の最大回転径Rとの径差が、トラック溝底部15の両端部における内径と外方継手部材10の最大回転径Rとの径差よりも大きくなる。これにより外方継手部材10の外周部のうちトラック溝13の形成箇所に対応する部分に、凹溝状の第2の減肉部17を設けるスペースが確保され、外方継手部材10の軽量化を図ることができる。   In the tripod constant velocity universal joint according to the first embodiment, as described above, the track groove bottom portion 15 is formed in a flat surface shape that connects the radially outer ends of the pair of roller guide surfaces 14 and the roller guide surface 14. Since it is disposed close to the end surface 39 of the outer roller 32 accommodated therebetween, the difference in diameter between the inner diameter at the center of the track groove bottom portion 15 and the maximum rotation diameter R of the outer joint member 10 is determined at both ends of the track groove bottom portion 15. This is larger than the diameter difference between the inner diameter of the portion and the maximum rotation diameter R of the outer joint member 10. As a result, a space is provided in the outer peripheral portion of the outer joint member 10 where the groove-shaped second thinned portion 17 is provided in a portion corresponding to the location where the track groove 13 is formed, thereby reducing the weight of the outer joint member 10. Can be achieved.

また、第1の減肉部16及び第2の減肉部17を凹溝状に形成することで、外方継手部材10の最大回転径部分11aの周方向長さを十分に長く確保しつつ所望の減肉量が維持される。外方継手部材10とブーツ40の嵌合部の軸方向のずれを防止する機構は、低コストを考慮した加工工程を前提とした場合、外方継手部材10の最大回転径部分のみに設定可能であるが、最大回転径部分の周方向長さを十分に長く確保できるため、ブーツ40の保持力が向上する。   Further, by forming the first thinned portion 16 and the second thinned portion 17 in the shape of a concave groove, the circumferential length of the maximum rotation diameter portion 11a of the outer joint member 10 is secured sufficiently long. The desired amount of thinning is maintained. The mechanism for preventing the axial displacement of the fitting portion between the outer joint member 10 and the boot 40 can be set only at the maximum rotational diameter portion of the outer joint member 10 on the premise of a machining process considering low cost. However, since the circumferential length of the maximum rotation diameter portion can be sufficiently long, the holding force of the boot 40 is improved.

また、第1の減肉部16と第2の減肉部17を、外方継手部材10の外周部の周方向六等分位置に交互に設けることで、外方継手部材10に対称性が得られ、トリポード型等速自在継手の回転が安定する。   In addition, by providing the first thinned portion 16 and the second thinned portion 17 alternately at six equal positions in the circumferential direction of the outer peripheral portion of the outer joint member 10, the outer joint member 10 has symmetry. As a result, the rotation of the tripod type constant velocity universal joint is stabilized.

さらに、外方継手部材10の軸線直交方向における第1の減肉部16の断面形状と第2の減肉部の断面形状を略同一の形状に形成することで、外方継手部材10にブーツ40を嵌合する際の作業効率が向上する。詳しくは、外方継手部材10の最大回転径部分11aのひとつとブーツ40の最大内径部分43aのひとつを位置合せするだけで、外方継手部材10にブーツ40を嵌合することができ、嵌め込みミスを防止することができる。   Furthermore, by forming the cross-sectional shape of the first thinned portion 16 and the cross-sectional shape of the second thinned portion in the direction orthogonal to the axis of the outer joint member 10 into substantially the same shape, the outer joint member 10 has a boot. The working efficiency when fitting 40 is improved. Specifically, the boot 40 can be fitted to the outer joint member 10 by simply aligning one of the maximum rotational diameter portions 11a of the outer joint member 10 and one of the maximum inner diameter portions 43a of the boot 40. Mistakes can be prevented.

一方、上記のトリポード型等速自在継手は、図3に示すように、作動角θをとった状態、つまり、外方継手部材10の軸線方向と内方継手部材20の軸線方向に角度変位θをつけた状態でトルクを付与すると、内方継手部材20の回転に伴って、各脚軸22が対応するトラック溝13に沿って図中の矢印aのように揺動する。このとき、アウタローラ32は、脚軸22によって負荷側のローラ案内面14に押付けられ、負荷側のローラ案内面14上を転動しつつ、トラック溝13に沿って往復運動する。   On the other hand, the tripod type constant velocity universal joint has an angular displacement θ in a state where the operating angle θ is taken, that is, in the axial direction of the outer joint member 10 and the axial direction of the inner joint member 20 as shown in FIG. When torque is applied in a state where the inner joint member 20 is attached, each leg shaft 22 swings along the corresponding track groove 13 as indicated by an arrow a in accordance with the rotation of the inner joint member 20. At this time, the outer roller 32 is pressed against the roller guide surface 14 on the load side by the leg shaft 22 and reciprocates along the track groove 13 while rolling on the roller guide surface 14 on the load side.

脚軸22がトラック溝13に沿って揺動する際、インナローラ31は、脚軸22に対して首振り回転するので、脚軸22との間に摩擦力が発生する。この摩擦力がインナローラ31を介してアウタローラ32に伝達され、外方継手部材10の軸線方向断面内でアウタローラ32の傾きφ1(ωt)を変化させるスピンモーメントM1が発生する。 When the leg shaft 22 swings along the track groove 13, the inner roller 31 swings with respect to the leg shaft 22, so that a frictional force is generated between the inner shaft 31 and the leg shaft 22. This frictional force is transmitted to the outer roller 32 via the inner roller 31, and a spin moment M 1 that changes the inclination φ 1 ( ω t) of the outer roller 32 within the axial cross section of the outer joint member 10 is generated.

また、脚軸22がトラック溝13に沿って揺動する際、脚軸22の先端位置は、外方継手部材10の半径方向に変位する。このとき、図4に示すように、負荷側のローラ案内面14からアウタローラ32に負荷される力F1の作用線に対して、脚軸22からインナローラ31に負荷される力F2の作用線がオフセットされ、外方継手部材10の軸線直交方向の断面内でアウタローラ32の傾きφ2(ωt)を変化させるスピンモーメントM2が発生する。 Further, when the leg shaft 22 swings along the track groove 13, the tip position of the leg shaft 22 is displaced in the radial direction of the outer joint member 10. At this time, as shown in FIG. 4, the action line of the force F 2 applied from the leg shaft 22 to the inner roller 31 with respect to the action line of the force F 1 applied from the roller guide surface 14 on the load side to the outer roller 32. Is offset, and a spin moment M 2 is generated that changes the inclination φ 2 ( ω t) of the outer roller 32 within the cross section of the outer joint member 10 in the direction orthogonal to the axis.

通常、上記のスピンモーメントM1,M2は同時に発生し、アウタローラ32の各方向の傾きφ1(ωt),φ2(ωt)は、使用条件や内方継手部材20の回転位相角によって時々刻々と変化していく。しかし、自動車の駆動系など、比較的大きなトルクを伝達する用途の場合は、上記のスピンモーメントM1,M2によってアウタローラ32の傾きが大きくなる。アウタローラ32の傾きが大きくなると、アウタローラ32と非負荷側のローラ案内面14が接触し、アウタローラ32の転がり抵抗が大きくなる。その結果、継手内部に過大な摩擦力が生じ、回転三次の軸力が増大する。この軸力はトリポード型等速自在継手を組込んだ自動車等に、シャダーと呼ばれる振動を発生させる要因となる。 Usually, the above-mentioned spin moments M 1 and M 2 are generated simultaneously, and the inclinations φ 1 ( ω t) and φ 2 ( ω t) in each direction of the outer roller 32 depend on the use conditions and the rotational phase angle of the inner joint member 20. It will change from moment to moment. However, in the case of an application that transmits a relatively large torque, such as a driving system of an automobile, the inclination of the outer roller 32 is increased by the spin moments M 1 and M 2 . When the inclination of the outer roller 32 increases, the outer roller 32 and the non-load-side roller guide surface 14 come into contact with each other, and the rolling resistance of the outer roller 32 increases. As a result, an excessive frictional force is generated inside the joint, and the rotational tertiary axial force is increased. This axial force becomes a factor that generates vibration called shudder in an automobile or the like incorporating a tripod type constant velocity universal joint.

上記のトリポード型等速自在継手は、トラック溝底部15を、一対のローラ案内面14の端部を繋ぐフラット面状に形成すると共に、ローラ案内面14間に収容されるアウタローラ32の端面39に近接配置してあるので、トルク負荷状態でアウタローラ32がトラック溝底部15に対して傾動しても、アウタローラ端面39がトラック溝底部15によって支持され、トラック溝底部15に対するアウタローラ32の傾きが規制される。これによりアウタローラ32と非負荷側のローラ案内面14との接触が回避され、アウタローラ32の転がり抵抗を抑制することができる。その結果、継手内部の摩擦力が抑制され、回転三次の軸力を低減させることができる。   In the tripod type constant velocity universal joint described above, the track groove bottom portion 15 is formed in a flat surface shape connecting the end portions of the pair of roller guide surfaces 14, and is formed on the end surface 39 of the outer roller 32 accommodated between the roller guide surfaces 14. Since they are arranged close to each other, even if the outer roller 32 tilts with respect to the track groove bottom 15 in a torque load state, the outer roller end surface 39 is supported by the track groove bottom 15 and the inclination of the outer roller 32 with respect to the track groove bottom 15 is restricted. The Accordingly, contact between the outer roller 32 and the non-load-side roller guide surface 14 is avoided, and the rolling resistance of the outer roller 32 can be suppressed. As a result, the frictional force inside the joint is suppressed, and the rotational tertiary axial force can be reduced.

次に、図5及び図6を参照しつつ本発明に係るトリポード型等速自在継手の第2実施形態について説明する。第2実施形態におけるトリポード型等速自在継手は、図5に示すように、内方継手部材20の脚軸22のトルク負荷領域にインナローラ31の球面内径よりも小径に形成した逃げ部25を設けた点で、第1実施形態におけるトリポード型等速自在継手と相違している。他の点については、第1実施形態と同じであるから、以下、この相違点を中心に説明する。   Next, a second embodiment of the tripod constant velocity universal joint according to the present invention will be described with reference to FIGS. 5 and 6. As shown in FIG. 5, the tripod type constant velocity universal joint in the second embodiment is provided with a relief portion 25 formed in the torque load region of the leg shaft 22 of the inner joint member 20 so as to be smaller in diameter than the spherical inner diameter of the inner roller 31. This is different from the tripod type constant velocity universal joint in the first embodiment. Since the other points are the same as those in the first embodiment, the difference will be mainly described below.

逃げ部25は、図5に示すように、内方継手部材20の脚軸22のトルク負荷領域を部分的にインナローラ内周面33よりも小径に形成した部位である。本実施形態におけるトルク負荷領域は球状部24である。球状部24はインナローラ内周面33と球面嵌合する部位であるが、部分的に逃げ部25を設けることにより、インナローラ31を脚軸22に組み付ける際の干渉しろを少なくする効果が得られ、インナローラ31の弾性変形量を低減又はゼロにすることができる。   As shown in FIG. 5, the escape portion 25 is a portion where the torque load region of the leg shaft 22 of the inner joint member 20 is partially formed with a smaller diameter than the inner roller inner peripheral surface 33. The torque load region in the present embodiment is the spherical portion 24. The spherical portion 24 is a portion that is spherically fitted to the inner roller inner peripheral surface 33, but by providing the relief portion 25 partially, an effect of reducing interference when assembling the inner roller 31 to the leg shaft 22 is obtained. The amount of elastic deformation of the inner roller 31 can be reduced or zero.

また、逃げ部25は、図6に示すように、球状部24の鍛造パーティングラインに形成された突条26を含む領域に設けてある。このように逃げ部25を球状部24の鍛造パーティングラインに沿って設けると、突条26は、インナローラ内周面33よりも内側に後退した位置から突出することになる。突条26をインナローラ内周面33から突出しないように形成しておくと、突条26を除去する工程を省くことが可能となり、冷間成形面のまま使用可能で、低コスト化が図れる。   Further, as shown in FIG. 6, the relief portion 25 is provided in a region including the protrusion 26 formed on the forged parting line of the spherical portion 24. Thus, when the escape portion 25 is provided along the forging parting line of the spherical portion 24, the protrusion 26 protrudes from a position retracted inward from the inner roller inner peripheral surface 33. If the ridge 26 is formed so as not to protrude from the inner roller inner peripheral surface 33, the step of removing the ridge 26 can be omitted, and the cold formed surface can be used, and the cost can be reduced.

また、逃げ部25の具体的な態様としては種々考えられるが、最も好ましい態様としては、図6に示すように、脚軸直交方向における断面形状を略二球面形状としたものである。具体的には、インナローラ内周面33の曲率半径をR0としたとき、逃げ部25の二球面の半径r0をR0/2<r0<R0の範囲に設定する。この場合、球状部24とインナローラ31の接点は、脚軸22の鍛造パーティングラインを挟んで対称な二箇所に位置する。トルク負荷状態において、球状部24及び/又はインナローラ31が弾性変形すると、球状部24とインナローラ31の接触領域(略楕円形状の領域)は逃げ部25に沿って連続的に移動する。このため、逃げ部25のエッジに応力集中が発生せず、脚軸22の耐久性を向上させることができる。 Various specific modes of the escape portion 25 are conceivable, but as a most preferable mode, as shown in FIG. 6, the cross-sectional shape in the direction orthogonal to the leg axis is a substantially dihedral shape. Specifically, when the radius of curvature of the inner roller in the peripheral surface 33 and an R 0, sets two spherical radius r 0 of the relief portion 25 in the range of R 0/2 <r 0 < R 0. In this case, the contact between the spherical portion 24 and the inner roller 31 is located at two symmetrical positions with the forging parting line of the leg shaft 22 in between. When the spherical portion 24 and / or the inner roller 31 are elastically deformed in the torque load state, the contact region (substantially elliptical region) between the spherical portion 24 and the inner roller 31 moves continuously along the escape portion 25. For this reason, stress concentration does not occur at the edge of the relief portion 25, and the durability of the leg shaft 22 can be improved.

一方、球状部24に逃げ部25を設けた場合、球状部24とインナローラ31が突条26を挟んだ対称な二箇所で接触することになるので、球状部24とインナローラ31との間に発生する摩擦力が増大する。かかる摩擦力の増大に伴ってローラ30を傾けさせるスピンモーメントM1は大きくなる。スピンモーメントM1が大きくなっても、トラック溝底部15に対するローラ30の傾きが内方継手部材20の回転位相角によらずほぼ一定に保たれるので、継手内部に発生する摩擦力が安定し、内方継手部材20の回転位相角によって継手内部に過大な摩擦力が発生するのを防止することができる。 On the other hand, when the escape portion 25 is provided in the spherical portion 24, the spherical portion 24 and the inner roller 31 come into contact with each other at two symmetrical positions sandwiching the protrusion 26, so that it occurs between the spherical portion 24 and the inner roller 31. Frictional force increases. As the frictional force increases, the spin moment M 1 for tilting the roller 30 increases. Even if the spin moment M 1 is increased, the inclination of the roller 30 with respect to the track groove bottom 15 is maintained substantially constant regardless of the rotational phase angle of the inner joint member 20, so that the frictional force generated inside the joint is stabilized. Further, it is possible to prevent an excessive frictional force from being generated inside the joint due to the rotational phase angle of the inner joint member 20.

次に、図7を参照しつつ本発明に係るトリポード型等速自在継手の第3実施形態について説明する。第3実施形態におけるトリポード型等速自在継手は、図7に示すように、トルク負荷状態で形成されるアウタローラ外周面34とローラ案内面14との間の隙間δ1[mm]を、δ1>0.03/Aに設定し、かつ、アウタローラ端面39とトラック溝底部15との間の隙間δ2[mm]を、δ2>0.15×Aに設定したものである。但し、A=r1/R1とする(r1はアウタローラ外周面34の母線曲率半径、R1はアウタローラ32の外径半径)。なお、第3実施形態では、上記の隙間δ1,δ2を、第1実施形態におけるトリポード型等速自在継手に適用した場合について説明するが、第2実施形態におけるトリポード型等速自在継手に適用可能であることは勿論である。 Next, a third embodiment of the tripod type constant velocity universal joint according to the present invention will be described with reference to FIG. Tripod type constant velocity universal joint in the third embodiment, as shown in FIG. 7, a gap [delta] 1 [mm] between the outer roller outer peripheral surface 34 and the roller guide surface 14 formed in the torque load conditions, [delta] 1 > 0.03 / A, and the gap δ 2 [mm] between the outer roller end face 39 and the track groove bottom 15 is set to δ 2 > 0.15 × A. However, A = r 1 / R 1 (where r 1 is the radius of curvature of the bus bar of the outer peripheral surface 34 of the outer roller and R 1 is the outer radius of the outer roller 32). In the third embodiment, the case where the gaps δ 1 and δ 2 are applied to the tripod type constant velocity universal joint in the first embodiment will be described. However, the tripod type constant velocity universal joint in the second embodiment is used. Of course, it is applicable.

第3実施形態におけるトリポード型等速自在継手は、アウタローラ32の外径半径R1に対する母線曲率半径r1の比で表される円環度A(=r1/R1)と、トラック溝13内で様々な方向に傾くアウタローラ32との関係に着目し、アウタローラ外周面34と非負荷側のローラ案内面14との間の隙間δ1、および、アウタローラ端面39とトラック溝底部15との間の隙間δ2を定めたものである。すなわち、この円環度Aは、その値が小さいほど、アウタローラ32が外方継手部材10の軸線に垂直な断面内で傾きやすく、アウタローラ外周面34と非負荷側のローラ案内面14とが接触し易くなるのに対し、外方継手部材10の軸線を含む断面内ではスピンモーメントM1に対抗する回復偶力M3(図3参照)が発生しやすく、アウタローラ端面39とトラック溝底部15とが接触し難くなる。逆に、円環度Aが大きいほど、外方継手部材10の軸線を含む断面内では傾きやすく、アウタローラ端面39とトラック溝底部15とが接触し易くなるのに対し、外方継手部材10の軸線に垂直な断面内ではスピンモーメントM2による傾きが発生しにくく、アウタローラ外周面34と非負荷側のローラ案内面14とが接触し難くなる。 The tripod type constant velocity universal joint according to the third embodiment has a circularity A (= r 1 / R 1 ) expressed by a ratio of a bus-bar curvature radius r 1 to an outer diameter radius R 1 of the outer roller 32, and a track groove 13. Focusing on the relationship with the outer roller 32 inclined in various directions, the gap δ 1 between the outer roller outer peripheral surface 34 and the non-load-side roller guide surface 14, and between the outer roller end surface 39 and the track groove bottom 15 The gap δ 2 is determined. That is, the smaller the value of the circularity A, the more easily the outer roller 32 is inclined in the cross section perpendicular to the axis of the outer joint member 10, and the outer roller outer peripheral surface 34 and the unloaded roller guide surface 14 are in contact with each other. On the other hand, in the cross section including the axis of the outer joint member 10, a recovery couple M 3 (see FIG. 3) that opposes the spin moment M 1 is likely to occur, and the outer roller end surface 39 and the track groove bottom 15 Becomes difficult to touch. Conversely, the greater the degree of circularity A, the easier it is to tilt within the cross section including the axis of the outer joint member 10, and the outer roller end surface 39 and the track groove bottom 15 are more likely to come into contact. In the cross section perpendicular to the axis, the inclination due to the spin moment M 2 hardly occurs, and the outer roller outer peripheral surface 34 and the non-load-side roller guide surface 14 are difficult to contact.

以上の検討結果に基づき、本実施形態では、トルク負荷状態で形成されるアウタローラ外周面34と非負荷側のローラ案内面14との間の隙間δ1を、δ1>0.03/Aに設定することとして、隙間δ1と円環度Aとの間に反比例の関係を持たせた。これにより、アウタローラ32の円環度Aが異なる場合でもアウタローラ外周面34と非負荷側のローラ案内面14との接触が極力回避され、又はゼロになるから、継手内部の摩擦力が抑制される。 Based on the above examination results, in this embodiment, the clearance δ 1 between the outer roller outer circumferential surface 34 formed in the torque load state and the non-load-side roller guide surface 14 is set to δ 1 > 0.03 / A. As a setting, an inversely proportional relationship was given between the gap δ 1 and the circularity A. As a result, even when the circularity A of the outer roller 32 is different, the contact between the outer roller outer circumferential surface 34 and the non-load-side roller guide surface 14 is avoided as much as possible, or becomes zero, so that the frictional force inside the joint is suppressed. .

また、本実施形態では、アウタローラ端面39とトラック溝底部15との間の隙間δ2を、δ2>0.15×Aに設定することとして、隙間δ2と円環度Aとの間に比例関係を持たせた。これにより、アウタローラ32の円環度Aが異なる場合でもアウタローラ端面39とトラック溝底部15との接触力が軽減されるから、継手内部の摩擦力が抑制される。 In this embodiment, the gap δ 2 between the outer roller end surface 39 and the track groove bottom 15 is set to δ 2 > 0.15 × A, so that the gap δ 2 and the circularity A are between Proportional relationship was given. Thereby, even when the circularity A of the outer roller 32 is different, the contact force between the outer roller end surface 39 and the track groove bottom 15 is reduced, so that the frictional force inside the joint is suppressed.

このように、アウタローラ32の円環度Aに応じて隙間δ1,δ2を適宜設定すると、回転三次の軸力をより一層低減させることができ、シャダーの抑制効果及び回転耐久性をより一層向上させることができる。なお、アウタローラ32の円環度Aの値は、0.475≦A<1の範囲内に設定することが好ましい。 As described above, when the gaps δ 1 and δ 2 are appropriately set according to the circularity A of the outer roller 32, the rotational tertiary axial force can be further reduced, and the effect of suppressing the shudder and the rotation durability can be further increased. Can be improved. The value of the circularity A of the outer roller 32 is preferably set within the range of 0.475 ≦ A <1.

以上、本発明の実施形態につき説明したが、本発明は上記実施形態に限定されることなく種々の変形が可能である。例えば上記実施形態では、第1の減肉部16と第2の減肉部17の断面形状を略同一に形成してあるが、これらの断面形状は、相違していても構わない。具体的には、図8(A)に示すように、第2の減肉部17の幅を第1の減肉部16よりも狭くしたり、第2の減肉部17の溝深さを第1の減肉部16よりも浅くすることも可能である。但し、この場合には、外方継手部材10に対するブーツ40の取付け作業効率が低下するおそれがある。また、第2の減肉部17は、図8(B)に示すように、断面倒コ字状の溝とするなど、凹曲面状の溝を除く他の凹溝状に形成することも可能である。この場合は、ブーツ40の保持力を確保しつつトリポード型等速自在継手の軽量化を図ることができるが、外方継手部材10にブーツ40を嵌合した際に外方継手部材10とブーツ40の間に隙間が生じやすく継手の密封性が低下するおそれがある。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made. For example, in the said embodiment, although the cross-sectional shape of the 1st thinning part 16 and the 2nd thinning part 17 is formed substantially the same, these cross-sectional shapes may differ. Specifically, as shown in FIG. 8A, the width of the second thinned portion 17 is made narrower than that of the first thinned portion 16, or the groove depth of the second thinned portion 17 is increased. It is also possible to make it shallower than the first thinned portion 16. However, in this case, the work efficiency of attaching the boot 40 to the outer joint member 10 may be reduced. Further, as shown in FIG. 8B, the second thinned portion 17 can be formed in a groove shape other than a groove having a concave curved surface, such as a groove having an inverted U-shaped cross section. It is. In this case, it is possible to reduce the weight of the tripod type constant velocity universal joint while securing the holding force of the boot 40. However, when the boot 40 is fitted to the outer joint member 10, the outer joint member 10 and the boot There is a possibility that a gap is easily formed between the joints 40 and the sealing performance of the joint is lowered.

また、上記実施形態では、ローラ案内面14の母線曲率半径とアウタローラ外周面34の母線曲率半径を略同一にして両者をベタ当りさせているが、ローラ案内面14をゴシックアーチ形状とし、アウタローラ外周面34とローラ案内面14をアンギュラコンタクトさせてもよい。   Further, in the above-described embodiment, the bus guide radius of the roller guide surface 14 and the bus bar curvature radius of the outer roller outer peripheral surface 34 are made substantially the same, and both are made to make a solid contact, but the roller guide surface 14 has a Gothic arch shape, The surface 34 and the roller guide surface 14 may be in angular contact.

また、上記実施形態では、アウタローラ32に針状ころ37を保持するリテーナ38を一体に成形してあるが、リテーナ38は、アウタローラ32と別体に成形したものをアウタローラ32に固着しても構わない。また、リテーナ38はアウタローラ32ではなくインナローラ31に設けても構わない。   In the above-described embodiment, the retainer 38 that holds the needle rollers 37 is formed integrally with the outer roller 32. However, the retainer 38 that is formed separately from the outer roller 32 may be fixed to the outer roller 32. Absent. Further, the retainer 38 may be provided not on the outer roller 32 but on the inner roller 31.

本発明に係るトリポード型等速自在継手の第1実施形態に示す軸線方向断面図であって、外方継手部材と内方継手部材の軸線方向を一致させた状態を示している。It is an axial direction sectional view shown in a 1st embodiment of a tripod type constant velocity universal joint concerning the present invention, and shows the state where the axial direction of an outer joint member and an inner joint member was made to correspond. 本発明に係るトリポード型等速自在継手の第1実施形態に示す軸線直交方向断面図であって、外方継手部材と内方継手部材の軸線方向を一致させた状態を示している。It is an axial orthogonal direction sectional view shown in a 1st embodiment of a tripod type constant velocity universal joint concerning the present invention, and shows the state where the axial direction of an outer joint member and an inner joint member was made to correspond. 本発明に係るトリポード型等速自在継手の第1実施形態に示す軸線方向の要部断面図であって、外方継手部材と内方継手部材に作動角θをとってトルクを負荷した状態を示している。It is principal part sectional drawing shown in 1st Embodiment of the tripod type | mold constant velocity universal joint which concerns on this invention, Comprising: The state which took the operating angle (theta) and applied the torque to the outer joint member and the inner joint member Show. 本発明に係るトリポード型等速自在継手の第1実施形態に示す軸線直交方向の要部拡大断面図であって、外方継手部材と内方継手部材に作動角θをとってトルクを負荷した状態を示している。FIG. 3 is an enlarged cross-sectional view of the main part of the tripod type constant velocity universal joint according to the present invention in the direction orthogonal to the axis shown in the first embodiment, and the torque is applied to the outer joint member and the inner joint member by taking the operating angle θ. Indicates the state. 本発明に係るトリポード型等速自在継手の第2実施形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows 2nd Embodiment of the tripod type | mold constant velocity universal joint which concerns on this invention. 図3のW−W線における要部拡大断面図である。It is a principal part expanded sectional view in the WW line of FIG. 本発明に係るトリポード型等速自在継手の第3実施形態を示す軸線直交方向の要部拡大断面図である。It is a principal part expanded sectional view of the direction orthogonal to an axis which shows a 3rd embodiment of a tripod type constant velocity universal joint concerning the present invention. (A)図及び(B)図は、本発明に係るトリポード型等速自在継手の他の実施形態を示す軸線直交方向の要部拡大断面図である。(A) A figure and (B) figure are principal part expanded sectional views of the direction orthogonal to an axis which shows other embodiments of a tripod type constant velocity universal joint concerning the present invention. 従来のトリポード型等速自在継手の一例を示す軸線方向の断面図であって、連結すべき二軸に作動角θをとってトルクを付与した状態を示すものである。It is sectional drawing of the axial direction which shows an example of the conventional tripod type constant velocity universal joint, Comprising: It shows the state which took the operating angle (theta) and applied the torque to the two shafts which should be connected. 従来のトリポード型等速自在継手の軸線直交方向の断面図であって、二軸の軸線方向を一致させた状態を示すものである。It is sectional drawing of the axis line orthogonal direction of the conventional tripod type constant velocity universal joint, Comprising: The state which made the axial direction of two axes correspond is shown. 従来のトリポード型等速自在継手の他の例を示す軸線直交方向の断面図である。It is sectional drawing of the orthogonal direction of an axis which shows the other example of the conventional tripod type constant velocity universal joint.

符号の説明Explanation of symbols

10 外方継手部材
13 トラック溝
14 ローラ案内面
15 トラック溝底部
16 第1の減肉部
17 第2の減肉部
20 内方継手部材
22 脚軸
24 球状部
25 逃げ部
26 突条
30 ローラ
31 インナローラ
32 アウタローラ
33 インナローラ内周面
34 アウタローラ外周面
39 アウタローラ端面
40 ブーツ
43 嵌合部
43a 最大内径部分
DESCRIPTION OF SYMBOLS 10 Outer joint member 13 Track groove 14 Roller guide surface 15 Track groove bottom part 16 First thinning part 17 Second thinning part 20 Inner joint member 22 Leg shaft 24 Spherical part 25 Escape part 26 Projection line 30 Roller 31 Inner roller 32 Outer roller 33 Inner roller inner peripheral surface 34 Outer roller outer peripheral surface 39 Outer roller end surface 40 Boot 43 Fitting portion 43a Maximum inner diameter portion

Claims (9)

内周面に軸線方向に延びる三つのトラック溝を有し、各トラック溝の周方向両側に一対のローラ案内面を形成した外方継手部材と、半径方向に三つの脚軸を延在させた内方継手部材と、脚軸に回転自在でかつ脚軸の軸線方向移動自在に外嵌され、外方継手部材のローラ案内面間に転動自在に挿入されるローラと、一端を外方継手部材の外周部に嵌合すると共に他端を内方継手部材から延在させた軸に嵌合して継手内部を密封するブーツとを具備し、フラット面状に形成したトラック溝底部をローラの端面に近接配置し、外方継手部材の外周部のうちトラック溝の形成箇所の相互間に対応する部分に第1の減肉部を設けると共に、外方継手部材の外周部のうちトラック溝の形成箇所に対応する部分に第2の減肉部を設けたトリポード型等速自在継手において、第2の減肉部を外方継手部材の軸線方向に延びる凹溝状に形成したことを特徴とするトリポード型等速自在継手。   An outer joint member having three track grooves extending in the axial direction on the inner peripheral surface, and a pair of roller guide surfaces formed on both sides in the circumferential direction of each track groove, and three leg shafts extending in the radial direction An inner joint member, a roller that is rotatably fitted to the leg shaft and can be moved in the axial direction of the leg shaft, and is rotatably inserted between the roller guide surfaces of the outer joint member, and one end of the outer joint member And a boot that fits to the outer periphery of the member and fits the other end to a shaft extending from the inner joint member and seals the inside of the joint. A first thinning portion is provided in a portion corresponding to the space between the formation positions of the track groove in the outer peripheral portion of the outer joint member, and is disposed in the vicinity of the end surface. Tripod type constant velocity with a second thinning part in the part corresponding to the formation location In the hand, the tripod type constant velocity joint being characterized in that formed in the concave groove shape extending a second reduced thickness portion in the axial direction of the outer joint member. 第1の減肉部と第2の減肉部を外方継手部材の外周部の周方向六等分位置に設けたことを特徴とする請求項1に記載のトリポード型等速自在継手。   The tripod type constant velocity universal joint according to claim 1, wherein the first thinned portion and the second thinned portion are provided at six circumferential positions of the outer peripheral portion of the outer joint member. 外方継手部材の軸線直交方向における第1の減肉部の断面形状と第2の減肉部の断形状を略同一形状に形成したことを特徴とする請求項2に記載のトリポード型等速自在継手。   The tripod type constant velocity according to claim 2, wherein the cross-sectional shape of the first thinned portion and the cut shape of the second thinned portion in the direction orthogonal to the axis of the outer joint member are formed in substantially the same shape. Universal joint. ローラが、内方継手部材の脚軸に首振り回動自在に外嵌されるインナローラと、インナローラに相対回転及び軸線方向相対移動可能に外嵌して外方継手部材のローラ案内面間に転動自在に挿入されるアウタローラとを有し、トルク負荷状態でトラック溝底部に対して傾動するアウタローラの端面をトラック溝底部で支持し、トラック溝底部に対するアウタローラの傾きを規制するように構成した請求項1に記載のトリポード型等速自在継手。   The roller is fitted on the inner joint member's leg shaft so as to be swingable, and the inner roller is fitted on the inner roller so as to be capable of relative rotation and axial movement. And an outer roller that is movably inserted. The end surface of the outer roller that tilts with respect to the track groove bottom in a torque load state is supported by the track groove bottom, and the tilt of the outer roller with respect to the track groove bottom is regulated. Item 3. A tripod type constant velocity universal joint according to item 1. インナローラを内方継手部材の脚軸に球面嵌合させたものにおいて、内方継手部材の脚軸のトルク負荷領域にインナローラの内周面よりも小径に形成した逃げ部を設けたことを特徴とする請求項4に記載のトリポード型等速自在継手。   In the case where the inner roller is spherically fitted to the leg shaft of the inner joint member, a relief portion formed with a smaller diameter than the inner peripheral surface of the inner roller is provided in the torque load region of the leg shaft of the inner joint member. The tripod type constant velocity universal joint according to claim 4. 内方継手部材の脚軸の鍛造パーティングラインに形成された突条を含む領域に逃げ部を設けたことを特徴とする請求項5に記載のトリポード型等速自在継手。   6. The tripod type constant velocity universal joint according to claim 5, wherein a relief portion is provided in a region including a protrusion formed on a forged parting line of a leg shaft of the inner joint member. 脚軸の軸線直交方向における逃げ部の断面形状を略二球面形状に形成したことを特徴とする請求項5又は6に記載のトリポード型等速自在継手。   The tripod constant velocity universal joint according to claim 5 or 6, wherein a cross-sectional shape of the relief portion in a direction orthogonal to the axis of the leg shaft is formed in a substantially dihedral shape. トルク負荷状態で形成されるアウタローラの外周面とローラ案内面との間の隙間δ1[mm]を、δ1>0.03/Aに設定したことを特徴とする請求項4に記載のトリポード型等速自在継手:
但し、A=r1/R1とする(r1はアウタローラの外周面の母線曲率半径、R1はアウタローラの外径半径)。
The tripod type or the like according to claim 4, wherein a gap δ1 [mm] between the outer peripheral surface of the outer roller formed in a torque load state and the roller guide surface is set to δ1> 0.03 / A. Fast universal joint:
However, A = r1 / R1 (r1 is the radius of curvature of the outer peripheral surface of the outer roller and R1 is the outer radius of the outer roller).
アウタローラの端面とトラック溝底部との間の隙間δ2[mm]を、δ2>0.15×Aに設定したことを特徴とする請求項4に記載のトリポード型等速自在継手:
但し、A=r1/R1とする(r1はアウタローラの外周面の母線曲率半径、R1はアウタローラの外径半径)。
The tripod type constant velocity universal joint according to claim 4, wherein the gap δ2 [mm] between the end face of the outer roller and the track groove bottom is set to δ2> 0.15 x A.
However, A = r1 / R1 (r1 is the radius of curvature of the outer peripheral surface of the outer roller and R1 is the outer radius of the outer roller).
JP2004227055A 2004-08-03 2004-08-03 Tripod type constant speed universal joint Withdrawn JP2006046464A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004227055A JP2006046464A (en) 2004-08-03 2004-08-03 Tripod type constant speed universal joint
EP05254620A EP1624208B1 (en) 2004-08-03 2005-07-25 Tripod type constant velocity universal joint
DE602005003991T DE602005003991T2 (en) 2004-08-03 2005-07-25 Gleichlauftripodegelenk
US11/189,103 US20060030413A1 (en) 2004-08-03 2005-07-26 Tripod type constant velocity universal joint
US12/101,195 US7654908B2 (en) 2004-08-03 2008-04-11 Tripod type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227055A JP2006046464A (en) 2004-08-03 2004-08-03 Tripod type constant speed universal joint

Publications (1)

Publication Number Publication Date
JP2006046464A true JP2006046464A (en) 2006-02-16

Family

ID=36025275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227055A Withdrawn JP2006046464A (en) 2004-08-03 2004-08-03 Tripod type constant speed universal joint

Country Status (1)

Country Link
JP (1) JP2006046464A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261365A (en) * 2007-04-10 2008-10-30 Toyota Motor Corp Drive shaft of vehicle
JP2010285221A (en) * 2009-05-13 2010-12-24 Pacplus Co Ltd Packaging material and packaging bag made of the same
JP2014028480A (en) * 2012-07-31 2014-02-13 Kyocera Document Solutions Inc Ink jet type image forming apparatus and ink container
WO2019059204A1 (en) * 2017-09-19 2019-03-28 Ntn株式会社 Tripod-type constant-velocity universal joint
JP2019052744A (en) * 2017-09-19 2019-04-04 Ntn株式会社 Tripod type constant velocity universal joint
KR20210083433A (en) * 2019-12-26 2021-07-07 현대위아 주식회사 Constant velocity joint

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261365A (en) * 2007-04-10 2008-10-30 Toyota Motor Corp Drive shaft of vehicle
JP2010285221A (en) * 2009-05-13 2010-12-24 Pacplus Co Ltd Packaging material and packaging bag made of the same
JP2014028480A (en) * 2012-07-31 2014-02-13 Kyocera Document Solutions Inc Ink jet type image forming apparatus and ink container
WO2019059204A1 (en) * 2017-09-19 2019-03-28 Ntn株式会社 Tripod-type constant-velocity universal joint
JP2019052744A (en) * 2017-09-19 2019-04-04 Ntn株式会社 Tripod type constant velocity universal joint
KR20210083433A (en) * 2019-12-26 2021-07-07 현대위아 주식회사 Constant velocity joint
KR102365186B1 (en) * 2019-12-26 2022-02-21 현대위아 주식회사 Constant velocity joint

Similar Documents

Publication Publication Date Title
JP3599618B2 (en) Constant velocity universal joint
US7682253B2 (en) Tripod type constant velocity joint
EP1624208B1 (en) Tripod type constant velocity universal joint
JP4541203B2 (en) Tripod type constant velocity universal joint
JP2006162056A (en) Constant-velocity joint
JP4334754B2 (en) Tripod type constant velocity joint
US7704148B2 (en) Tripod type constant velocity joint
JP4015822B2 (en) Constant velocity universal joint
JP2006046464A (en) Tripod type constant speed universal joint
CA2368564C (en) Constant velocity universal joint
JP4147179B2 (en) Constant velocity universal joint
JP4087036B2 (en) Constant velocity universal joint
KR20070025956A (en) Tripod type constant velocity universal joint
JP2008286330A (en) Tripod-type constant velocity universal joint
JP2007120667A (en) Tripod-type constant velocity universal joint
JP4350392B2 (en) Tripod type constant velocity universal joint
JP2008261391A (en) Tripod type constant velocity universal joint
JP4255678B2 (en) Tripod type constant velocity universal joint
JP2002081459A (en) Constant velocity universal joint
JP2006046463A (en) Tripod type constant speed universal joint
JP3976358B2 (en) Tripod type constant velocity joint
JP2008281182A (en) Tripod type constant velocity universal joint
JP2006283831A (en) Constant velocity universal joint
JPH09151952A (en) Trunnion member for triboard type constant velocity universal joint
JP2005133890A (en) Tripod type constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070507

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080110