JP2006046128A - Control device for cylinder direct injection type spark ignition internal combustion engine - Google Patents

Control device for cylinder direct injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2006046128A
JP2006046128A JP2004226240A JP2004226240A JP2006046128A JP 2006046128 A JP2006046128 A JP 2006046128A JP 2004226240 A JP2004226240 A JP 2004226240A JP 2004226240 A JP2004226240 A JP 2004226240A JP 2006046128 A JP2006046128 A JP 2006046128A
Authority
JP
Japan
Prior art keywords
dead center
top dead
injection
fuel
compression top
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004226240A
Other languages
Japanese (ja)
Other versions
JP4281647B2 (en
Inventor
Hitoshi Ishii
仁 石井
Masayuki Tomita
全幸 富田
Akira Nakajima
彰 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004226240A priority Critical patent/JP4281647B2/en
Priority to EP05016245A priority patent/EP1621748A1/en
Priority to US11/189,058 priority patent/US7194999B2/en
Publication of JP2006046128A publication Critical patent/JP2006046128A/en
Application granted granted Critical
Publication of JP4281647B2 publication Critical patent/JP4281647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve both drastic delay of ignition timing and combustion stability, and to realize rise in exhaust gas temperature when an engine is cold and reduction in HC emission amount. <P>SOLUTION: In a warming up completion state where the temperature of cooling water exceeds 80°C, regular stratified charge combustion operation and homogeneous combustion operation are performed. In a cold engine state where the temperature of the cooling water is below 80°C, to promote activation of a catalytic converter, top dead center injection operation mode is performed. In this state, fuel pressure is corrected so as to become higher than that during the stratified charge combustion operation. In addition, injection start timing ITS becomes before a compression top dead center, injection completion timing ITE becomes after the compression top dead center, and fuel injection is performed astride the compression top dead center. Ignition timing ADV becomes timing delayed at 15°CA to 20°CA from the injection start timing ITS after the compression top dead center. Since the compression top dead center becomes stable due to collapse of a large flow and minute turbulence is generated by energy of spray itself, combustion stability is improved. This enables drastic delay of the ignition timing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、その噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection spark ignition internal combustion engine that directly injects fuel into a cylinder, and more particularly to control of the injection timing and ignition timing.

特許文献1には、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態にあるときに、圧縮行程中に燃料噴射を行い、かつ、点火時期を圧縮上死点よりも遅角させる技術が開示されている。
特開2001−336467号公報
Patent Document 1 discloses that when an exhaust purification catalytic converter is in an unwarmed state lower than an activation temperature, fuel is injected during the compression stroke, and the ignition timing is retarded from the compression top dead center. Technology is disclosed.
JP 2001-336467 A

内燃機関冷機時の触媒の早期活性化を図るべく排気ガス温度を昇温させるとともにHCを低減するためには、点火時期をなるべく大きく遅角させることが望ましいが、点火時期を大幅に遅角すると、燃焼安定度が悪化するため、燃焼安定度の観点から定まるある限界よりも遅角することはできない。上記従来の技術では、特に冷機時のような条件下において、安定した燃焼の確保が難しく、燃焼安定度から定まる点火時期の遅角限界が比較的進み側にあり、十分な点火時期の遅角を実現することができない。   In order to raise the exhaust gas temperature and reduce HC in order to achieve early activation of the catalyst when the internal combustion engine is cold, it is desirable to retard the ignition timing as much as possible, but if the ignition timing is significantly retarded Since the combustion stability deteriorates, it cannot be retarded from a certain limit determined from the viewpoint of combustion stability. In the above-described conventional technology, it is difficult to ensure stable combustion, particularly under conditions such as cold, the ignition timing delay limit determined from the combustion stability is relatively advanced, and the ignition timing is sufficiently retarded. Cannot be realized.

この発明は、筒内に直接燃料を噴射する燃料噴射弁および点火プラグを備えるとともに、上記燃料噴射弁へ供給される燃圧を可変制御する燃圧可変手段を備え、圧縮行程中に燃料を噴射することで成層希薄燃焼を実現する筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のとき、例えば冷機時のような排気ガス温度の昇温が必要な場合などに、上死点噴射運転モードとして、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うとともに、上記燃圧を、上記の成層希薄燃焼時よりも高く補正することを特徴としている。   The present invention includes a fuel injection valve that directly injects fuel into a cylinder and a spark plug, and fuel pressure variable means that variably controls the fuel pressure supplied to the fuel injection valve, and injects fuel during the compression stroke. In a cylinder direct injection spark ignition internal combustion engine control device that realizes stratified lean combustion at the top dead center when the exhaust gas temperature needs to be raised in a predetermined operating state, for example, when the engine is cold As the injection operation mode, fuel injection is performed in a period that crosses the compression top dead center so that the injection start time is before the compression top dead center and the injection end time is after the compression top dead center, and is delayed from the injection start time. In addition, ignition is performed after compression top dead center, and the fuel pressure is corrected to be higher than that in the stratified lean combustion.

上死点噴射運転モードにおける燃圧は、望ましくは、負荷が大きいほど高くなる。特に、上死点噴射運転モードにおける燃圧と成層希薄燃焼時の同負荷での燃圧との差が、負荷が大きいほど拡大することが望ましい。   The fuel pressure in the top dead center injection operation mode desirably increases as the load increases. In particular, it is desirable that the difference between the fuel pressure in the top dead center injection operation mode and the fuel pressure at the same load during stratified lean combustion increases as the load increases.

図1は、本発明の上死点噴射運転モードの際の燃料噴射期間および点火時期を筒内圧変化とともに例示したものであり、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となる。その間の噴射期間Tの長さは、噴射量に相当する。点火時期ADVは、圧縮上死点(TDC)後であり、噴射開始時期ITSから所定クランク角(例えば15°CA〜20°CA)遅れた時期となる。この遅れ期間Dは、一般に、燃料噴射弁から点火プラグまでの距離に相関する。   FIG. 1 exemplifies a fuel injection period and an ignition timing in the top dead center injection operation mode of the present invention together with a change in in-cylinder pressure. The injection start timing ITS is before the compression top dead center (TDC), and the injection end timing. ITE is after compression top dead center (TDC). The length of the injection period T during that time corresponds to the injection amount. The ignition timing ADV is after compression top dead center (TDC), and is a timing delayed by a predetermined crank angle (for example, 15 ° CA to 20 ° CA) from the injection start timing ITS. This delay period D generally correlates with the distance from the fuel injection valve to the spark plug.

図2は、内燃機関の1サイクル中のピストンストロークによるピストン位置変化量と燃焼室の体積変化量とを示したものである。図示するように、単位クランク角当たりの変化量は、ストロークの中間位置付近で最も大きく、下死点(BDC)付近ならびに上死点(TDC)付近では、非常に小さい。従って、本発明で燃料噴射を行う圧縮上死点付近は、ピストン位置変化や体積変化が非常に小さく、ピストンの動き等に影響されない安定した場が形成され得る。   FIG. 2 shows the piston position change amount and the combustion chamber volume change amount due to the piston stroke in one cycle of the internal combustion engine. As shown in the figure, the amount of change per unit crank angle is the largest near the middle position of the stroke, and is very small near the bottom dead center (BDC) and near the top dead center (TDC). Therefore, in the vicinity of the compression top dead center where the fuel injection is performed in the present invention, the piston position change and volume change are very small, and a stable field that is not affected by the piston movement or the like can be formed.

また、筒内には、吸気行程において、スワール流やタンブル流といった比較的大きな流れのガス流動が発生し、圧縮行程においても残存しているが、このようなスワール流やタンブル流といった大きな流れは、ピストンが圧縮上死点付近に達して燃焼室が狭小なものとなると、急激に崩壊する。図3は、種々の機関回転数の下での燃焼室内の大きな流れの流速変化を示したものであり、図示するように、回転数に応じた強さのスワール流ないしタンブル流が発生するが、圧縮上死点(360°CA)に達する前に、急激に崩壊する。従って、本発明において圧縮上死点付近で噴射された燃料噴霧は、スワール流やタンブル流のような大きな流れにより動かされることがなく、点火プラグに対し、常に安定した形で噴霧を形成することが可能である。   In the cylinder, a relatively large gas flow such as a swirl flow or a tumble flow is generated in the intake stroke and remains in the compression stroke. However, a large flow such as a swirl flow or a tumble flow is When the piston reaches near the compression top dead center and the combustion chamber becomes narrow, it collapses rapidly. FIG. 3 shows a change in flow velocity of a large flow in the combustion chamber under various engine speeds. As shown in the figure, a swirl flow or a tumble flow having a strength corresponding to the rotation speed is generated. Collapses rapidly before reaching compression top dead center (360 ° CA). Therefore, in the present invention, the fuel spray injected near the compression top dead center is not moved by a large flow such as a swirl flow or a tumble flow, and always forms a spray in a stable manner on the spark plug. Is possible.

一方、上記のスワール流やタンブル流といった比較的大きな流れのエネルギは、その流れの崩壊に伴って、微小な乱れへと遷移する。従って、燃焼室内の微小な乱れは、圧縮上死点の直前に、急激に増大する。図4は、図3に示した流れの崩壊に伴って生じる微小な乱れの強さを、流速に換算していわゆる乱れ流速として示したものであり、図示するように、圧縮上死点直前に、乱れが大きく増加する。このような微小な乱れは、燃焼場の活性化に寄与し、燃焼改善作用が得られる。   On the other hand, the energy of a relatively large flow such as the swirl flow or the tumble flow described above transitions to minute turbulence as the flow collapses. Therefore, the minute disturbance in the combustion chamber increases rapidly just before the compression top dead center. FIG. 4 shows the intensity of the minute turbulence caused by the collapse of the flow shown in FIG. 3 as a so-called turbulent flow rate converted to a flow velocity, and as shown in the figure, immediately before the compression top dead center. , Disturbances increase greatly. Such minute disturbances contribute to the activation of the combustion field, and a combustion improving action is obtained.

つまり、燃料が噴射される圧縮上死点付近での燃焼室内の場は、噴霧を動かしてしまうような大きな流れが存在せず、かつ燃焼を活発化させる微小な乱れが多く存在し、しかも、ピストンの動きに対し非常に安定した場となる。特に本発明では、上死点噴射運転モードの際に、通常の成層希薄燃焼のための圧縮行程噴射のときよりも燃圧を高く設定し、高圧で噴射することにより、噴霧自体のエネルギによって筒内に微小な乱れを積極的に生成することができ、安定した場の中で点火プラグ近傍に最適混合気を形成し得るとともに、その燃焼が乱れにより活発化する。従って、圧縮上死点よりも遅角した点火時期でもって、安定した燃焼が可能であり、燃焼安定度の上で制限される点火時期の遅角限界が、より遅角側となる。そのため、点火時期の大幅な遅角により、排気ガス温度を大幅に昇温させることができ、かつHC排出量が低減する。   In other words, the field in the combustion chamber near the compression top dead center where the fuel is injected does not have a large flow that moves the spray, and there are many minute disturbances that activate the combustion, It is a very stable place against the movement of the piston. In particular, in the present invention, in the top dead center injection operation mode, the fuel pressure is set higher than that in the compression stroke injection for normal stratified lean combustion, and the fuel is injected at a high pressure. In the stable field, an optimum air-fuel mixture can be formed in the vicinity of the spark plug, and the combustion is activated by the disturbance. Therefore, stable combustion is possible with the ignition timing retarded from the compression top dead center, and the retard limit of the ignition timing that is limited in terms of combustion stability is on the retard side. For this reason, the exhaust gas temperature can be significantly increased by a large retardation of the ignition timing, and the HC emission amount is reduced.

また負荷が上昇すると、空気量の増加に伴い上死点での筒内圧が高くなるが、この負荷上昇に伴って燃圧を高く補正するようにすれば、筒内圧に対抗し得るように噴霧の貫徹力が上昇し、高い筒内圧の中で、点火プラグ近傍に最適混合気を確実に形成することができるとともに、噴霧による乱れの生成が可能である。なお、一般に、成層希薄燃焼による圧縮行程噴射の場合にも、負荷が上昇したときに燃料噴射期間が過度に長くならないように、負荷が高いほど燃圧を高くする燃圧制御が行われるが、貫徹力の上昇を図るためには、同じ負荷で比較したときの成層希薄燃焼時の燃圧と上死点噴射運転モードの燃圧との差つまり補正量が、負荷が大きいほど拡大していることが望ましい。   As the load increases, the cylinder pressure at the top dead center increases as the air volume increases.If the fuel pressure is corrected to be higher as the load increases, the spray pressure can be controlled to counter the cylinder pressure. The penetrating force is increased, and an optimum air-fuel mixture can be reliably formed in the vicinity of the spark plug in a high in-cylinder pressure, and turbulence can be generated by spraying. In general, even in the case of compression stroke injection by stratified lean combustion, fuel pressure control is performed so that the fuel pressure increases as the load increases so that the fuel injection period does not become excessively long when the load increases. In order to increase the fuel pressure, it is desirable that the difference between the fuel pressure in the stratified lean combustion and the fuel pressure in the top dead center injection operation mode, that is, the correction amount when compared with the same load, is increased as the load increases.

この発明によれば、点火時期を圧縮上死点よりも大幅に遅角させた状態で安定した燃焼を得ることができ、例えば内燃機関の冷機時に、排気ガス温度を昇温させて触媒の早期活性化を図ることができるとともに、HC排出量の低減が可能となる。   According to the present invention, stable combustion can be obtained in a state where the ignition timing is significantly retarded from the compression top dead center. For example, when the internal combustion engine is cold, the exhaust gas temperature is raised and the catalyst is accelerated. Activation can be achieved and HC emissions can be reduced.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図5〜図7は、この発明が適用される筒内直接噴射式火花点火内燃機関の一実施例を示しており、特に、図5,図6は、一つの気筒の構成を示し、図7は機関全体のシステム構成を示している。   5 to 7 show an embodiment of a direct injection type spark ignition internal combustion engine to which the present invention is applied. In particular, FIGS. 5 and 6 show the configuration of one cylinder. Indicates the system configuration of the entire organization.

図5,図6に示すように、シリンダブロック1に形成されたシリンダ2にピストン3が摺動可能に配置されているとともに、シリンダブロック1上面に固定されたシリンダヘッド4と上記ピストン3との間に、燃焼室5が形成されている。上記シリンダヘッド4には、吸気弁6によって開閉される吸気ポート7と、排気弁8によって開閉される排気ポート9と、が形成されている。1つの気筒に対し、一対の吸気弁6と一対の排気弁8とが設けられており、これらの4つの弁に囲まれた燃焼室5天井面中心部に、点火プラグ10が配置されている。また、この実施例では、運転状態によってタンブル流を強化することができるように、吸気ポート7内に、該吸気ポート7内を上下2つの流路に区画する隔壁11が設けられているとともに、その下側の流路を上流端で開閉するタンブル制御弁12が設けられている。当業者には容易に理解できるように、タンブル制御弁12によって下側の流路を閉塞した状態ではタンブル流が強化され、タンブル制御弁12を開いた状態ではタンブル流が弱まる。なお、このタンブル制御弁12は本発明において必ずしも必須のものではなく、省略することも可能であり、また、これに代えて、公知のスワール制御弁を設けるようにしてもよい。   As shown in FIGS. 5 and 6, a piston 3 is slidably disposed in a cylinder 2 formed in the cylinder block 1, and a cylinder head 4 fixed to the upper surface of the cylinder block 1 and the piston 3 A combustion chamber 5 is formed between them. The cylinder head 4 is formed with an intake port 7 that is opened and closed by an intake valve 6 and an exhaust port 9 that is opened and closed by an exhaust valve 8. A pair of intake valves 6 and a pair of exhaust valves 8 are provided for one cylinder, and an ignition plug 10 is disposed at the center of the ceiling surface of the combustion chamber 5 surrounded by these four valves. . Further, in this embodiment, a partition wall 11 is provided in the intake port 7 so as to partition the intake port 7 into two upper and lower flow paths so that the tumble flow can be strengthened depending on the operation state. A tumble control valve 12 that opens and closes the lower flow path at the upstream end is provided. As can be easily understood by those skilled in the art, the tumble flow is strengthened when the lower flow path is closed by the tumble control valve 12, and the tumble flow is weakened when the tumble control valve 12 is opened. The tumble control valve 12 is not necessarily essential in the present invention, and can be omitted. Alternatively, a known swirl control valve may be provided.

上記シリンダヘッド4の吸気ポート7の下側、より詳しくは一対の吸気ポート7の中間部の位置には、筒内へ燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15は、平面図上において図示せぬピストンピンと直交する方向に沿って燃料を噴射するように配置されているとともに、図5の断面図上において、斜め下方を指向して配置されているが、下方への傾斜角は比較的小さく、つまり水平に近い方向へ燃料を噴射する。   A fuel injection valve 15 for directly injecting fuel into the cylinder is disposed below the intake port 7 of the cylinder head 4, more specifically at a position between the pair of intake ports 7. The fuel injection valve 15 is arranged so as to inject fuel along a direction orthogonal to a piston pin (not shown) in the plan view, and is arranged so as to be directed obliquely downward in the sectional view of FIG. However, the downward inclination angle is relatively small, that is, the fuel is injected in a direction close to the horizontal.

一方、ピストン3の頂部は、ペントルーフ型をなす燃焼室5天井面の傾斜に沿った凸部形状をなしているとともに、その中央部に、平面図上において略矩形をなす凹部16が形成されている。この凹部16の底面は、タンブル流に沿うように、所定の曲率半径の円弧面ないしは円弧に近似した湾曲面をなしている。   On the other hand, the top of the piston 3 has a convex shape along the inclination of the ceiling surface of the combustion chamber 5 that forms a pent roof type, and a concave portion 16 having a substantially rectangular shape in plan view is formed at the center. Yes. The bottom surface of the recess 16 forms an arc surface having a predetermined radius of curvature or a curved surface approximating an arc so as to follow the tumble flow.

図7に示すように、この実施例の内燃機関は、例えば直列4気筒機関であり、各気筒の排気ポート9が接続された排気通路21に、排気浄化用の触媒コンバータ22が設けられており、その上流側に、酸素センサ等の空燃比センサ23が配置されている。また、各気筒の吸気ポート7が接続された吸気通路24は、その入口側に、制御信号により開閉される電子制御スロットル弁25を備えている。上記排気通路21と上記吸気通路24との間には、排気還流通路26が設けられており、その途中に、排気還流制御弁27が介装されている。また、各気筒のタンブル制御弁12は、ソレノイドバルブ28を介して導入される吸入負圧により動作する負圧式タンブル制御アクチュエータ29によって、一斉に開閉される構成となっている。   As shown in FIG. 7, the internal combustion engine of this embodiment is, for example, an in-line four-cylinder engine, and a catalytic converter 22 for purifying exhaust gas is provided in an exhaust passage 21 to which an exhaust port 9 of each cylinder is connected. An air-fuel ratio sensor 23 such as an oxygen sensor is disposed on the upstream side. The intake passage 24 to which the intake port 7 of each cylinder is connected is provided with an electronically controlled throttle valve 25 that is opened and closed by a control signal on the inlet side. An exhaust gas recirculation passage 26 is provided between the exhaust passage 21 and the intake air passage 24, and an exhaust gas recirculation control valve 27 is interposed in the middle. Further, the tumble control valves 12 of the respective cylinders are configured to be simultaneously opened and closed by a negative pressure type tumble control actuator 29 that is operated by a suction negative pressure introduced via a solenoid valve 28.

また、上記燃料噴射弁15には、燃料ポンプ31およびプレッシャレギュレータ32によって適宜な圧力に調圧された燃料が、燃料ギャラリ33を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。また、各気筒の点火プラグ10は、イグニッションコイル34に接続されている。ここで、上記プレッシャレギュレータ32は、燃圧可変手段として、燃料噴射弁15に供給される燃料の燃圧を、比較的広い範囲で変化させることができる構成となっている。   The fuel injection valve 15 is supplied with fuel that has been adjusted to an appropriate pressure by the fuel pump 31 and the pressure regulator 32 via a fuel gallery 33. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. The ignition plug 10 of each cylinder is connected to an ignition coil 34. Here, the pressure regulator 32 is configured to be able to change the fuel pressure of the fuel supplied to the fuel injection valve 15 within a relatively wide range as the fuel pressure varying means.

上記内燃機関の燃料噴射時期や噴射量、燃圧、点火時期等は、コントロールユニット35によって制御される。このコントロールユニット35には、アクセルペダル踏み込み量を検出するアクセル開度センサ30の検出信号や、クランク角センサ36の検出信号、空燃比センサ23の検出信号、冷却水温を検出する水温センサ37の検出信号、等が入力されている。   The fuel injection timing, injection amount, fuel pressure, ignition timing, etc. of the internal combustion engine are controlled by the control unit 35. The control unit 35 includes a detection signal of an accelerator opening sensor 30 that detects the amount of depression of an accelerator pedal, a detection signal of a crank angle sensor 36, a detection signal of an air-fuel ratio sensor 23, and a detection of a water temperature sensor 37 that detects a cooling water temperature. Signals, etc. are input.

上記のように構成された内燃機関においては、暖機が完了した後の状態、例えば冷却水温が80℃を越えているときには、通常の成層燃焼運転および均質燃焼運転が行われる。   In the internal combustion engine configured as described above, when the warm-up is completed, for example, when the cooling water temperature exceeds 80 ° C., normal stratified combustion operation and homogeneous combustion operation are performed.

すなわち、低速低負荷側の所定の領域では、通常の成層燃焼運転モードとして、基本的にタンブル制御弁12を閉じた状態の下で、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。なお、この運転モードでは、圧縮上死点前に必ず燃料噴射が終了する。圧縮行程中にピストン3へ向けて噴射された燃料は、凹部16に沿って旋回するタンブル流を利用して点火プラグ10近傍へ集められ、ここで点火される。そのため、平均的な空燃比がリーンとなった成層燃焼が実現される。このとき、燃料噴射弁15から噴射される燃料の燃圧は、燃料噴射量の増加に対し燃料噴射期間が過度に長くならないように、図8の特性aに示すように、負荷の上昇に伴って徐々に高くなる所定の特性に沿って制御される。   That is, in a predetermined region on the low speed and low load side, as a normal stratified combustion operation mode, fuel injection is performed at an appropriate time in the compression stroke, with the tumble control valve 12 basically closed. Ignition is performed before the top dead center. In this operation mode, fuel injection always ends before compression top dead center. The fuel injected toward the piston 3 during the compression stroke is collected in the vicinity of the spark plug 10 using a tumble flow swirling along the recess 16 and ignited there. Therefore, stratified combustion with an average air-fuel ratio lean is realized. At this time, the fuel pressure of the fuel injected from the fuel injection valve 15 is increased as the load increases, as shown by the characteristic a in FIG. Control is performed along predetermined characteristics that gradually increase.

また、暖機完了後の高速高負荷側の所定の領域では、通常の均質燃焼運転モードとして、基本的にタンブル制御弁12を開いた状態の下で、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点において点火が行われる。この場合は、燃料は筒内で均質な混合気となり、基本的に理論空燃比近傍で運転が行われる。   Further, in a predetermined region on the high speed and high load side after the warm-up is completed, fuel injection is performed during the intake stroke under the condition that the tumble control valve 12 is basically opened as a normal homogeneous combustion operation mode. And ignition is performed at the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous air-fuel mixture in the cylinder and is basically operated near the stoichiometric air-fuel ratio.

これに対し、内燃機関の冷却水温が80℃以下のとき、つまり暖機が完了していない状態では、触媒コンバータ22の活性化つまり温度上昇の促進とHC排出量低減のために、上死点噴射運転モードとなる。この上死点噴射運転モードでは、燃料噴霧による乱れの生成が得られるように、プレッシャレギュレータ32により制御される燃圧が、上述した成層燃焼運転モードのときよりも十分に高く与えられる。そして、前述した図1に示したように、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となり、圧縮上死点を跨いで燃料噴射が行われる。点火時期ADVは、圧縮上死点(TDC)後となり、噴射開始時期ITSから15°CA〜20°CA遅れた時期に点火される。この遅れ期間の間に、燃料噴霧がちょうど点火プラグ10付近に到達し、点火プラグ10付近に可燃混合気を形成するので、確実に着火燃焼に至り、成層燃焼が行われる。このとき、燃料噴射量は、平均的な空燃比が理論空燃比となるように制御される。   On the other hand, when the cooling water temperature of the internal combustion engine is 80 ° C. or lower, that is, when the warm-up is not completed, the top dead center is used to activate the catalytic converter 22, that is, promote the temperature rise and reduce the HC emission amount. It becomes the injection operation mode. In the top dead center injection operation mode, the fuel pressure controlled by the pressure regulator 32 is sufficiently higher than that in the stratified combustion operation mode described above so that the generation of turbulence due to fuel spray can be obtained. Then, as shown in FIG. 1 described above, the injection start timing ITS is before the compression top dead center (TDC), and the injection end timing ITE is after the compression top dead center (TDC). Is done. The ignition timing ADV is after compression top dead center (TDC), and is ignited at a timing delayed by 15 ° CA to 20 ° CA from the injection start timing ITS. During this delay period, the fuel spray just reaches the vicinity of the spark plug 10 and forms a combustible air-fuel mixture in the vicinity of the spark plug 10, so that ignition combustion is surely performed and stratified combustion is performed. At this time, the fuel injection amount is controlled so that the average air-fuel ratio becomes the stoichiometric air-fuel ratio.

本実施例では、上記の燃料噴射時期は、噴射開始時期ITSが所定のクランク角となるように制御され、噴射終了時期ITEは、この噴射開始時期ITSと燃料噴射量(噴射時間)とによって定まる。なお、燃料噴射期間における圧縮上死点前の期間と圧縮上死点後の期間とが等しくなるように、燃料噴射量に基づき、噴射開始時期ITSと噴射終了時期ITEとを求めるようにすることも可能である。   In this embodiment, the fuel injection timing is controlled so that the injection start timing ITS becomes a predetermined crank angle, and the injection end timing ITE is determined by the injection start timing ITS and the fuel injection amount (injection time). . The injection start timing ITS and the injection end timing ITE are obtained based on the fuel injection amount so that the period before the compression top dead center and the period after the compression top dead center in the fuel injection period are equal. Is also possible.

前述したように、この上死点噴射運転モードにおいて燃料が噴射される圧縮上死点付近での燃焼室内の場は、大きな流れの崩壊により噴霧を動かしてしまうような大きな流れが存在せず、かつ大きな流れの崩壊に伴い、燃焼を活発化させる微小な乱れが多く存在し、しかも、ピストンの動きに対し非常に安定した場となる。そして、このように大きな流れが存在しない安定した場の中で、高圧で燃料噴射を行うことにより、噴霧自体のエネルギによって筒内に微小な乱れを積極的に生成することができる。従って、圧縮上死点よりも遅角した点火時期でもって、安定した燃焼が可能であり、燃焼安定度の上で制限される点火時期の遅角限界が、より遅角側となる。そのため、点火時期の大幅な遅角により、排気ガス温度を大幅に昇温させることができ、かつHC排出量が低減する。図9は、噴霧自体によって筒内に生成される微小な乱れと燃圧との関係を示したものであり、図示するように、燃圧が高いほど乱れが活発に生成される。   As described above, the field in the combustion chamber near the compression top dead center where fuel is injected in this top dead center injection operation mode does not have a large flow that causes the spray to move due to the collapse of the large flow, Along with the collapse of the large flow, there are many minute disturbances that activate the combustion, and the field becomes very stable against the movement of the piston. Then, by performing fuel injection at a high pressure in a stable field where there is no such a large flow, minute turbulence can be positively generated in the cylinder by the energy of the spray itself. Therefore, stable combustion is possible with the ignition timing retarded from the compression top dead center, and the retard limit of the ignition timing that is limited in terms of combustion stability is on the retard side. For this reason, the exhaust gas temperature can be significantly increased by a large retardation of the ignition timing, and the HC emission amount is reduced. FIG. 9 shows the relationship between the minute turbulence generated in the cylinder by the spray itself and the fuel pressure. As shown in the figure, the turbulence is actively generated as the fuel pressure is higher.

一方、上記の上死点噴射運転モードの際の燃圧は、負荷の変化に対し、図8のbのような特性でもって制御される。すなわち、全体として、負荷が大きいほど燃圧が高くなる特性を有しているとともに、成層燃焼運転モードのときの燃圧aを基準としたときの補正量ΔP(換言すれば同じ負荷に対する上死点噴射運転モード時の燃圧bと成層燃焼運転モード時の燃圧aとの差)が、負荷が大きいほど拡大している。図8の特性cは、参考例として、成層燃焼運転モード時の燃圧aを基準として一定の補正量を加えた場合の燃圧特性を示しているが、このような燃圧cに比較して、高負荷側ほどより高くなるように燃圧が補正される。   On the other hand, the fuel pressure in the top dead center injection operation mode is controlled with the characteristics as shown in FIG. That is, as a whole, the fuel pressure increases as the load increases, and the correction amount ΔP (in other words, the top dead center injection for the same load when the fuel pressure a in the stratified combustion operation mode is used as a reference). The difference between the fuel pressure b in the operation mode and the fuel pressure a in the stratified combustion operation mode) increases as the load increases. As a reference example, the characteristic c in FIG. 8 shows the fuel pressure characteristic when a certain correction amount is added with reference to the fuel pressure a in the stratified combustion operation mode. The fuel pressure is corrected so as to be higher at the load side.

図10は、負荷が低いときの筒内圧変化と負荷が大きいときの筒内圧変化とを対比して示したものであり、図示するように、負荷が上昇すると、空気量の増加に伴い上死点での筒内圧が高くなる。このような筒内圧の上昇に対し、本実施例では、図8の特性bのように負荷上昇に伴って燃圧が高く与えられるので、筒内圧力に対抗し得るように噴霧の貫徹力が上昇し、高い筒内圧の中で、点火プラグ10近傍に最適混合気を確実に形成することができるとともに、噴霧自体のエネルギによる乱れがより活発に生成される。   FIG. 10 shows a comparison between the change in the in-cylinder pressure when the load is low and the change in the in-cylinder pressure when the load is large. As shown in FIG. The cylinder pressure at the point increases. In contrast to such an increase in the in-cylinder pressure, in this embodiment, the fuel pressure is increased as the load increases as shown by the characteristic b in FIG. 8, so that the penetration force of the spray increases so as to counter the in-cylinder pressure. In addition, an optimum air-fuel mixture can be reliably formed in the vicinity of the spark plug 10 in a high in-cylinder pressure, and disturbance due to the energy of the spray itself is generated more actively.

なお、上記実施例では、燃料噴射弁15が燃焼室5の側部に配置され、水平に近い方向に燃料を噴射する構成となっているが、これに代えて、燃料噴射弁15が、一対の吸気弁6と一対の排気弁8とに囲まれた燃焼室5天井面中心部に配置され、垂直に近い角度でピストン3頂面へ向けて燃料を噴射するようにした所謂直上噴射形式の構成とすることも可能である。   In the above embodiment, the fuel injection valve 15 is disposed on the side of the combustion chamber 5 and is configured to inject fuel in a direction close to the horizontal. Of the combustion chamber 5 surrounded by the intake valve 6 and the pair of exhaust valves 8 in the center of the ceiling surface of the combustion chamber 5 so as to inject fuel toward the top surface of the piston 3 at an angle close to vertical. A configuration is also possible.

本発明の燃料噴射期間および点火時期の一例を示した特性図。The characteristic view which showed an example of the fuel-injection period and ignition timing of this invention. サイクル中のピストン位置変化量と体積変化量の特性図。The characteristic figure of the piston position change amount and volume change amount during a cycle. 大きな流れのサイクル中の変化を示す特性図。The characteristic figure which shows the change in the cycle of a big flow. 微小な乱れのサイクル中の変化を示す特性図。The characteristic view which shows the change in the cycle of a minute disturbance. 筒内直接噴射式火花点火内燃機関の一実施例を示す断面図。Sectional drawing which shows one Example of a direct injection type spark ignition internal combustion engine. 同じく平面図。FIG. この内燃機関全体のシステム構成を示す構成説明図。FIG. 2 is a configuration explanatory view showing the system configuration of the entire internal combustion engine. この実施例の負荷に対する燃圧の特性を示す特性図。The characteristic view which shows the characteristic of the fuel pressure with respect to the load of this Example. 噴霧により生成される微小な乱れと燃圧との関係を示す特性図。The characteristic view which shows the relationship between the minute disturbance produced | generated by spraying, and fuel pressure. 負荷の大小による筒内圧変化を示す特性図。The characteristic view which shows the in-cylinder pressure change by the magnitude of load.

符号の説明Explanation of symbols

3…ピストン
5…燃焼室
10…点火プラグ
15…燃料噴射弁
3 ... Piston 5 ... Combustion chamber 10 ... Spark plug 15 ... Fuel injection valve

Claims (4)

筒内に直接燃料を噴射する燃料噴射弁および点火プラグを備えるとともに、上記燃料噴射弁へ供給される燃圧を可変制御する燃圧可変手段を備え、圧縮行程中に燃料を噴射することで成層希薄燃焼を実現する筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のときに、上死点噴射運転モードとして、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うとともに、上記燃圧を、上記の成層希薄燃焼時よりも高く補正することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。   A fuel injection valve for directly injecting fuel into the cylinder and a spark plug, and a fuel pressure variable means for variably controlling the fuel pressure supplied to the fuel injection valve, and stratified lean combustion by injecting fuel during the compression stroke In the control device for a direct injection type spark ignition internal combustion engine that realizes the above, in the predetermined operating state, the fuel injection is performed as the top dead center injection operation mode, and the injection start timing is before the compression top dead center. Is performed in a period straddling the compression top dead center so as to be after the compression top dead center, and ignition is performed after the compression top dead center delayed from the injection start timing, and the fuel pressure is changed from the time of the stratified lean combustion. A control device for an in-cylinder direct injection spark ignition internal combustion engine, wherein 上死点噴射運転モードにおける燃圧は、負荷が大きいほど高くなることを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   2. The control device for a direct injection type spark ignition internal combustion engine according to claim 1, wherein the fuel pressure in the top dead center injection operation mode increases as the load increases. 上死点噴射運転モードにおける燃圧と成層希薄燃焼時の同負荷での燃圧との差が、負荷が大きいほど拡大することを特徴とする請求項2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   The in-cylinder direct injection spark ignition internal combustion engine according to claim 2, wherein the difference between the fuel pressure in the top dead center injection operation mode and the fuel pressure at the same load during stratified lean combustion increases as the load increases. Control device. 所定の運転状態として、排気ガス温度の昇温が要求されたときに、上記の上死点噴射運転モードを実行することを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。
The in-cylinder direct injection according to any one of claims 1 to 3, wherein the top dead center injection operation mode is executed when a temperature increase of the exhaust gas is requested as a predetermined operation state. -Type spark ignition internal combustion engine control device.
JP2004226240A 2004-07-26 2004-08-03 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4281647B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004226240A JP4281647B2 (en) 2004-08-03 2004-08-03 In-cylinder direct injection spark ignition internal combustion engine controller
EP05016245A EP1621748A1 (en) 2004-07-26 2005-07-26 Combustion control apparatus for direct-injection spark-ignition internal combusion engine
US11/189,058 US7194999B2 (en) 2004-07-26 2005-07-26 Combustion control apparatus for direct-injection spark-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226240A JP4281647B2 (en) 2004-08-03 2004-08-03 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2006046128A true JP2006046128A (en) 2006-02-16
JP4281647B2 JP4281647B2 (en) 2009-06-17

Family

ID=36025012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226240A Expired - Fee Related JP4281647B2 (en) 2004-07-26 2004-08-03 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4281647B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207631A (en) * 2011-03-30 2012-10-25 Mazda Motor Corp Control device of spark ignition type gasoline engine
JP2012215096A (en) * 2011-03-31 2012-11-08 Mazda Motor Corp Abnormality determining method of high pressure fuel pump for spark ignition type engine and control device of spark ignition type engine
JP2012215097A (en) * 2011-03-31 2012-11-08 Mazda Motor Corp High pressure fuel pump structure for spark ignition type engine and control device of the engine
JP2013007385A (en) * 2012-09-10 2013-01-10 Hitachi Automotive Systems Ltd Ignition timing control device of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207631A (en) * 2011-03-30 2012-10-25 Mazda Motor Corp Control device of spark ignition type gasoline engine
JP2012215096A (en) * 2011-03-31 2012-11-08 Mazda Motor Corp Abnormality determining method of high pressure fuel pump for spark ignition type engine and control device of spark ignition type engine
JP2012215097A (en) * 2011-03-31 2012-11-08 Mazda Motor Corp High pressure fuel pump structure for spark ignition type engine and control device of the engine
JP2013007385A (en) * 2012-09-10 2013-01-10 Hitachi Automotive Systems Ltd Ignition timing control device of internal combustion engine

Also Published As

Publication number Publication date
JP4281647B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
JP4400379B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4539476B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006250050A (en) Controller of cylinder direct injection type spark ignition internal combustion engine
JP4375295B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281647B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4501743B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525509B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006046124A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4207866B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4360323B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4155242B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006090202A (en) Control device of cylinder direct injection spark ignition internal combustion engine
JP4379279B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006161733A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006177181A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2018172980A (en) Premixing compression ignition type engine
JP2006017062A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006070862A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4380481B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006046126A (en) Cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees