JP2006044474A - Vehicular wheel having rotary auxiliary blade - Google Patents

Vehicular wheel having rotary auxiliary blade Download PDF

Info

Publication number
JP2006044474A
JP2006044474A JP2004228685A JP2004228685A JP2006044474A JP 2006044474 A JP2006044474 A JP 2006044474A JP 2004228685 A JP2004228685 A JP 2004228685A JP 2004228685 A JP2004228685 A JP 2004228685A JP 2006044474 A JP2006044474 A JP 2006044474A
Authority
JP
Japan
Prior art keywords
wheel
rotation
end position
vehicle
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004228685A
Other languages
Japanese (ja)
Other versions
JP4455951B2 (en
Inventor
Ichiro Shima
一郎 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2004228685A priority Critical patent/JP4455951B2/en
Publication of JP2006044474A publication Critical patent/JP2006044474A/en
Application granted granted Critical
Publication of JP4455951B2 publication Critical patent/JP4455951B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicular wheel having rotary auxiliary blades capable of realizing the low fuel consumption by substantially reducing the rolling resistance of a tire in a wheel to be used for a car or a vehicle traveling at a normal speed. <P>SOLUTION: A plurality of rotary auxiliary blades 21-1 to 21-4 are provided on an outer face of a wheel 2 in a uniformly distributed manner in the tire circumferential direction. Each rotary auxiliary blade 21 comprises a rubber sheet 22 extending in the wheel radial direction, a fixed bar to support an edge on the inner side of the wheel radial direction of the rubber sheet 22 from a body side of the wheel, and a movable bar 24 connected to an edge on the outer side of the wheel radial direction. The movable bar 24 is connected to the fixed bar 23 via a coil-shaped spring 29, and guided in the wheel radial direction. As the movable bar is shifted from an upper end position to a lower end position when the vehicle travels, the rubber sheet 22 is drawn and extended by the gravity applied to the movable bar 24. The rotary auxiliary blades 21 receives air resistance in a vicinity of the lower end position than larger than that of the upper end position, and generates the rotary auxiliary force. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車その他の、ある程度の速度で走行する車両に用いられるホイールに関する。特には、タイヤ等の転がり抵抗を実質上低減させて、低燃費化を実現できるホイールに関する。   The present invention relates to a wheel used in an automobile or other vehicle that travels at a certain speed. In particular, the present invention relates to a wheel that can substantially reduce the rolling resistance of a tire or the like and achieve a reduction in fuel consumption.

近年、自動車の低燃費化に対する社会的要請が高まり、タイヤの転がり抵抗を低減させる低燃費化技術の開発が盛んに行なわれている(例えば特許文献1〜3)。タイヤの転がり抵抗は、粘弾性体であるゴムとタイヤコードとからなるタイヤが、たわみながら回転することによる抵抗であり、エネルギーロスを発生させる。   In recent years, social demands for reducing fuel consumption of automobiles have increased, and development of fuel efficiency reduction techniques for reducing rolling resistance of tires has been actively performed (for example, Patent Documents 1 to 3). The rolling resistance of a tire is a resistance caused by a tire made of rubber and a tire cord, which are viscoelastic bodies, rotating while being bent, and causes energy loss.

この転がり抵抗を低減させるためには、タイヤ回転時に生じるタイヤ全体の変形を抑えるか、または、路面接触の際に生じる繰り返し圧縮運動によるエネルギーロスを抑える必要がある。このためには、タイヤの形状や構造(プロファイル)を最適化するか(特許文献3など)、または、ゴム配合組成を最適化する検討が行われている。タイヤの転がり抵抗を低減させたならば、特には、高速道路走行時といった定常速度走行時における車両の低燃費化に大きく寄与できる。   In order to reduce this rolling resistance, it is necessary to suppress deformation of the entire tire that occurs during tire rotation, or to suppress energy loss due to repeated compression motion that occurs during road surface contact. For this purpose, studies have been made to optimize the shape and structure (profile) of the tire (Patent Document 3, etc.) or to optimize the rubber compounding composition. If the rolling resistance of the tire is reduced, it can greatly contribute to the reduction in fuel consumption of the vehicle particularly during steady speed traveling such as traveling on a highway.

しかし、これら従来の方法では、転がり抵抗の改善のために、耐摩耗性やウェット性能といった他の性能の低下を招くことが多かった。例えば、補強剤であるカーボンブラックの配合量を減らすといった方法では、耐摩耗性の低下を招くおそれがあった。   However, in these conventional methods, in order to improve rolling resistance, other performances such as wear resistance and wet performance are often deteriorated. For example, the method of reducing the blending amount of carbon black as a reinforcing agent may cause a decrease in wear resistance.

一方、ホイール中に吸振構造を設けることにより、転がり抵抗を低減することも試みられている(特許文献1〜2)。リムを備えた第1のディスクと、車両への取り付け部を備えた第2のディスクとを、ゴム部材を介して結合するというものである。このような構造により、タイヤが転動する際の変形・歪みの抑制と、これによるヒステリシスロスの低減が図られている。しかし、この場合、舗装状態の良好な路面を定常速度で走行する場合の転がり抵抗の低減はあまり期待できない。   On the other hand, it is also attempted to reduce rolling resistance by providing a vibration absorbing structure in the wheel (Patent Documents 1 and 2). A first disk provided with a rim and a second disk provided with a mounting portion for a vehicle are coupled via a rubber member. With such a structure, it is possible to suppress deformation / distortion when the tire rolls and to reduce hysteresis loss. However, in this case, a reduction in rolling resistance when traveling at a steady speed on a road surface with good pavement cannot be expected.

他方、航空機用車輪においては、着陸時の摩耗を軽減すべく、着地前に車輪の回転を開始させるための回転力生成翼をホイールキャップ等に設けることも提案されている(特許文献4)。しかし、この回転力生成翼は、車両を定常走行させるための車輪に設けられたものでなく、走行時の低燃費化を実現するものでない。
特開2003−260902 特開2001−88506 特開2004−98838 特開2002−154485
On the other hand, in an aircraft wheel, it has also been proposed to provide a wheel cap or the like with a rotational force generating wing for starting rotation of the wheel before landing in order to reduce wear during landing (Patent Document 4). However, the rotational force generating blades are not provided on the wheels for steady running of the vehicle, and do not realize low fuel consumption during running.
JP 2003-260902 A JP 2001-88506 A JP 2004-983838 A JP 2002-154485 A

本発明は、上記問題点に鑑みなされたものであり、他の性能の低下を招くことなく定常走行時の低燃費化を実現できる車両用ホイールを提供しようとする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle wheel that can realize low fuel consumption during steady running without causing other performance degradation.

本発明の車両用ホイールは、外面に、車両走行時に空気流から受ける力を回転駆動力に変換する複数の回転補助翼が設けられ、ホイール周方向に均等に分布することを特徴とする。   The vehicle wheel according to the present invention is characterized in that a plurality of auxiliary rotation blades for converting a force received from an air flow when the vehicle is traveling into a rotational driving force are provided on the outer surface, and the wheel is evenly distributed in the circumferential direction of the wheel.

本発明の好ましい態様によると、前記回転補助翼が、車両走行時に上端位置から下端位置へと移るにしたがって、車両走行方向から見た場合の面積が増大するように設けられる。このようであると、車両回転軸の上側で空気抵抗により車両の走行を妨げる回転力の生成をなるべく小さくするとともに、車両回転軸の下側で、車両の走行を促進する回転力の生成を大きくできる。したがって、全体として、容易に、補助的な回転駆動力を生成し、低燃費化または低動力化を実現できる。   According to a preferred aspect of the present invention, the rotation auxiliary wing is provided such that the area when viewed from the vehicle traveling direction increases as the vehicle moves from the upper end position to the lower end position during vehicle traveling. In this case, the generation of the rotational force that hinders the traveling of the vehicle due to the air resistance on the upper side of the vehicle rotation shaft is reduced as much as possible, and the generation of the rotational force that promotes the traveling of the vehicle is increased on the lower side of the vehicle rotation shaft. it can. Therefore, as a whole, an auxiliary rotational driving force can be easily generated, and fuel consumption or power can be reduced.

本発明の他の好ましい態様によると、前記回転補助翼は、回転方向の前面に向かって凸の形状をなし、回転方向の後面が凹面または前記前面に比べて扁平な面をなす。   According to another preferred aspect of the present invention, the rotation auxiliary wing has a convex shape toward the front surface in the rotation direction, and the rear surface in the rotation direction is a concave surface or a flat surface compared to the front surface.

転がり抵抗を実質上低減させて、低燃費化または低動力化を実現できる。   Rolling resistance can be substantially reduced, and fuel consumption or power can be reduced.

実施例1について、図1〜6を用いて説明する。図1は、実走行状態における実施例のホイール2及びその周辺の構造を示す模式的な外観斜視図である。図2は、回転補助翼の形態をタイヤから取り外した状態で示す平面的な斜視図である。また、図3は、図1の状態について示す模式的な垂直方向断面図である。   Example 1 will be described with reference to FIGS. FIG. 1 is a schematic external perspective view showing the structure of the wheel 2 and its surroundings in the actual running state. FIG. 2 is a plan perspective view showing a state of the auxiliary rotation blades removed from the tire. FIG. 3 is a schematic vertical sectional view showing the state of FIG.

図1〜3に示すように、ホイール2の左右に備えられたホイールキャップ26の外面には、ホイールの径方向及び回転軸方向に沿って延びる略平板状の回転補助翼21が設けられている。図示の例によると、左右の各ホイールキャップ26の外面には、4個の回転補助翼21-1〜21-4が、周方向に均等に分布するように設けられている。ここで、このホイールキャップ26は、ホイール本体に、ネジ止め等により回転不能に取り付けられたものである。   As shown in FIGS. 1 to 3, the outer surface of the wheel cap 26 provided on the left and right of the wheel 2 is provided with a substantially flat plate-shaped rotation auxiliary wing 21 extending along the radial direction and the rotation axis direction of the wheel. . According to the illustrated example, the four rotation auxiliary wings 21-1 to 21-4 are provided on the outer surfaces of the left and right wheel caps 26 so as to be evenly distributed in the circumferential direction. Here, the wheel cap 26 is attached to the wheel body so as not to rotate by screwing or the like.

図2〜3に示す例で、各回転補助翼21は、ホイール径方向に延びる1枚の矩形状のゴムシート22と、ゴムシート22のホイール径方向内側の縁部をホイールキャップ26から支持する固定棒23と、ゴムシート22のホイール径方向外側の縁部に接続する可動棒24とからなる。ゴムシート22は、タイヤ半径方向の両縁部22Bが円柱状であり、これらの間に均等な厚みのゴムシート本体22Aが掛け渡された状態となっている。また、固定棒23及び可動棒24は、図示の例で1本の直線状の細い丸棒であり、ゴムシート22の円柱状縁部22Bの芯をなす芯部23B,24Bと、根部23A,24Aとからなる。固定棒23の根部23Aは、ホイールキャップ26に、溶接またはネジ止めなどにより接続される。これに対し、可動棒24の根部24Aは、芯部24Bよりも格段に径の大きい短円筒状であり、鉄等の密度の大きい材料から形成されて、比較的大きな質量を有する。   In the example shown in FIGS. 2 to 3, each rotation auxiliary wing 21 supports one rectangular rubber sheet 22 extending in the wheel radial direction and a wheel radial inner edge of the rubber sheet 22 from the wheel cap 26. It consists of a fixed rod 23 and a movable rod 24 connected to the outer edge of the rubber sheet 22 in the wheel radial direction. The rubber sheet 22 has a cylindrical shape at both edges 22B in the tire radial direction, and a rubber sheet body 22A having an equal thickness is stretched between them. In addition, the fixed rod 23 and the movable rod 24 are one straight thin round bar in the illustrated example, and the core portions 23B and 24B that form the core of the cylindrical edge portion 22B of the rubber sheet 22 and the root portion 23A, 24A. The root 23A of the fixing rod 23 is connected to the wheel cap 26 by welding or screwing. On the other hand, the root portion 24A of the movable rod 24 has a short cylindrical shape with a diameter much larger than that of the core portion 24B, is formed of a material having a high density such as iron, and has a relatively large mass.

可動棒24の根部24Aと、固定棒23の根部23Aとの間に、鋼等からなるコイル状のバネ29が掛け渡されている。可動棒24の根部24Aは、ホイールキャップ26に設けられたガイド構造によりホイール径方向に案内されており、バネ29及びゴムシート22の弾性力と、可動棒24の根部24Aが受ける重力及び遠心力との作用を受けて、これらの力が均衡する位置へと、逐次移動する。車両走行中に、図3中に示すように回転補助翼21が上端位置に来た場合には、可動棒24の根部24Aの重力が、遠心力の作用を打ち消すかまたは上回る。そのため、バネ29及びゴムシート22は、ホイール径方向の長さが、外力を受けない場合の寸法またはこれより少し小さな寸法となる。   A coiled spring 29 made of steel or the like is stretched between the root 24A of the movable rod 24 and the root 23A of the fixed rod 23. The root portion 24A of the movable rod 24 is guided in the wheel radial direction by a guide structure provided on the wheel cap 26, and the elastic force of the spring 29 and the rubber sheet 22, and the gravity and centrifugal force that the root portion 24A of the movable rod 24 receives. In response to these actions, the force moves sequentially to a position where these forces are balanced. When the auxiliary rotating wing 21 comes to the upper end position as shown in FIG. 3 while the vehicle is running, the gravity of the root 24A of the movable rod 24 cancels or exceeds the action of the centrifugal force. Therefore, the length of the spring 29 and the rubber sheet 22 in the radial direction of the wheel is a dimension when the external force is not received or a dimension slightly smaller than this.

一方、図3中に示すように回転補助翼21が下端位置に来た場合には、可動棒24の根部24Aの重力と遠心力とを合わせた力により、バネ29及びゴムシート22がホイール径方向に引き伸ばされる。以上のようにして、空気流を受ける回転補助翼21の面積は、上端位置付近で小さくなり、下端位置付近で大きくなる。回転補助翼21は、ホイール2の下方で車輪の回転駆動を促進する作用を行い、ホイールの上で車輪の回転駆動を阻害する逆方向の回転力を生成するが、回転補助翼21の面積が上記のように変化することにより、全体として回転駆動を促進する回転補助力を生成するように設計されている。   On the other hand, as shown in FIG. 3, when the rotation auxiliary wing 21 comes to the lower end position, the spring 29 and the rubber sheet 22 are caused to have a wheel diameter by a force that combines the gravity and the centrifugal force of the root 24 </ b> A of the movable rod 24. Stretched in the direction. As described above, the area of the rotation auxiliary wing 21 that receives the airflow decreases near the upper end position and increases near the lower end position. The auxiliary rotation blade 21 acts to promote the rotational drive of the wheel below the wheel 2 and generates a reverse rotational force that inhibits the rotational drive of the wheel on the wheel. By changing as described above, it is designed to generate a rotation assisting force that promotes rotational driving as a whole.

図示の例で、可動棒24の根部24A及び固定棒23の根部23Aは、ホイールキャップ26の内面側に突き出しており、したがって、バネ29もホイールキャップ26の内面側に配されている。また、ホイールキャップ26を貫くスリット27が、ホイール径方向のガイド構造をなしている。   In the illustrated example, the root portion 24 </ b> A of the movable rod 24 and the root portion 23 </ b> A of the fixed rod 23 protrude toward the inner surface side of the wheel cap 26, and thus the spring 29 is also disposed on the inner surface side of the wheel cap 26. A slit 27 penetrating the wheel cap 26 forms a guide structure in the wheel radial direction.

ゴムシート22は、タイヤを構成するゴム組成物に類似のゴム組成により設けることができる。例えば天然ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)等の樹脂にカーボンブラック等の補強剤及び劣化防止剤を配合した組成により設けることができる。一方、固定棒23及び可動棒24は、一般鋼、ステンレス鋼、アルミ合金その他の金属で設けることができる他、繊維強化プラスチックの成形物などにより設けることができる。   The rubber sheet 22 can be provided with a rubber composition similar to the rubber composition constituting the tire. For example, it can be provided by a composition in which a resin such as natural rubber, butadiene rubber (BR), or styrene butadiene rubber (SBR) is blended with a reinforcing agent such as carbon black and a deterioration preventing agent. On the other hand, the fixed bar 23 and the movable bar 24 can be provided by general steel, stainless steel, aluminum alloy, or other metals, or can be provided by a molded product of fiber reinforced plastic.

具体例において、ホイール2は、トラック、バスまたは軽トラックに用いられるものであり、リム径が20インチである。すなわち、回転軸からリム先端までの半径が0.254mである。これに装着されるタイヤ1は、例えばTOYO 12.00 R 20 14PRである。回転補助翼21のホイール径方向の中心位置(重力及び遠心力による伸長がないとした場合の中心位置)は、例えば、回転軸を中心としたタイヤの半径(R)の1/5の個所にある。回転補助翼21のゴムシート22は、ゴムシート本体22Aの厚みが1mmであり、固定棒23と可動棒24との間の間隔Wが5cm、ホイールキャップ26外面から垂直方向に突き出す寸法Hが3cmである。ここでの間隔Wは、遠心力及び重力が作用しないときの値である。   In a specific example, the wheel 2 is used for a truck, a bus, or a light truck, and has a rim diameter of 20 inches. That is, the radius from the rotating shaft to the rim tip is 0.254 m. The tire 1 attached to this is, for example, TOYO 12.00 R 20 14PR. The center position of the rotation auxiliary wing 21 in the radial direction of the wheel (the center position when there is no extension due to gravity and centrifugal force) is, for example, at 1/5 of the radius (R) of the tire around the rotation axis. is there. The rubber sheet 22 of the auxiliary rotation blade 21 has a rubber sheet body 22A having a thickness of 1 mm, a distance W between the fixed rod 23 and the movable rod 24 of 5 cm, and a dimension H protruding in the vertical direction from the outer surface of the wheel cap 26 is 3 cm. It is. The interval W here is a value when centrifugal force and gravity do not act.

以下に、図4〜5を用いて、上記実施例の回転補助翼21が生成する回転補助力について行ったシミュレーションについて説明する。ここでは、タイヤの回転軸からトレッド面に至るタイヤ半径Rを0.3m、回転補助翼21の中心位置がタイヤ半径Rのの1/5の個所とし、車両が時速60km(16.67m/sec)で走行する場合を想定した。また、錘(おもり)としての、可動棒24の根部24Aの質量が0.01kgであるとした。   Below, the simulation performed about the rotation assistance force which the rotation auxiliary blade 21 of the said Example produces | generates is demonstrated using FIGS. Here, the tire radius R from the tire rotation axis to the tread surface is 0.3 m, the center position of the auxiliary rotation blade 21 is 1/5 of the tire radius R, and the vehicle is 60 km / h (16.67 m / sec). ). In addition, the mass of the root portion 24A of the movable rod 24 as a weight is assumed to be 0.01 kg.

上記実施例のような回転補助翼21が、ホイール2の外面に1個のみ設けられていると仮定して、錘(おもり)としての、可動棒24の根部24Aに作用する力(遠心力+重力)を試算すると次のとおりである。ここでは遠心力方向を負とし、路面4から最も遠い上端位置からの回転角度θに対する関数として示した。なお、下記数式においてabs(cosθ)はcosθの絶対値である。   Assuming that only one rotation auxiliary blade 21 as in the above embodiment is provided on the outer surface of the wheel 2, a force (centrifugal force +) acting on the root 24 </ b> A of the movable rod 24 as a weight. Gravity) is calculated as follows. Here, the centrifugal force direction is negative, and is shown as a function with respect to the rotation angle θ from the upper end position farthest from the road surface 4. In the following formula, abs (cosθ) is the absolute value of cosθ.

θ=-90〜+90°:F(θ)=(-1) x 0.01 x (16.67/5)2/(0.3/5) + 0.01 9.8 x abs(cosθ)
θ=90〜270°:F(θ)=(-1) x 0.01 x (16.67/5)2/(0.3/5) − 0.01 9.8 x abs(cosθ)
さらに、バネ29及びゴムシート22の全体としてのバネ定数Kが18.5(kgf/m)であるとすると、回転補助翼21が下端位置に来たときの固定棒23と可動棒24との間の間隔Wは約0.105mであり、下端位置に来たときの間隔Wが0.095mである。したがって、上端位置から下端位置に至る間の寸法変化は約10mmである。ホイール径方向の寸法がこのときの上下端位置間での面積変化率は約10%となる。ここで、面積変化率(%)は、次式により得られる値である。
θ = -90 to + 90 °: F (θ) = (-1) x 0.01 x (16.67 / 5) 2 /(0.3/5) + 0.01 9.8 x abs (cosθ)
θ = 90 ~ 270 °: F (θ) = (-1) x 0.01 x (16.67 / 5) 2 /(0.3/5) − 0.01 9.8 x abs (cosθ)
Further, assuming that the spring constant K of the spring 29 and the rubber sheet 22 as a whole is 18.5 (kgf / m), the fixed rod 23 and the movable rod 24 when the auxiliary rotation blade 21 comes to the lower end position. The interval W between them is about 0.105 m, and the interval W when reaching the lower end position is 0.095 m. Therefore, the dimensional change from the upper end position to the lower end position is about 10 mm. The area change rate between the upper and lower end positions of the wheel radial dimension at this time is about 10%. Here, the area change rate (%) is a value obtained by the following equation.

面積変化率(%)=(1−下端位置での走行方向への投影面積
÷上端位置での走行方向への投影面積)×100
図4に示すシミュレーション結果から知られるように、回転角θが90〜270°の間に生じる正の回転駆動力は、回転角θが-90〜+90°の間に生じる負の回転駆動力よりも大きい。したがって、全体として回転駆動を補助し、タイヤの転がり抵抗を低減させるような効果を発揮する。
Area change rate (%) = (1−projected area in the traveling direction at the lower end position)
÷ Projected area in the direction of travel at the upper end position) × 100
As is known from the simulation results shown in FIG. 4, the positive rotational driving force generated when the rotational angle θ is between 90 and 270 ° is the negative rotational driving force generated when the rotational angle θ is between −90 and + 90 °. Bigger than. Therefore, the rotational drive is assisted as a whole, and the effect of reducing the rolling resistance of the tire is exhibited.

図5には、上記と同様のシミュレーションにおいて、回転補助翼21の中心位置が、タイヤ径の1/3に個所にあるとした場合の結果について示す。回転角θが90〜270°の間に生じる正の回転駆動力は、回転角θが-90〜+90°の間に生じる負の回転駆動力にほぼ等しい。このことから、面積変化率が約10%となるような条件では、回転補助翼21の中心位置が、タイヤ径の1/3より内側の領域に位置する場合にのみ、全体として、正の駆動回転力が生成することが知られる。   FIG. 5 shows the results when the center position of the auxiliary rotation blade 21 is located at 1/3 of the tire diameter in the same simulation as described above. The positive rotational driving force generated when the rotational angle θ is between 90 and 270 ° is substantially equal to the negative rotational driving force generated when the rotational angle θ is between −90 and + 90 °. From this, under the condition that the area change rate is about 10%, positive driving as a whole is only performed when the center position of the auxiliary rotation blade 21 is located in a region inside 1/3 of the tire diameter. It is known that rotational force is generated.

ホイールの径は、一般にタイヤ径の約1/3〜2/3である。そのため、装着される預タイヤの径に比べてリム径の小さいホイールの場合、リムに近い個所に可動棒24のスリット27の外側端が位置するような構成であっても良い。ホイールの径がタイヤ径の約1/2〜2/3である場合、各回転補助翼21は、ホイール径方向の中心位置が、ホイール半径の例えば10〜70%の領域内に設定することができる。回転補助翼21が充分にホイール径方向内側にある場合、面積変化率が約5%であっても回転補助効果を発揮できる。面積変化率は大きい方が好ましいが、固定棒23及び可動棒24の面積があることから、理論的にも約90%が限界である。   The wheel diameter is generally about 1/3 to 2/3 of the tire diameter. Therefore, in the case of a wheel having a smaller rim diameter than the diameter of the deposited tire to be mounted, a configuration in which the outer end of the slit 27 of the movable rod 24 is located at a location close to the rim may be employed. When the wheel diameter is about ½ to 2/3 of the tire diameter, the rotational auxiliary wings 21 may be set such that the center position in the wheel radial direction is within a range of, for example, 10 to 70% of the wheel radius. it can. When the auxiliary rotation blade 21 is sufficiently inside in the wheel radial direction, the auxiliary rotation effect can be exhibited even if the area change rate is about 5%. Although a larger area change rate is preferable, there is a limit of about 90% theoretically because there are areas of the fixed rod 23 and the movable rod 24.

表1には、前述した具体例と同様のホイールを用いた場合について、回転補助翼21の位置、数、面積変化率を段階的に変化させた場合の、タイヤの実質的な転がり抵抗をシミュレーションにより求めた結果を示す。ホイールに装着するタイヤは、TOYO 12.00 R 20 14PR(リムサイズ20inch×7.50inch)であり、ホイールの本体もこれに適した標準的な形態のものである。一方、回転補助翼の寸法は、上記具体例と同一であるとした。すなわち、ゴムシート22が矩形状をなし、固定棒23と可動棒24との間の間隔Wが5cmで、突出寸法Hが3cmであるとした。回転補助翼21の中心位置は、回転軸からの距離を基準に、タイヤ径の38%または20%(1/5)であるとし、ホイール片面における回転補助翼21の数は、4個または8個とした。なお、表1中において、転がり抵抗は、回転補助翼を設けなかった場合の値を100とする指数で示す。なお、ホイールに回転補助翼のない場合のタイヤ(TOYO 12.00 R 20 14PR)の転がり抵抗は、ドラム式転がり抵抗試験機により、タイヤ空気圧700kPa、荷重2500kgf、測定温度25±1℃の条件で測定したものであり、シミュレーションは、この条件で回転補助翼が及ぼす影響を算出したものである。

Figure 2006044474
Table 1 shows a simulation of the substantial rolling resistance of the tire when the position, number, and area change rate of the rotation auxiliary wings 21 are changed stepwise in the case of using the same wheel as the specific example described above. Shows the results obtained. The tire attached to the wheel is TOYO 12.00 R 20 14PR (rim size 20inch x 7.50inch), and the wheel body is of a standard form suitable for this. On the other hand, the dimensions of the auxiliary rotating blades are the same as those in the above specific example. That is, the rubber sheet 22 has a rectangular shape, the interval W between the fixed rod 23 and the movable rod 24 is 5 cm, and the protruding dimension H is 3 cm. The center position of the auxiliary rotation blade 21 is 38% or 20% (1/5) of the tire diameter based on the distance from the rotation axis, and the number of the auxiliary rotation blades 21 on one side of the wheel is four or eight. Individual. In Table 1, the rolling resistance is indicated by an index with a value of 100 when no rotation auxiliary blade is provided. The rolling resistance of the tire (TOYO 12.00 R 20 14PR) when the wheel does not have rotating auxiliary blades was measured with a drum-type rolling resistance tester under conditions of tire air pressure 700 kPa, load 2500 kgf, measurement temperature 25 ± 1 ° C. In the simulation, the effect of the rotating auxiliary blade under this condition is calculated.
Figure 2006044474

表1に示すように、回転補助翼21の中心位置とホイール回転軸28との間の距離がタイヤ外寸半径の38%である場合、回転補助翼の面積変化率が10%であるなら、タイヤの実質上の転がり抵抗が1〜2%低下した。実施例1-1と1-2との比較から知られるように、4枚配置する場合よりも、8枚配置する方が効果は大きい。   As shown in Table 1, when the distance between the center position of the auxiliary rotation blade 21 and the wheel rotation shaft 28 is 38% of the tire outer radius, if the area change rate of the auxiliary rotation blade is 10%, The actual rolling resistance of the tire was reduced by 1 to 2%. As is known from the comparison between Examples 1-1 and 1-2, it is more effective to arrange eight than to arrange four.

一方、実施例2-2の結果から知られるように、回転補助翼の位置が、ホイール回転軸28に近接した場合、回転補助翼の面積変化率が5%という比較的小さい値であっても、同様の転がり抵抗低減の効果が得られた。   On the other hand, as is known from the results of Example 2-2, when the position of the rotation auxiliary wing is close to the wheel rotation shaft 28, the area change rate of the rotation auxiliary wing is a relatively small value of 5%. The same effect of reducing rolling resistance was obtained.

図6には、変形例1のホイール及びその関連構造について模式的に示す。本変形例では、可動棒24の根部24A’、すなわち錘の個所が磁石をなしている。車体のフェンダー部に、可動棒24の根部24A’と反発し合う磁性を帯びた磁性体5を配置するならば、下方への磁力により、面積変化率を大きくすることができる。図示の例では、可動棒24の根部24A’及びフェンダー部の磁性体5のいずれもがN極となっている。このような構成により、回転補助翼21が上端位置付近に来た場合には、反発磁性により可動棒24がその下方の固定棒23の方へと押されることで回転補助翼21の面積が、より小さくなる。一方、回転補助翼21が下端位置付近に来た場合には、反発磁性により可動棒24がその上方の固定棒23から引き離され、回転補助翼21の面積が、より大きくなる。   FIG. 6 schematically shows the wheel of the first modification and its related structure. In this modification, the root portion 24A 'of the movable rod 24, that is, the portion of the weight forms a magnet. If the magnetic body 5 having magnetism repelling the root portion 24A 'of the movable rod 24 is disposed in the fender portion of the vehicle body, the area change rate can be increased by the downward magnetic force. In the example shown in the figure, both the root portion 24A 'of the movable rod 24 and the magnetic body 5 of the fender portion have N poles. With such a configuration, when the rotation auxiliary wing 21 comes near the upper end position, the area of the rotation auxiliary wing 21 is reduced by pushing the movable rod 24 toward the fixed rod 23 below by repulsive magnetism. Smaller. On the other hand, when the rotation auxiliary wing 21 comes near the lower end position, the movable rod 24 is separated from the fixed rod 23 above by the repulsive magnetism, and the area of the rotation auxiliary wing 21 becomes larger.

図7には、変形例2のホイール2’及びその回転補助翼21’について示す。変形例の回転補助翼21’は、上記実施例と同様の構成において、比較的肉厚のゴムシート22’及びその両端の固定棒23’及び可動棒24’が、タイヤ回転方向の後方へと滑らかに湾曲している。回転補助翼21’の断面形状は、例えば、低速の風を用いて発電等を行うための「サボニウム型」の風車の羽根と同様とする。このような構成であると、面積変化率が小さくとも、車両走行中に受ける空圧は、車輪の回転軸の下方側で大きく、回転軸の上方側で大きくなる。したがって、タイヤ回転方向の駆動力が得られる。   FIG. 7 shows a wheel 2 ′ and its rotation auxiliary blade 21 ′ according to the second modification. The rotation assist wing 21 ′ of the modified example has the same configuration as that of the above embodiment, and the relatively thick rubber sheet 22 ′ and the fixed rods 23 ′ and the movable rods 24 ′ at both ends thereof are moved rearward in the tire rotation direction. It is smoothly curved. The cross-sectional shape of the rotation auxiliary blade 21 ′ is the same as that of a “savonium-type” windmill blade for generating power using low-speed wind, for example. With such a configuration, even if the area change rate is small, the air pressure received during traveling of the vehicle is large on the lower side of the rotating shaft of the wheel and is larger on the upper side of the rotating shaft. Accordingly, a driving force in the tire rotation direction can be obtained.

実走行状態における実施例のホイール及びその周辺の構造を示す模式的な外観斜視図である。It is a typical external appearance perspective view which shows the structure of the wheel of the Example in an actual driving | running | working state, and its periphery. 回転補助翼の形態をホイールから取り外した状態で示す平面的な斜視図である。It is a planar perspective view which shows the form of a rotation auxiliary blade in the state removed from the wheel. 実走行状態における実施例のホイール及びその周辺の構造を示す模式的な垂直断面図である。It is a typical vertical sectional view which shows the structure of the wheel of the Example in an actual driving | running | working state, and its periphery. 回転補助翼の中心位置が、回転軸から、タイヤ径の1/5だけ離れた個所にある場合についての、回転補助翼の回転位置と、回転駆動力との関係についてのシミュレーション結果を示すグラフである。The graph which shows the simulation result about the relationship between the rotation position of a rotation auxiliary blade, and the rotational driving force in the case where the center position of a rotation auxiliary blade exists in the location which is only 1/5 of the tire diameter from the rotating shaft. is there. 回転補助翼の中心位置が、回転軸から、タイヤ径の1/5だけ離れた個所にある場合についての、図4と同様のグラフである。FIG. 5 is a graph similar to FIG. 4 for the case where the center position of the auxiliary rotation blade is located at a position separated from the rotation axis by 1/5 of the tire diameter. 変形例1のホイール及びその関連構造について示す模式的な外観図である。It is a typical external view shown about the wheel of the modification 1, and its related structure. 変形例2のホイールにおける回転補助翼の構造を示す模式的な外観斜視図である。10 is a schematic external perspective view showing a structure of a rotation auxiliary wing in a wheel of Modification Example 2. FIG.

符号の説明Explanation of symbols

1 タイヤ 15 トレッド
2 車両用ホイール 21-1〜21-4 回転補助翼
22 ゴムシート 23 固定棒
23A 固定棒の根部 24 可動棒
24A 可動棒の根部(錘) 25 リム
26 ホイールキャップ 27 可動棒の根部24Aを案内するスリット
28 ホイール回転軸 29 コイル状のバネ
3 車両 4 路面
DESCRIPTION OF SYMBOLS 1 Tire 15 Tread 2 Vehicle wheel 21-1 to 21-4 Rotation auxiliary wing 22 Rubber sheet 23 Fixed rod 23A Fixed rod root 24 Movable rod 24A Movable rod root (weight) 25 Rim 26 Wheel cap 27 Movable rod root Slit for guiding 24A 28 Wheel rotating shaft 29 Coiled spring 3 Vehicle 4 Road surface

Claims (5)

外面に、車両走行時に空気流から受ける力を回転駆動力に変換する複数の回転補助翼が、ホイール周方向に均等に分布するように設けられたことを特徴とする車両用ホイール。   A vehicle wheel characterized in that a plurality of rotation auxiliary blades for converting a force received from an air flow during vehicle traveling into a rotational driving force are provided on an outer surface so as to be evenly distributed in the wheel circumferential direction. 前記回転補助翼が、車両走行時に上端位置から下端位置へと移るにしたがって、車両走行方向から見た場合の面積が増大するように設けられたものであることを特徴とする請求項1記載の車両用ホイール。   The rotation auxiliary wing is provided so that an area when viewed from the vehicle traveling direction increases as the vehicle moves from the upper end position to the lower end position during vehicle traveling. Vehicle wheel. 前記各回転補助翼は、下端位置を基準とした前記面積の変化率が5〜90%であることを特徴とする請求項2の車両用ホイール。   3. The vehicle wheel according to claim 2, wherein the rotation assist wing has a change rate of the area of 5 to 90% based on a lower end position. 前記回転補助翼が、ホイール径方向に整列された複数の棒状部材と、これらの間に掛け渡された弾性の板状部材とからなり、一の前記棒状部材がホイールの外面に固定され、他の前記棒状部材がホイール径方向に沿って移動可能に設けられていることを特徴とする請求項2または3記載の車両用ホイール。   The rotation auxiliary wing is composed of a plurality of rod-like members aligned in the wheel radial direction and an elastic plate-like member spanned between them, and the one rod-like member is fixed to the outer surface of the wheel, and the other The vehicle wheel according to claim 2, wherein the rod-shaped member is provided so as to be movable along a wheel radial direction. 前記回転補助翼は、回転方向の前面に向かって凸の形状をなし、回転方向の後面が凹面または前記前面に比べて扁平な面をなすことを特徴とする請求項1〜3のいずれかに記載の車両用ホイール。
The rotation auxiliary wing has a convex shape toward the front surface in the rotation direction, and a rear surface in the rotation direction forms a concave surface or a flat surface compared to the front surface. The vehicle wheel described.
JP2004228685A 2004-08-04 2004-08-04 Vehicle wheel with rotating auxiliary wing Expired - Fee Related JP4455951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228685A JP4455951B2 (en) 2004-08-04 2004-08-04 Vehicle wheel with rotating auxiliary wing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228685A JP4455951B2 (en) 2004-08-04 2004-08-04 Vehicle wheel with rotating auxiliary wing

Publications (2)

Publication Number Publication Date
JP2006044474A true JP2006044474A (en) 2006-02-16
JP4455951B2 JP4455951B2 (en) 2010-04-21

Family

ID=36023530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228685A Expired - Fee Related JP4455951B2 (en) 2004-08-04 2004-08-04 Vehicle wheel with rotating auxiliary wing

Country Status (1)

Country Link
JP (1) JP4455951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITDP20120015A1 (en) * 2012-07-16 2014-01-17 Roberto Pisacane WHEEL POWER GENERATOR FOR WIND POWER FOR TRACTION VEHICLES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITDP20120015A1 (en) * 2012-07-16 2014-01-17 Roberto Pisacane WHEEL POWER GENERATOR FOR WIND POWER FOR TRACTION VEHICLES

Also Published As

Publication number Publication date
JP4455951B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP5608489B2 (en) Vehicle rectifier
CA2759381C (en) A vehicle tire having a sidewall section with a plurality of curved protrusions
JP2008132951A (en) Non-pneumatic tire
US20200370538A1 (en) Power Generation System
JP2016505448A (en) Design of rims, airless tires and hub caps configured to carry air in one direction and methods of using them
CN105705342A (en) Improved aerodynamic wheel trim for vehicle wheel
CN104494710A (en) General tail wing capable of improving automobile driving stability
JP4455951B2 (en) Vehicle wheel with rotating auxiliary wing
KR101601470B1 (en) Spoke wheel having improved air force
JP4510545B2 (en) Vehicle tires with rotating auxiliary wings
CN105275876B (en) Air-conditioner outdoor unit axial-flow windwheel and air-conditioner outdoor unit with it
JP2003278641A (en) Wind power generation device for vehicle
JP2013006441A (en) Pneumatic tire
CN103395369A (en) Wheel and vehicle
CN102896969A (en) Turbo-type speed-increasing and energy-saving hub
CN207292168U (en) A kind of vehicle
JP2009161072A (en) Pneumatic tire
CN105691089A (en) Forward rotary energy-saving acceleration hub
CN220904585U (en) Tire and vehicle
CN201456924U (en) Rear-wheel hub used for freight and passenger cars
CN206067948U (en) Diversification geometry automotive wheel choke plate assembly and automobile
CN2832644Y (en) Play vehicle on beach
RU2467908C2 (en) Electrodynamic cowl &#34;rakhmaton&#34;
CN201456912U (en) Front-wheel hub used for freight and passenger cars
CN106864162A (en) High-quality high-speed and energy-saving environmental protection wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees