JP2006042657A - Cell disintegrator and temperature controlling method therefor - Google Patents

Cell disintegrator and temperature controlling method therefor Download PDF

Info

Publication number
JP2006042657A
JP2006042657A JP2004226605A JP2004226605A JP2006042657A JP 2006042657 A JP2006042657 A JP 2006042657A JP 2004226605 A JP2004226605 A JP 2004226605A JP 2004226605 A JP2004226605 A JP 2004226605A JP 2006042657 A JP2006042657 A JP 2006042657A
Authority
JP
Japan
Prior art keywords
temperature
crushing
container
refrigerant
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004226605A
Other languages
Japanese (ja)
Other versions
JP4651987B2 (en
Inventor
Shuji Yasui
修二 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YASUI KIKAI KK
Original Assignee
YASUI KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YASUI KIKAI KK filed Critical YASUI KIKAI KK
Priority to JP2004226605A priority Critical patent/JP4651987B2/en
Publication of JP2006042657A publication Critical patent/JP2006042657A/en
Application granted granted Critical
Publication of JP4651987B2 publication Critical patent/JP4651987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/08Homogenizing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/20Heating or cooling

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Crushing And Grinding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell disintegrator that can disintegrate cells while the temperature of a cell sample is kept constant. <P>SOLUTION: To a circular support 20 attached to an outer-fitted circular body 15 that relatively rotates round an inclined shaft 11 fixed to a driving rotary shaft 8, is set a cooling vessel 61 receiving a plurality of disintegration vessels 30 into which samples and disintegration solvents 32 are charged. Then, a refrigerant is fed to the cooling vessel 61 to cool the disintegration vessels 30. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微生物、植物の組織や種子類、動物の組織、鉱物材料などの試料を分析・分画分離するために、破砕容器に試料を破砕媒体と共に収容し、破砕容器に振動を加えて試料を破砕する細胞破砕装置及びその温度制御方法に関するものである。   In order to analyze and fractionate samples such as microorganisms, plant tissues and seeds, animal tissues, and mineral materials, the present invention accommodates the samples in a crushing container together with a crushing medium, and vibrates the crushing container. The present invention relates to a cell crushing apparatus for crushing a sample and a temperature control method thereof.

試料を破砕するために破砕装置が用いられ、試料と破砕媒体とを収容した破砕容器に振動を加えることにより、試料に破砕媒体が衝突することによる圧縮と回転による磨砕とによって試料を破砕する。   A crushing device is used to crush the sample, and by crushing the crushing container containing the sample and the crushing medium, the sample is crushed by compression caused by the crushing medium colliding with the sample and grinding by rotation. .

このような破砕装置として、試料と破砕媒体とを収容した破砕容器に8の字状の振動を加えることにより、効率的且つ安定した試料の破砕を行うことができる破砕装置を本願出願人は先に提案している(特許文献1参照)。また、破砕効率及び安定化の向上を図るために、細長い破砕容器の軸心に沿った姿勢を維持して軸心方向に相対移動する形状、寸法の単一の破砕媒体を用いた破砕装置(特許文献2参照)などを本願出願人は提案している。   As such a crushing apparatus, the applicant of the present application is a crushing apparatus that can efficiently and stably crush a sample by applying an 8-shaped vibration to a crushing container containing a sample and a crushing medium. (See Patent Document 1). Further, in order to improve crushing efficiency and stabilization, a crushing apparatus using a single crushing medium having a shape and size that maintains a posture along the axial center of the elongated crushing container and moves relative to the axial direction ( The applicant of the present application has proposed (see Patent Document 2).

図10は、上記破砕装置の構成を示すもので、回転軸8にその軸芯に対して軸芯が傾斜した傾斜軸体11を設け、傾斜軸体11に相対回転自在に環状体15を外嵌させると共に、この環状体15に取り付けられた磁石16と、これに対極する固定磁石18とにより環状体15の回転を弾性的に拘束し、環状体15に取り付けられた環状保持体20の外周部に破砕媒体32と試料とを収容した細長い破砕容器30を環状保持体20の軸芯と平行な姿勢で保持できるように構成したものである。前記回転軸8を図外のモータにより回転駆動すると、破砕容器30にはその軸芯方向の比較的長い行程の主往復移動とそれに直交する方向の比較的短い行程の副往復移動とが組み合わされた8の字状の往復振動が加わり、破砕媒体32が相対回転しながら破砕容器30の底部に衝突することにより、破砕容器30が乳鉢、破砕媒体32が乳棒のように作用して、試料が植物組織や動物組織、あるいはプラスチック材料や鉱物材料であっても効率的に破砕することができる。
特開2000−023660号公報(第3〜5頁、図1) 特開2001−178444号公報(第3〜5頁、図2)
FIG. 10 shows the configuration of the crushing device, wherein the rotary shaft 8 is provided with an inclined shaft body 11 having an axis inclined with respect to the axis, and the annular body 15 is attached to the inclined shaft body 11 so as to be relatively rotatable. The outer circumference of the annular holding body 20 attached to the annular body 15 is elastically constrained by the magnet 16 attached to the annular body 15 and the fixed magnet 18 opposite to the magnet 16. In this configuration, the elongated crushing container 30 containing the crushing medium 32 and the sample in the part can be held in a posture parallel to the axis of the annular holder 20. When the rotary shaft 8 is rotationally driven by a motor (not shown), the crushing container 30 is combined with a main reciprocating movement with a relatively long stroke in the axial direction and a sub-reciprocating movement with a relatively short stroke in the direction orthogonal thereto. When the crushing medium 32 collides with the bottom of the crushing container 30 while rotating relatively, the crushing container 30 acts like a mortar and the crushing medium 32 acts like a pestle. Even plant tissues, animal tissues, plastic materials and mineral materials can be efficiently crushed.
JP 2000-023660 (pages 3 to 5, FIG. 1) Japanese Patent Laid-Open No. 2001-178444 (pages 3 to 5, FIG. 2)

上記細胞破砕装置において、破砕容器30に試料と破砕媒体とを収容して振動を加えると、破砕に伴う熱の発生や装置の温度上昇により、試料の種類によっては熱による変質を来し、例えば、細胞内の熱変成を受けやすい物質の回収ができなくなったり、分析等の作業に支障を及ぼす問題があり、所定の温度条件のもとで細胞破砕を行うことができる細胞破砕装置が要求されていた。   In the cell disruption apparatus, when the sample and the disruption medium are accommodated in the disruption container 30 and subjected to vibration, the heat is generated due to the disruption and the temperature of the apparatus is increased. However, there is a problem in that it is impossible to recover substances that are susceptible to thermal denaturation in the cell, and there are problems that interfere with work such as analysis, and there is a need for a cell disruption device that can perform cell disruption under predetermined temperature conditions. It was.

本発明が目的とするところは、所定の温度条件下で細胞破砕が実施できるようにした細胞破砕装置及びその温度制御方法を提供することにある。   An object of the present invention is to provide a cell disruption apparatus and a temperature control method thereof capable of performing cell disruption under a predetermined temperature condition.

上記目的を達成するために本願第1発明に係る細胞破砕装置は、有底筒状に形成された外筒内に内筒を所定間隔を隔てて配置した両筒間に冷媒が循環するように形成された冷却容器に、試料と破砕媒体とを投入した細長い破砕容器を前記内筒内に保持した状態にして、前記破砕容器の軸方向及びそれと交差する方向に往復振動が加わるように前記冷却容器を振動させることを特徴とする。   In order to achieve the above object, the cell disruption apparatus according to the first invention of the present application is such that the refrigerant circulates between both cylinders in which the inner cylinder is arranged at a predetermined interval in the outer cylinder formed in the bottomed cylinder shape. In the formed cooling container, an elongated crushing container into which the sample and the crushing medium are put is held in the inner cylinder, and the cooling is performed so that reciprocal vibration is applied in the axial direction of the crushing container and in the direction intersecting with the crushing container. The container is vibrated.

上記構成によれば、試料を収容した破砕容器は冷却容器に収容されて冷媒によって冷却されるので、破砕に伴う温度上昇や周囲温度の上昇にかかわらず温度上昇が抑制され、試料に熱による変質を生じさせることなく破砕を行うことができる。   According to the above configuration, since the crushing container containing the sample is accommodated in the cooling container and cooled by the refrigerant, the temperature rise is suppressed regardless of the temperature rise due to crushing or the ambient temperature rise, and the sample is altered by heat. The crushing can be carried out without causing the.

上記構成において、内筒は、破砕容器の外面と所定間隔を隔てる内径に形成され、破砕容器と熱伝導液を介して接触するように構成することにより、破砕容器は熱伝導液を介して内筒に熱結合した状態になるので、破砕容器の温度は速やかに内筒に伝導して冷却される。前記熱伝導液は、水又は不凍液がコンタミネーションの発生などを防止する上で好適である。   In the above configuration, the inner cylinder is formed to have an inner diameter that is spaced apart from the outer surface of the crushing container, and is configured to contact the crushing container via the heat conduction liquid. Since it is in a state of being thermally coupled to the cylinder, the temperature of the crushing container is quickly conducted to the inner cylinder and cooled. As the heat conduction liquid, water or antifreeze liquid is suitable for preventing the occurrence of contamination.

また、冷却容器は円環状に形成された環状保持体の円周上に複数個を固定し、温度制御手段から供給される冷媒を各冷却容器に並列供給する冷媒配給部を前記環状保持体上に設けることにより、複数の破砕容器について冷却しながら破砕を行うことができる。   In addition, a plurality of cooling containers are fixed on the circumference of an annular holder formed in an annular shape, and a refrigerant distribution unit that supplies the refrigerant supplied from the temperature control means in parallel to each cooling container is provided on the annular holder. By providing in, it can crush, cooling a some crushing container.

また、内筒内の温度を検出する温度検出手段と、この温度検出手段による検出温度に基づいて外筒内への冷媒の温度又は循環を制御する温度制御手段とを設けることにより、破砕容器を設定した温度に温度制御して破砕を行うことができる。   Further, by providing temperature detecting means for detecting the temperature in the inner cylinder and temperature control means for controlling the temperature or circulation of the refrigerant into the outer cylinder based on the temperature detected by the temperature detecting means, Crushing can be performed by controlling the temperature to a set temperature.

また、回転駆動される回転軸に、その軸心に対して軸心の傾斜した傾斜軸部を設け、この傾斜軸部に環状体を相対回転自在に外嵌させると共に、この環状体の回転を拘束する回転拘束手段を設け、前記環状体に冷却容器を保持した環状保持体を取り付けることにより、効率的な破砕を実施することができる。   In addition, the rotary shaft that is rotationally driven is provided with an inclined shaft portion that is inclined with respect to the shaft center, and an annular body is fitted on the inclined shaft portion so as to be relatively rotatable, and the annular body is rotated. By providing a rotation restraining means for restraining and attaching an annular holding body holding a cooling container to the annular body, efficient crushing can be carried out.

また、本願第2発明に係る細胞破砕装置の温度制御方法は、有底筒状に形成された外筒内に内筒を所定間隔を隔てて配置した両筒間に冷媒が循環するように形成された冷却容器に、試料と破砕媒体とを投入した細長い破砕容器を前記内筒内に保持し、前記破砕容器の軸方向及びそれと交差する方向に往復振動が加わるように前記冷却容器を振動させると共に、前記破砕容器内の温度が所定温度以下となるように冷却容器に供給する冷媒を冷却することを特徴とするものである。この温度制御方法により、冷却された冷媒によって冷却される冷却容器内に収容された破砕容器は所定温度以下に冷却されるので、破砕容器に収容された試料は破砕に伴う温度上昇により変質を生じることなく破砕される。   Moreover, the temperature control method of the cell disruption apparatus according to the second invention of the present application is formed such that the refrigerant circulates between both cylinders in which the inner cylinder is arranged at a predetermined interval in the outer cylinder formed in the bottomed cylinder shape. An elongated crushing container into which a sample and a crushing medium are put is held in the inner cylinder, and the cooling container is vibrated so that reciprocal vibration is applied in the axial direction of the crushing container and in a direction intersecting with the crushing container. At the same time, the coolant supplied to the cooling container is cooled such that the temperature in the crushing container is equal to or lower than a predetermined temperature. By this temperature control method, the crushing container accommodated in the cooling container cooled by the cooled refrigerant is cooled to a predetermined temperature or lower, so that the sample accommodated in the crushing container is altered due to the temperature rise accompanying crushing. It is crushed without.

また、本願第3発明に係る細胞破砕装置の温度制御方法は、有底筒状に形成された外筒内に内筒を所定間隔を隔てて配置した両筒間に冷媒が循環するように形成された冷却容器に、試料と破砕媒体とを投入した細長い破砕容器を前記内筒内に保持し、前記破砕容器の温度が所定温度以下となるように破砕容器に加える往復振動の振動速度又は駆動/停止を制御することを特徴とするものである。この温度制御方法により、破砕に伴って破砕容器が温度上昇したとき、破砕するための振動速度を低下させる制御あるいは振動を停止する制御により所定温度以上に温度上昇することが防止され、破砕容器に収容された試料は破砕に伴う温度上昇により変質を生じることなく破砕される。   Moreover, the temperature control method of the cell disruption apparatus according to the third invention of the present application is formed such that the refrigerant circulates between both cylinders in which the inner cylinder is arranged at a predetermined interval in the outer cylinder formed in the bottomed cylinder shape. The slender crushing container into which the sample and the crushing medium are put in the cooled container is held in the inner cylinder, and the vibration speed or driving of reciprocating vibration applied to the crushing container so that the temperature of the crushing container is below a predetermined temperature. / Stop is controlled. By this temperature control method, when the temperature of the crushing container rises due to crushing, it is possible to prevent the temperature from rising above a predetermined temperature by controlling to reduce the vibration speed for crushing or to stop the vibration. The stored sample is crushed without causing alteration due to the temperature rise accompanying crushing.

上記温度制御方法における破砕容器の温度は、冷却容器に供給される冷媒の温度と、冷却容器から排出される冷媒の温度との差、あるいは内筒と破砕容器との間に介在させた熱伝導液の温度、あるいは冷媒の温度から検出することができる。   The temperature of the crushing container in the above temperature control method is the difference between the temperature of the refrigerant supplied to the cooling container and the temperature of the refrigerant discharged from the cooling container, or heat conduction interposed between the inner cylinder and the crushing container. It can be detected from the temperature of the liquid or the temperature of the refrigerant.

本発明によれば、試料を収容した破砕容器は冷却容器に収容されて冷媒によって冷却されるので、破砕に伴う温度上昇や周囲温度の上昇にかかわらず温度上昇が抑制され、試料の熱による変質を生じさせることなく破砕を行うことができる。   According to the present invention, since the crushing container containing the sample is accommodated in the cooling container and cooled by the refrigerant, the temperature rise is suppressed regardless of the temperature rise accompanying the crushing or the ambient temperature rise, and the sample is altered by the heat of the sample. The crushing can be carried out without causing the.

以下、添付図面を参照して本発明の実施の形態について説明し、本発明の理解に供する。尚、以下に示す実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、従来技術と共通する構成要素には同一の符号を付している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention. In addition, the same reference numerals are given to components common to the prior art.

図1は、実施形態に係る細胞破砕装置1の全体構成を示すもので、外装体2内に配置されたケーシング29に防振コイル4を介して吊設されたベース板40に、モータ5aや減速機5bからなる駆動手段5が垂下状態に支持され、その出力軸が軸継手6を介してベース板40上に配設された軸受部7により鉛直な軸心回りに回転自在に支持された回転軸8に連結されている。詳細は後述するが、ケーシング29内には回転軸8に接続して破砕機能部50が配設されている。また、外装体2の上方に開口するケーシング29の開口部は開閉可能に扉9によって閉じられている。また、外装体2内には制御装置44や操作部45、温度制御部46(図5)が配設され、操作部45の外部に配置された操作パネル45aから当該細胞破砕装置1の運転を操作することができる。   FIG. 1 shows an overall configuration of a cell disruption apparatus 1 according to the embodiment. A motor 5a or a motor 5a is attached to a base plate 40 suspended from a casing 29 arranged in an exterior body 2 via a vibration isolation coil 4. The drive means 5 comprising the speed reducer 5b is supported in a suspended state, and its output shaft is supported by a bearing portion 7 disposed on the base plate 40 via a shaft joint 6 so as to be rotatable around a vertical axis. The rotating shaft 8 is connected. Although details will be described later, a crushing function unit 50 is disposed in the casing 29 so as to be connected to the rotary shaft 8. Moreover, the opening part of the casing 29 opened above the exterior body 2 is closed by the door 9 so that opening and closing is possible. In addition, a control device 44, an operation unit 45, and a temperature control unit 46 (FIG. 5) are disposed in the exterior body 2, and the operation of the cell disruption device 1 is performed from an operation panel 45a disposed outside the operation unit 45. Can be operated.

図2は、前記破砕機能部50の構成を断面図として示すもので、回転軸8の上部には、その軸心に対して軸心が角度θに傾斜した状態で傾斜軸体11が嵌合され、傾斜リング12を介して回転軸8の上端部に螺合したナット13にて押圧固定されている。傾斜軸体11の外周には軸受14を介して相対回転自在に環状体15が装着されている。前記環状体15の側面には磁石16が取り付けられ、この磁石16に対向するように対極磁石18がブラケット17に取り付けられている。磁石16と対極磁石18とは、異極が対向するようにして異極間吸引によって環状体15の回転を拘束する。磁石16と対極磁石18との間の対向間隔距離は、環状体15の振れ運動により変化するので、複数位置に磁石16及び対極磁石18を対向配置するのが好ましい。   FIG. 2 shows the structure of the crushing function unit 50 as a cross-sectional view. The inclined shaft body 11 is fitted to the upper portion of the rotating shaft 8 with the axis inclined at an angle θ relative to the axis. Then, it is pressed and fixed by a nut 13 screwed into the upper end portion of the rotary shaft 8 via the inclined ring 12. An annular body 15 is attached to the outer periphery of the inclined shaft body 11 via a bearing 14 so as to be relatively rotatable. A magnet 16 is attached to the side surface of the annular body 15, and a counter electrode magnet 18 is attached to the bracket 17 so as to face the magnet 16. The magnet 16 and the counter electrode magnet 18 constrain the rotation of the annular body 15 by different-polar attraction so that the different poles face each other. Since the facing distance between the magnet 16 and the counter magnet 18 changes due to the swinging motion of the annular body 15, it is preferable to dispose the magnet 16 and the counter magnet 18 at a plurality of positions.

前記環状体15には破砕容器30(図4)を保持する環状保持体20が着脱交換可能に取り付けられる。環状保持体20は破砕容器30のサイズ毎に複数種類が用意され、小さいサイズの破砕容器30の場合では円周上に多数を直接保持して同時に破砕処理を行うことができるが、本実施形態における環状保持体20では、比較的大きいサイズの破砕容器30を冷却しながら破砕処理できるように、冷却容器61を介して破砕容器30を保持するように構成されている。   An annular holding body 20 for holding the crushing container 30 (FIG. 4) is attached to the annular body 15 so as to be attachable / detachable. A plurality of types of annular holders 20 are prepared for each size of the crushing container 30. In the case of a crushing container 30 having a small size, a large number can be directly held on the circumference and simultaneously subjected to crushing treatment. The annular holder 20 is configured to hold the crushing container 30 via the cooling container 61 so that the crushing process can be performed while the crushing container 30 having a relatively large size is cooled.

図3に示すように、本実施形態に係る環状保持体20は、3箇所に冷却容器61が取り付けられ、各冷却容器61に冷媒を分配循環させる冷媒分配部59が取り付けられ、取付穴20aにより環状体15に取り付けられる。前記冷却容器61は、図4に示すように、外筒62の内側に所定間隔を隔てて内筒63が固定され、外筒62と内筒63との間に形成された閉鎖空間に冷媒を循環させ得るように外筒62に冷媒供給口64と冷媒排出口65とが設けられている。3箇所の各冷却容器61それぞれの冷媒供給口64及び冷媒排出口65は冷媒分配パイプ66によって冷媒分配部59に並列接続されている。   As shown in FIG. 3, the annular holder 20 according to the present embodiment has cooling containers 61 attached to three locations, and refrigerant distribution portions 59 that distribute and circulate the refrigerant to each cooling container 61. It is attached to the annular body 15. As shown in FIG. 4, the cooling container 61 has an inner cylinder 63 fixed inside the outer cylinder 62 at a predetermined interval, and refrigerant is supplied to a closed space formed between the outer cylinder 62 and the inner cylinder 63. A refrigerant supply port 64 and a refrigerant discharge port 65 are provided in the outer cylinder 62 so as to be circulated. The refrigerant supply port 64 and the refrigerant discharge port 65 of each of the three cooling containers 61 are connected in parallel to the refrigerant distribution unit 59 by a refrigerant distribution pipe 66.

前記冷媒分配部59から引き出された冷媒供給パイプ70a、冷媒排出パイプ70bは、図1、図2に示すように、ケーシング29の底面に取り付けられた中継部69に着脱可能に中継され、外装体2に取付けられた接続口80a、80bから図外の温度制御部46に接続されている。前記温度制御部46は、図5に示すように、冷媒を設定された所定温度に冷却する冷媒冷却装置46aと、冷媒を冷媒分配部59に供給する冷媒ポンプ46bと、中継部69に設けられた温度センサ67によって検出された冷媒の温度に基づいて冷媒温度が設定温度になるように制御する温度制御装置46cとを備えて構成され、操作部45から設定入力される冷却温度が得られるよう温度制御を実行する。   As shown in FIGS. 1 and 2, the refrigerant supply pipe 70 a and the refrigerant discharge pipe 70 b drawn from the refrigerant distribution unit 59 are detachably relayed to a relay unit 69 attached to the bottom surface of the casing 29, and the exterior body 2 are connected to a temperature control unit 46 (not shown) through connection ports 80a and 80b attached to the port 2. As shown in FIG. 5, the temperature control unit 46 is provided in a refrigerant cooling device 46 a that cools the refrigerant to a predetermined temperature, a refrigerant pump 46 b that supplies the refrigerant to the refrigerant distribution unit 59, and a relay unit 69. And a temperature control device 46c that controls the refrigerant temperature to be a set temperature based on the temperature of the refrigerant detected by the temperature sensor 67 so that the cooling temperature set and inputted from the operation unit 45 can be obtained. Perform temperature control.

温度制御部46から供給される冷媒は前記接続口80aから冷媒供給パイプ70a、中継部69を経て冷媒分配部59に送給され、冷媒分配部59で3分岐されて冷媒分配パイプ66から各冷却容器61の冷媒供給口64に供給される。冷却容器61で熱交換して温度上昇した冷媒は冷媒排出口65から冷媒分配部59、冷媒排出パイプ70b、中継部69を経て前記接続口80bから温度制御部46に戻されて冷媒冷却装置46aにより冷却されて再循環される。前記中継部69には冷媒供給パイプ70aとの接続部及び冷媒排出パイプ70bとの接続部にそれぞれ温度センサ67が設けられているので、供給側及び排出側の冷媒温度を検出することができ、検出された冷媒の温度差から冷却温度を制御することができる。温度制御方法については後述する。   The refrigerant supplied from the temperature control unit 46 is supplied from the connection port 80a to the refrigerant distribution unit 59 through the refrigerant supply pipe 70a and the relay unit 69, and is branched into three at the refrigerant distribution unit 59 and is cooled from the refrigerant distribution pipe 66. The refrigerant is supplied to the refrigerant supply port 64 of the container 61. The refrigerant whose temperature has been increased by exchanging heat in the cooling container 61 is returned from the refrigerant outlet 65 to the temperature controller 46 through the refrigerant distributor 59, the refrigerant outlet pipe 70b, and the relay 69, and is returned from the connection port 80b to the temperature controller 46a. Is cooled and recirculated. Since the relay unit 69 is provided with temperature sensors 67 at the connection part with the refrigerant supply pipe 70a and the connection part with the refrigerant discharge pipe 70b, respectively, the refrigerant temperature on the supply side and the discharge side can be detected. The cooling temperature can be controlled from the detected temperature difference of the refrigerant. The temperature control method will be described later.

冷却容器61の内筒63内には水又は不凍液からなる熱伝導液が注入され、その中に試料と破砕媒体とを投入した破砕容器30を収容して、冷却容器61の開口部はキャップ60によって閉じられる。   A heat conduction liquid made of water or antifreeze is injected into the inner cylinder 63 of the cooling container 61, and the crushing container 30 into which the sample and the crushing medium are put is accommodated therein. The opening of the cooling container 61 has a cap 60. Closed by.

上記破砕容器30は、図6(a)(b)に示すように、細長い円筒容器から成り、その開口部外周にねじ30aが形成され、開口部に蓋体31を螺合して密閉できるように構成されている。破砕容器30は、試料の材質や量に応じて2ml〜50mlの容積のものが用いられ、環状保持体20もこの破砕容器30の大きさに応じた冷却容器61が装着できるように構成される。   As shown in FIGS. 6 (a) and 6 (b), the crushing container 30 is formed of an elongated cylindrical container. A screw 30a is formed on the outer periphery of the opening, and the lid 31 can be screwed into the opening to be sealed. It is configured. The crushing container 30 has a capacity of 2 to 50 ml depending on the material and quantity of the sample, and the annular holder 20 is also configured so that a cooling container 61 corresponding to the size of the crushing container 30 can be mounted. .

また、破砕容器30内に試料とともに収容される破砕媒体32は、図7、図8に示すように、破砕容器30の内径Dより大きい長さLの単一部材にて構成されたものが使用でき、その一端部に破砕容器30の底部形状に対応して載頭円錐状又は載頭円球状の突出端部32aが形成されている。また、他端部は、蓋体31の内周の環状シール部31aと干渉したり、嵌まり込むことがないように小径部32bに形成されている。また、破砕媒体32の外径dは、破砕容器30の内径Dに対して2mm以下、内径dが小さい場合には1mm以下程度小さく設定されている。例えば、破砕容器30の容量が2mlの場合で、その内径Dは8mm、破砕媒体32の外径dは7mmに設定されている。また、図7(b)(c)及び図8(b)(c)に示すように、破砕媒体32の突出端部32aには必要に応じて放射状又は螺旋状に1又は複数の溝34が形成されたものを用いると、植物繊維などのように破砕され難い試料を切断しながら破砕することができる。   Further, as shown in FIGS. 7 and 8, the crushing medium 32 accommodated together with the sample in the crushing container 30 is composed of a single member having a length L larger than the inner diameter D of the crushing container 30. In addition, a protruding conical end portion 32a having a conical shape or a circular shape corresponding to the bottom shape of the crushing container 30 is formed at one end thereof. The other end portion is formed in the small diameter portion 32b so as not to interfere with or fit into the annular seal portion 31a on the inner periphery of the lid 31. Further, the outer diameter d of the crushing medium 32 is set to be 2 mm or less with respect to the inner diameter D of the crushing container 30, and about 1 mm or less when the inner diameter d is small. For example, when the capacity of the crushing container 30 is 2 ml, the inner diameter D is set to 8 mm, and the outer diameter d of the crushing medium 32 is set to 7 mm. Further, as shown in FIGS. 7B, 7C and 8B, 8C, one or more grooves 34 are radially or spirally formed in the protruding end portion 32a of the crushing medium 32 as necessary. When the formed material is used, it can be crushed while cutting a sample that is difficult to be crushed, such as a plant fiber.

被破砕物が微生物の場合においては、破砕媒体32は上記のごとき単一部材のものでなく、グラスビーズ、ジルコニアビーズなど多数小球を用いるのが好適で、微生物とビーズとが効率よく混合されて良好な破砕を得ることができる。   When the material to be crushed is a microorganism, the crushing medium 32 is not a single member as described above, and it is preferable to use many small spheres such as glass beads and zirconia beads, and the microorganisms and beads are efficiently mixed. And good crushing can be obtained.

環状保持体20に試料と破砕媒体32とを収容した破砕容器30を装着して細胞破砕装置1を運転させ、回転軸8を例えば1200〜2800r/minで高速回転させると、回転する傾斜軸体11に相対回転自在に外嵌された環状体15は傾斜軸体11と共に回転しようとするが、磁石16及び対極磁石18によって共回転が拘束されているので、回転軸8が1回転する毎に環状体15は軸心方向両側に振れ運動する。   When the cell disruption apparatus 1 is operated by attaching the crushing container 30 containing the sample and the crushing medium 32 to the annular holder 20, and the rotating shaft 8 is rotated at a high speed of, for example, 1200 to 2800 r / min, the inclined shaft body rotates. The annular body 15 that is externally fitted to the rotary shaft 11 tries to rotate together with the inclined shaft body 11. However, since the corotation is constrained by the magnet 16 and the counter electrode magnet 18, every time the rotary shaft 8 rotates once. The annular body 15 swings in both axial directions.

このとき、環状体15の任意の点は、図9(a)(b)に示すように、8の字状に移動することになる。即ち、図9(a)に実線で示すように、環状体15が紙面の上下方向に傾斜した状態を基準位置として、そのときの環状体15の外周上におけるa点位置の挙動を見てみると、実線位置から回転軸8が矢印方向に90度回転すると、環状体15は仮想線で示すように紙面の表裏方向に傾斜した状態に移行し、その間a点に対応していた位置は経路bを経てc点に移動する。回転軸8が更に90度回転すると、環状体15は図9(b)に実線で示すように、紙面の上下方向で且つ逆向きに傾斜した状態に移行し、a点に対応していた位置はc点から経路dを経て元のa点に戻る。更に回転軸8が90度回転すると、環状体15は仮想線で示すように紙面の表裏方向に逆向きに傾斜した状態に移行し、a点に対応していた位置は経路eを経てf点に移動し、更に回転軸8が元の回転位置まで90度回転すると、a点に対応していた位置はf点から経路gを経て元のa点に戻る。   At this time, an arbitrary point of the annular body 15 moves in the shape of figure 8, as shown in FIGS. That is, as indicated by a solid line in FIG. 9A, the state of the annular body 15 inclined in the vertical direction on the paper surface is taken as a reference position, and the behavior of the point a position on the outer periphery of the annular body 15 at that time is examined. When the rotary shaft 8 rotates 90 degrees in the direction of the arrow from the solid line position, the annular body 15 shifts to a state inclined in the front and back direction of the paper surface as indicated by the phantom line, while the position corresponding to the point a is the path Move to point c via b. When the rotary shaft 8 further rotates 90 degrees, the annular body 15 shifts to a state inclined in the vertical direction and in the opposite direction on the paper surface as shown by the solid line in FIG. 9B, and the position corresponding to the point a. Returns from the point c through the path d to the original point a. When the rotating shaft 8 further rotates 90 degrees, the annular body 15 shifts to a state inclined in the opposite direction to the front and back of the paper surface as shown by the phantom line, and the position corresponding to the point a passes through the path e to the point f. When the rotary shaft 8 further rotates 90 degrees to the original rotational position, the position corresponding to the point a returns from the point f through the path g to the original point a.

従って、環状体15に取り付けられた環状保持体20に保持された破砕容器30は、回転軸8の回転に伴って8の字状の振動形態により振動が加えられ、破砕容器30内では試料に破砕媒体32が効果的に衝突し、その衝撃によって試料は速やかに且つ均一に細胞破砕される。特に、図7及び図8に示した破砕容器30の底部形状に対応する先端形状を備えた破砕媒体32では、破砕容器30の軸心にほぼ沿った姿勢を保持したまま相対回転しながら破砕容器30の底部に衝突する動きを繰り返し、破砕容器30が乳鉢、破砕媒体32が乳棒のように作用するので、試料が大型の植物細胞や動物組織などであっても効率的に破砕がなされる。   Accordingly, the crushing container 30 held by the annular holding body 20 attached to the annular body 15 is vibrated in the shape of an 8-shaped vibration with the rotation of the rotary shaft 8, and the sample is contained in the crushing container 30. The crushing medium 32 collides effectively, and the sample is crushed quickly and uniformly by the impact. Particularly, in the crushing medium 32 having a tip shape corresponding to the bottom shape of the crushing container 30 shown in FIGS. 7 and 8, the crushing container is rotated while being relatively rotated while maintaining the posture substantially along the axis of the crushing container 30. Since the crushing container 30 acts like a mortar and the crushing medium 32 acts like a pestle by repeating the movement of colliding with the bottom of the sample 30, even if the sample is a large plant cell or animal tissue, crushing is performed efficiently.

破砕が実施されると破砕媒体32の摩擦や衝突、更には装置の稼動に伴う温度上昇などにより試料に温度上昇が生じる。温度上昇が問題とならない試料の場合は必要ないが、温度上昇により変質が生じる恐れがある試料の場合には本実施形態の構成に示すように、冷却容器61に破砕容器30を収容して試料を一定の温度条件下で破砕することが必要となる。   When crushing is performed, the temperature of the sample rises due to friction and collision of the crushing medium 32, and further due to temperature rise accompanying operation of the apparatus. This is not necessary in the case of a sample in which temperature rise does not cause a problem. However, in the case of a sample that may be altered due to temperature rise, as shown in the configuration of this embodiment, the crushing container 30 is accommodated in a cooling container 61 and the sample is stored. Must be crushed under a certain temperature condition.

冷却容器61には冷媒供給口64から供給され、冷媒排出口65から排出されるように冷媒が循環するので、冷媒の温度を調節することにより破砕容器30は内筒63及び内筒63に収容された純水を通じて冷却されるので、破砕容器30は一定の温度に維持することができ、試料の温度上昇は抑制される。前記冷媒として、ここでは濃度30%のエタノールを用いており、純水を通じて内筒63に伝熱される被破砕容器30の熱は効率よく熱交換される。   Since the refrigerant circulates so as to be supplied to the cooling container 61 from the refrigerant supply port 64 and discharged from the refrigerant discharge port 65, the crushing container 30 is accommodated in the inner cylinder 63 and the inner cylinder 63 by adjusting the temperature of the refrigerant. Since it is cooled through the purified water, the crushing container 30 can be maintained at a constant temperature, and the temperature rise of the sample is suppressed. Here, ethanol having a concentration of 30% is used as the refrigerant, and the heat of the container 30 to be transferred to the inner cylinder 63 through pure water is efficiently exchanged.

破砕容器30の冷却温度は、動物組織などの細胞破砕を行う場合、蛋白質の失活を防止するために4℃以下の温度条件が得られるよう制御することが望ましい。上記構成における温度制御は、冷却容器61に供給及び排出される冷媒の温度を検出する温度センサ67による検出出力に応じて温度上昇の原因となっている細胞破砕装置1の運転を制御する方法を適用することができる。   It is desirable to control the cooling temperature of the crushing container 30 so as to obtain a temperature condition of 4 ° C. or lower in order to prevent protein inactivation when crushing cells such as animal tissues. The temperature control in the above configuration is a method for controlling the operation of the cell crushing apparatus 1 that causes the temperature rise according to the detection output by the temperature sensor 67 that detects the temperature of the refrigerant supplied to and discharged from the cooling container 61. Can be applied.

操作部45からの設定入力により冷媒冷却装置46aによる冷媒の冷却温度を0℃に設定し、回転軸8の回転速度を2500r/minに設定して細胞破砕装置1の運転を開始すると、破砕容器30内の破砕媒体32の動きにより試料が破砕されることに伴う発熱や装置の温度上昇に伴う周囲温度の上昇によって破砕容器30内の温度は上昇する。この温度上昇を温度センサ67によって検出して、所定の上限温度(例えば、4℃)が検出されたとき、細胞破砕装置1の運転を停止する。運転が停止されると破砕容器30内の温度は低下してくるので、所定の下限温度(例えば、2℃)が検出されたとき、再び細胞破砕装置1の運転を開始する。この制御により破砕容器30内は4℃以下に維持され、試料が蛋白質を含むものである場合でも蛋白質の失活を生じさせることなく破砕を実施することができる。   When the cooling temperature of the refrigerant by the refrigerant cooling device 46a is set to 0 ° C. by setting input from the operation unit 45 and the rotation speed of the rotary shaft 8 is set to 2500 r / min, the operation of the cell crushing device 1 is started. The temperature in the crushing container 30 rises due to the heat generated when the sample is crushed by the movement of the crushing medium 32 in the 30 and the increase in the ambient temperature accompanying the temperature rise of the apparatus. When this temperature rise is detected by the temperature sensor 67 and a predetermined upper limit temperature (for example, 4 ° C.) is detected, the operation of the cell disruption apparatus 1 is stopped. When the operation is stopped, the temperature in the crushing container 30 is lowered. Therefore, when a predetermined lower limit temperature (for example, 2 ° C.) is detected, the operation of the cell crushing apparatus 1 is started again. By this control, the inside of the crushing container 30 is maintained at 4 ° C. or lower, and crushing can be carried out without causing protein deactivation even when the sample contains protein.

細胞破砕装置1の運転を制御する場合、上記のように運転をON/OFFするのでなく、温度上昇が所定の上限温度に達したとき、回転軸8の回転速度を設定回転数から低下させて破砕に伴う温度上昇を抑え、下限温度にまで温度低下したとき回転軸8の回転速度を設定回転速度に戻すように制御することもできる。   When controlling the operation of the cell disruption apparatus 1, instead of turning the operation on / off as described above, when the temperature rise reaches a predetermined upper limit temperature, the rotational speed of the rotary shaft 8 is decreased from the set rotational speed. It is also possible to control so that the temperature increase due to crushing is suppressed and the rotation speed of the rotary shaft 8 is returned to the set rotation speed when the temperature is lowered to the lower limit temperature.

また、温度センサ67によって検出される冷媒温度の供給側と排出側との温度差から破砕容器30の温度上昇を検知し、冷媒冷却装置46aにより供給する冷媒の温度を下げるように制御することもできる。   Further, the temperature rise of the crushing container 30 is detected from the temperature difference between the supply side and the discharge side of the refrigerant temperature detected by the temperature sensor 67, and control is performed so as to lower the temperature of the refrigerant supplied by the refrigerant cooling device 46a. it can.

また、破砕容器30内の温度を検出する方法として、内筒63に温度センサを設けて内筒63と破砕容器30との間に介在する熱伝導液の温度を検出する方法を適用することもできる。   In addition, as a method for detecting the temperature in the crushing container 30, it is also possible to apply a method in which a temperature sensor is provided in the inner cylinder 63 to detect the temperature of the heat conduction liquid interposed between the inner cylinder 63 and the crushing container 30. it can.

以上説明した構成において、冷却容器61に供給される冷媒は破砕容器30を間接的に冷却し、冷媒の循環経路と破砕容器30とは隔離された状態になるように構成しているので、破砕容器30に試料の一部が付着していたり、万が一破砕容器30から試料が漏れたりした場合でも冷媒を通じて外部に飛散することがない。細胞破砕する試料が例えばBSEの検体や病原菌を含むものであっても、それらが外部に漏れることがない。   In the configuration described above, the refrigerant supplied to the cooling container 61 indirectly cools the crushing container 30 so that the refrigerant circulation path and the crushing container 30 are separated from each other. Even if a part of the sample adheres to the container 30 or the sample leaks from the crushing container 30, it does not scatter to the outside through the refrigerant. Even if the sample for cell disruption contains, for example, a BSE specimen or pathogen, they do not leak to the outside.

また、上記構成になる細胞破砕装置1は、環状体15の上部開口部分は封止キャップ43によって閉じられ、環状体15と軸受部7との間はゴム筒27によって被覆され、更にはケーシング29の底面に回転軸8及び軸受部7を通すために形成された開口部は遮蔽ゴム28によって閉じられているので、ケーシング29の中に位置する軸受14などの可動部分は全て被覆される。従って、ケーシング29の内部は蒸気洗浄、薬品洗浄等によって洗浄することができる。破砕処理の繰り返しによってケーシング29の内部が塵埃等によって汚れることは勿論のこと、試料を飛散させてしまうこともあり得る。特に試料が有害なものであったり、病原菌などを含むものであった場合には、ケーシング29の内部を滅菌消毒して洗浄する必要がある。このときにも蒸気や薬品類が噴射されても、可動部分に侵入することはなく、完全に洗浄することができる。また、洗浄時にケーシング29の内部に溜まった液体は、図1、図2に示すように、ケーシング29の底面に設けられた排水栓53を開くと、液体は排水ホース54から外部に排出することができる。   In the cell disruption apparatus 1 configured as described above, the upper opening portion of the annular body 15 is closed by the sealing cap 43, the space between the annular body 15 and the bearing portion 7 is covered by the rubber cylinder 27, and further the casing 29. Since the opening formed for passing the rotating shaft 8 and the bearing portion 7 on the bottom surface of the shaft is closed by the shielding rubber 28, all the movable parts such as the bearing 14 located in the casing 29 are covered. Therefore, the inside of the casing 29 can be cleaned by steam cleaning, chemical cleaning, or the like. Of course, the inside of the casing 29 may be contaminated by dust or the like due to repetition of the crushing process, and the sample may be scattered. In particular, when the sample is harmful or contains pathogenic bacteria, the inside of the casing 29 needs to be sterilized and cleaned. Even at this time, even if steam or chemicals are injected, the movable part does not enter and can be completely cleaned. Further, as shown in FIGS. 1 and 2, the liquid accumulated in the casing 29 at the time of cleaning is discharged from the drain hose 54 to the outside when the drain plug 53 provided on the bottom surface of the casing 29 is opened. Can do.

以上説明した通り本発明によれば、破砕容器を一定の温度状態に維持して破砕することができるので、細胞破砕する試料が温度上昇により変質等を生じるものであっても所要の温度条件下で破砕することを可能にする細胞破砕装置を提供することができる。   As described above, according to the present invention, since the crushing container can be maintained and maintained in a constant temperature state, even if the sample to be crushed is altered due to temperature rise, the required temperature condition is satisfied. It is possible to provide a cell crushing apparatus that enables crushing with a cell.

実施形態に係る細胞破砕装置の全体構成を示す側面図。The side view which shows the whole structure of the cell crushing apparatus which concerns on embodiment. 同上構成における破砕機能部の構成を示す断面図。Sectional drawing which shows the structure of the crushing function part in a structure same as the above. 環状保持体の構成を示す(a)は平面図、(b)は側面図。(A) which shows the structure of a cyclic | annular holding body is a top view, (b) is a side view. 冷却容器の構成を示す断面図。Sectional drawing which shows the structure of a cooling container. 冷却構成を示すブロック図。The block diagram which shows a cooling structure. 破砕容器の構成を示す断面図。Sectional drawing which shows the structure of a crushing container. 破砕媒体の構成を示す側面図。The side view which shows the structure of a crushing medium. 破砕媒体の構成を示す側面図。The side view which shows the structure of a crushing medium. 環状体の運動を説明する説明図。Explanatory drawing explaining a motion of an annular body. 従来技術に係る破砕装置の要部構成を示す断面図。Sectional drawing which shows the principal part structure of the crushing apparatus which concerns on a prior art.

符号の説明Explanation of symbols

1 細胞破砕装置
8 回転軸
11 傾斜軸体
15 環状体
16 磁石(回転拘束手段)
18 対極磁石(回転拘束手段)
20 環状保持体
30 破砕容器
31 蓋体
32 破砕媒体
46 温度制御部
50 破砕機能部
59 冷媒分配部
61 冷却容器
62 外筒
63 内筒
64 冷媒供給口
65 冷媒排出口
67 温度センサ
DESCRIPTION OF SYMBOLS 1 Cell crusher 8 Rotating shaft 11 Inclined shaft 15 Ring body 16 Magnet (rotation restraint means)
18 Counter-pole magnet (rotation restraint means)
20 annular holder 30 crushing vessel 31 lid 32 crushing medium 46 temperature control unit 50 crushing function unit 59 refrigerant distribution unit 61 cooling vessel 62 outer cylinder 63 inner cylinder 64 refrigerant supply port 65 refrigerant discharge port 67 temperature sensor

Claims (12)

有底筒状に形成された外筒内に内筒を所定間隔を隔てて配置した両筒間に冷媒が循環するように形成された冷却容器に、試料と破砕媒体とを投入した細長い破砕容器を前記内筒内に保持し、前記破砕容器にその軸方向及びそれと交差する方向に往復振動が加わるように振動させることを特徴とする細胞破砕装置。 An elongated crushing container in which a sample and a crushing medium are put into a cooling container formed so that a refrigerant circulates between both cylinders in which an inner cylinder is arranged at a predetermined interval in an outer cylinder formed into a bottomed cylinder. Is held in the inner cylinder, and the crushing container is vibrated so that a reciprocating vibration is applied in an axial direction and a direction crossing the axial direction. 内筒は、破砕容器の外面と所定間隔を隔てる内径に形成され、破砕容器と熱伝導液を介して接触するように構成されてなる請求項1に記載の細胞破砕装置。 The cell disruption apparatus according to claim 1, wherein the inner cylinder is formed to have an inner diameter that is spaced from the outer surface of the disruption container by a predetermined distance, and is configured to come into contact with the disruption container via the heat conduction liquid. 冷却容器は円環状に形成された環状保持体の円周上に複数個が固定され、温度制御手段から供給される冷媒を各冷却容器に並列供給する冷媒分配部が前記環状保持体上に設けられてなる請求項1又は2に記載の細胞破砕装置。 A plurality of cooling containers are fixed on the circumference of an annular holding body formed in an annular shape, and a refrigerant distribution portion for supplying the coolant supplied from the temperature control means in parallel to each cooling container is provided on the annular holding body. The cell disruption device according to claim 1 or 2. 冷媒の温度を検出する温度検出手段と、この温度検出手段による検出温度に基づいて冷媒の温度又は循環を制御する温度制御手段とが設けられてなる請求項1〜3いずれか一項に記載の細胞破砕装置。 The temperature detection means which detects the temperature of a refrigerant | coolant, and the temperature control means which controls the temperature or circulation of a refrigerant | coolant based on the temperature detected by this temperature detection means are provided. Cell disruption device. 回転駆動される回転軸に、その軸心に対して軸心の傾斜した傾斜軸部を設け、この傾斜軸部に環状体を相対回転自在に外嵌させると共に、この環状体の回転を拘束する回転拘束手段を設け、前記環状体に冷却容器を保持した環状保持体が取り付けられてなる請求項1〜4いずれか一項に記載の細胞破砕装置。 A rotary shaft that is rotationally driven is provided with an inclined shaft portion that is inclined with respect to the shaft center, and an annular body is fitted on the inclined shaft portion so as to be relatively rotatable, and the rotation of the annular body is restricted. The cell disruption device according to any one of claims 1 to 4, wherein a rotation restraining means is provided, and an annular holding body holding a cooling container is attached to the annular body. 冷媒は、エチレングリコール又はエタノール又はメタノールの水溶液である請求項1〜5いずれか一項に記載の細胞破砕装置。 The cell disruption apparatus according to any one of claims 1 to 5, wherein the refrigerant is an aqueous solution of ethylene glycol, ethanol, or methanol. 熱伝導液は、水又は不凍液である請求項2に記載の細胞破砕装置。 The cell disruption apparatus according to claim 2, wherein the heat conduction liquid is water or an antifreeze liquid. 有底筒状に形成された外筒内に内筒を所定間隔を隔てて配置した両筒間に冷媒が循環するように形成された冷却容器に、試料と破砕媒体とを投入した細長い破砕容器を前記内筒内に保持し、前記破砕容器の軸方向及びそれと交差する方向に往復振動が加わるように前記冷却容器を振動させると共に、前記破砕容器内の温度が所定温度以下となるように冷却することを特徴とする細胞破砕装置の温度制御方法。 An elongated crushing container in which a sample and a crushing medium are put into a cooling container formed so that a refrigerant circulates between both cylinders in which an inner cylinder is arranged at a predetermined interval in an outer cylinder formed into a bottomed cylinder. Is held in the inner cylinder, and the cooling container is vibrated so that reciprocal vibration is applied in the axial direction of the crushing container and in a direction crossing the axial direction, and is cooled so that the temperature in the crushing container is equal to or lower than a predetermined temperature. A method for controlling the temperature of the cell disruption apparatus. 有底筒状に形成された外筒内に内筒を所定間隔を隔てて配置した両筒間に冷媒が循環するように形成された冷却容器に、試料と破砕媒体とを投入した細長い破砕容器を前記内筒内に保持し、前記破砕容器の温度が所定温度以下となるように破砕容器に加える往復振動の振動速度又は駆動/停止を制御することを特徴とする細胞破砕装置の温度制御方法。 An elongated crushing container in which a sample and a crushing medium are put into a cooling container formed so that a refrigerant circulates between both cylinders in which an inner cylinder is arranged at a predetermined interval in an outer cylinder formed into a bottomed cylinder. Temperature control method for cell crushing apparatus, characterized in that the vibration speed or driving / stopping of reciprocating vibration applied to the crushing container is controlled so that the temperature of the crushing container is below a predetermined temperature. . 破砕容器の温度は、冷却容器に供給される冷媒の温度と、冷却容器から排出される冷媒の温度との差から検出する請求項8又は9に記載の細胞破砕装置の温度制御方法。 The temperature control method for a cell disruption device according to claim 8 or 9, wherein the temperature of the disruption container is detected from a difference between a temperature of the refrigerant supplied to the cooling container and a temperature of the refrigerant discharged from the cooling container. 破砕容器の温度は、内筒と破砕容器との間に介在させた熱伝導液の温度を検出する請求項8又は9に記載の細胞破砕装置の温度制御方法。 The temperature control method of the cell crushing apparatus of Claim 8 or 9 which detects the temperature of the heat conduction liquid interposed between the inner cylinder and the crushing container as the temperature of the crushing container. 破砕容器の温度は、冷媒の温度から検出する請求項8又は9に記載の細胞破砕装置の温度制御方法。 The temperature control method for a cell disruption device according to claim 8 or 9, wherein the temperature of the disruption container is detected from the temperature of the refrigerant.
JP2004226605A 2004-08-03 2004-08-03 Cell disruption apparatus and temperature control method thereof Active JP4651987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226605A JP4651987B2 (en) 2004-08-03 2004-08-03 Cell disruption apparatus and temperature control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226605A JP4651987B2 (en) 2004-08-03 2004-08-03 Cell disruption apparatus and temperature control method thereof

Publications (2)

Publication Number Publication Date
JP2006042657A true JP2006042657A (en) 2006-02-16
JP4651987B2 JP4651987B2 (en) 2011-03-16

Family

ID=36021908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226605A Active JP4651987B2 (en) 2004-08-03 2004-08-03 Cell disruption apparatus and temperature control method thereof

Country Status (1)

Country Link
JP (1) JP4651987B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540853A (en) * 2006-06-30 2009-11-26 ベルタン・テクノロジーズ Biological sample crusher
CN102854049A (en) * 2012-10-15 2013-01-02 杭州遂真生物技术有限公司 Crushing-centrifuging method and device for sample
CN107988061A (en) * 2017-12-28 2018-05-04 广州聚能纳米生物科技股份有限公司 A kind of cell breaking plant
WO2020014946A1 (en) * 2018-07-16 2020-01-23 东北大学 Biodegradable bacterium isolation and culture instrument for industrial malodorous sludge and use method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101644054B1 (en) 2014-09-24 2016-07-29 주식회사 노블바이오 Nucleic acids and proteins separation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202314A (en) * 1999-01-18 2000-07-25 Yasui Kikai Kk Cell-crushing apparatus
JP2001178444A (en) * 1999-10-13 2001-07-03 Yasui Kikai Kk Method for crushing and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202314A (en) * 1999-01-18 2000-07-25 Yasui Kikai Kk Cell-crushing apparatus
JP2001178444A (en) * 1999-10-13 2001-07-03 Yasui Kikai Kk Method for crushing and apparatus therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540853A (en) * 2006-06-30 2009-11-26 ベルタン・テクノロジーズ Biological sample crusher
KR101430565B1 (en) * 2006-06-30 2014-08-14 베르뗑 떼끄놀로지 Apparatus for grinding biological samples
CN102854049A (en) * 2012-10-15 2013-01-02 杭州遂真生物技术有限公司 Crushing-centrifuging method and device for sample
CN102854049B (en) * 2012-10-15 2015-06-24 杭州遂真生物技术有限公司 Crushing-centrifuging method and device for sample
CN107988061A (en) * 2017-12-28 2018-05-04 广州聚能纳米生物科技股份有限公司 A kind of cell breaking plant
WO2020014946A1 (en) * 2018-07-16 2020-01-23 东北大学 Biodegradable bacterium isolation and culture instrument for industrial malodorous sludge and use method thereof

Also Published As

Publication number Publication date
JP4651987B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
US5399013A (en) Mixing device
JP4903419B2 (en) Crushing method, crushing apparatus and crushing processing apparatus using the same
JP2007203244A (en) Crushing and agitating method
JP4651987B2 (en) Cell disruption apparatus and temperature control method thereof
CN105102110B (en) Equipment for performing sonication
US20230266208A1 (en) Direct drive tissue homogenizer with debris separation capability and the method of preparing a tissue sample
WO2021258267A1 (en) Incubator with orbital shaker
BR202016006451Y1 (en) CLEANING SYSTEM FOR MIXING CONTAINER WITH SHAKER ORGAN
US5626824A (en) Autoclave
JP4373391B2 (en) Sample crushing tool
JP3793472B2 (en) Crusher
CN101883733A (en) Device for stoppering containers with control of contamination
JP3571950B2 (en) Cell crushing device and cell crushing method
JP2008136954A (en) Magnetic crushing machine
CN110004030A (en) A kind of microbiological culture media subpackage apparatus
JP2001178444A (en) Method for crushing and apparatus therefor
JP2010194397A (en) Sample crushing implement
JP3732137B2 (en) Crusher
JP2004313966A (en) Cell disintegrator
JP2007229701A (en) Crushing method and crushing apparatus
JP4773072B2 (en) Cell disruption device
KR101335339B1 (en) Apparatus for pulverization with reciprocating mill
JP4100567B2 (en) Crusher
JP5351242B2 (en) Crusher
JP5002607B2 (en) Sample crusher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Ref document number: 4651987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250