JP2006040603A - Forming method of conductive film - Google Patents

Forming method of conductive film Download PDF

Info

Publication number
JP2006040603A
JP2006040603A JP2004215429A JP2004215429A JP2006040603A JP 2006040603 A JP2006040603 A JP 2006040603A JP 2004215429 A JP2004215429 A JP 2004215429A JP 2004215429 A JP2004215429 A JP 2004215429A JP 2006040603 A JP2006040603 A JP 2006040603A
Authority
JP
Japan
Prior art keywords
silver
conductive composition
conductive
temperature
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004215429A
Other languages
Japanese (ja)
Other versions
JP4628718B2 (en
Inventor
Akinobu Ono
朗伸 小野
Nahoko Igarashi
奈保子 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004215429A priority Critical patent/JP4628718B2/en
Publication of JP2006040603A publication Critical patent/JP2006040603A/en
Application granted granted Critical
Publication of JP4628718B2 publication Critical patent/JP4628718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forming method of a conductive film for forming a high-conductivity conductive film with a conductive composition containing a silver particle precursor. <P>SOLUTION: In a forming method of the conductive film composed of a process A of coating a conductive composition containing a silver particle precursor made of silver oxide particles and/or tertiary aliphatic silver salt and a solvent, and process B of forming the conductive film by heating the conductive composition, the conductive composition is heated so that a mass of the solvent contained in the conductive composition is to be 3% of that of the silver oxide precursor when a temperature of the conductive composition reaches 148°C, in the process B. Or, the conductive composition is heated with far infrared rays in the process B. Further in the process B, the conductive composition is heated with hot air further, after it is heated with the far infrared rays. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銀粒子の前駆体(以下、「銀粒子前駆体」と略す。)を含む導電性ペースト、導電性塗料、導電性接着剤などの導電性組成物を用いて、導電性被膜を形成する導電性被膜の形成方法に関するものである。   In the present invention, a conductive coating film is formed using a conductive composition such as a conductive paste, a conductive paint, or a conductive adhesive containing a silver particle precursor (hereinafter abbreviated as “silver particle precursor”). The present invention relates to a method for forming a conductive film to be formed.

従来、ポリエステルフィルムなどの合成樹脂基板上に、銀粒子などの導電性粒子にアクリル樹脂、酢酸ビニル樹脂などの熱可塑性樹脂、エポキシ樹脂、ポリエステル樹脂などの熱硬化性樹脂などからなるバインダ、有機溶剤、硬化剤、触媒などを添加し混合して得られる銀ペーストなどの導電性組成物を、スクリーン印刷などの印刷法によって、所定の回路パターンとなるように印刷し、これらを加熱して導体回路をなす導電性被膜を形成し、回路基板を製造する方法がある(例えば、非特許文献1参照。)。   Conventionally, a binder made of a synthetic resin substrate such as a polyester film, a conductive particle such as a silver particle, a thermoplastic resin such as an acrylic resin or a vinyl acetate resin, a thermosetting resin such as an epoxy resin or a polyester resin, or an organic solvent. A conductive composition such as a silver paste obtained by adding a curing agent, a catalyst, etc. and mixing them is printed by a printing method such as screen printing so as to form a predetermined circuit pattern, and these are heated to form a conductor circuit. There is a method of manufacturing a circuit board by forming a conductive film forming the above (for example, see Non-Patent Document 1).

このようにして形成された導電性被膜では、銀粒子同士の相互接触により導電性を確保しているので、銀粒子間の接触抵抗が大きいため、導体回路の抵抗値が高くなるという問題があった。   In the conductive film formed in this way, the conductivity is ensured by mutual contact between the silver particles, and therefore the contact resistance between the silver particles is large, so that there is a problem that the resistance value of the conductor circuit becomes high. It was.

そこで、このような問題を解決するために、合成樹脂基板に適用可能で、かつ、高導電性の導体回路を形成可能な導電性ペーストが開発された。この導電性ペーストは、酸化銀粒子や三級脂肪酸銀塩などの銀粒子前駆体、溶剤、セルロース誘導体などから構成されている。この導電性ペーストを合成樹脂基板上に印刷して、回路パターンを形成した後、これらを150℃で加熱することにより、酸化銀粒子が還元され、三級脂肪酸銀塩が分解して銀粒子が生成すると同時に、この銀粒子が相互に融着するため、接触抵抗が極めて小さく、比抵抗が8×10−6Ωcmの高導電性の導体回路が得られる(例えば、特許文献1参照。)。 Therefore, in order to solve such a problem, a conductive paste that can be applied to a synthetic resin substrate and can form a highly conductive conductor circuit has been developed. This conductive paste is composed of silver particle precursors such as silver oxide particles and tertiary fatty acid silver salts, solvents, cellulose derivatives and the like. After this conductive paste is printed on a synthetic resin substrate to form a circuit pattern, these are heated at 150 ° C., whereby the silver oxide particles are reduced, and the tertiary fatty acid silver salt is decomposed to form silver particles. Simultaneously with the formation, the silver particles are fused to each other, so that a highly conductive conductor circuit having a very low contact resistance and a specific resistance of 8 × 10 −6 Ωcm can be obtained (for example, see Patent Document 1).

しかしながら、この導電性ペーストにより導体回路を形成する場合、導電性ペーストを加熱するためのオーブンなどの加熱手段の加熱方式によっては、得られる導体回路の導電性が変化するという問題があった。実験室などで用いられる小型の熱風循環型オーブンにより、この導電性ペーストを加熱すると、問題なく高導電性の導体回路を形成することができる。ところが、工場などで用いられる大型の熱風循環型オーブンにより、この導電性ペーストを加熱すると、比抵抗の大きな導体回路が形成される。この原因の1つとしては、大型の熱風循環型オーブンを用いると、導電性ペーストの温度が、酸化銀粒子が還元され、三級脂肪酸銀塩が分解して銀粒子が生成する温度である150℃に達するまでに30分程度かかるため、この間に導電性ペーストに含まれる溶剤が揮発して、生成した銀粒子が相互に融着し難いということが挙げられる。
特開2003−308730号公報
However, when a conductor circuit is formed from this conductive paste, there is a problem that the conductivity of the obtained conductor circuit changes depending on the heating method of a heating means such as an oven for heating the conductive paste. When this conductive paste is heated by a small hot-air circulating oven used in a laboratory or the like, a highly conductive conductor circuit can be formed without any problem. However, when this conductive paste is heated by a large hot-air circulating oven used in a factory or the like, a conductor circuit having a large specific resistance is formed. One reason for this is that when a large hot-air circulating oven is used, the temperature of the conductive paste is the temperature at which silver oxide particles are reduced and the tertiary fatty acid silver salt is decomposed to produce silver particles 150. Since it takes about 30 minutes to reach 0 ° C., the solvent contained in the conductive paste volatilizes during this period, and the generated silver particles are difficult to fuse with each other.
JP 2003-308730 A

本発明は、前記事情に鑑みてなされたもので、銀粒子前駆体を含む導電性組成物により、高導電性の導電性被膜を形成する導電性被膜の形成方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the formation method of the conductive film which forms a highly conductive conductive film with the conductive composition containing a silver particle precursor. .

本発明は、上記課題を解決するために、酸化銀粒子および/または三級脂肪酸銀塩からなる銀粒子前駆体と、溶剤とを含む導電性組成物を塗布する工程Aと、該工程Aの後、前記導電性組成物を加熱することにより導電性被膜を形成する工程Bとを備えた導電性被膜の形成方法であって、前記工程Bにおいて、前記導電性組成物の温度が148℃に達した際に、前記導電性組成物に含まれる溶剤の質量が前記銀粒子前駆体の質量の3%以上であるように、導電性組成物を加熱する導電性被膜の形成方法を提供する。   In order to solve the above-mentioned problems, the present invention provides a process A for applying a conductive composition containing a silver particle precursor composed of silver oxide particles and / or a tertiary fatty acid silver salt, and a solvent; And forming a conductive film by heating the conductive composition, wherein the conductive composition is formed at a temperature of 148 ° C. When it reaches | attains, the formation method of the electroconductive film which heats an electroconductive composition is provided so that the mass of the solvent contained in the said electroconductive composition may be 3% or more of the mass of the said silver particle precursor.

本発明は、酸化銀粒子および/または三級脂肪酸銀塩からなる銀粒子前駆体と、溶剤とを含む導電性組成物を塗布する工程Aと、該工程Aの後、前記導電性組成物を加熱することにより導電性被膜を形成する工程Bとを備えた導電性被膜の形成方法であって、前記工程Bにおいて、遠赤外線により前記導電性組成物を加熱する導電性被膜の形成方法を提供する。   The present invention includes a step A of applying a conductive composition comprising silver oxide particles and / or a silver particle precursor composed of a tertiary fatty acid silver salt and a solvent; and after the step A, the conductive composition is A method for forming a conductive film, comprising a step B of forming a conductive film by heating, wherein the conductive composition is heated by far infrared rays in the step B. To do.

前記工程Bにおいて、遠赤外線により前記導電性組成物を加熱した後、さらに熱風により前記導電性組成物を加熱することが好ましい。   In the step B, it is preferable that after heating the conductive composition with far infrared rays, the conductive composition is further heated with hot air.

本発明の導電性被膜の形成方法によれば、銀粒子前駆体を含む導電性組成物を加熱することにより導電性被膜を形成する工程において、導電性組成物の温度が148℃に達した際に、導電性組成物に含まれる溶剤の質量が銀粒子前駆体の質量の3%以上であるように、導電性組成物を加熱することにより、高導電性の導電性被膜を形成することができる。また、銀粒子前駆体から銀粒子を生成する反応の開始温度を150℃以下にすることができるので、耐熱性の低い合成樹脂基板上にも高導電性の導電性被膜を形成することができる。   According to the method for forming a conductive film of the present invention, in the step of forming the conductive film by heating the conductive composition containing the silver particle precursor, the temperature of the conductive composition reaches 148 ° C. In addition, a highly conductive conductive film can be formed by heating the conductive composition so that the mass of the solvent contained in the conductive composition is 3% or more of the mass of the silver particle precursor. it can. Moreover, since the starting temperature of the reaction for generating silver particles from the silver particle precursor can be made 150 ° C. or lower, a highly conductive conductive film can be formed on a synthetic resin substrate having low heat resistance. .

本発明の導電性被膜の形成方法によれば、銀粒子前駆体を含む導電性組成物を加熱することにより導電性被膜を形成する工程において、導電性組成物に遠赤外線を照射して、導電性組成物を加熱することにより、銀粒子前駆体の温度を、導電性組成物に含まれる他の成分の温度よりも早く上昇させて、銀粒子前駆体から銀粒子を生成する反応を開始させることができる。したがって、銀粒子前駆体のみを所定の温度に加熱することができるので、耐熱性の低い合成樹脂基板上に導電性被膜を形成する際に、この合成樹脂基板が熱的に損傷することがなく、高導電性の導電性被膜を形成することができる。また、熱風による加熱のように、昇温プロファイルの調節などが不要になるから、製造効率が向上する。また、導電性組成物中に溶剤が存在していなくても、銀粒子前駆体から銀粒子を生成する反応を進行させることができるから、導電性組成物の保管方法などを簡略化できるので、製造コストを削減することができる。   According to the method for forming a conductive film of the present invention, in the step of forming a conductive film by heating a conductive composition containing a silver particle precursor, the conductive composition is irradiated with far infrared rays to conduct electricity. By heating the conductive composition, the temperature of the silver particle precursor is increased faster than the temperature of the other components contained in the conductive composition, and a reaction for generating silver particles from the silver particle precursor is started. be able to. Therefore, since only the silver particle precursor can be heated to a predetermined temperature, the synthetic resin substrate is not thermally damaged when a conductive film is formed on the synthetic resin substrate having low heat resistance. A highly conductive film can be formed. Further, since the adjustment of the temperature rising profile or the like is unnecessary as in the case of heating with hot air, the manufacturing efficiency is improved. In addition, since the reaction for generating silver particles from the silver particle precursor can proceed even if no solvent is present in the conductive composition, the storage method of the conductive composition can be simplified. Manufacturing costs can be reduced.

さらに、遠赤外線により導電性組成物を加熱した後、さらに熱風により導電性組成物を加熱すれば、銀粒子前駆体から銀粒子を生成する反応が十分に進行して、未反応の銀粒子前駆体が導電性組成物中に残留することがないので、製造効率が向上する。   Furthermore, after the conductive composition is heated by far infrared rays, if the conductive composition is further heated by hot air, the reaction for generating silver particles from the silver particle precursor proceeds sufficiently, and the unreacted silver particle precursor Since the body does not remain in the conductive composition, the production efficiency is improved.

以下、本発明を実施した導電性被膜の形成方法について、実施形態に基づいて説明する。   Hereinafter, the formation method of the conductive film which implemented this invention is demonstrated based on embodiment.

(第一の実施形態)
本発明に係る導電性被膜の形成方法の第一の実施形態について説明する。
この実施形態では、まず、酸化銀粒子または三級脂肪酸銀塩のいずれか一方、あるいは、酸化銀粒子および三級脂肪酸銀塩の両方からなる銀粒子前駆体と、溶剤とを含む導電性組成物を合成樹脂基板などの対象物上に塗布する(工程A)。
この工程Aの後、導電性組成物の温度が148℃に達した際に、導電性組成物に含まれる溶剤の質量が銀粒子前駆体の質量の3%以上であるように、導電性組成物を加熱して、銀粒子前駆体から銀粒子を生成させることにより、対象物上に導電性被膜を形成する(工程B)。この工程Bでは、銀粒子前駆体から銀粒子が生成すると同時に、この銀粒子が相互に融着して導電性被膜が形成される。
(First embodiment)
A first embodiment of a method for forming a conductive coating according to the present invention will be described.
In this embodiment, first, a conductive composition containing either a silver oxide particle or a tertiary fatty acid silver salt, or a silver particle precursor composed of both silver oxide particles and a tertiary fatty acid silver salt, and a solvent. Is applied onto an object such as a synthetic resin substrate (step A).
After this step A, when the temperature of the conductive composition reaches 148 ° C., the conductive composition is such that the mass of the solvent contained in the conductive composition is 3% or more of the mass of the silver particle precursor. A conductive film is formed on a target object by heating a thing and producing | generating a silver particle from a silver particle precursor (process B). In this step B, silver particles are generated from the silver particle precursor, and at the same time, the silver particles are fused to each other to form a conductive film.

導電性組成物を加熱する具体的な方法としては、例えば、導電性組成物が塗布された合成樹脂基板などの対象物を熱風循環型オーブン内に収容し、この熱風循環型オーブン内を循環する熱風により導電性組成物を加熱する方法が用いられる。   As a specific method for heating the conductive composition, for example, an object such as a synthetic resin substrate coated with the conductive composition is accommodated in a hot air circulation oven and circulated in the hot air circulation oven. A method of heating the conductive composition with hot air is used.

導電性組成物中に含まれる酸化銀粒子が還元され、三級脂肪酸銀塩が分解して銀粒子が生成する反応の開始温度は、溶剤の存在の有無により変化する。溶剤の存在下では、この反応の開始温度は148℃であるが、溶剤が存在しないと、反応の開始温度は150℃を大きく上回ってしまう。ポリエステルフィルムなどの耐熱性の低い合成樹脂基板上に導電性被膜からなる導体回路を形成することを考慮すると、反応の開始温度を150℃以下に抑えることが好ましい。   The starting temperature of the reaction in which the silver oxide particles contained in the conductive composition are reduced and the tertiary fatty acid silver salt is decomposed to produce silver particles varies depending on the presence or absence of a solvent. In the presence of a solvent, the starting temperature of this reaction is 148 ° C., but in the absence of a solvent, the starting temperature of the reaction greatly exceeds 150 ° C. In consideration of forming a conductor circuit made of a conductive film on a synthetic resin substrate having low heat resistance such as a polyester film, it is preferable to suppress the reaction start temperature to 150 ° C. or lower.

工程Bでは、導電性組成物の温度が148℃に達した際に、導電性組成物に含まれる溶剤の質量が銀粒子前駆体の質量の3%以上であるように、導電性組成物を加熱するが、導電性組成物に含まれる溶剤の質量が銀粒子前駆体の質量の10%以上とすることがより好ましい。このようにすれば、酸化銀粒子や三級脂肪酸銀塩から生成した銀粒子が分散し易くなり、結果として相互に融着し易くなるので、高導電性の導電性被膜を形成し易くなる。   In step B, when the temperature of the conductive composition reaches 148 ° C., the conductive composition is adjusted so that the mass of the solvent contained in the conductive composition is 3% or more of the mass of the silver particle precursor. Although it heats, it is more preferable that the mass of the solvent contained in an electroconductive composition shall be 10% or more of the mass of a silver particle precursor. In this way, silver particles generated from silver oxide particles and tertiary fatty acid silver salts are easily dispersed, and as a result, they are easily fused to each other, so that a highly conductive film can be easily formed.

また、工程Bにおいて、導電性組成物の温度が148℃に達した際に、導電性組成物に含まれる溶剤の質量が銀粒子前駆体の質量の3%未満では、酸化銀粒子の還元反応、三級脂肪酸銀塩の分解反応が進行し難くなり、反応開始温度が150℃を大きく上回ってしまうだけでなく、酸化銀粒子や三級脂肪酸銀塩から生成した銀粒子が分散し難くなり、結果として相互に融着し難くなるので、高導電性の導電性被膜を形成し難くなる。   In Step B, when the temperature of the conductive composition reaches 148 ° C., if the mass of the solvent contained in the conductive composition is less than 3% of the mass of the silver particle precursor, the reduction reaction of the silver oxide particles In addition, the decomposition reaction of the tertiary fatty acid silver salt is difficult to proceed, and the reaction start temperature greatly exceeds 150 ° C., and the silver particles generated from the silver oxide particles and the tertiary fatty acid silver salt are difficult to disperse, As a result, it becomes difficult to fuse each other, and it becomes difficult to form a highly conductive film.

この実施形態で用いられる導電性組成物は、酸化銀粒子または三級脂肪酸銀塩のいずれか一方、あるいは、酸化銀粒子および三級脂肪酸銀塩の両方からなる銀粒子前駆体と、溶剤とを主成分として含み、これにさらにセルロース誘導体、触媒などを必要に応じて含む、導電性ペースト、導電性塗料、導電性接着剤などである。   The conductive composition used in this embodiment comprises either a silver oxide particle or a tertiary fatty acid silver salt, or a silver particle precursor composed of both silver oxide particles and a tertiary fatty acid silver salt, and a solvent. A conductive paste, a conductive paint, a conductive adhesive, and the like, which are contained as a main component and further contain a cellulose derivative, a catalyst and the like as necessary.

酸化銀粒子としては、具体的には、酸化銀(I)、酸化銀(II)、酢酸銀、炭酸銀などが挙げられる。これらは2種以上を混合して使用することもできる。   Specific examples of the silver oxide particles include silver (I) oxide, silver (II) oxide, silver acetate and silver carbonate. These may be used in combination of two or more.

この酸化銀粒子の平均粒径は、特に限定されないが、0.5μm以下であることが望ましい。酸化銀粒子の平均粒径が0.5μm以下であれば、溶剤などへの分散性が向上する上に、還元反応の速度が速くなる。   The average particle diameter of the silver oxide particles is not particularly limited, but is desirably 0.5 μm or less. When the average particle diameter of the silver oxide particles is 0.5 μm or less, the dispersibility in a solvent and the like is improved and the speed of the reduction reaction is increased.

三級脂肪酸銀塩は、総炭素数が5〜30、好ましくは総炭素数が10〜30の三級脂肪酸の銀塩である。三級脂肪酸銀塩の具体例としては、ピバリン酸銀、ネオヘプタン酸銀、ネオノナン酸銀、ネオデカン酸銀などが挙げられる。また、三級脂肪酸銀塩は、加熱により分解して約100nm以下の銀ナノ粒子を析出する。   The tertiary fatty acid silver salt is a silver salt of a tertiary fatty acid having a total carbon number of 5 to 30, preferably 10 to 30. Specific examples of the tertiary fatty acid silver salt include silver pivalate, silver neoheptanoate, silver neononanoate, silver neodecanoate and the like. The tertiary fatty acid silver salt is decomposed by heating to precipitate silver nanoparticles of about 100 nm or less.

この実施形態で用いられる導電性組成物に含まれる溶剤としては、酸化銀粒子および三級脂肪酸銀塩と反応を起こさず、酸化銀粒子および三級脂肪酸銀塩を良好に分散するものであれば特に限定されない。溶剤としては、例えば、水や、エタノール、エタノール、プロパノール、テトラヒドロフラン、イソホロン、テルピネオール、トリエチレングリコールモノブチルエーテル、ブチルセロソルブアセテートなどの有機溶剤が挙げられる。  As the solvent contained in the conductive composition used in this embodiment, as long as it does not react with the silver oxide particles and the tertiary fatty acid silver salt, and the silver oxide particles and the tertiary fatty acid silver salt are well dispersed, There is no particular limitation. Examples of the solvent include water and organic solvents such as ethanol, ethanol, propanol, tetrahydrofuran, isophorone, terpineol, triethylene glycol monobutyl ether, and butyl cellosolve acetate.

この実施形態で用いられる導電性組成物に酸化銀粒子が含まれる場合、導電性組成物にはセルロース誘導体が含まれていてもよい。  When silver oxide particles are contained in the conductive composition used in this embodiment, the conductive composition may contain a cellulose derivative.

このセルロース誘導体は、導電性組成物の保存安定性を確保するために用いられ、酸化銀粒子を均一に分散する分散安定剤(分散媒)としての機能と、室温では酸化銀粒子を還元することなく、所定温度に加熱した際に還元作用を示す還元剤としての機能とを有するものである。   This cellulose derivative is used to ensure the storage stability of the conductive composition, and functions as a dispersion stabilizer (dispersion medium) that uniformly disperses silver oxide particles and reduces silver oxide particles at room temperature. And has a function as a reducing agent that exhibits a reducing action when heated to a predetermined temperature.

セルロース誘導体としては、例えば、セルロース(C10を変性したヒドロキシプロピルセルロース、セルロースを変性したエチルヒドロキシエチルセルロース、セルロースの水酸基の水素が部分的にエチル基によって置換された、一種のエーテルであるエチルセルロースなどが挙げられる。 Examples of the cellulose derivative include, for example, hydroxypropyl cellulose obtained by modifying cellulose (C 6 H 10 O 5 ) n , ethyl hydroxyethyl cellulose modified by cellulose, and a kind of cellulose in which hydrogen of hydroxyl group of the cellulose is partially substituted by ethyl group Examples thereof include ethyl cellulose which is an ether.

この実施形態では、熱風循環型オーブンを用いて、熱風循環型オーブン内の温度を昇温する際の昇温プロファイルを調節することにより、導電性組成物に含まれる溶剤の質量が銀粒子前駆体の質量の3%以上である内に、酸化銀粒子や三級脂肪酸銀塩から銀粒子を生成する反応を開始させるから、酸化銀粒子や三級脂肪酸銀塩から生成した銀粒子が分散し易くなり、結果として相互に融着し易くなるので、高導電性の導電性被膜を形成することができる。また、酸化銀粒子や三級脂肪酸銀塩から銀粒子を生成する反応の開始温度を150℃以下にすることができるので、ポリエステルフィルムなどの耐熱性の低い合成樹脂基板上にも高導電性の導電性被膜を形成することができる。   In this embodiment, the mass of the solvent contained in the conductive composition is adjusted to a silver particle precursor by adjusting the temperature rise profile when the temperature in the hot air circulation oven is raised using a hot air circulation oven. Since the reaction for generating silver particles from silver oxide particles or tertiary fatty acid silver salt is started within 3% or more of the mass of silver, the silver particles generated from silver oxide particles or tertiary fatty acid silver salt are easily dispersed. As a result, it becomes easy to fuse with each other, so that a highly conductive film can be formed. In addition, since the starting temperature of the reaction for producing silver particles from silver oxide particles or tertiary fatty acid silver salts can be made 150 ° C. or lower, it is highly conductive even on a synthetic resin substrate having low heat resistance such as a polyester film. A conductive coating can be formed.

(第二の実施形態)
本発明に係る導電性被膜の形成方法の第二の実施形態について説明する。
この実施形態では、まず、酸化銀粒子または三級脂肪酸銀塩のいずれか一方、あるいは、酸化銀粒子および三級脂肪酸銀塩の両方からなる銀粒子前駆体と、溶剤とを含む導電性組成物を合成樹脂基板などの対象物上に塗布する(工程A)。
この工程Aの後、遠赤外線により導電性組成物を加熱して、銀粒子前駆体から銀粒子を生成させることにより、対象物上に導電性被膜を形成する(工程B)。この工程Bでは、銀粒子前駆体から銀粒子が生成すると同時に、この銀粒子が相互に融着して導電性被膜が形成される。
(Second embodiment)
A second embodiment of the method for forming a conductive coating according to the present invention will be described.
In this embodiment, first, a conductive composition containing either a silver oxide particle or a tertiary fatty acid silver salt, or a silver particle precursor composed of both silver oxide particles and a tertiary fatty acid silver salt, and a solvent. Is applied onto an object such as a synthetic resin substrate (step A).
After this step A, the conductive composition is heated by far-infrared rays to generate silver particles from the silver particle precursor, thereby forming a conductive coating on the object (step B). In this step B, silver particles are generated from the silver particle precursor, and at the same time, the silver particles are fused to each other to form a conductive film.

この実施形態における導電性組成物の加熱方法は、遠赤外線を放射する遠赤外線ヒータが設けられた遠赤外線乾燥装置が、導電性組成物を急速に昇温可能な温度プロファイルを形成できることを利用したものである。さらに、酸化銀を含む系は、導電性組成物が酸化銀由来の黒色をなしているから、遠赤外線の吸収効率が非常に高く効果的である。  The heating method of the conductive composition in this embodiment utilized that the far-infrared drying apparatus provided with a far-infrared heater that emits far-infrared rays can form a temperature profile capable of rapidly raising the temperature of the conductive composition. Is. Further, the system containing silver oxide is effective because the conductive composition has a black color derived from silver oxide and thus has a very high far-infrared absorption efficiency.

遠赤外線により導電性組成物を加熱する具体的な方法としては、例えば、導電性組成物が塗布された合成樹脂基板などの対象物を遠赤外線乾燥装置内に収容し、この遠赤外線乾燥装置内に設けられた遠赤外線ヒータから放射される遠赤外線を、導電性組成物に照射する方法が用いられる。この遠赤外線により導電性組成物を加熱する加熱方法では、遠赤外線が直接、酸化銀粒子または三級脂肪酸銀塩に作用するため、酸化銀粒子または三級脂肪酸銀塩の温度を、導電性組成物に含まれる他の成分の温度よりも早く上昇させることができる。   As a specific method of heating the conductive composition with far infrared rays, for example, an object such as a synthetic resin substrate coated with the conductive composition is accommodated in a far infrared drying device, and the far infrared drying device A method of irradiating the conductive composition with far-infrared rays radiated from a far-infrared heater provided on the substrate is used. In this heating method in which the conductive composition is heated by far infrared rays, since the far infrared rays directly act on the silver oxide particles or the tertiary fatty acid silver salt, the temperature of the silver oxide particles or the tertiary fatty acid silver salt is changed to the conductive composition. The temperature can be raised faster than the temperature of other components contained in the object.

合成樹脂基板など上に塗布された導電性組成物に含まれる銀粒子前駆体のみに遠赤外線を照射することができる遠赤外線乾燥装置としては、例えば、ベルトコンベア型の遠赤外炉、バッチ型遠赤外炉などが挙げられる。   Examples of the far-infrared drying apparatus that can irradiate far-infrared rays only on the silver particle precursor contained in the conductive composition coated on a synthetic resin substrate or the like include, for example, a belt conveyor type far-infrared furnace, batch type A far infrared furnace etc. are mentioned.

この実施形態では、上述の第一の実施形態と同様の導電性組成物を用いることができる。   In this embodiment, the same conductive composition as in the first embodiment described above can be used.

この実施形態では、導電性組成物に遠赤外線を照射して、導電性組成物を加熱することにより、酸化銀粒子または三級脂肪酸銀塩の温度を、導電性組成物に含まれる他の成分の温度よりも早く上昇させて、酸化銀粒子または三級脂肪酸銀塩から銀粒子を生成する反応を開始させることができる。したがって、酸化銀粒子または三級脂肪酸銀塩の温度を、導電性組成物に含まれる他の成分の温度よりも早く、酸化銀粒子が還元され、三級脂肪酸銀塩が分解して銀粒子が生成する反応の開始温度である148℃にすることができる。よって、この実施形態の導電性被膜の形成方法によれば、導電性組成物に含まれる銀粒子前駆体のみを所定の温度に加熱することができるので、ポリエステルフィルムなどの耐熱性の低い合成樹脂基板上に導電性被膜を形成する際に、この合成樹脂基板が熱的に損傷することがなくなり、この合成樹脂基板上にも高導電性の導電性被膜を形成することができる。また、熱風循環型オーブンを用いる場合にように、昇温プロファイルの調節などが不要になるから、製造効率が向上する。また、導電性組成物中に溶剤が残留していなくても、酸化銀粒子または三級脂肪酸銀塩から銀粒子を生成する反応を進行させることができるから、導電性組成物の保管方法などを簡略化できるので、製造コストを削減することができる。   In this embodiment, by irradiating the conductive composition with far infrared rays and heating the conductive composition, the temperature of the silver oxide particles or the tertiary fatty acid silver salt is changed to other components contained in the conductive composition. The reaction of generating silver particles from silver oxide particles or a tertiary fatty acid silver salt can be started by raising the temperature faster than the temperature of the above. Therefore, the temperature of the silver oxide particles or the tertiary fatty acid silver salt is made faster than the temperature of other components contained in the conductive composition, the silver oxide particles are reduced, the tertiary fatty acid silver salt is decomposed, and the silver particles are The starting temperature of the reaction to be generated can be 148 ° C. Therefore, according to the method for forming a conductive film of this embodiment, only the silver particle precursor contained in the conductive composition can be heated to a predetermined temperature, so a synthetic resin having low heat resistance such as a polyester film. When the conductive film is formed on the substrate, the synthetic resin substrate is not thermally damaged, and a highly conductive conductive film can be formed on the synthetic resin substrate. In addition, as in the case of using a hot-air circulation type oven, adjustment of the temperature rising profile or the like is not necessary, so that the manufacturing efficiency is improved. In addition, since the reaction for generating silver particles from silver oxide particles or tertiary fatty acid silver salt can proceed even if no solvent remains in the conductive composition, a method for storing the conductive composition, etc. Since it can be simplified, the manufacturing cost can be reduced.

なお、この実施形態において、導電性組成物中に含まれる酸化銀粒子の還元反応、三級脂肪酸銀塩の分解反応が不十分である場合には、遠赤外線により導電性組成物を加熱した後、熱風循環型オーブンなどを用いて、熱風により導電性組成物を加熱する。  In this embodiment, when the reduction reaction of silver oxide particles contained in the conductive composition and the decomposition reaction of the tertiary fatty acid silver salt are insufficient, after heating the conductive composition with far infrared rays Then, the conductive composition is heated with hot air using a hot air circulation oven or the like.

このようにすれば、導電性組成物中に含まれる酸化銀粒子の還元反応、三級脂肪酸銀塩の分解反応が十分に進行して銀粒子が生成し、未反応の酸化銀粒子や三級脂肪酸銀塩が導電性組成物中に残留することがないので、製造効率が向上する。  By doing so, the reduction reaction of the silver oxide particles contained in the conductive composition and the decomposition reaction of the tertiary fatty acid silver salt proceed sufficiently to produce silver particles, and unreacted silver oxide particles or tertiary Since the fatty acid silver salt does not remain in the conductive composition, the production efficiency is improved.

以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.

(実施例1)
平均粒径500nmの酸化銀粒子(銀粒子前駆体)と、ネオデカン酸銀(銀粒子前駆体)と、エチルセルロースと、溶剤のテルピネオールとを含む導電性組成物を用意した。各成分の配合量を表1に示す。なお、表1には、配合量を質量%で示した。
示差熱・熱重量同時測定(Thermogravimetry/Differential Thermal Analysis、TG/DTA)法により、この導電性組成物に含まれる銀粒子前駆体の反応開始温度(酸化銀粒子の還元反応が開始する温度、ネオデカン酸銀の分解反応が開始する温度)を測定した。TG/DTA法による反応開始温度の測定条件を、以下のようにした。昇温速度を、室温から110℃までは40℃/min、110℃から300℃までは10℃/minとした。酸化銀粒子の還元反応およびネオデカン酸銀の分解反応は、TG/DTA法により発熱ピークとして検出されることから、この発熱ピークの温度を反応開始温度とした。結果を表1に示す。
また、この発熱ピークまでの溶剤の揮発量を、TG/DTA法により得られる重量減少曲線から測定した。その結果、溶剤の揮発量は、導電性組成物に含まれる溶剤量の2%以下であることが分かった。これは、ほとんど誤差範囲と考えられるので、溶剤は銀粒子前駆体の反応開始までにほとんど揮発していないと考えられる。
次に、導電性組成物をポリエステルフィルム上に塗布し、これを150℃に昇温済みの熱循環型オーブン内に収容した。収容から3分後には導電性組成物の温度が150℃に達するようにして、導電性組成物が塗布されたポリエステルフィルムを150℃で60分間加熱して、ポリエステルフィルム上に導電性被膜を形成した。
次に、ポリエステルフィルム上に形成された導電性被膜の比抵抗を測定した。評価の基準を、導電性被膜の比抵抗が9μΩcm未満を○、9μΩcm以上、10μΩcm未満を△、10μΩcm以上を×とした。結果を表1に示す。
Example 1
A conductive composition containing silver oxide particles (silver particle precursor) having an average particle diameter of 500 nm, silver neodecanoate (silver particle precursor), ethyl cellulose, and terpineol as a solvent was prepared. Table 1 shows the amount of each component. In Table 1, the blending amount is shown by mass%.
The reaction initiation temperature of the silver particle precursor contained in this conductive composition (the temperature at which the reduction reaction of the silver oxide particles starts, neodecane, by the method of differential thermal and thermogravimetric / differential thermal analysis (TG / DTA)). The temperature at which the acid silver decomposition reaction starts) was measured. The measurement conditions of the reaction start temperature by the TG / DTA method were as follows. The heating rate was 40 ° C./min from room temperature to 110 ° C. and 10 ° C./min from 110 ° C. to 300 ° C. Since the reduction reaction of silver oxide particles and the decomposition reaction of silver neodecanoate are detected as an exothermic peak by the TG / DTA method, the temperature of this exothermic peak was taken as the reaction start temperature. The results are shown in Table 1.
Moreover, the volatilization amount of the solvent up to the exothermic peak was measured from a weight reduction curve obtained by the TG / DTA method. As a result, it was found that the volatilization amount of the solvent was 2% or less of the solvent amount contained in the conductive composition. Since this is considered to be almost within the error range, it is considered that the solvent is hardly volatilized by the start of the reaction of the silver particle precursor.
Next, the electroconductive composition was applied onto a polyester film, and this was housed in a heat circulation oven heated to 150 ° C. 3 minutes after storage, the temperature of the conductive composition reaches 150 ° C., and the polyester film coated with the conductive composition is heated at 150 ° C. for 60 minutes to form a conductive film on the polyester film. did.
Next, the specific resistance of the conductive film formed on the polyester film was measured. The standard of evaluation was ○ when the specific resistance of the conductive film was less than 9 μΩcm, Δ when 9 μΩcm or more and less than 10 μΩcm, and × when 10 μΩcm or more. The results are shown in Table 1.

(実施例2〜5)
各成分の配合量を表1に示すようにした以外は実施例1と同様にして、導電性組成物に含まれる銀粒子前駆体の反応開始温度、銀粒子前駆体の反応開始までの溶剤の揮発量、導電性被膜の比抵抗を測定した。導電性組成物に含まれる銀粒子前駆体の反応開始温度の測定結果、および、導電性被膜の比抵抗の測定結果を表1に示す。
なお、溶剤の揮発量は、導電性組成物に含まれる溶剤量の2%以下であることが分かった。これは、ほとんど誤差範囲と考えられるので、溶剤は銀粒子前駆体の反応開始までにほとんど揮発していないと考えられる。
(Examples 2 to 5)
The reaction start temperature of the silver particle precursor contained in the conductive composition and the solvent up to the start of the reaction of the silver particle precursor were the same as in Example 1 except that the blending amount of each component was shown in Table 1. The amount of volatilization and the specific resistance of the conductive film were measured. Table 1 shows the measurement result of the reaction start temperature of the silver particle precursor contained in the conductive composition and the measurement result of the specific resistance of the conductive film.
In addition, it turned out that the volatilization amount of a solvent is 2% or less of the solvent amount contained in an electroconductive composition. Since this is considered to be almost within the error range, it is considered that the solvent is hardly volatilized by the start of the reaction of the silver particle precursor.

(比較例1)
平均粒径500nmの酸化銀粒子(銀粒子前駆体)と、ネオデカン酸銀(銀粒子前駆体)と、エチルセルロースとを含む導電性組成物を用意し、各成分の配合量を表1に示すようにした以外は実施例1と同様にして、導電性組成物に含まれる銀粒子前駆体の反応開始温度、導電性被膜の比抵抗を測定した。導電性組成物に含まれる銀粒子前駆体の反応開始温度の測定結果、および、導電性被膜の比抵抗の測定結果を表1に示す。
(Comparative Example 1)
As shown in Table 1, a conductive composition containing silver oxide particles (silver particle precursor) having an average particle diameter of 500 nm, silver neodecanoate (silver particle precursor), and ethyl cellulose is prepared. Except for the above, the reaction start temperature of the silver particle precursor contained in the conductive composition and the specific resistance of the conductive film were measured in the same manner as in Example 1. Table 1 shows the measurement result of the reaction start temperature of the silver particle precursor contained in the conductive composition and the measurement result of the specific resistance of the conductive film.

(比較例2)
各成分の配合量を表1に示すようにした以外は実施例1と同様にして、導電性組成物に含まれる銀粒子前駆体の反応開始温度、銀粒子前駆体の反応開始までの溶剤の揮発量、導電性被膜の比抵抗を測定した。導電性組成物に含まれる銀粒子前駆体の反応開始温度の測定結果、および、導電性被膜の比抵抗の測定結果を表1に示す。
なお、溶剤の揮発量は、導電性組成物に含まれる溶剤量の2%以下であることが分かった。これは、ほとんど誤差範囲と考えられるので、溶剤は銀粒子前駆体の反応開始までにほとんど揮発していないと考えられる。
(Comparative Example 2)
The reaction start temperature of the silver particle precursor contained in the conductive composition and the solvent up to the start of the reaction of the silver particle precursor were the same as in Example 1 except that the blending amount of each component was shown in Table 1. The amount of volatilization and the specific resistance of the conductive film were measured. Table 1 shows the measurement result of the reaction start temperature of the silver particle precursor contained in the conductive composition and the measurement result of the specific resistance of the conductive film.
In addition, it turned out that the volatilization amount of a solvent is 2% or less of the solvent amount contained in an electroconductive composition. Since this is considered to be almost within the error range, it is considered that the solvent is hardly volatilized by the start of the reaction of the silver particle precursor.

Figure 2006040603
Figure 2006040603

表1に示した実施例1〜5の結果から、溶剤量を増加させていくと、反応開始温度は徐々に低下し、溶剤量が10%以上では反応開始温度がほぼ一定になることが分かった。
一方、表1に示した比較例1、2の結果から、導電性組成物が溶剤を含まないか、あるいは、導電性組成物に含まれる溶剤量が極端に少ないと、反応開始温度が非常に高くなることが分かった。
以上の結果から、銀粒子前駆体の反応開始温度に達するまでに、導電性組成物に含まれる溶剤量は3%以上、さらには5%以上であることが好ましいことが分かった。
From the results of Examples 1 to 5 shown in Table 1, it can be seen that as the amount of solvent is increased, the reaction start temperature gradually decreases, and when the amount of solvent is 10% or more, the reaction start temperature becomes almost constant. It was.
On the other hand, from the results of Comparative Examples 1 and 2 shown in Table 1, when the conductive composition does not contain a solvent or the amount of the solvent contained in the conductive composition is extremely small, the reaction start temperature is very high. It turned out to be high.
From the above results, it was found that the amount of solvent contained in the conductive composition was preferably 3% or more, and more preferably 5% or more by the time the reaction initiation temperature of the silver particle precursor was reached.

(実施例6)
実施例1と同様の導電性組成物をポリエステルフィルム上に塗布し、これを150℃に昇温済みの熱循環型オーブン内に収容した。収容から10分後には導電性組成物の温度が150℃に達するように、熱風循環型オーブン内の温度を昇温する際の昇温プロファイルを調節して、導電性組成物が塗布されたポリエステルフィルムを150℃で60分間加熱して、ポリエステルフィルム上に導電性被膜を形成した。この時の、昇温プロファイルを図1に示す。
次に、ポリエステルフィルム上に形成された導電性被膜の比抵抗を測定した。評価の基準を、導電性被膜の比抵抗が9μΩcm未満を○、9μΩcm以上、10μΩcm未満を△、10μΩcm以上を×とした。結果を表2に示す。
また、導電性組成物の温度が150℃に達した直後に、熱風循環型オーブンからポリエステルフィルムを取り出し、導電性組成物をポリエステルフィルムに塗布した直後の質量と、導電性組成物の温度が150℃に達した直後の質量とから、導電性組成物の温度が150℃に達した際の溶剤量を算出した。結果を表2に示す。
(Example 6)
The same conductive composition as in Example 1 was applied on a polyester film, and this was placed in a heat circulation oven heated to 150 ° C. Polyester coated with the conductive composition by adjusting the temperature rise profile when the temperature in the hot air circulation oven is raised so that the temperature of the conductive composition reaches 150 ° C. after 10 minutes from storage The film was heated at 150 ° C. for 60 minutes to form a conductive film on the polyester film. The temperature rise profile at this time is shown in FIG.
Next, the specific resistance of the conductive film formed on the polyester film was measured. The standard of evaluation was ○ when the specific resistance of the conductive film was less than 9 μΩcm, Δ when 9 μΩcm or more and less than 10 μΩcm, and × when 10 μΩcm or more. The results are shown in Table 2.
Further, immediately after the temperature of the conductive composition reaches 150 ° C., the mass immediately after the polyester film is taken out from the hot air circulation oven and the conductive composition is applied to the polyester film, and the temperature of the conductive composition is 150. The amount of the solvent when the temperature of the conductive composition reached 150 ° C. was calculated from the mass immediately after reaching ° C. The results are shown in Table 2.

(実施例7)
実施例2と同様の導電性組成物をポリエステルフィルム上に塗布し、これを150℃に昇温済みの熱循環型オーブン内に収容した。収容から20分後には導電性組成物の温度が150℃に達するように、熱風循環型オーブン内の温度を昇温する際の昇温プロファイルを調節して、導電性組成物が塗布されたポリエステルフィルムを150℃で60分間加熱して、ポリエステルフィルム上に導電性被膜を形成した。この時の、昇温プロファイルを図1に示す。
実施例6と同様にして、導電性被膜の比抵抗、および、導電性組成物の温度が150℃に達した際の溶剤量を測定した。結果を表2に示す。
(Example 7)
The same conductive composition as in Example 2 was applied onto a polyester film, and this was placed in a heat circulation oven heated to 150 ° C. Polyester coated with the conductive composition by adjusting the temperature rise profile when the temperature in the hot air circulation oven is raised so that the temperature of the conductive composition reaches 150 ° C. after 20 minutes from storage The film was heated at 150 ° C. for 60 minutes to form a conductive film on the polyester film. The temperature rise profile at this time is shown in FIG.
In the same manner as in Example 6, the specific resistance of the conductive film and the amount of solvent when the temperature of the conductive composition reached 150 ° C. were measured. The results are shown in Table 2.

(比較例3)
比較例2と同様の導電性組成物をポリエステルフィルム上に塗布し、これを150℃に昇温済みの熱循環型オーブン内に収容した。収容から30分後には導電性組成物の温度が150℃に達するように、熱風循環型オーブン内の温度を昇温する際の昇温プロファイルを調節して、導電性組成物が塗布されたポリエステルフィルムを150℃で60分間加熱して、ポリエステルフィルム上に導電性被膜を形成した。この時の、昇温プロファイルを図1に示す。
実施例6と同様にして、導電性被膜の比抵抗、および、導電性組成物の温度が150℃に達した際の溶剤量を測定した。結果を表2に示す。
(Comparative Example 3)
The same conductive composition as in Comparative Example 2 was applied on a polyester film, and this was housed in a heat circulation oven heated to 150 ° C. Polyester coated with the conductive composition by adjusting the temperature rise profile when the temperature in the hot air circulation oven is raised so that the temperature of the conductive composition reaches 150 ° C. after 30 minutes from storage The film was heated at 150 ° C. for 60 minutes to form a conductive film on the polyester film. The temperature rise profile at this time is shown in FIG.
In the same manner as in Example 6, the specific resistance of the conductive film and the amount of solvent when the temperature of the conductive composition reached 150 ° C. were measured. The results are shown in Table 2.

(比較例4)
比較例2と同様の導電性組成物をポリエステルフィルム上に塗布し、これを150℃に昇温済みの熱循環型オーブン内に収容した。収容から40分後には導電性組成物の温度が150℃に達するように、熱風循環型オーブン内の温度を昇温する際の昇温プロファイルを調節して、導電性組成物が塗布されたポリエステルフィルムを150℃で60分間加熱して、ポリエステルフィルム上に導電性被膜を形成した。この時の、昇温プロファイルを図1に示す。
実施例6と同様にして、導電性被膜の比抵抗、および、導電性組成物の温度が150℃に達した際の溶剤量を測定した。結果を表2に示す。
(Comparative Example 4)
The same conductive composition as in Comparative Example 2 was applied on a polyester film, and this was housed in a heat circulation oven heated to 150 ° C. Polyester coated with the conductive composition by adjusting the temperature rise profile when the temperature in the hot air circulation oven is raised so that the temperature of the conductive composition reaches 150 ° C. after 40 minutes from storage The film was heated at 150 ° C. for 60 minutes to form a conductive film on the polyester film. The temperature rise profile at this time is shown in FIG.
In the same manner as in Example 6, the specific resistance of the conductive film and the amount of solvent when the temperature of the conductive composition reached 150 ° C. were measured. The results are shown in Table 2.

Figure 2006040603
Figure 2006040603

表2の結果から、銀粒子前駆体の反応開始温度に達する前の導電性組成物に含まれる溶剤量を制御することにより、得られる導電性被膜の比抵抗が変化することが分かった。   From the results in Table 2, it was found that the specific resistance of the resulting conductive coating changes by controlling the amount of solvent contained in the conductive composition before reaching the reaction start temperature of the silver particle precursor.

(実施例8)
平均粒径500nmの酸化銀粒子(銀粒子前駆体)と、ネオデカン酸銀(銀粒子前駆体)と、エチルセルロースとを含む導電性組成物を用意した。なお、表3には、配合量を質量%で示した。
この導電性組成物をポリエステルフィルム上に塗布し、これを、ベルトコンベア型遠赤外炉内を通過させて、150℃で5分間加熱した後、150℃に昇温済みの熱循環型オーブン内に収容して、導電性組成物が塗布されたポリエステルフィルムを150℃で60分間加熱して、ポリエステルフィルム上に導電性被膜を形成した。
次に、ポリエステルフィルム上に形成された導電性被膜の比抵抗を測定した。評価の基準を、導電性被膜の比抵抗が9μΩcm未満を○、9μΩcm以上、10μΩcm未満を△、10μΩcm以上を×とした。結果を表3に示す。
(Example 8)
A conductive composition containing silver oxide particles (silver particle precursor) having an average particle diameter of 500 nm, silver neodecanoate (silver particle precursor), and ethyl cellulose was prepared. In Table 3, the blending amount is shown in mass%.
This conductive composition is coated on a polyester film, passed through a belt conveyor type far-infrared furnace, heated at 150 ° C. for 5 minutes, and then heated to 150 ° C. in a heat circulation oven. The polyester film coated with the conductive composition was heated at 150 ° C. for 60 minutes to form a conductive film on the polyester film.
Next, the specific resistance of the conductive film formed on the polyester film was measured. The standard of evaluation was ○ when the specific resistance of the conductive film was less than 9 μΩcm, Δ when 9 μΩcm or more and less than 10 μΩcm, and × when 10 μΩcm or more. The results are shown in Table 3.

(実施例9〜13)
平均粒径500nmの酸化銀粒子(銀粒子前駆体)と、ネオデカン酸銀(銀粒子前駆体)と、エチルセルロースと、溶剤のテルピネオールとを含む導電性組成物を用意して、各成分の配合量を表3に示すようにした以外は実施例8と同様にして、ポリエステルフィルム上に形成された導電性被膜の比抵抗を測定した。結果を表3に示す。
(Examples 9 to 13)
A conductive composition containing silver oxide particles (silver particle precursor) having an average particle diameter of 500 nm, silver neodecanoate (silver particle precursor), ethyl cellulose, and terpineol as a solvent is prepared. The specific resistance of the conductive coating film formed on the polyester film was measured in the same manner as in Example 8 except that as shown in Table 3. The results are shown in Table 3.

Figure 2006040603
Figure 2006040603

表3の結果と、上記表1の結果とを比較すると、実施例8〜13で形成された導電性被膜は、導電性組成物に含まれる溶剤量にかかわらず、全て比抵抗が低いことが分かった。これは、導電性組成物に含まれる酸化銀粒子は黒色であるため、遠赤外線を吸収し易く、効率的に温度が上昇するので、酸化銀粒子の還元反応が一気に進行するに伴って、ネオデカン酸銀の分解反応が進行するからであると考えられる。   Comparing the results in Table 3 with the results in Table 1 above, the conductive films formed in Examples 8 to 13 all have low specific resistance regardless of the amount of solvent contained in the conductive composition. I understood. This is because the silver oxide particles contained in the conductive composition are black, so they easily absorb far-infrared rays, and the temperature rises efficiently. Therefore, as the reduction reaction of silver oxide particles proceeds all at once, neodecane This is thought to be because the decomposition reaction of acid silver proceeds.

本発明の導電性被膜の形成方法は、ビアホール埋め、スルーホール埋めや、各種電極の形成にも適用可能である。   The method for forming a conductive film of the present invention can also be applied to via hole filling, through hole filling, and formation of various electrodes.

実施例6、7および比較例3、4における熱風循環型オーブン内の温度の昇温プロファイルを示すグラフである。It is a graph which shows the temperature rising profile of the temperature in the hot-air circulation type oven in Examples 6 and 7 and Comparative Examples 3 and 4.

Claims (3)

酸化銀粒子および/または三級脂肪酸銀塩からなる銀粒子前駆体と、溶剤とを含む導電性組成物を塗布する工程Aと、該工程Aの後、前記導電性組成物を加熱することにより導電性被膜を形成する工程Bとを備えた導電性被膜の形成方法であって、
前記工程Bにおいて、前記導電性組成物の温度が148℃に達した際に、前記導電性組成物に含まれる溶剤の質量が前記銀粒子前駆体の質量の3%以上であるように、導電性組成物を加熱することを特徴とする導電性被膜の形成方法。
By applying a conductive composition containing a silver particle precursor composed of silver oxide particles and / or a tertiary fatty acid silver salt and a solvent, and heating the conductive composition after step A A method of forming a conductive film comprising the step B of forming a conductive film,
In the step B, when the temperature of the conductive composition reaches 148 ° C., the conductive composition is such that the mass of the solvent contained in the conductive composition is 3% or more of the mass of the silver particle precursor. A method for forming a conductive film, comprising heating the conductive composition.
酸化銀粒子および/または三級脂肪酸銀塩からなる銀粒子前駆体と、溶剤とを含む導電性組成物を塗布する工程Aと、該工程Aの後、前記導電性組成物を加熱することにより導電性被膜を形成する工程Bとを備えた導電性被膜の形成方法であって、
前記工程Bにおいて、遠赤外線により前記導電性組成物を加熱することを特徴とする導電性被膜の形成方法。
By applying a conductive composition containing a silver particle precursor composed of silver oxide particles and / or a tertiary fatty acid silver salt and a solvent, and heating the conductive composition after step A A method of forming a conductive film comprising the step B of forming a conductive film,
In the step B, the conductive composition is heated by far infrared rays, and the conductive film is formed.
前記工程Bにおいて、遠赤外線により前記導電性組成物を加熱した後、さらに熱風により前記導電性組成物を加熱することを特徴とする請求項2に記載の導電性被膜の形成方法。

3. The method for forming a conductive film according to claim 2, wherein, in the step B, the conductive composition is heated with hot infrared air after the conductive composition is heated with far infrared rays.

JP2004215429A 2004-07-23 2004-07-23 Method for forming conductive film Active JP4628718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215429A JP4628718B2 (en) 2004-07-23 2004-07-23 Method for forming conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215429A JP4628718B2 (en) 2004-07-23 2004-07-23 Method for forming conductive film

Publications (2)

Publication Number Publication Date
JP2006040603A true JP2006040603A (en) 2006-02-09
JP4628718B2 JP4628718B2 (en) 2011-02-09

Family

ID=35905382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215429A Active JP4628718B2 (en) 2004-07-23 2004-07-23 Method for forming conductive film

Country Status (1)

Country Link
JP (1) JP4628718B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107493613A (en) * 2017-08-16 2017-12-19 杜启明 A kind of electric heating produces the electric slurry and manufacturing process and methods for using them of far infrared
CN110494805A (en) * 2017-03-13 2019-11-22 伊斯曼柯达公司 Silver composition and purposes containing cellulosic polymer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199390A (en) * 1987-02-14 1988-08-17 株式会社 半導体エネルギ−研究所 Preparation of conducting film on insulation substrate
JP2000068106A (en) * 1998-08-21 2000-03-03 Matsushita Electric Ind Co Ltd Conductive paste
JP2001515645A (en) * 1997-02-20 2001-09-18 パレレック,インコーポレイテッド Low temperature method and composition for conductor production
JP2002245874A (en) * 2001-02-22 2002-08-30 Noritake Co Ltd Conductive paste and its manufacturing method
JP2003203522A (en) * 2001-10-31 2003-07-18 Fujikura Kasei Co Ltd Silver compound paste
JP2003308731A (en) * 2002-04-16 2003-10-31 Fujikura Ltd Conductive composition, conductive coating and method for forming the same
JP2003308730A (en) * 2002-04-16 2003-10-31 Fujikura Ltd Silver oxide fine particle composition, its manufacturing method, conductive composition, conductive film and its manufacturing method
JP2003308729A (en) * 2002-04-12 2003-10-31 Fujikura Kasei Co Ltd Conductive composition, conductive film and its formation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199390A (en) * 1987-02-14 1988-08-17 株式会社 半導体エネルギ−研究所 Preparation of conducting film on insulation substrate
JP2001515645A (en) * 1997-02-20 2001-09-18 パレレック,インコーポレイテッド Low temperature method and composition for conductor production
JP2000068106A (en) * 1998-08-21 2000-03-03 Matsushita Electric Ind Co Ltd Conductive paste
JP2002245874A (en) * 2001-02-22 2002-08-30 Noritake Co Ltd Conductive paste and its manufacturing method
JP2003203522A (en) * 2001-10-31 2003-07-18 Fujikura Kasei Co Ltd Silver compound paste
JP2003308729A (en) * 2002-04-12 2003-10-31 Fujikura Kasei Co Ltd Conductive composition, conductive film and its formation method
JP2003308731A (en) * 2002-04-16 2003-10-31 Fujikura Ltd Conductive composition, conductive coating and method for forming the same
JP2003308730A (en) * 2002-04-16 2003-10-31 Fujikura Ltd Silver oxide fine particle composition, its manufacturing method, conductive composition, conductive film and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494805A (en) * 2017-03-13 2019-11-22 伊斯曼柯达公司 Silver composition and purposes containing cellulosic polymer
CN107493613A (en) * 2017-08-16 2017-12-19 杜启明 A kind of electric heating produces the electric slurry and manufacturing process and methods for using them of far infrared

Also Published As

Publication number Publication date
JP4628718B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
CA2588343C (en) Electrical, plating and catalytic uses of metal nanomaterial compositions
JP4301763B2 (en) Silver compound paste
CN104303238A (en) Transparent conductive ink, and method for producing transparent conductive pattern
CN103965696A (en) Double temperature-control PTC (Positive Temperature Coefficient) conductive printing ink and preparation method thereof
WO2015087989A1 (en) Conductive paste and method for manufacturing conductive film using same
TW201511034A (en) Copper particulate dispersion, conductive film forming method, and circuit board
JP2013115004A (en) Water-based copper paste material and formation method for conductive layer
JP7235453B2 (en) Molecular organic reactive inks for conductive silver printing
WO2014156594A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
CN1608296A (en) Electro-conductive composition, electro-conductive coating and method for producing the coating
JP4628718B2 (en) Method for forming conductive film
JP4339919B2 (en) Conductive composition, method for forming conductive film, and conductive film
JP4090778B2 (en) Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same
JP2008291223A (en) Printing ink and process for producing coating film using the ink
JP4066700B2 (en) Conductive composition, conductive film and method for forming the same
JPWO2013175965A1 (en) Conductive composition and circuit board on which conductive film is formed
CN105280267B (en) A kind of functional membrane ceramic resistor slurry and its method for preparing functional membrane ceramic resistor
KR20170107625A (en) Conductive Cu ink mixed with two different sizes Cu nanoparticles and preparation of Cu electrode using the same
JP4090779B2 (en) Conductive composition, method for forming conductive film, conductive film
CN115286921B (en) Preparation method for generating conductive material by using laser direct-writing polyimide composite material and conductive material thereof
JP2015201254A (en) Manufacturing method of catalyst layer for fuel cell
KR101930159B1 (en) Manufacturing Method for Linght Sintering Particle and Linght Sintering Target and Light Sintering Method
KR102342365B1 (en) The conposition for heating apparatus of heating plate&#39;s heater, and the heating apparatus using the conposition, and the heating plate&#39;s heater having the heating apparatus
KR102632996B1 (en) Method for manufacturing copper electrode by intense pulsed light
JP2847563B2 (en) Electron beam-curable conductive paste composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4628718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250