JPWO2013175965A1 - Conductive composition and circuit board on which conductive film is formed - Google Patents

Conductive composition and circuit board on which conductive film is formed Download PDF

Info

Publication number
JPWO2013175965A1
JPWO2013175965A1 JP2014516744A JP2014516744A JPWO2013175965A1 JP WO2013175965 A1 JPWO2013175965 A1 JP WO2013175965A1 JP 2014516744 A JP2014516744 A JP 2014516744A JP 2014516744 A JP2014516744 A JP 2014516744A JP WO2013175965 A1 JPWO2013175965 A1 JP WO2013175965A1
Authority
JP
Japan
Prior art keywords
conductive
conductive composition
bis
composition
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014516744A
Other languages
Japanese (ja)
Other versions
JP6002216B2 (en
Inventor
福島 和信
和信 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Holdings Co Ltd
Original Assignee
Taiyo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Holdings Co Ltd filed Critical Taiyo Holdings Co Ltd
Priority to JP2014516744A priority Critical patent/JP6002216B2/en
Publication of JPWO2013175965A1 publication Critical patent/JPWO2013175965A1/en
Application granted granted Critical
Publication of JP6002216B2 publication Critical patent/JP6002216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0514Photodevelopable thick film, e.g. conductive or insulating paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

良好な電気特性を有する導電膜を形成するための導電性組成物及びかかる導電性組成物により生産性良く且つ低コストで導体回路が形成された回路基板を、新たな光焼成技術により提供する。光照射により焼成するための、溶媒中に導電性微粒子を含有する導電性組成物であって、光反応開始剤又は光酸発生剤を含有することを特徴とする。好適な態様においては、前記導電性組成物はさらに分散剤を含有し、また、前記溶媒は有機溶剤、水、又はそれらの混合物である。前記導電性組成物を塗布及び乾燥して得られる塗膜に、フラッシュランプ等を用いて光照射することによって、前記導電性組成物の焼成により導体回路が形成された回路基板を作製することができる。A conductive composition for forming a conductive film having good electrical characteristics, and a circuit board on which a conductive circuit is formed with high productivity and low cost by such a conductive composition are provided by a new light baking technique. A conductive composition containing conductive fine particles in a solvent for firing by light irradiation, characterized by containing a photoreaction initiator or a photoacid generator. In a preferred embodiment, the conductive composition further contains a dispersant, and the solvent is an organic solvent, water, or a mixture thereof. A coating substrate obtained by applying and drying the conductive composition can be irradiated with light using a flash lamp or the like to produce a circuit board on which a conductive circuit is formed by firing the conductive composition. it can.

Description

本発明は、導電性組成物及びそれにより導電膜が形成された回路基板に関し、さらに詳しくは、プリント配線板の導体回路パターンやプラズマディスプレイパネルの前面基板や背面基板に形成される導体回路パターンなどの形成に有用なフラッシュランプを用いた光照射によって焼成可能な導電性組成物に関する。   The present invention relates to a conductive composition and a circuit board on which a conductive film is formed, and more specifically, a conductive circuit pattern of a printed wiring board, a conductive circuit pattern formed on a front substrate and a rear substrate of a plasma display panel, and the like. The present invention relates to a conductive composition that can be baked by light irradiation using a flash lamp useful for forming a film.

従来、熱硬化型の導電性樹脂組成物は、フィルム基板やガラス基板等に塗布又は印刷し加熱硬化させることにより、抵抗膜方式タッチパネルの電極やプリント配線板の回路パターン等の形成に広く用いられている。また、プラズマディスプレイパネル、蛍光表示管、電子部品などにおける導体パターンの形成には、一般に極めて多量の金属粉又はガラス粉末を含有する導電性ペーストを用いてスクリーン印刷法によってパターン形成が行われていた。   Conventionally, a thermosetting conductive resin composition has been widely used for forming electrodes of resistance film type touch panels, circuit patterns of printed wiring boards, and the like by applying or printing on a film substrate or a glass substrate and curing by heating. ing. In addition, for the formation of conductor patterns in plasma display panels, fluorescent display tubes, electronic parts, etc., pattern formation is generally performed by screen printing using a conductive paste containing a very large amount of metal powder or glass powder. .

しかしながら、このような方法では、高温での加熱や焼成が必要であるため、基板が高温の影響を受けない材料に限定されるという難点がある。例えば、セルロース(紙)、ポリエチレンテレフタレート(PET)、ポリエステル、及び他の多くのプラスチックなどコストがより低い又は可撓性の基板の多くは、これらの温度に耐えることができない。同様に、有機半導体など基板上の他の成分も、高温で分解することがある。   However, in such a method, since heating and baking at high temperature are necessary, there is a difficulty in that the substrate is limited to a material that is not affected by high temperature. Many of the lower cost or flexible substrates, such as cellulose (paper), polyethylene terephthalate (PET), polyester, and many other plastics, cannot withstand these temperatures. Similarly, other components on the substrate, such as organic semiconductors, can also decompose at high temperatures.

このような問題を解決する手段として、近年、所謂、光焼成という技術が開発され、注目を集めている。例えば、特許文献1には、少なくとも粒径1μm未満のナノ粒子を含有する分散体を基材上にパターン印刷し、パルス発光を照射することにより、大部分の金属ナノ粒子を含む一部のナノ粒子が言わば黒体としての挙動を示し、高い電磁線吸収率を示し、且つ、粒子の熱質量が小さいことにより粒子が急速に加熱、融着されて硬化した回路パターンを形成する方法が開示されている。この方法の場合、基板の熱伝導率が悪く、かつパルス長が短いことにより、最小限のエネルギーしか基板には伝達されないので、従来の熱硬化や焼成による方法の問題が解決できる。   In recent years, a so-called photobaking technique has been developed and attracts attention as a means for solving such problems. For example, in Patent Document 1, a dispersion containing at least nanoparticles having a particle size of less than 1 μm is pattern-printed on a substrate and irradiated with pulsed light emission, whereby some of the nanoparticles including most metal nanoparticles are included. Disclosed is a method for forming a circuit pattern in which particles exhibit behavior as a black body, exhibit high electromagnetic radiation absorption, and have a small thermal mass so that the particles are rapidly heated and fused to form a cured circuit pattern. ing. In the case of this method, since the thermal conductivity of the substrate is poor and the pulse length is short, only a minimum amount of energy is transmitted to the substrate, so that the problems of the conventional methods of thermosetting and baking can be solved.

特表2008−522369号公報Special table 2008-522369

前記した所謂、光焼成技術によれば、従来の熱硬化や焼成による方法の問題は解決できるが、良好な電気特性が得られ難いという問題があり、広く実用化されていないのが現状である。   According to the so-called photobaking technique described above, the problems of the conventional methods of thermosetting and baking can be solved, but there is a problem that it is difficult to obtain good electrical characteristics, and it is not widely put into practical use at present. .

本発明は、このような従来技術の問題点に鑑みてなされたものであり、その基本的な目的は、良好な電気特性を有する導電膜を形成するための導電性組成物を、新たな光焼成技術により提供することにある。
さらに本発明の目的は、かかる導電性組成物により生産性良く且つ低コストで導体膜が形成された回路基板を提供することにある。
The present invention has been made in view of such problems of the prior art. The basic object of the present invention is to provide a conductive composition for forming a conductive film having good electrical characteristics as a new light. It is to be provided by a firing technique.
Another object of the present invention is to provide a circuit board on which a conductive film is formed with good productivity and low cost by such a conductive composition.

前記目的を達成するために、光照射により導電性組成物を焼成する技術において、光反応開始剤又は光酸発生剤を用いることにより、導電性組成物の電気特性を向上できることを見出した。
即ち、本発明によれば、光照射により焼成するための、溶媒中に導電性微粒子を含有する導電性組成物であって、光反応開始剤又は光酸発生剤を含有することを特徴とする導電性組成物が提供される。
好適な態様においては、前記導電性組成物はさらに分散剤を含有し、また、前記溶媒は有機溶剤、水、又はそれらの混合物である。
In order to achieve the above object, it has been found that in the technique of firing a conductive composition by light irradiation, the electrical properties of the conductive composition can be improved by using a photoreaction initiator or a photoacid generator.
That is, according to the present invention, a conductive composition containing conductive fine particles in a solvent for firing by light irradiation, characterized by containing a photoreaction initiator or a photoacid generator. A conductive composition is provided.
In a preferred embodiment, the conductive composition further contains a dispersant, and the solvent is an organic solvent, water, or a mixture thereof.

さらに本発明によれば、前記導電性組成物を塗布及び乾燥して得られる塗膜に光照射してなる導電膜を有することを特徴とする回路基板が提供される。   Furthermore, according to the present invention, there is provided a circuit board characterized by having a conductive film formed by irradiating a coating film obtained by applying and drying the conductive composition.

本発明の導電性組成物は、前記したように、光照射により焼成するための導電性組成物において、光反応開始剤又は光酸発生剤を含有する点に最大の特徴がある。これにより、良好な電気特性を有する回路パターン等の導電膜を形成することができる。
これは、必ずしも明確とは言えないが、光反応開始剤は光エネルギーを吸収して励起される性質を有するため、光反応開始剤が共存することにより、導電性微粒子自体の光エネルギーの吸収率を改善できるためと考えられる。これにより、粒子が急速に加熱、融着されて焼成され、良好な導電性を発揮すると考えられる。
一方、組成物が光酸発生剤を含有する場合では、光酸発生剤が導電性微粒子の表面処理剤として機能することにより、良好な導電性を発揮すると考えられる。
As described above, the conductive composition of the present invention has the greatest feature in that it contains a photoreaction initiator or a photoacid generator in the conductive composition for firing by light irradiation. As a result, a conductive film such as a circuit pattern having good electrical characteristics can be formed.
This is not necessarily clear, but photoinitiators have the property of being excited by absorbing light energy, so the coexistence of the photoinitiator makes it possible to absorb the light energy of the conductive fine particles themselves. It is thought that it can improve. Thereby, it is considered that the particles are rapidly heated, fused and fired to exhibit good conductivity.
On the other hand, when the composition contains a photoacid generator, it is considered that the photoacid generator functions as a surface treatment agent for the conductive fine particles, thereby exhibiting good conductivity.

また、本発明の導電性組成物を用いた方法の場合、基材上にパターン印刷された導電性組成物に光照射することによって導体回路を形成できるため、生産性良く且つ低コストで導体回路が形成された回路基板を提供することができる。しかも、本願発明の導電性組成物を用いた方法によれば、最小限のエネルギーしか基材には伝達されないので、使用できる基材が限定されないという利点がある。   In the case of the method using the conductive composition of the present invention, a conductor circuit can be formed by irradiating the conductive composition patterned on the substrate with light, so that the conductor circuit can be produced with high productivity and at low cost. Can be provided. In addition, according to the method using the conductive composition of the present invention, since a minimum amount of energy is transmitted to the substrate, there is an advantage that the usable substrate is not limited.

以下、本発明の導電性組成物の各構成成分について説明する。
本発明の導電性組成物に用いられる導電性微粒子としては、銀(Ag)、金(Au)、ニッケル(Ni)、銅(Cu)、アルミニウム(Al)、錫(Sn)、鉛(Pb)、亜鉛(Zn)、鉄(Fe)、白金(Pt)、イリジウム(Ir)、オスミウム(Os)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、タングステン(W)、モリブデン(Mo)などの単体とその合金などの金属、酸化錫(SnO)、酸化インジウム(In)、ITO(Indium Tin Oxide)などの金属酸化物や、カーボンブラックなどが挙げられ、これらは単独で又は2種類以上の混合粉として用いることができる。また、導電性微粒子の酸化防止、組成物内での分散性向上のため、脂肪酸による処理を行ったものが好ましい。脂肪酸のうちでも特に炭素数が6〜8の低炭素のカルボン酸、具体的にはヘキサン酸、ヘプタン酸、オクタン酸、ソルビン酸、安息香酸、サリチル酸、m−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸程度の長さであることが好ましい。
導電性微粒子としては、Cu,Ag,Alが好ましく、Agがより好ましい。
Hereinafter, each component of the conductive composition of the present invention will be described.
As the conductive fine particles used in the conductive composition of the present invention, silver (Ag), gold (Au), nickel (Ni), copper (Cu), aluminum (Al), tin (Sn), lead (Pb) , Zinc (Zn), iron (Fe), platinum (Pt), iridium (Ir), osmium (Os), palladium (Pd), rhodium (Rh), ruthenium (Ru), tungsten (W), molybdenum (Mo) And metal such as tin and its alloys, metal oxides such as tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), ITO (Indium Tin Oxide), and carbon black, etc. Or it can use as 2 or more types of mixed powder. Moreover, in order to prevent the conductive fine particles from being oxidized and to improve the dispersibility in the composition, those treated with a fatty acid are preferred. Among the fatty acids, especially low-carbon carboxylic acids having 6 to 8 carbon atoms, specifically hexanoic acid, heptanoic acid, octanoic acid, sorbic acid, benzoic acid, salicylic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid. It is preferable that the length is about.
As the conductive fine particles, Cu, Ag, and Al are preferable, and Ag is more preferable.

前記導電性微粒子の形状は、球状、フレーク状、デンドライト状など種々のものを用いることができるが、本発明の導電性組成物においては、導電性微粒子の一次粒子径が1μm未満であることが好ましく、より好ましくは300nm以下であり、さらにより好ましくは100nm以下であり、特により好ましくは60nm以下であり、最も好ましくは20nm以下である。   Various shapes such as a spherical shape, a flake shape, and a dendrite shape can be used as the shape of the conductive fine particles. In the conductive composition of the present invention, the primary particle size of the conductive fine particles may be less than 1 μm. More preferably, it is 300 nm or less, still more preferably 100 nm or less, particularly preferably 60 nm or less, and most preferably 20 nm or less.

上記導電性微粒子の一次粒子径とは、電子顕微鏡にて観察したランダムな10個の導電性微粒子から算出した平均粒径である。   The primary particle diameter of the conductive fine particles is an average particle diameter calculated from 10 random conductive fine particles observed with an electron microscope.

導電性微粒子の配合量は、導電性組成物全体の5質量%以上、90質量%以下、好ましくは10質量%以上、70質量%以下、より好ましくは15質量%以上、50質量%以下となる割合が適当である。導電性微粒子の配合量が5質量%未満の場合、電極回路の線幅収縮や断線が生じ易くなり、一方、90質量%を超えて多量に配合すると、安定した良好な分散体(ペースト)を作製し難くなるので好ましくない。   The compounding quantity of electroconductive fine particles will be 5 to 90 mass% of the whole electroconductive composition, Preferably it is 10 to 70 mass%, More preferably, it is 15 to 50 mass%. Proportion is appropriate. When the blending amount of the conductive fine particles is less than 5% by mass, the line width shrinkage or disconnection of the electrode circuit is likely to occur. On the other hand, when the blending amount exceeds 90% by mass, a stable and good dispersion (paste) is obtained. Since it becomes difficult to produce, it is not preferable.

前記光反応開始剤としては、光エネルギーを吸収して励起し、例えばラジカルを生成し得るものであれば名称の如何を問わずすべて使用でき、また慣用公知の光開始助剤、増感剤も使用することができる。具体的な光反応開始剤としては、アルキルフェノン系化合物、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ベンゾフェノン化合物、キサントン化合物、3級アミン化合物、オキシムエステル系化合物、アシルホスフィンオキサイド系化合物、チタノセン化合物等を挙げることができる。これらのなかでも、アルキルフェノン系とチタノセン化合物が好ましい。   As the photoinitiator, any photoinitiator or sensitizer can be used as long as it can excite by absorbing light energy and can generate radicals, for example, regardless of the name. Can be used. Specific photoinitiators include alkylphenone compounds, benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, benzophenone compounds, xanthone compounds, tertiary amine compounds, oxime ester compounds, acylphosphine oxide compounds, titanocene. A compound etc. can be mentioned. Of these, alkylphenone and titanocene compounds are preferred.

アルキルフェノン系開始剤としては、α−ヒドロキシアルキルフェノン系化合物、α−アミノアルキルフェノン系化合物、ケタール化合物等が挙げられる。
α−ヒドロキシアルキルフェノン系開始剤の市販品としては、BASFジャパン社製のイルガキュア(登録商標)127、イルガキュア184、イルガキュア2959、ダロキュア(登録商標)1173等が挙げられる。
Examples of the alkylphenone initiator include α-hydroxyalkylphenone compounds, α-aminoalkylphenone compounds, and ketal compounds.
Examples of commercially available α-hydroxyalkylphenone initiators include Irgacure (registered trademark) 127, Irgacure 184, Irgacure 2959, Darocur (registered trademark) 1173 manufactured by BASF Japan.

α−アミノアルキルフェノン系開始剤としては、具体的には2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパノン−1、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタン−1−オン、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン、N,N−ジメチルアミノアセトフェノンなどのα−アミノアセトフェノン系開始剤が挙げられ、市販品としては、BASFジャパン社製のイルガキュア369、イルガキュア379、イルガキュア907等が挙げられる。   Specific examples of the α-aminoalkylphenone initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1- ( 4-morpholinophenyl) -butan-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N, Examples include α-aminoacetophenone-based initiators such as N-dimethylaminoacetophenone, and commercially available products include Irgacure 369, Irgacure 379, and Irgacure 907 manufactured by BASF Japan.

ケタール系開始剤としては、具体的には、例えばアセトフェノンジメチルケタール、ベンジルジメチルケタールなどが挙げられ、市販品としては、BASFジャパン社製のイルガキュア651等が挙げられる。   Specific examples of the ketal initiator include acetophenone dimethyl ketal and benzyl dimethyl ketal, and commercially available products include Irgacure 651 manufactured by BASF Japan.

チタノセン化合物としては、具体的には、例えばビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−(2−(1−ピル−1−イル)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−((2,5−ジメチル−1−ピル−1−イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−((2−イソプロピル−5−メチル−1−ピル−1,6−イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−((3−トリメチルシリル−2,5−ジメチル−1−ピル−1−イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−((2,5−ジメチル−3−(ビス(2−メトキシエチル)アミノメチル)−1−ピル−1−イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−((2,5−ビス(モルホリノメチル)−1−ピル−1−イル)メチル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,3,5,6−テトラフルオロ−4−(3−(1−ピル−1−イル)プロピル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−(2−(4,5,6,7−テトラヒドロ−イソインドル−2−イル)エチル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−(6−(9−カルバゾル−9−イル)ヘキシル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−(3−(2,3,4,5,6,7,8,9−オクタヒドロ−1−カルバゾル−9−イル)プロピル)フェニル]チタニウム、ビス(シクロペンタジエニル)−ビス[2,6−ジフルオロ−3−(2−(N−アリルメチルスルホニルアミノ)エチル)フェニル]チタニウム、ビス(η−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)フェニル)チタニウムなどが挙げられる。市販品としては、可視光領域に吸収のあるBASFジャパン社製のイルガキュア784などが挙げられる。Specific examples of the titanocene compound include bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- (1-pyr-1-yl) ethyl) phenyl] titanium, bis (cyclo Pentadienyl) -bis [2,6-difluoro-3-((2,5-dimethyl-1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6 -Difluoro-3-((2-isopropyl-5-methyl-1-pyr-1,6-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- ( (3-Trimethylsilyl-2,5-dimethyl-1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-((2,5 Dimethyl-3- (bis (2-methoxyethyl) aminomethyl) -1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3-(( 2,5-bis (morpholinomethyl) -1-pyr-1-yl) methyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,3,5,6-tetrafluoro-4- (3- (1-pyr-1-yl) propyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- (4,5,6,7-tetrahydro-isoindole-2) -Yl) ethyl) phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (6- (9-carbazol-9-yl) hexyl) phenyl] titanium Bis (cyclopentadienyl) -bis [2,6-difluoro-3- (3- (2,3,4,5,6,7,8,9-octahydro-1-carbazol-9-yl) propyl) Phenyl] titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- (N-allylmethylsulfonylamino) ethyl) phenyl] titanium, bis (η 5 -2,4-cyclopentadiene -1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl) titanium and the like. Examples of commercially available products include Irgacure 784 manufactured by BASF Japan, which absorbs in the visible light region.

上記に代表的な光反応開始剤類を列挙したが、フラッシュランプ等を用いた光照射によりラジカル活性種を発生するもの、またその成長種の働きを助けるものであればよく、前記したものに限定されない。光反応開始剤の配合量(含有する場合にはさらに光開始助剤及び増感剤との合計量)は、光反応開始剤と導電性粒子の合計質量に対して0.01〜30質量%、好ましくは0.05〜15質量%、より好ましくは0.1〜5質量%の範囲が適当である。光反応開始剤の配合量が0.01質量%以上の場合、良好に、本発明の効果が得られる。ただし、30質量%を超えると、焼成の妨げとなるため、好ましくない。   The typical photoinitiators are listed above, but those that generate radically active species by light irradiation using a flash lamp or the like, and those that help the function of the growing species may be used. It is not limited. The blending amount of the photoinitiator (the total amount of the photoinitiator assistant and the sensitizer when contained) is 0.01 to 30% by mass with respect to the total mass of the photoinitiator and the conductive particles. The range is preferably 0.05 to 15% by mass, more preferably 0.1 to 5% by mass. When the blending amount of the photoreaction initiator is 0.01% by mass or more, the effect of the present invention can be obtained satisfactorily. However, exceeding 30% by mass is not preferable because it hinders firing.

前記光酸発生剤としては、光エネルギーを吸収して励起し、例えば酸を生成し得るものであれば名称の如何を問わずすべて使用できる。具体的な光酸発生剤としては、例えば、ジアゾニウム塩、ヨードニウム塩、ブロモニウム塩、クロロニウム塩、スルホニウム塩、セレノニウム塩、ピリリウム塩、チアピリリウム塩、ピリジニウム塩等のオニウム塩;トリス(トリハロメチル)−s−トリアジン(例えば2,4,6−トリス(トリクロロメチル)−s−トリアジン)、2−[2−(5−メチルフラン−2−イル)エテニル]−4,6−ビス(トリクロロメチル)−s−トリアジン、2−[2−(フラン−2−イル)エテニル]−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−メトキシフエニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−メチル−4,6−ビス(トリクロロメチル)−s−トリアジン等のハロゲン化化合物;スルホン酸の2−ニトロベンジルエステル;イミノスルホナート;1−オキソ−2−ジアゾナフトキノン−4−スルホナート誘導体;N−ヒドロキシイミド=スルホナート;トリ(メタンスルホニルオキシ)ベンゼン誘導体;ビススルホニルジアゾメタン類;スルホニルカルボニルアルカン類;スルホニルカルボニルジアゾメタン類;ジスルホン化合物;鉄アレン錯体等を挙げることができる。これらの光酸発生剤は、単独で、又は2種類以上組み合わせて用いることができる。   Any photoacid generator can be used regardless of its name as long as it can be excited by absorbing light energy to generate an acid, for example. Specific photoacid generators include, for example, diazonium salts, iodonium salts, bromonium salts, chloronium salts, sulfonium salts, selenonium salts, pyrylium salts, thiapyrylium salts, pyridinium salts and other onium salts; tris (trihalomethyl) -s -Triazines (eg 2,4,6-tris (trichloromethyl) -s-triazine), 2- [2- (5-methylfuran-2-yl) ethenyl] -4,6-bis (trichloromethyl) -s -Triazine, 2- [2- (furan-2-yl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) ) -S-triazine, 2-methyl-4,6-bis (trichloromethyl) -s-triazine and other halogenated compounds; sulfonic acid 2-nitrobenzyl ester; iminosulfonate; 1-oxo-2-diazonaphthoquinone-4-sulfonate derivative; N-hydroxyimide = sulfonate; tri (methanesulfonyloxy) benzene derivative; bissulfonyldiazomethanes; sulfonylcarbonylalkanes; Examples include sulfonylcarbonyldiazomethanes; disulfone compounds; iron allene complexes. These photoacid generators can be used alone or in combination of two or more.

光酸発生剤の市販されているものとしては、ユニオン・カーバイト社製のCYRACURE UVI−6950、UVI−6970、ADEKA社製のオプトマーSP−150、SP−151、SP−152、SP−170、SP−171、日本曹達社製のCI−2855、デグサ社製のDegacere KI85B等のトリアリールスルホニウム塩や非置換又は置換されたアリールジアゾニウム塩、ジアリールヨードニウム塩が挙げられる。また、スルホン酸誘導体としては、みどり化学社製のPAI−101(以上、何れも商品名)等が挙げられる。   Commercially available photoacid generators include CYRACURE UVI-6950, UVI-6970, manufactured by Union Carbide, and Optomer SP-150, SP-151, SP-152, SP-170, manufactured by ADEKA. Examples thereof include triarylsulfonium salts such as SP-171, CI-2855 manufactured by Nippon Soda Co., Ltd., and Decesa KI85B manufactured by Degussa, and unsubstituted or substituted aryldiazonium salts and diaryliodonium salts. Examples of the sulfonic acid derivative include PAI-101 (all are trade names) manufactured by Midori Chemical.

このような光酸発生剤の配合量は、光酸発生剤と導電性粒子の合計質量に対して0.01〜30質量%、好ましくは0.05〜15質量%、より好ましくは0.1〜5質量%の範囲が適当である。光酸発生剤の配合量が0.01質量%以上の場合、良好に、本発明の効果が得られる。ただし、30質量%を超えると、焼成の妨げとなるため、好ましくない。   The blending amount of such a photoacid generator is 0.01 to 30% by mass, preferably 0.05 to 15% by mass, more preferably 0.1% with respect to the total mass of the photoacid generator and the conductive particles. A range of ˜5% by weight is suitable. When the blending amount of the photoacid generator is 0.01% by mass or more, the effect of the present invention can be obtained satisfactorily. However, exceeding 30% by mass is not preferable because it hinders firing.

本発明の導電性組成物には、安定したペーストとするために導電性微粒子に適した分散剤を添加することが好ましい。分散剤としては、導電性微粒子と親和性のある極性基を有する化合物や高分子化合物、例えばリン酸エステル類などの酸含有化合物や、酸基を含む共重合物、水酸基含有ポリカルボン酸エステル、ポリシロキサン、長鎖ポリアミノアマイドと酸エステルの塩などを用いることができる。市販されている分散剤で好適に用いることができるものとしては、BYK(登録商標)−101、−103、−108、−110、−112、−130、−184、−2001、−2020(いずれもビック・ケミー社製)などが挙げられる。このような分散剤の配合量は、組成物全体量の0.1〜10質量%、好ましくは1〜5質量%が適当である。   In order to obtain a stable paste, it is preferable to add a dispersant suitable for the conductive fine particles to the conductive composition of the present invention. Examples of the dispersant include a compound having a polar group having an affinity for the conductive fine particles or a polymer compound, for example, an acid-containing compound such as a phosphate ester, a copolymer containing an acid group, a hydroxyl group-containing polycarboxylic acid ester, Polysiloxane, a long-chain polyaminoamide and a salt of an acid ester can be used. Examples of commercially available dispersants that can be suitably used include BYK (registered trademark) -101, -103, -108, -110, -112, -130, -184, -2001, -2020 (any (Made by Big Chemie). The amount of such a dispersant is 0.1 to 10% by mass, preferably 1 to 5% by mass, based on the total amount of the composition.

本発明の導電性組成物において、導電性微粒子を分散させるための溶媒としては、有機溶剤や水を用いることができる。有機溶剤の具体例としては、例えば、メチルエチルケトン、シクロヘキサノンなどのケトン類;トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類;セロソルブ、メチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテートなどの酢酸エステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコール、ターピネオール(α−テルピネオール)、イソボロニルシクロヘキサノールなどのアルコール類;オクタン、デカンなどの脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサなどの石油系溶剤が挙げられ、これらを単独で又は二種以上を組み合わせて用いることができる。これらの中でも、環境衛生の面からは、アルコール類及び水、特に分散安定性の点からアルコール類が好ましい。   In the conductive composition of the present invention, an organic solvent or water can be used as a solvent for dispersing conductive fine particles. Specific examples of the organic solvent include, for example, ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methylcellosolve, carbitol, methylcarbitol, butylcarbitol, propylene Glycol ethers such as glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether; ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate, Acetic esters such as propylene glycol monomethyl ether acetate; ethanol, propanol, ethylene glycol , Propylene glycol, terpineol (α-terpineol), alcohols such as isobornylcyclohexanol; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha These may be used alone or in combination of two or more. Among these, from the viewpoint of environmental hygiene, alcohols and water, particularly alcohols are preferable from the viewpoint of dispersion stability.

溶媒の配合割合は、良好な分散安定性のペーストが得られる量的割合であればよく、特に限定されるものではないが、組成物全体量の20〜80質量%、好ましくは30〜75質量%、より好ましくは40〜70質量%であることが望ましい。溶媒の配合割合が80質量%を超えると、乾燥に時間を要し、また揮発成分の蒸発による環境衛生上の問題も生じる恐れがあるため好ましくない。   The blending ratio of the solvent is not particularly limited as long as it is a quantitative ratio for obtaining a paste having good dispersion stability, but is 20 to 80% by mass, preferably 30 to 75% by mass of the total amount of the composition. %, More preferably 40 to 70% by mass. When the blending ratio of the solvent exceeds 80% by mass, it takes time for drying, and environmental hygiene problems due to evaporation of volatile components may occur.

また、本発明の導電性組成物においては、本発明の効果を損なわない量的割合で、さらに必要に応じて、流動性付与剤、安定剤、消泡剤、レベリング剤、ブロッキング防止剤、シランカップリング剤、増粘剤、チキソトロピー剤、無機充填剤、着色剤などの各種添加剤も少量添加することができる。   In the conductive composition of the present invention, a fluidity-imparting agent, a stabilizer, an antifoaming agent, a leveling agent, an anti-blocking agent, and a silane are added at a quantitative ratio that does not impair the effects of the present invention. Various additives such as coupling agents, thickeners, thixotropic agents, inorganic fillers, and coloring agents can also be added in small amounts.

回路基板の製造においては、前記したような組成の導電性組成物を、基材上にスクリーン印刷法、インクジェット、バーコーター、ブレードコーター等の公知の塗布方法により塗布し、例えば約50〜100℃で乾燥し、所定のパターンの塗膜を形成する。パターン形成には、マスキング法やレジスト等を用いることができる。   In the production of a circuit board, a conductive composition having the above-described composition is applied onto a substrate by a known coating method such as screen printing, ink jet, bar coater, blade coater, etc., for example, about 50-100 ° C. To form a coating film with a predetermined pattern. For pattern formation, a masking method, a resist, or the like can be used.

その後、前記所定のパターンの塗膜にフラッシュランプ等を用いて光を照射する。この際、塗膜中大部分のナノ粒子である導電性微粒子は、言わば黒体としての挙動を示し、高い光エネルギー吸収率を示し、且つ、粒子の熱質量が小さいことにより粒子が急速に加熱、融着されて、焼成した回路パターンの導電膜が形成される。   Thereafter, the coating film having the predetermined pattern is irradiated with light using a flash lamp or the like. At this time, the conductive fine particles, which are the majority of the nanoparticles in the coating film, behave as a black body, exhibit a high light energy absorption rate, and heat the particles rapidly due to the small thermal mass of the particles. A conductive film having a circuit pattern that is fused and fired is formed.

上記基材としては、特に限定されることなく種々のものを用いることができる。具体的には、セルロース(紙)フィルム、ポリプロピレン(PP)フィルム、ポリエステルフィルム、ポリイミドフィルム等の樹脂性フィルム、ガラス基材、セラミック基材、BT(ビスマレイミドトリアジン)基材、ガラスエポキシ基材、ガラスポリイミド基材、フェノール基材、紙フェノールなどの基材を用いることができる。
ポリエステルフィルムとしては、ポリエチレンテレフタレート(PET)フィルム、ポリエレンナフタレート(PEN)フィルム等が挙げられる。
本発明の導電性組成物は、これらのうちでも、樹脂性フィルムや、樹脂を含む基材に用いることが好ましい。
There are no particular limitations on the substrate, and various types can be used. Specifically, a cellulose (paper) film, a polypropylene (PP) film, a polyester film, a resinous film such as a polyimide film, a glass substrate, a ceramic substrate, a BT (bismaleimide triazine) substrate, a glass epoxy substrate, Substrates such as a glass polyimide substrate, a phenol substrate, and paper phenol can be used.
Examples of the polyester film include a polyethylene terephthalate (PET) film and a polyethylene naphthalate (PEN) film.
Among these, the conductive composition of the present invention is preferably used for a resinous film or a substrate containing a resin.

光照射による焼成は、フラッシュランプを用いた光照射が好ましい。フラッシュランプは、石英やガラス等の管内に発光ガス(Xe・Kr・Ar・Ne等)を封入したランプで、発光時間1μs〜5000μsの極めて短い時間、発光するもので、200nmから1100nmの波長の広帯域のスペクトルにて照射することができる。入手のし易さからXeを封入したキセノンフラッシュランプが好ましい。   Firing by light irradiation is preferably light irradiation using a flash lamp. A flash lamp is a lamp in which a luminescent gas (Xe, Kr, Ar, Ne, etc.) is sealed in a tube made of quartz, glass, etc., and emits light for a very short time of light emission time of 1 μs to 5000 μs. Irradiation with a broad spectrum is possible. A xenon flash lamp in which Xe is enclosed is preferable because it is easily available.

以下、実施例及び比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものでないことはもとよりである。尚、以下において「部」とあるのは、特に断りのない限り全て質量基準である。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, it cannot be overemphasized that this invention is not limited to the following Example. In the following description, “part” is based on mass unless otherwise specified.

実施例1〜3及び比較例1
<導電性ペーストの調製>
表1に示す配合割合(質量比)で銀粉以外の各成分を配合し、攪拌機にて10分間混合した後、銀粉を配合し、攪拌機にて10分間混合し、実施例1〜3及び比較例1の各導電性ペーストを得た。
Examples 1 to 3 and Comparative Example 1
<Preparation of conductive paste>
Each component other than silver powder was blended at a blending ratio (mass ratio) shown in Table 1, and after mixing for 10 minutes with a stirrer, silver powder was blended and mixed for 10 minutes with a stirrer. Examples 1-3 and Comparative Examples 1 conductive pastes were obtained.

Figure 2013175965
Figure 2013175965

<比抵抗値の測定>
PETフィルム上に約2mm幅の間隙を空けてセロハン粘着テープによりマスキングを施し、スクレイパーにより導電性ペーストを塗布した後、セロハン粘着テープをはがし、熱風循環式乾燥炉を用いて80℃にて30分間乾燥を行った。得られたパターンの膜厚を、サーフコーダ(小坂研究所製、SE−30H)を用いて測定し、パターン幅を、MEASURING MICROSCOPE(OLYMPUS社製、STM−MJS)を用いて測定し、パターン長さ1cmの抵抗値を、DIGITAL MULTIMETER(CUSTOM社製、CORPORATION CDM−26)を用いて測定した。
次に、写真用カメラ(富士フイルム(株)製ポケットフジカ350フラッシュ)を用いて、パターン上3mmの高さからフラッシュを照射した後、再度パターン長さ1cmの抵抗値を測定した。
上記測定の膜厚、パターン幅、及び抵抗値から比抵抗値を算出した。得られた結果を下記表2に示す。
<Measurement of specific resistance value>
After masking with a cellophane adhesive tape with a gap of about 2 mm on the PET film, and applying a conductive paste with a scraper, the cellophane adhesive tape is peeled off and then removed at 80 ° C. for 30 minutes using a hot air circulating drying oven. Drying was performed. The film thickness of the obtained pattern was measured using a surf coder (SE-30H, manufactured by Kosaka Laboratories), and the pattern width was measured using MEASURING MICROSCOPE (manufactured by OLYMPUS, STM-MJS). A resistance value of 1 cm was measured using a DIGITAL MULTITIMER (CUSTORATION, CORDICATION CDM-26).
Next, using a photographic camera (Pocket Fujica 350 Flash manufactured by Fuji Film Co., Ltd.), the flash was irradiated from a height of 3 mm on the pattern, and then the resistance value of the pattern length of 1 cm was measured again.
The specific resistance value was calculated from the film thickness, pattern width, and resistance value measured above. The obtained results are shown in Table 2 below.

Figure 2013175965
Figure 2013175965

表2に示されるように、光反応開始剤を添加した実施例1〜3の導電性ペーストは、光反応開始剤を添加しなかった比較例1に比べ比抵抗値が減少し、導電性材料として良好な結果を示した。   As shown in Table 2, the conductive pastes of Examples 1 to 3 to which the photoinitiator was added had a specific resistance value that was lower than that of Comparative Example 1 to which no photoinitiator was added, and the conductive material. As good results.

実施例4及び5
表3に示す配合割合(質量比)で銀粉以外の各成分を配合し、攪拌機にて10分間混合した後、銀粉を配合し、攪拌機にて10分間混合し、実施例4、5の各導電性ペーストを得た。
得られた各導電性ペーストについて、前記と同様にして膜厚、パターン幅、及び抵抗値から比抵抗値を測定した。その結果を表4に示す。
Examples 4 and 5
Each component other than silver powder was blended at the blending ratio (mass ratio) shown in Table 3, and after mixing for 10 minutes with a stirrer, silver powder was blended and mixed for 10 minutes with a stirrer. Sex paste was obtained.
About each obtained electrically conductive paste, the specific resistance value was measured from the film thickness, the pattern width, and the resistance value like the above. The results are shown in Table 4.

Figure 2013175965
Figure 2013175965

Figure 2013175965
Figure 2013175965

表4に示されるように、光酸発生剤を添加した実施例4、5の導電性ペーストは、光酸発生剤を添加しなかった比較例1に比べ比抵抗値が減少し、導電性材料として良好な結果を示した。   As shown in Table 4, the conductive pastes of Examples 4 and 5 to which the photoacid generator was added had a lower specific resistance value than that of Comparative Example 1 to which no photoacid generator was added, and the conductive material. As good results.

Claims (4)

光照射により焼成するための、溶媒中に導電性微粒子を含有する導電性組成物であって、光反応開始剤又は光酸発生剤を含有することを特徴とする導電性組成物。   A conductive composition containing conductive fine particles in a solvent for firing by light irradiation, comprising a photoreaction initiator or a photoacid generator. さらに分散剤を含有することを特徴とする請求項1に記載の導電性組成物。   Furthermore, a dispersing agent is contained, The electrically conductive composition of Claim 1 characterized by the above-mentioned. 前記溶媒が有機溶剤、水、又はそれらの混合物であることを特徴とする請求項1に記載の導電性組成物。   The conductive composition according to claim 1, wherein the solvent is an organic solvent, water, or a mixture thereof. 基材上に請求項1〜3のいずれか一項に記載の導電性組成物を塗布及び乾燥して得られる塗膜に光照射してなる導電膜を有することを特徴とする回路基板。   A circuit board comprising a conductive film formed by irradiating a coating film obtained by applying and drying the conductive composition according to any one of claims 1 to 3 on a substrate.
JP2014516744A 2012-05-22 2013-05-08 Conductive composition and circuit board on which conductive film is formed Active JP6002216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014516744A JP6002216B2 (en) 2012-05-22 2013-05-08 Conductive composition and circuit board on which conductive film is formed

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012116703 2012-05-22
JP2012116703 2012-05-22
JP2012214920 2012-09-27
JP2012214920 2012-09-27
JP2014516744A JP6002216B2 (en) 2012-05-22 2013-05-08 Conductive composition and circuit board on which conductive film is formed
PCT/JP2013/062954 WO2013175965A1 (en) 2012-05-22 2013-05-08 Electroconductive composition and circuit board having electroconductive film formed from same

Publications (2)

Publication Number Publication Date
JPWO2013175965A1 true JPWO2013175965A1 (en) 2016-01-12
JP6002216B2 JP6002216B2 (en) 2016-10-05

Family

ID=49623662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014516744A Active JP6002216B2 (en) 2012-05-22 2013-05-08 Conductive composition and circuit board on which conductive film is formed

Country Status (5)

Country Link
JP (1) JP6002216B2 (en)
KR (2) KR20140126737A (en)
CN (2) CN104170021B (en)
TW (1) TWI556264B (en)
WO (1) WO2013175965A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6404558B2 (en) * 2013-10-18 2018-10-10 国立大学法人大阪大学 Manufacturing method of cured resin
JP2016146290A (en) * 2015-02-09 2016-08-12 日立化成株式会社 Conductive composition, conductive material using it and conductor
US10633550B2 (en) 2017-08-31 2020-04-28 Xerox Corporation Molecular organic reactive inks for conductive silver printing
US10814659B2 (en) 2018-06-28 2020-10-27 Xerox Corporation Methods for printing conductive objects

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003140330A (en) * 2001-11-05 2003-05-14 Nippon Paint Co Ltd Conductive patterning composition and method for manufacturing conductive pattern film by using the same
JP2005276573A (en) * 2004-03-24 2005-10-06 Taiyo Ink Mfg Ltd Photosensitive conductive paste and conductor pattern formed using it
JP2006086123A (en) * 2004-09-09 2006-03-30 Samsung Sdi Co Ltd Photosensitive paste composition, and electrode and green sheet using photosensitive paste composition
JP2008274096A (en) * 2007-04-27 2008-11-13 Sanyo Chem Ind Ltd Conductive ink composition
JP2012225998A (en) * 2011-04-15 2012-11-15 Daiso Co Ltd Photosetting resin composition containing metal fine particles and use of the same
JP2013196997A (en) * 2012-03-22 2013-09-30 Toray Ind Inc Conductive composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198153A (en) * 1989-05-26 1993-03-30 International Business Machines Corporation Electrically conductive polymeric
JP4382364B2 (en) * 2002-04-24 2009-12-09 株式会社東芝 Liquid ink
JP2004123775A (en) * 2002-09-30 2004-04-22 Taiyo Ink Mfg Ltd Photosensitive thermosetting paste composition
US10231344B2 (en) * 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
JP2010146995A (en) * 2008-12-22 2010-07-01 Hitachi Maxell Ltd Manufacturing method of transparent conductive sheet
JP2011086582A (en) * 2009-10-19 2011-04-28 Hitachi Maxell Ltd Method of manufacturing transparent conductive sheet
JP5715851B2 (en) * 2011-02-24 2015-05-13 東芝テック株式会社 Method for producing printed matter using nanoparticle ink composition
JP5821244B2 (en) * 2011-03-31 2015-11-24 大日本印刷株式会社 Metal fine particle dispersion, conductive substrate and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003140330A (en) * 2001-11-05 2003-05-14 Nippon Paint Co Ltd Conductive patterning composition and method for manufacturing conductive pattern film by using the same
JP2005276573A (en) * 2004-03-24 2005-10-06 Taiyo Ink Mfg Ltd Photosensitive conductive paste and conductor pattern formed using it
JP2006086123A (en) * 2004-09-09 2006-03-30 Samsung Sdi Co Ltd Photosensitive paste composition, and electrode and green sheet using photosensitive paste composition
JP2008274096A (en) * 2007-04-27 2008-11-13 Sanyo Chem Ind Ltd Conductive ink composition
JP2012225998A (en) * 2011-04-15 2012-11-15 Daiso Co Ltd Photosetting resin composition containing metal fine particles and use of the same
JP2013196997A (en) * 2012-03-22 2013-09-30 Toray Ind Inc Conductive composition

Also Published As

Publication number Publication date
TWI556264B (en) 2016-11-01
CN104170021A (en) 2014-11-26
WO2013175965A1 (en) 2013-11-28
CN107274968A (en) 2017-10-20
KR20160044065A (en) 2016-04-22
JP6002216B2 (en) 2016-10-05
CN104170021B (en) 2017-09-15
KR20140126737A (en) 2014-10-31
TW201401302A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5671157B2 (en) Conductive ink composition for offset or reverse offset printing
JP2021167425A (en) Metal nanowire ink for formation of transparent conductive film with fused network
TWI603374B (en) Method for manufacturing conductive pattern, touch sensor, touch panel and display panel
JP6002216B2 (en) Conductive composition and circuit board on which conductive film is formed
JP5505695B2 (en) Metal paste for conductive film formation
TWI607063B (en) Conductive ink composition for forming transparent electrode
KR20140134304A (en) Liquid composition, metal film, conductive wiring line, and method for producing metal film
JP2015517184A (en) Copper paste composition for printing and method of forming metal pattern using the same
JP2014002992A (en) Electroconductive paste composition for laser etching
TW201405581A (en) Electroconductive composition
JP2007227156A (en) Conductive paste, and printed wiring board using it
JP2010047649A (en) Conductive ink and conductive circuit formed by screen printing using the same
JP2010047716A (en) Electroconductive ink composition for screen printing and electroconductive coated film
CN104185880A (en) Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
JP6277751B2 (en) Copper particle dispersion paste and method for producing conductive substrate
JP2013018967A (en) Solvent or solvent composition for printing
CN105358640A (en) Composition for forming conductive film and method for producing conductive film
JP2008274096A (en) Conductive ink composition
WO2018150697A1 (en) Conductive paste for gravure offset printing, method for forming conductive pattern, and method for manufacturing conductive substrate
JP5376876B2 (en) Pattern forming method and photoprecipitation composition used in the method
JP2008235846A (en) Composition for forming electrode in solar cell, method of forming the electrode, and solar cell using electrode obtained by forming method
JP6324898B2 (en) Conductive composition, electrode, plasma display panel and touch panel
JP2017197658A (en) Conductor-forming composition, method for producing conductor, method for producing plating layer, conductor, laminate and device
JP6574553B2 (en) Conductive pattern forming composition and conductive pattern forming method
JP2014127675A (en) Conductive pattern forming method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160902

R150 Certificate of patent or registration of utility model

Ref document number: 6002216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250