JP2006040574A - Magnetron - Google Patents

Magnetron Download PDF

Info

Publication number
JP2006040574A
JP2006040574A JP2004214497A JP2004214497A JP2006040574A JP 2006040574 A JP2006040574 A JP 2006040574A JP 2004214497 A JP2004214497 A JP 2004214497A JP 2004214497 A JP2004214497 A JP 2004214497A JP 2006040574 A JP2006040574 A JP 2006040574A
Authority
JP
Japan
Prior art keywords
liquid
block
cooling
path
magnetron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004214497A
Other languages
Japanese (ja)
Inventor
Hideki Oguri
英樹 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004214497A priority Critical patent/JP2006040574A/en
Publication of JP2006040574A publication Critical patent/JP2006040574A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microwave Tubes (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a liquid cooling type magnetron safely carrying out a continuous operation through prevention of short-circuit accidents caused by leakage of cooling liquid inside a power source part case. <P>SOLUTION: The magnetron 11 arranged inside the power source part case 7 is provided with: a cooling block 54 with which a cylindrical anode body is insertion-coupled; a frame-shaped yoke 6 connected to the cooling block 54; a relay block 81 fitted to the frame-shaped yoke 6 with an end each of a liquid supply path and a liquid exhaust path formed in penetration exposed outside the power source part case 7; and heat-resistant piping 83, 84 communicating the liquid supply path and liquid exhaust path of the relay block with a liquid flow path 53. A cooling liquid supply tube 71 and a cooling liquid returning tube 72 from outside are connected to the liquid supply path and the liquid exhaust path of the relay block 81 exposed outside the power source part case 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マイクロ波を使って所定の処理を行う処理装置の、電源部筐体内に配置される液体冷却方式のマグネトロンに関する。   The present invention relates to a liquid-cooled magnetron disposed in a power supply unit casing of a processing apparatus that performs a predetermined process using microwaves.

マグネトロンを構成する円筒陽極体は、動作時に熱損失が発生して高温になるため、冷却が必要となる。
家庭用の電子レンジ等に搭載されるマグネトロンは、出力が900W程度で、出力が比較的に小さいため、円筒陽極体の冷却には、円筒陽極体の外周に複数の放熱板(フィン)を設けて、それらの放熱板に空気流を送る空気冷却方式が採用されている。
The cylindrical anode body constituting the magnetron needs to be cooled because heat loss occurs during operation and the temperature becomes high.
A magnetron mounted in a microwave oven for home use has an output of about 900 W and a relatively small output. Therefore, for cooling the cylindrical anode body, a plurality of heat radiation plates (fins) are provided on the outer periphery of the cylindrical anode body. In addition, an air cooling method is employed in which an air flow is sent to the heat radiating plates.

しかし、マイクロ波を使って所定の処理を行う工業用の処理装置(例えば、生ゴミ乾燥処理機)に搭載されるマグネトロンは、出力が1.5〜5kW程度となり、出力が大きいため、空気冷却方式による冷却では、十分な冷却効果が期待できない。
そこで、工業用の処理装置に搭載されるマグネトロンの場合、円筒陽極体の冷却には、一般的に、適宜冷却液を使った液体冷却方式が採用される。
However, since the magnetron mounted on an industrial processing apparatus (for example, a garbage drying processing machine) that performs a predetermined process using microwaves has an output of about 1.5 to 5 kW and a large output, air cooling Cooling by this method cannot be expected to provide a sufficient cooling effect.
Therefore, in the case of a magnetron mounted on an industrial processing apparatus, a liquid cooling method using a cooling liquid as appropriate is generally employed for cooling the cylindrical anode body.

図4乃至図6は、工業用の処理装置に搭載されるマグネトロンの従来例を示したものである。
ここに示したマグネトロン1は、内部の中心軸上に陰極体を収容した円筒陽極体3と、この円筒陽極体3が嵌合する陽極嵌合穴51を有した割り入りブロック本体52の内部に冷却液を挿通する液流路53が形成された冷却ブロック54と、この冷却ブロック54に接続された枠状継鉄6とを備えた構成で、図6に示すように、マイクロ波を使って所定の処理を行う処理装置の電源部筐体7内に配置される。
そして、円筒陽極体3は、外部から冷却ブロック54の液流路53に流される冷却液によって冷却される。
4 to 6 show a conventional example of a magnetron mounted on an industrial processing apparatus.
The magnetron 1 shown here has a cylindrical anode body 3 containing a cathode body on the center axis inside, and an interrupt block body 52 having an anode fitting hole 51 into which the cylindrical anode body 3 is fitted. As shown in FIG. 6, a microwave is used in a configuration including a cooling block 54 in which a liquid flow path 53 for inserting a cooling liquid is formed and a frame yoke 6 connected to the cooling block 54. It is disposed in the power supply unit housing 7 of the processing apparatus that performs predetermined processing.
Then, the cylindrical anode body 3 is cooled by the cooling liquid that flows from the outside to the liquid flow path 53 of the cooling block 54.

ブロック本体52は、図5に示すように、陽極嵌合穴51に連通する半径方向の割り56を備え、この割り56を挟んで対峙する一対のフランジ部57a,57bをボルト58で締め付けることで、陽極嵌合穴51の内周が円筒陽極体3の外周に密着して、円筒陽極体3から冷却ブロック54への熱伝導が良好になる。   As shown in FIG. 5, the block main body 52 includes a radial split 56 communicating with the anode fitting hole 51, and a pair of flange portions 57 a and 57 b facing each other with the split 56 interposed therebetween are tightened with bolts 58. The inner circumference of the anode fitting hole 51 is in close contact with the outer circumference of the cylindrical anode body 3, and the heat conduction from the cylindrical anode body 3 to the cooling block 54 is improved.

冷却ブロック54の液流路53は、ブロックの一端面から互いに略平行に穿孔された2本の流路孔55a,55bと、この2本の流路孔55a,55bを連通するようにブロックの他の端面から穿孔された連通用流路孔55cとの3本の流路孔55a,55b,55cによって略コ字状に形成されている。3本の流路孔55a,55b,55cの内、連通用流路孔55cの開口端はプラグ59の螺着によって封止されている。これにより、液流路53は、例えば、液流路55aの開口端が給液口53aで、液流路55bの開口端が排液口53bとなる一連の液流路として機能する。   The liquid flow path 53 of the cooling block 54 is connected to the two flow path holes 55a and 55b which are drilled substantially in parallel with each other from one end surface of the block, and the two flow path holes 55a and 55b communicate with each other. The three channel holes 55a, 55b, 55c with the communication channel hole 55c drilled from the other end face are formed in a substantially U-shape. Of the three channel holes 55 a, 55 b and 55 c, the open end of the communication channel hole 55 c is sealed by screwing a plug 59. Thereby, the liquid flow path 53 functions as a series of liquid flow paths in which the open end of the liquid flow path 55a is the liquid supply port 53a and the open end of the liquid flow path 55b is the drainage port 53b, for example.

図6に示すように、電源部筐体7内に配置された冷却ブロック54の給液口53a及び排液口53bには、配管継手71,72を介して、外部の冷却液供給管73及び冷却液戻し管74が接続されて、冷却ブロック54への冷却液の給排水が行われる(例えば、特許文献1,2参照)。   As shown in FIG. 6, an external coolant supply pipe 73 and an external coolant supply pipe 73 are connected to the liquid supply port 53 a and the drainage port 53 b of the cooling block 54 disposed in the power supply unit housing 7 via pipe joints 71 and 72. The coolant return pipe 74 is connected to supply and drain the coolant to the cooling block 54 (see, for example, Patent Documents 1 and 2).

特開平5−54805号公報Japanese Patent Laid-Open No. 5-54805 特開平4−284334号公報JP-A-4-284334

ところが、外部から冷却ブロック54に接続される冷却液供給管73,冷却液戻し管74は、通常、例えばシリコン樹脂等で形成された樹脂製ホースで、耐熱性が低いために、電源部筐体7内での発熱部からの輻射熱で溶けて、電源部筐体7内の電源部品の短絡事故を招く虞があった。
また、プラグ59や配管継手71,72は、いずれも、ねじの螺合によって冷却ブロック54に固定されるもので、加熱による伸縮の繰り返しによって締め付けが緩んで、これらの部品の接続部から冷却液が漏れて、電源部筐体7内の電源部品の短絡事故を招く虞があった。
However, the coolant supply pipe 73 and the coolant return pipe 74 connected to the cooling block 54 from the outside are usually resin hoses formed of, for example, silicon resin, and have low heat resistance. 7 may be melted by the radiant heat from the heat generating part in 7 and may cause a short circuit accident of the power supply components in the power supply housing 7.
The plug 59 and the pipe joints 71 and 72 are both fixed to the cooling block 54 by screwing, and tightening is loosened by repeated expansion and contraction due to heating, so that the coolant can be supplied from the connection portion of these components. May leak and cause a short circuit accident of the power supply components in the power supply housing 7.

本発明は上記事情に鑑みなされたもであり、その目的は、電源部筐体内での冷却液の漏れによる短絡事故の発生を防止して、安全に連続稼働させることのできる液体冷却方式のマグネトロンを提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to prevent occurrence of a short circuit accident due to leakage of the cooling liquid in the power source housing and to perform a liquid cooling type magnetron that can be operated safely and continuously. Is to provide.

上記目的は下記構成により達成される。
(1) 円筒陽極体と、この円筒陽極体に嵌合し外部から流される冷却液によって該円筒陽極体の冷却を行う冷却ブロックと、この冷却ブロックに接続された枠状継鉄とが、マイクロ波を使って所定の処理を行う処理装置の電源部筐体内に配置されるマグネトロンであって、
液供給路と液排出路とが貫通形成されると共に、前記液供給路と液排出路の一端が前記電源部筐体の外部に露出するように前記枠状継鉄に取り付けられた中継ブロックと、この中継ブロックの液供給路及び液排出路の他端を前記冷却ブロックに接続する耐熱性配管とを備え、
前記中継ブロックの一端に開口した液供給路と液排出路に、外部からの冷却液供給管及び冷却液戻し管とが接続されることを特徴とするマグネトロン。
The above object is achieved by the following configuration.
(1) A cylindrical anode body, a cooling block that is fitted to the cylindrical anode body and cools the cylindrical anode body with a coolant flowing from the outside, and a frame-shaped yoke connected to the cooling block, A magnetron disposed in a power supply unit casing of a processing apparatus that performs predetermined processing using waves,
A relay block attached to the frame-shaped yoke so that a liquid supply path and a liquid discharge path are formed to penetrate and one end of the liquid supply path and the liquid discharge path is exposed to the outside of the power source housing. And a heat-resistant pipe connecting the other end of the liquid supply path and liquid discharge path of the relay block to the cooling block,
A magnetron characterized in that an external coolant supply pipe and a coolant return pipe are connected to a liquid supply path and a liquid discharge path opened at one end of the relay block.

(2) 上記(1)において、前記冷却ブロックの液流路は、ブロックの一端面から互いに略平行に穿孔された2本の流路孔と、この2本の流路孔を連通するようにブロックの他の端面から穿孔された連通用流路孔との3本の流路孔によって略コ字状に形成され、前記連絡用流路孔の開口端は、プラグをロウ付けすることによって封止したことを特徴とするマグネトロン。   (2) In the above (1), the liquid flow path of the cooling block communicates with the two flow path holes that are perforated substantially in parallel with each other from one end surface of the block. It is formed in a substantially U-shape by three channel holes with communication channel holes drilled from the other end face of the block, and the open end of the communication channel hole is sealed by brazing the plug. Magnetron characterized by being stopped.

上記(1)に記載のマグネトロンでは、例えば、耐熱性の低い樹脂製ホースが使用される外部からの冷却液供給管及び冷却液戻し管は、電源部筐体の外部に露出した中継ブロックに接続され、電源部筐体内に引き込まれないため、電源部筐体内での発熱部からの輻射熱による加熱を回避できる。そして、外部からの冷却水の循環のために、冷却ブロックと中継ブロックとの間を接続する管路は耐熱性配管を使用しているため、電源部筐体内の輻射熱を受けても、溶けることがない。
従って、電源部筐体内での冷却液の管路の溶けによる冷却液の漏出を防止でき、冷却液の漏れによる短絡事故の発生を防止して、安全に連続稼働させることができる。
In the magnetron described in (1) above, for example, an external coolant supply pipe and a coolant return pipe in which a resin hose with low heat resistance is used are connected to a relay block exposed to the outside of the power supply unit housing In addition, since it is not drawn into the power supply unit housing, heating due to radiant heat from the heat generating unit in the power supply unit housing can be avoided. And, for the circulation of the cooling water from the outside, the pipe connecting the cooling block and the relay block uses heat-resistant piping, so it melts even if it receives radiant heat in the power supply housing There is no.
Therefore, leakage of the coolant due to melting of the coolant channel in the power supply unit housing can be prevented, and a short-circuit accident due to coolant leakage can be prevented, and safe operation can be continued.

上記(2)に記載のマグネトロンでは、冷却ブロックへのプラグの固着・封止が、従来の螺着ではなく、ロウ付けに変更されているため、熱膨張の繰り返しを受けても、固着状態が緩むことがなく、プラグ等のねじ止め部の緩みによる冷却液の漏れも完全に防止することができて、冷却液の漏れによる短絡事故の発生を防止することができる。   In the magnetron described in (2) above, the fixing / sealing of the plug to the cooling block is changed to brazing instead of the conventional screwing, so that the fixing state is maintained even after repeated thermal expansion. Without being loosened, it is possible to completely prevent the leakage of the coolant due to the looseness of the screwing portion such as the plug, and it is possible to prevent the occurrence of a short circuit accident due to the leakage of the coolant.

以下、本発明に係るマグネトロンの好適な実施の形態について、図面を参照して詳細に説明する。
なお、以下に説明する実施の形態において、既に図4乃至図6において説明した部材と同一の構成については、図中に同一符号あるいは相当符号を付すことにより説明を簡略化あるいは省略する。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a magnetron according to the present invention will be described in detail with reference to the drawings.
In the embodiment described below, the same components as those already described with reference to FIGS. 4 to 6 are denoted by the same or corresponding reference numerals in the drawings, and the description thereof is simplified or omitted.

図1は、本発明に係るマグネトロンの一実施の形態を示したものである。
ここに示したマグネトロン11は、内部の中心軸上に陰極体を収容した円筒陽極体3と、この円筒陽極体3が嵌合する陽極嵌合穴51を有した割り入りブロック本体52の内部に冷却液を挿通する液流路53が形成された冷却ブロック54と、この冷却ブロック54に接続された枠状継鉄6と、この枠状継鉄6にねじ62によって締結されて取り付けられた中継ブロック81と、この中継ブロック81と枠状継鉄6との間を接続する耐熱性配管83,84とを備えた構成で、図3にも示したように、マイクロ波を使って所定の処理を行う処理装置の電源部筐体7内に配置される。
そして、円筒陽極体3は、外部から中継ブロック81及び耐熱性配管83,84を介して冷却ブロック54の液流路53に流される冷却液によって冷却される。
FIG. 1 shows an embodiment of a magnetron according to the present invention.
The magnetron 11 shown here has a cylindrical anode body 3 that accommodates a cathode body on the center axis inside, and an interrupt block main body 52 having an anode fitting hole 51 into which the cylindrical anode body 3 is fitted. A cooling block 54 in which a liquid flow path 53 for inserting a cooling liquid is formed, a frame-shaped yoke 6 connected to the cooling block 54, and a relay fastened to the frame-shaped yoke 6 by screws 62 and attached. As shown in FIG. 3, the block 81 and the heat-resistant pipes 83 and 84 for connecting the relay block 81 and the frame-shaped yoke 6 are used to perform predetermined processing. Is disposed in the power supply unit casing 7 of the processing apparatus.
Then, the cylindrical anode body 3 is cooled by the coolant that flows from the outside to the liquid flow path 53 of the cooling block 54 via the relay block 81 and the heat resistant pipes 83 and 84.

以上の構成において、円筒陽極体3、冷却ブロック54、枠状継鉄6、電源部筐体7等は、図4乃至図6に示したマグネトロンの場合と共通である。
即ち、ブロック本体52は、図2に示すように、陽極嵌合穴51に連通する半径方向の割り56を備え、この割り56を挟んで対峙する一対のフランジ部57a,57bを不図示のボルトで締め付けることで、陽極嵌合穴51の内周が円筒陽極体3の外周に密着して、円筒陽極体3から冷却ブロック54への熱伝導が良好になる。
In the above configuration, the cylindrical anode body 3, the cooling block 54, the frame-shaped yoke 6, the power source casing 7, and the like are the same as those of the magnetron shown in FIGS.
That is, as shown in FIG. 2, the block body 52 includes a radial split 56 communicating with the anode fitting hole 51, and a pair of flange portions 57 a and 57 b facing each other with the split 56 interposed therebetween are bolts (not shown). By tightening with, the inner periphery of the anode fitting hole 51 is in close contact with the outer periphery of the cylindrical anode body 3, and the heat conduction from the cylindrical anode body 3 to the cooling block 54 becomes good.

また、冷却ブロック54の液流路53は、ブロックの一端面から互いに略平行に穿孔された2本の流路孔55a,55bと、この2本の流路孔55a,55bを連通するようにブロックの他の端面から穿孔された連通用流路孔55cとの3本の流路孔55a,55b,55cによって略コ字状に形成されている。3本の流路孔55a,55b,55cの内、連通用流路孔55cの開口端はプラグ86のロウ付けによって封止されている。これにより、液流路53は、例えば、液流路55aの開口端が給液口53aで、液流路55bの開口端が排液口53bとなる一連の液流路として機能する。   Further, the liquid flow path 53 of the cooling block 54 communicates with the two flow path holes 55a and 55b that are drilled substantially in parallel with each other from one end surface of the block and the two flow path holes 55a and 55b. It is formed in a substantially U shape by three flow path holes 55a, 55b, 55c with a communication flow path hole 55c drilled from the other end face of the block. Of the three channel holes 55 a, 55 b and 55 c, the open end of the communication channel hole 55 c is sealed by brazing a plug 86. Thereby, the liquid flow path 53 functions as a series of liquid flow paths in which, for example, the open end of the liquid flow path 55a is the liquid supply port 53a and the open end of the liquid flow path 55b is the drainage port 53b.

中継ブロック81は、液供給路と液排出路とが一端から他端に貫通形成されると共に、図1及び図3に示すように、前記の液供給路と液排出路が開口する一端が電源部筐体7の外部に露出するように枠状継鉄6に取り付けられている。   In the relay block 81, a liquid supply path and a liquid discharge path are formed so as to penetrate from one end to the other end. As shown in FIGS. 1 and 3, one end where the liquid supply path and the liquid discharge path are open is a power source. It is attached to the frame yoke 6 so as to be exposed to the outside of the partial housing 7.

耐熱性配管83,84は、何れも、樹脂製ホースと比較して高い耐熱性を有する銅製チューブである。
耐熱性配管83は、中継ブロック81に貫通形成された液供給路の他端開口を、冷却ブロック54の液流路53の給液口53aに接続している。耐熱性配管84は、中継ブロック81に貫通形成された液排出路の他端開口を、冷却ブロック54の液流路53の排液口53bに接続している。また、各銅製チューブの各ブロックへの接続部は、ロウ付けによって固定されると同時に、気密に封止されている。
The heat resistant pipes 83 and 84 are both copper tubes having higher heat resistance than the resin hose.
The heat resistant pipe 83 connects the other end opening of the liquid supply path formed through the relay block 81 to the liquid supply port 53 a of the liquid flow path 53 of the cooling block 54. The heat-resistant pipe 84 connects the other end opening of the liquid discharge path formed through the relay block 81 to the liquid discharge port 53 b of the liquid flow path 53 of the cooling block 54. Further, the connection portion of each copper tube to each block is fixed by brazing and at the same time hermetically sealed.

そして、中継ブロック81の一端に開口した液供給路と液排出路に、樹脂製ホースを使った外部からの冷却液供給管73及び冷却液戻し管74とが、配管継手71,72を介して接続されている。   Then, a coolant supply pipe 73 and a coolant return pipe 74 from the outside using a resin hose are connected to the liquid supply path and the liquid discharge path opened at one end of the relay block 81 via pipe joints 71 and 72, respectively. It is connected.

以上のマグネトロン11では、例えば、耐熱性の低い樹脂製ホースが使用される外部からの冷却液供給管73及び冷却液戻し管74は、電源部筐体7の外部に露出した中継ブロック81に接続され、電源部筐体7内に引き込まれないため、電源部筐体7内での発熱部からの輻射熱による加熱を回避できる。そして、外部からの冷却水の循環のために、冷却ブロック54と中継ブロック81との間を接続する管路は耐熱性配管83,84を使用しているため、電源部筐体7内の輻射熱を受けても、溶けることがない。
従って、電源部筐体7内での冷却液の管路の溶けによる冷却液の漏出を防止でき、冷却液の漏れによる短絡事故の発生を防止して、安全に連続稼働させることができる。
In the magnetron 11 described above, for example, the external coolant supply pipe 73 and the coolant return pipe 74 in which a resin hose having low heat resistance is used are connected to the relay block 81 exposed to the outside of the power supply unit housing 7. In addition, since it is not drawn into the power supply unit housing 7, heating due to radiant heat from the heat generating unit in the power supply unit housing 7 can be avoided. And, since the pipe connecting the cooling block 54 and the relay block 81 uses the heat resistant pipes 83 and 84 for circulating the cooling water from the outside, the radiant heat in the power source housing 7 is used. Even if it receives, it does not melt.
Therefore, the leakage of the coolant due to the melting of the coolant line in the power supply unit housing 7 can be prevented, and a short circuit accident due to the leakage of the coolant can be prevented, so that the continuous operation can be performed safely.

また、上記実施の形態のマグネトロン11では、冷却ブロック54へのプラグ86の固着・封止が、従来の螺着ではなく、ロウ付けに変更されているため、また、冷却ブロック54への耐熱性配管83,84の接続が、従来の配管継手71,72(図5参照)によるねじの螺合ではなく、ロウ付けに変更されているため、熱膨張の繰り返しを受けても、固着状態が緩むことがなく、プラグ等のねじ止め部の緩みによる冷却液の漏れも完全に防止することができて、冷却液の漏れによる短絡事故の発生を防止することができる。   Further, in the magnetron 11 of the above-described embodiment, the fixing and sealing of the plug 86 to the cooling block 54 is changed to brazing instead of the conventional screwing, and the heat resistance to the cooling block 54 is also improved. Since the connection of the pipes 83 and 84 is changed to brazing instead of screwing by the conventional pipe joints 71 and 72 (see FIG. 5), the fixed state is loosened even if subjected to repeated thermal expansion. Therefore, the leakage of the coolant due to the looseness of the screwing portion such as the plug can be completely prevented, and the occurrence of the short circuit accident due to the leakage of the coolant can be prevented.

本発明に係るマグネトロンの一実施の形態の電源部筐体への取付け状態の側面図である。It is a side view of the attachment state to the power supply part housing | casing of one Embodiment of the magnetron based on this invention. 図1のマグネトロンに使用している冷却ブロックと中継ブロックの接続図である。FIG. 2 is a connection diagram of a cooling block and a relay block used in the magnetron of FIG. 1. 図1に示したマグネトロンの電源部筐体に取り付けた状態の平面図である。It is a top view of the state attached to the power supply part housing | casing of the magnetron shown in FIG. 従来のマグネトロンの側面図である。It is a side view of the conventional magnetron. 図4に示した冷却ブロックの斜視図である。It is a perspective view of the cooling block shown in FIG. 図4に示したマグネトロンの電源部筐体に取り付けた状態の平面図である。It is a top view of the state attached to the power supply part housing | casing of the magnetron shown in FIG.

符号の説明Explanation of symbols

3 円筒陽極体
6 枠状継鉄
7 電源部筐体
51 陽極嵌合穴
52 ブロック本体
53 液流路
53a 給液口
53b 排液口
54 冷却ブロック
55a,55b 流路孔
55c 連通用流路孔
81 中継ブロック
83,84 耐熱性配管
3 Cylindrical anode body 6 Frame-shaped yoke 7 Power supply housing 51 Anode fitting hole 52 Block body 53 Liquid flow path 53a Liquid supply port 53b Drainage port 54 Cooling block 55a, 55b Channel hole 55c Communication channel hole 81 Relay block 83, 84 Heat resistant piping

Claims (2)

円筒陽極体と、この円筒陽極体に嵌合し外部から流される冷却液によって該円筒陽極体の冷却を行う冷却ブロックと、この冷却ブロックに接続された枠状継鉄とが、マイクロ波を使って所定の処理を行う処理装置の電源部筐体内に配置されるマグネトロンであって、
液供給路と液排出路とが貫通形成されると共に、前記液供給路と液排出路の一端が前記電源部筐体の外部に露出するように前記枠状継鉄に取り付けられた中継ブロックと、この中継ブロックの液供給路及び液排出路の他端を前記冷却ブロックに接続する耐熱性配管とを備え、
前記中継ブロックの一端に開口した液供給路と液排出路に、外部からの冷却液供給管及び冷却液戻し管とが接続されることを特徴とするマグネトロン。
A cylindrical anode body, a cooling block that is fitted to the cylindrical anode body and cools the cylindrical anode body with coolant flowing from the outside, and a frame-shaped yoke connected to the cooling block use microwaves. A magnetron disposed in a power supply unit casing of a processing apparatus that performs predetermined processing,
A relay block attached to the frame-shaped yoke so that a liquid supply path and a liquid discharge path are formed to penetrate and one end of the liquid supply path and the liquid discharge path is exposed to the outside of the power source housing. And a heat-resistant pipe connecting the other end of the liquid supply path and liquid discharge path of the relay block to the cooling block,
A magnetron characterized in that an external coolant supply pipe and a coolant return pipe are connected to a liquid supply path and a liquid discharge path opened at one end of the relay block.
前記冷却ブロックの液流路は、ブロックの一端面から互いに略平行に穿孔された2本の流路孔と、この2本の流路孔を連通するようにブロックの他の端面から穿孔された連通用流路孔との3本の流路孔によって略コ字状に形成され、前記連絡用流路孔の開口端は、プラグをロウ付けすることによって封止したことを特徴とする請求項1に記載のマグネトロン。   The liquid flow path of the cooling block was perforated from the other end face of the block so as to communicate with the two flow path holes that were perforated substantially parallel to each other from one end face of the block. 3. The communication channel hole is formed in a substantially U shape by three flow channel holes, and the open end of the communication channel hole is sealed by brazing a plug. The magnetron according to 1.
JP2004214497A 2004-07-22 2004-07-22 Magnetron Pending JP2006040574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004214497A JP2006040574A (en) 2004-07-22 2004-07-22 Magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004214497A JP2006040574A (en) 2004-07-22 2004-07-22 Magnetron

Publications (1)

Publication Number Publication Date
JP2006040574A true JP2006040574A (en) 2006-02-09

Family

ID=35905356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004214497A Pending JP2006040574A (en) 2004-07-22 2004-07-22 Magnetron

Country Status (1)

Country Link
JP (1) JP2006040574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871664A1 (en) * 2013-11-07 2015-05-13 Panasonic Intellectual Property Management Co., Ltd. Magnetron
KR20180036603A (en) * 2016-09-30 2018-04-09 가부시키가이샤 히타치 파워 솔루션즈 Magnetron

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871664A1 (en) * 2013-11-07 2015-05-13 Panasonic Intellectual Property Management Co., Ltd. Magnetron
CN104637756A (en) * 2013-11-07 2015-05-20 松下知识产权经营株式会社 Magnetron
US9208984B2 (en) 2013-11-07 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Magnetron
KR20180036603A (en) * 2016-09-30 2018-04-09 가부시키가이샤 히타치 파워 솔루션즈 Magnetron
KR101974742B1 (en) 2016-09-30 2019-05-02 가부시키가이샤 히타치 파워 솔루션즈 Magnetron

Similar Documents

Publication Publication Date Title
US20160337756A1 (en) Acoustic enclosure comprising a non-heat-conducting external wall, an electrodynamic loudspeaker and an electronic control circuit
JP3958166B2 (en) Heat transfer roller
JP2006040574A (en) Magnetron
JPH1075583A (en) Coole or inverter
CN211638696U (en) Laser generator cooling device
JP2008068218A (en) Ozone water generator
AU1206295A (en) An arrangement in autoclaving systems
JP3912840B2 (en) Fluid heating and cooling device
JP2005537626A (en) Gas tube end caps for microwave plasma generators
JPH10335727A (en) Cooling structure of semiconductor element
CN217825414U (en) Microwave generator with explosion-proof function
FI68180B (en) CONTAINING CONTAINER CONDITIONING METAL STRUCTURES AND ENMAELTA
KR102370846B1 (en) An Apparatus for Controlling a Temperature of a Thermoelement Module
CN218123490U (en) Cooling device for preparing lithium ion electrolyte
JP2003307598A (en) Electron beam emission tube
CN220235272U (en) Radio frequency power supply
CN218183017U (en) Active power filter
JPH03297034A (en) Magnetron
KR200168503Y1 (en) Radiator of high-frequency heater
JPS58155783A (en) Gas laser device
KR200340493Y1 (en) Heat exchanger using wastewater heat
WO2021149326A1 (en) Tubular heat exchanger with thermoelectric power generation function
CN209819897U (en) High-reliability electromagnetic induction water heating device
JPH08210297A (en) Control circuit cooling structure of pump
KR200333060Y1 (en) Steam generater for sauna

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060327

Free format text: JAPANESE INTERMEDIATE CODE: A7424