JP2003307598A - Electron beam emission tube - Google Patents

Electron beam emission tube

Info

Publication number
JP2003307598A
JP2003307598A JP2002112022A JP2002112022A JP2003307598A JP 2003307598 A JP2003307598 A JP 2003307598A JP 2002112022 A JP2002112022 A JP 2002112022A JP 2002112022 A JP2002112022 A JP 2002112022A JP 2003307598 A JP2003307598 A JP 2003307598A
Authority
JP
Japan
Prior art keywords
irradiation window
cooling water
electron beam
cooling
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002112022A
Other languages
Japanese (ja)
Inventor
Yoichi Sato
洋一 佐藤
Tetsuya Hirakawa
哲也 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2002112022A priority Critical patent/JP2003307598A/en
Publication of JP2003307598A publication Critical patent/JP2003307598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron beam emission tube having such effects that an electron emission tube can be constituted comparatively small, that an irradiation window and a peripheral part of the irradiation window can be cooled effectively, and that the service life span of the electron beam emission tube determined by damage to the irradiation window can be elongated. <P>SOLUTION: This tube is constituted as follows: a head part 12 is constituted so as to have a cylindrical body 15 having the irradiation window 11, and a ring body 16 interfitted with the cylindrical body at the center part; a recessed part working as a cooling water channel 17 is formed over the outer periphery near the irradiation window of the cylindrical body; the cylindrical body is constituted so as to have a channel check plate on a part of the recessed part; a cooling water introduction channel and a drainage channel are formed on the ring body; and the cylindrical body is interfitted with the ring body so that the channel check plate is positioned between the cooling water introduction channel and a distribution channel, to thereby form a continuous cooling water channel from the cooling water introduction channel to the drainage channel via the periphery of the irradiation window. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は主として高エネルギ
ーの電子を発生し、これを利用するための電子ビーム放
出装置、特に比較的小形低出力の冷却機構付の電子ビー
ム放出管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to an electron beam emission device for generating and utilizing high energy electrons, and more particularly to an electron beam emission tube with a relatively small and low output cooling mechanism.

【0002】[0002]

【従来の技術】電子ビーム放出装置は加速電圧150k
V以上、電子照射窓の面積が80cm2以上のものが一般的
で、照射窓の冷却は薄膜からなる窓材を支持する金属
(主に銅)ブロックに穴をあけて冷却流体を通す方式が
多い。照射電流が大きくブロック冷却だけでは不十分な
場合には冷却ノズルから照射窓へ直接冷却気体を吹き付
ける方法が行なわれている。
2. Description of the Related Art An electron beam emitting device has an accelerating voltage of 150 k.
V or more, and the area of the electron irradiation window is 80 cm 2 or more is generally used. To cool the irradiation window, a method is used in which a cooling fluid is passed through a hole in a metal (mainly copper) block that supports the window material made of a thin film. Many. When the irradiation current is large and block cooling alone is insufficient, a method of directly blowing a cooling gas from the cooling nozzle to the irradiation window is used.

【0003】照射窓が比較的小形の場合に冷却効率を向
上させる方法として、例えば特開2000-346998では同特許
の図2に示されているように照射窓周囲の取り付けフラ
ンジ内周に冷却流体流路用の溝を加工した後に蓋体で閉
塞することにより、複雑な断面形状の流路を形成する方
法が報告されている。
As a method for improving the cooling efficiency when the irradiation window is relatively small, for example, in Japanese Patent Laid-Open No. 2000-346998, as shown in FIG. 2 of the same patent, a cooling fluid is provided on the inner circumference of the mounting flange around the irradiation window. A method has been reported in which a channel having a complicated cross-sectional shape is formed by processing a channel groove and then closing it with a lid.

【0004】また、特開2001-323369の図1乃至図7に
示されているように電子放出管の照射窓に冷却ガスを吹
き付けるとともに照射窓付近に冷却ブロックを接触させ
る方法も報告されている。
Further, as shown in FIGS. 1 to 7 of Japanese Patent Laid-Open No. 2001-323369, a method of blowing a cooling gas to the irradiation window of the electron emission tube and bringing a cooling block into contact with the vicinity of the irradiation window has also been reported. .

【0005】[0005]

【発明が解決しようとする課題】上記のように従来から
電子照射面およびその周辺を冷却することは常識となっ
ているが、これらの方法を小形電子ビーム放出管に適用
しようとすると問題が生じる。まず一般的な方法では冷
却用ブロックを採用するための寸法的な余裕がない。ま
た外部に空冷用のノズルを設置すると、電子ビーム放出
管を取付け取外しする際に邪魔になり、小形化のコンセ
プトに合わない。
As described above, it has been common knowledge to cool the electron-irradiated surface and its periphery, but there is a problem when these methods are applied to a small electron beam emission tube. . First, there is no dimensional allowance for adopting the cooling block in the general method. Also, if an air-cooling nozzle is installed on the outside, it will be a hindrance when attaching and detaching the electron beam emitting tube, which does not fit the concept of downsizing.

【0006】冷却用ブロックの代わりに前述された特開
2000-346998の方法を使用することができるが、さらに小
型化する場合、例えば照射窓の寸法が直径10mm以下
のスポット照射用電子ビーム放出管などではフランジ内
周に溝を加工することが困難になる。
[0006] Instead of the cooling block, the above-mentioned Japanese Patent
The method of 2000-346998 can be used, but in the case of further miniaturization, it becomes difficult to form a groove on the inner circumference of the flange, for example, with an electron beam emission tube for spot irradiation having an irradiation window with a diameter of 10 mm or less. Become.

【0007】前述された特開2001-323369のように電子
放出管照射窓付近に冷却ブロックを接触させる方法で
は、電子照射面と冷却ブロックとの固体間接触熱伝達と
なるため伝熱効率の点で不利となる。また特開2001-323
369においては冷却ブロックまたはヘッド部周囲に冷却
管を設けて冷却ガスを照射窓に吹き付ける手段を追加し
た実施例が記載されているが、この方式では冷却ガス配
管の寸法を大きく取る事が困難で、圧力損失が大きい。
また被冷却面付近にガスを流すことのみが考慮されてい
て電子照射面上における冷却ガスの流速を大きくするた
めの配慮がない。この方式では吹き出し口から吹き出さ
れた冷却ガスは拡散し、電子照射面上における冷却ガス
の流速が大きくできない。その結果照射窓の冷却能力が
小さいため電子ビーム出力を大きく取る事が困難であ
り、使用できる分野が限られる。
In the method of bringing the cooling block into contact with the vicinity of the electron emission tube irradiation window as in the above-mentioned Japanese Patent Laid-Open No. 2001-323369, contact heat transfer between solids between the electron irradiation surface and the cooling block results in heat transfer efficiency. It will be a disadvantage. In addition, JP 2001-323
In 369, there is described an example in which a cooling pipe is provided around the cooling block or the head portion and a means for blowing the cooling gas to the irradiation window is added, but with this method, it is difficult to take a large size of the cooling gas pipe. , Pressure loss is large.
Moreover, only the flow of the gas near the surface to be cooled is considered, and there is no consideration for increasing the flow velocity of the cooling gas on the electron irradiation surface. In this method, the cooling gas blown out from the blowing port diffuses, and the flow velocity of the cooling gas on the electron irradiation surface cannot be increased. As a result, since the cooling capacity of the irradiation window is small, it is difficult to obtain a large electron beam output, and the usable fields are limited.

【0008】本発明は上記した諸点に鑑み発明したもの
で、電子放出管を比較的小形に構成することができ、ま
た照射窓および近傍部を効果的に冷却することができ、
さらに照射窓の破損が原因となる電子ビーム放出管の寿
命を延長することができる等の効果を有する冷却機構付
電子ビーム放出管を提供することを目的とする。
The present invention has been made in view of the above points, and the electron emission tube can be constructed in a relatively small size, and the irradiation window and its vicinity can be effectively cooled.
Another object of the present invention is to provide an electron beam emitting tube with a cooling mechanism, which has effects such as prolonging the life of the electron beam emitting tube caused by damage to the irradiation window.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1に記載の本発明では、電子ビームを透過す
る材質からなる照射窓を有するヘッド部と、同ヘッド部
と対向した位置に電子発生部を内装し電気的絶縁性材料
で構成される胴部とで構成される電子ビーム放出管にお
いて、前記ヘッド部は、照射窓を有する筒体と、その中
心部に同筒体を嵌着する環状体を有して構成し、また筒
体の照射窓近傍の外周に全周に渡って冷却水路となるべ
き凹部を形成し、さらに筒体は凹部の一部に流路止め板
を有して構成し、一方環状体には冷却水導入路及び排水
路を形成し、同冷却水導入路と排水路の間に流路止め板
が位置するように前記筒体と前記環状体を嵌着すること
によって、冷却水導入路から照射窓近傍を経て排水路に
至る連続した冷却水路が構成されるように構成してあ
る。
In order to solve the above problems, according to the present invention as set forth in claim 1, a head portion having an irradiation window made of a material that transmits an electron beam, and the head portion are opposed to each other. In an electron beam emission tube including an electron generating portion at a position and a body portion made of an electrically insulating material, the head portion has a cylindrical body having an irradiation window and the cylindrical body at the center thereof. It has a ring-shaped body that fits in, and also has a concave portion that serves as a cooling water channel formed all around the outer periphery of the cylindrical body near the irradiation window. A plate having a plate, on the other hand, a cooling water introducing passage and a drainage passage are formed in the annular body, and the cylindrical body and the annular body are arranged so that a passage stop plate is located between the cooling water introducing passage and the drainage passage. By fitting the body, continuous cooling from the cooling water introduction path to the drainage path through the vicinity of the irradiation window Waterways are configured to be configured.

【0010】請求項2に記載の発明は、電子ビームを透
過する材質からなる照射窓を有するヘッド部と、同ヘッ
ド部と対向した位置に電子発生部を内装し電気的絶縁性
材料で構成される胴部とで構成される電子ビーム放出管
において、前記ヘッド部の一部に、照射窓をヘッド部に
固定するための部品であって照射窓に冷却風を送る機構
を内蔵している部品を有して構成してある。
According to a second aspect of the present invention, a head portion having an irradiation window made of a material that transmits an electron beam, and an electron generating portion provided at a position facing the head portion are made of an electrically insulating material. In the electron beam emission tube composed of the body part, the part for fixing the irradiation window to the head part in a part of the head part, and having a built-in mechanism for sending cooling air to the irradiation window. Is configured.

【0011】請求項3に記載の発明は、電子ビームを透
過する材質からなる照射窓を有するヘッド部と、同ヘッ
ド部と対向した位置に電子発生部を内装し電気的絶縁性
材料で構成される胴部とで構成される電子ビーム放出管
において、前記ヘッド部は、照射窓を有する筒体と、そ
の中心部に同筒体を嵌着する環状体を有して構成し、ま
た筒体の照射窓近傍の外周に全周に渡って冷却水路とな
るべき凹部を形成し、さらに筒体は凹部の一部に流路止
め板を有して構成し、一方環状体には冷却水導入路及び
排水路を形成し、同冷却水導入路と排水路の間に流路止
め板が位置するように前記筒体と前記環状体を嵌着する
ことによって、冷却水導入路から照射窓近傍を経て排水
路に至る連続した冷却水路が構成されるとともに、前記
ヘッド部の一部に、照射窓をヘッド部に固定するための
部品であって照射窓に冷却風を送る機構を内蔵している
部品を有して構成してある。
According to a third aspect of the present invention, a head portion having an irradiation window made of a material that transmits an electron beam, and an electron generating portion provided at a position facing the head portion are made of an electrically insulating material. In the electron beam emission tube including a body part, the head part has a tubular body having an irradiation window and an annular body into which the tubular body is fitted, and the head body has a tubular body. In the outer periphery of the irradiation window near the entire circumference, a concave portion to be a cooling water channel is formed, and the cylindrical body has a flow path stop plate in a part of the concave portion, while cooling water is introduced into the annular body. A pipe and a drainage path, and by fitting the tubular body and the annular body so that the flow path stop plate is located between the cooling water introduction path and the drainage path, the cooling water introduction path and the vicinity of the irradiation window A continuous cooling water channel that leads to the drainage channel is formed and part of the head part Have configured irradiation window has a component with a built-in mechanism for sending cooling air to a component in irradiation window for fixing the head portion.

【0012】請求項1乃至請求項3に記載の本発明で
は、電子放出管を比較的小形に構成することができ、ま
た照射窓およびまたは近傍部を効果的に冷却することが
でき、さらに照射窓の破損が原因となる電子ビーム放出
管の寿命を延長することができる。
According to the present invention as set forth in claims 1 to 3, the electron emission tube can be constructed in a relatively small size, and the irradiation window and / or the vicinity thereof can be effectively cooled. It is possible to extend the life of the electron beam emitting tube due to the damage of the window.

【0013】[0013]

【発明の実施の形態】以下本発明を図1乃至図10につ
いて説明する。図1乃至図5は請求項1の本発明に係る
一実施例の概略正面図である。図1は正面図であり、図
2は冷却水路部の断面を表した平面図である。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to FIGS. 1 to 5 are schematic front views of an embodiment according to the present invention of claim 1. FIG. 1 is a front view, and FIG. 2 is a plan view showing a cross section of a cooling water channel portion.

【0014】図1において上部がヘッド部12であり下
部が電子発生部13を内装した胴部14である。11は
照射窓であって、電子を外部へ放出するため、通常薄い
金属箔またはシリコン薄膜などを使用している。21は
照射窓近傍部であって、この付近を冷却することが重要
である。
In FIG. 1, the upper portion is a head portion 12, and the lower portion is a body portion 14 having an electron generating portion 13 therein. Reference numeral 11 denotes an irradiation window, which normally uses a thin metal foil or a silicon thin film for emitting electrons to the outside. Reference numeral 21 is a portion near the irradiation window, and it is important to cool this portion.

【0015】ヘッド部12において、15は筒体、16
は環状体であって、後述するように両者が一体化してヘ
ッド部12を形成する。
In the head portion 12, 15 is a cylindrical body, 16
Is a ring-shaped body, and both are integrated to form the head portion 12, as described later.

【0016】図3は筒体15部分の概略図である。図3
において、18は凹部であり側面全周にわたって形成さ
れている。 この凹部は材料強度を考慮した上で出来る
だけ照射窓11に近づけて形成することができる。この
部分が環状体16を嵌着した後に冷却水路17となる。
筒体15に凹部を加工した後で、別に加工した流路止め
板20が凹部の一部に接合される。
FIG. 3 is a schematic view of the cylindrical body 15 portion. Figure 3
In, the reference numeral 18 denotes a concave portion which is formed over the entire circumference of the side surface. This recess can be formed as close to the irradiation window 11 as possible in consideration of the material strength. This portion becomes the cooling water passage 17 after the annular body 16 is fitted.
After processing the recess in the cylindrical body 15, the separately processed flow path stop plate 20 is joined to a part of the recess.

【0017】図4は環状体16部分の概略図である。図
4において、19a及び19bはそれぞれ冷却水導入
路、冷却水排水路であって、図2に示す通り、冷却効率や
加工性を配慮し、適当な間隔をあけて配置されている。
筒体15を、冷却水導入路19aと冷却水排水路19b
との間に流路止め板20が位置するように、環状体16
の中心部に嵌着することにより、図5及び図2に示すよ
うに、冷却水導入路から照射窓近傍を経て排水路に至る
連続した冷却水路が構成される。
FIG. 4 is a schematic view of the annular body 16 portion. In FIG. 4, reference numerals 19a and 19b denote a cooling water introducing passage and a cooling water draining passage, respectively, which are arranged at appropriate intervals in consideration of cooling efficiency and workability, as shown in FIG.
The cylindrical body 15 is provided with a cooling water introduction passage 19a and a cooling water drainage passage 19b.
So that the flow path stop plate 20 is located between
As shown in FIGS. 5 and 2, a continuous cooling water passage extending from the cooling water introduction passage to the drainage passage through the vicinity of the irradiation window is formed by fitting in the central portion of the.

【0018】図6及び図7は請求項1の本発明に係る別
の実施例の概略図である。図6において、上部がヘッド
部32であり下部が電子発生部33を内装した胴部34
である。31は照射窓であって全体の構成は図1の実施
例とほぼ同じである。同様に、32はヘッド部、35は
筒体、36は環状体、37は冷却水路、38は凹部,3
9aは冷却水導入路、39bは冷却水排水路、40は流
路止め板である。
FIG. 6 and FIG. 7 are schematic views of another embodiment according to the present invention of claim 1. In FIG. 6, the upper portion is a head portion 32 and the lower portion is a body portion 34 in which an electron generating portion 33 is housed.
Is. Reference numeral 31 is an irradiation window, and the entire structure is almost the same as that of the embodiment of FIG. Similarly, 32 is a head portion, 35 is a cylindrical body, 36 is an annular body, 37 is a cooling water channel, 38 is a recessed portion, 3
Reference numeral 9a is a cooling water introduction passage, 39b is a cooling water drainage passage, and 40 is a passage stop plate.

【0019】41は締付けボルト、42は押さえ板であ
って、照射窓31をヘッド部32に固定している。さら
に44はO−リング、45はO−リング押さえであり、電
子ビーム放出管の胴部34をヘッド部32へ気密封止し
ている。43は真空配管継手であり、図示しない高真空
排気系に接続することにより電子ビーム放出管内を高真
空に保つように構成されている。
Reference numeral 41 is a tightening bolt, and 42 is a pressing plate for fixing the irradiation window 31 to the head portion 32. Further, 44 is an O-ring and 45 is an O-ring retainer, which hermetically seals the body portion 34 of the electron beam emitting tube to the head portion 32. Reference numeral 43 denotes a vacuum pipe joint, which is configured to maintain a high vacuum inside the electron beam emission tube by connecting to a high vacuum exhaust system (not shown).

【0020】図8及び図9は請求項2の本発明に係る実
施例の概略図である。図8においても、図6の実施例と
ほぼ同様の構成になっており、51は照射窓、52はヘ
ッド部、53は電子発生部、54は胴部、61は締付け
ボルト、62は押さえ板、64はO−リング、65はO−
リング押さえである。
8 and 9 are schematic views of an embodiment according to the present invention of claim 2. In FIG. 8 as well, the structure is similar to that of the embodiment of FIG. 6, 51 is an irradiation window, 52 is a head part, 53 is an electron generating part, 54 is a body part, 61 is a tightening bolt, and 62 is a holding plate. , 64 is an O-ring, 65 is an O-ring
It is a ring holder.

【0021】図8の実施例においては照射窓51近傍を
水冷する機構は有していないが、押さえ板62の内部に
照射窓51へ冷却風を送る機構を内蔵している。図9は
図8の実施例における押さえ板62の拡大図である。6
6は冷却風吹出部、67は傾斜面、68は冷却ノズルで
あって、図示しない冷却ガス配管から照射面51へ冷却
風を送る流路が形成されている。
Although the embodiment of FIG. 8 does not have a mechanism for cooling the vicinity of the irradiation window 51 with water, a mechanism for sending cooling air to the irradiation window 51 is built in the pressing plate 62. FIG. 9 is an enlarged view of the pressing plate 62 in the embodiment of FIG. 6
Reference numeral 6 is a cooling air blowing portion, 67 is an inclined surface, 68 is a cooling nozzle, and a flow path for sending cooling air from a cooling gas pipe (not shown) to the irradiation surface 51 is formed.

【0022】図10は請求項3の本発明に係る実施例の
概略図である。図10においても、図6及び図8の実施
例とほぼ同様の構成になっており、71は照射窓、72
はヘッド部、73は電子発生部、74は胴部、75は筒
体、76は環状体、77は冷却水路、78は凹部,79
aは冷却水導入路、79bは冷却水排水路、80は流路
止め板、81は締付けボルト、82は押さえ板、84は
O−リング、85はO−リング押さえ、86は冷却風吹
出部、87は傾斜面、88は冷却ノズルであって、照射
窓71近傍を水冷する機構と照射窓71を空冷する機構
との両方を有する構成となっている。
FIG. 10 is a schematic view of an embodiment according to the present invention of claim 3. In FIG. 10 as well, the structure is similar to that of the embodiment shown in FIGS. 6 and 8, and 71 is an irradiation window and 72
Is a head portion, 73 is an electron generating portion, 74 is a body portion, 75 is a cylindrical body, 76 is an annular body, 77 is a cooling water channel, 78 is a concave portion, 79
a is a cooling water introduction passage, 79b is a cooling water drainage passage, 80 is a flow path stop plate, 81 is a tightening bolt, 82 is a holding plate, 84 is an O-ring, 85 is an O-ring holding member, and 86 is a cooling air blowing portion. , 87 are inclined surfaces, and 88 is a cooling nozzle, which has both a mechanism for water cooling the vicinity of the irradiation window 71 and a mechanism for air cooling the irradiation window 71.

【0023】以下に本発明に係る電子ビーム放出管の作
用を説明する。電子ビーム放出管では、電子発生部とヘ
ッド部の間に電界を作ることにより、電子発生部で発生
した電子を高エネルギーに加速し、照射窓から電子ビー
ム放出管の外部へ放出する。高エネルギー電子の一部は
照射窓に吸収され、少量のX線を発生するとともに大部
分は熱エネルギーに変化する。このため電子ビーム放出
管作動中は照射窓の温度が上昇するとともに熱伝導によ
って照射窓近傍の温度も上がり、照射窓材の劣化、電子
ビーム放出管内部のガス放出による内部放電などの悪影
響が生じる。この悪影響を防ぐため、照射窓及び照射窓
近傍を冷却する必要がある。
The operation of the electron beam emitting tube according to the present invention will be described below. In the electron beam emission tube, an electric field is created between the electron generation section and the head section to accelerate electrons generated in the electron generation section to high energy and emit the electrons from the irradiation window to the outside of the electron beam emission tube. Some of the high-energy electrons are absorbed in the irradiation window, generate a small amount of X-rays, and are mostly converted into thermal energy. Therefore, while the electron beam emission tube is operating, the temperature of the irradiation window rises and the temperature near the irradiation window also rises due to heat conduction, which causes adverse effects such as deterioration of the irradiation window material and internal discharge due to gas emission inside the electron beam emission tube. . In order to prevent this adverse effect, it is necessary to cool the irradiation window and the vicinity of the irradiation window.

【0024】請求項1に記載された本発明によって照射
窓近傍を冷却する作用は次のとおりである。上述のとお
り、図1においてヘッド部12は環状体16の中央部に
筒体15を嵌着した構成になっているが、両部品嵌着後
の冷却水経路は次の通りである。外部配管(図示しない)
から導入された冷却水は冷却水導入路19aから図2の
矢印に示した経路を通って照射窓近傍21へ進み、この
部分をほぼ一周して冷却水排水路19bから外部配管
(図示しない)へ排出される。冷却水導入路19aと冷却
水排水路19bはほぼ同じ方向に設けられているが、そ
の間に設けられた流路止め板20によって最短経路を閉
鎖されているため、冷却流体は上記のように照射窓近傍
21をほぼ一周するように流れる。このように、冷却水
が照射窓11のごく近くを通過しているため、照射窓近
傍21の熱は速やかに冷却水へ伝達され、電子ビーム放
出管の外部へ放出される。
The operation of cooling the vicinity of the irradiation window according to the present invention described in claim 1 is as follows. As described above, in FIG. 1, the head portion 12 has a configuration in which the tubular body 15 is fitted in the central portion of the annular body 16, but the cooling water path after the fitting of both parts is as follows. External piping (not shown)
The cooling water that is introduced from the cooling water introduction path 19a proceeds to the irradiation window vicinity 21 through the path shown by the arrow in FIG.
It is discharged to (not shown). The cooling water introducing passage 19a and the cooling water draining passage 19b are provided in substantially the same direction, but since the shortest path is closed by the passage stop plate 20 provided between them, the cooling fluid is irradiated as described above. It flows so as to go around the window vicinity 21 almost once. In this way, since the cooling water passes very close to the irradiation window 11, the heat in the vicinity 21 of the irradiation window is quickly transferred to the cooling water and radiated to the outside of the electron beam emitting tube.

【0025】照射窓11中央付近で発生した熱は、照射
窓自体からの熱放射及び外気との自然対流熱伝達によっ
て放熱される。
The heat generated near the center of the irradiation window 11 is radiated by heat radiation from the irradiation window itself and natural convection heat transfer with the outside air.

【0026】図6に示す実施例では、ヘッド部に電子ビ
ーム放出管内を真空排気する排気管が設けられており、
真空ポンプなどで管内を排気しながら使用するものであ
る。本実施例においても本発明は図1の実施例とほぼ同
様に適用可能である。
In the embodiment shown in FIG. 6, the head portion is provided with an exhaust pipe for evacuating the inside of the electron beam emitting pipe,
It is used while exhausting the inside of the pipe with a vacuum pump or the like. The present invention can be applied to this embodiment in the same manner as the embodiment of FIG.

【0027】請求項2に記載された本発明によって照射
窓を直接空冷する作用は次のとおりである。図8に示す
実施例では、照射窓51を固定する押さえ板62には照
射窓51を冷却できるように冷却ガスを照射窓51へ導
く流路が形成されている。図9において、図示しない冷
却ガス配管から導入されたガスは冷却ノズル68を通り
冷却風吹出部66から照射窓51へ吹出される。その
際、傾斜面67から周囲の気体を巻き込み、導入された
ガス流量より増倍された冷却風を送ることができる。押
さえ板62は図6の実施例における押さえ板42に相当
し、冷却風を照射窓に直接吹き付けない場合にも必要な
部品であるため、電子ビーム放出管の外径及び照射窓か
らの突出寸法は本発明を適用したことで増大することが
無い。
The operation of directly air-cooling the irradiation window according to the present invention described in claim 2 is as follows. In the embodiment shown in FIG. 8, a pressure plate 62 for fixing the irradiation window 51 is provided with a flow path for guiding the cooling gas to the irradiation window 51 so that the irradiation window 51 can be cooled. In FIG. 9, the gas introduced from a cooling gas pipe (not shown) is blown out from the cooling air blowing portion 66 to the irradiation window 51 through the cooling nozzle 68. At that time, the surrounding gas can be taken in from the inclined surface 67, and the cooling air multiplied by the flow rate of the introduced gas can be sent. The pressing plate 62 corresponds to the pressing plate 42 in the embodiment of FIG. 6 and is a component necessary even when the cooling air is not blown directly to the irradiation window. Therefore, the outer diameter of the electron beam emitting tube and the protruding size from the irradiation window are measured. Is not increased by applying the present invention.

【0028】請求項3に記載された本発明では、図10
に示す実施例のとおり、照射窓近傍を水冷する機構と照
射窓自体を空冷する機構の両方を組み合わせて使用する
ことが可能であり、上記した2つの作用の相乗効果によ
って照射窓の温度上昇を一層低減することが可能とな
る。
According to the present invention described in claim 3, FIG.
It is possible to use both the mechanism of water cooling near the irradiation window and the mechanism of air cooling the irradiation window itself, as in the embodiment shown in FIG. 1, and the temperature rise of the irradiation window is increased by the synergistic effect of the above two actions. It becomes possible to further reduce.

【0029】電子照射電流が小さい場合には、照射窓中
央付近で発生した熱を放射伝熱および外気との自然対流
熱伝達で放熱することで照射面の平衡温度が照射窓を劣
化させない安全温度内に収まる。例えば図6に示す実施
例において、照射窓近傍の水冷を行なわない場合には陽
極電流0.2mA/cm以下であり、冷却水量2L/
minでも0.4mA/cm程度だった。しかし使用
上の要求により、さらに電流値を上げる必要がある場合
には照射窓の温度が危険な範囲まで上昇することがあ
る。この場合には冷却風を照射窓に直接吹き付けて強制
空冷を行なう必要がある。
When the electron irradiation current is small, the heat generated near the center of the irradiation window is released by radiative heat transfer and natural convection heat transfer with the outside air, so that the equilibrium temperature of the irradiation surface does not deteriorate the irradiation window. Fits inside. For example, in the embodiment shown in FIG. 6, when water cooling in the vicinity of the irradiation window is not performed, the anode current is 0.2 mA / cm 2 or less, and the cooling water amount is 2 L /
Even at min, it was about 0.4 mA / cm 2 . However, the temperature of the irradiation window may rise to a dangerous range when it is necessary to further increase the current value due to usage requirements. In this case, it is necessary to blow cooling air directly onto the irradiation window for forced air cooling.

【0030】図10に示す実施例において、照射窓の水
冷及び空冷を行なわない場合、陽極電流1.0mA/c
2の時に自然空冷では照射窓51の温度が1700℃
以上(瞬間焼失)となり、従来の空冷方法でも窒素30L
/minを流して照射窓温度450℃程度であった。図
10に示す実施例による構成で水冷及び空冷を実行する
と、冷却水量2L/min、窒素流量20L/minで
照射窓51の温度は約300℃と実用可能なレベルの冷
却を実現した。
In the embodiment shown in FIG. 10, when the irradiation window is not water-cooled or air-cooled, the anode current is 1.0 mA / c.
When the temperature is m 2 , the temperature of the irradiation window 51 is 1700 ° C. with natural air cooling.
With the above (instantaneous burning), 30 L of nitrogen even with the conventional air cooling method.
/ Min was passed and the irradiation window temperature was about 450 ° C. When water cooling and air cooling were performed with the configuration according to the embodiment shown in FIG. 10, the temperature of the irradiation window 51 was about 300 ° C. at a cooling water amount of 2 L / min and a nitrogen flow rate of 20 L / min, and cooling was achieved at a practical level.

【0031】[0031]

【発明の効果】上記したように、請求項1の本発明によ
れば、比較的小形の電子放出管について、外径寸法を増大
させることなく、外部冷却装置を取り付けた場合と同等
以上の高い冷却効率で照射窓および近傍部を冷却するこ
とができる。従って電子ビーム放出管管内の温度上昇に
よる管内放電の発生が低減される。また電子ビーム照射
窓材の高温による劣化が低減され、照射窓の破損が原因
となる電子ビーム放出管の寿命を著しく延長することが
可能となる。
As described above, according to the present invention of claim 1, the electron emission tube of a relatively small size is as high as or more than the case where an external cooling device is attached without increasing the outer diameter dimension. The irradiation window and its vicinity can be cooled with cooling efficiency. Therefore, the occurrence of in-tube discharge due to the temperature rise in the electron beam emitting tube is reduced. Further, deterioration of the electron beam irradiation window material due to high temperature is reduced, and it becomes possible to remarkably extend the life of the electron beam emitting tube which causes damage to the irradiation window.

【0032】また請求項2の本発明によれば、比較的小
形の電子放出管について、外径寸法および照射面からの
突出寸法を増大させることなく、外部冷却装置を取り付
けた場合と同等以上の高い冷却効率で照射窓を直接冷却
することが可能となる。従って電子ビーム照射窓材の高
温による劣化がさらに低減され、請求項1の電子ビーム
放出管より高出力の電子を放出することが可能となる。
According to the second aspect of the present invention, for a relatively small-sized electron emission tube, the size equal to or more than that in the case where the external cooling device is attached without increasing the outer diameter size and the projection size from the irradiation surface. It is possible to directly cool the irradiation window with high cooling efficiency. Therefore, the deterioration of the electron beam irradiation window material due to the high temperature is further reduced, and it becomes possible to emit high-power electrons from the electron beam emission tube of claim 1.

【0033】さらに請求項3の本発明によれば、請求項
1及び請求項2の発明を組み合わせることによって、比
較的小形の電子放出管について、外径寸法および照射面
からの突出寸法を増大させることなく、外部冷却装置を
取り付けた場合と同等以上の高い冷却効率で照射窓およ
び近傍部を冷却することができるとともに、照射窓を直
接冷却することが可能となる。従って電子ビーム照射窓
材の高温による劣化がさらに低減され、請求項1及び請
求項2の電子ビーム放出管よりさらに高出力の電子を放
出することが可能となる。
Furthermore, according to the present invention of claim 3, by combining the inventions of claims 1 and 2, the outer diameter dimension and the projection dimension from the irradiation surface are increased for a relatively small electron emission tube. Without this, it is possible to cool the irradiation window and its vicinity with high cooling efficiency equal to or higher than the case where the external cooling device is attached, and it is possible to directly cool the irradiation window. Therefore, the deterioration of the electron beam irradiation window material due to the high temperature is further reduced, and it becomes possible to emit electrons with a higher output than the electron beam emitting tubes according to the first and second aspects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における実施例の概略正面図FIG. 1 is a schematic front view of an embodiment of the present invention.

【図2】図1の実施例における冷却水路の概略断面図FIG. 2 is a schematic sectional view of a cooling water channel in the embodiment of FIG.

【図3】図1の実施例における筒体部分の概略図FIG. 3 is a schematic view of a cylindrical portion in the embodiment of FIG.

【図4】図1の実施例における環状体部分の概略図FIG. 4 is a schematic view of an annular body portion in the embodiment of FIG.

【図5】図1の実施例における筒体及び環状体嵌着時の
概略図
FIG. 5 is a schematic view when the cylindrical body and the annular body are fitted in the embodiment of FIG.

【図6】本発明における別の実施例の概略正面図FIG. 6 is a schematic front view of another embodiment of the present invention.

【図7】図6の実施例における冷却水路の概略断面図FIG. 7 is a schematic sectional view of a cooling water channel in the embodiment of FIG.

【図8】請求項2に係る本発明実施例の概略図FIG. 8 is a schematic view of an embodiment of the present invention according to claim 2.

【図9】図8の実施例における押さえ板部分の概略図9 is a schematic view of a pressing plate portion in the embodiment of FIG.

【図10】請求項3に係る本発明実施例の概略図FIG. 10 is a schematic view of an embodiment of the present invention according to claim 3.

【符号の説明】[Explanation of symbols]

11 照射窓 12 ヘッド部 13 電子発生部 14 胴部 15 筒体 16 環状体 17 冷却水路 31 照射窓 32 ヘッド部 33 電子発生部 34 胴部 35 筒体 36 環状体 37 冷却水路 42 押さえ板 51 照射窓 52 ヘッド部 53 電子発生部 54 胴部 62 押さえ板 66 冷却風吹出部 71 照射窓 72 ヘッド部 73 電子発生部 74 胴部 75 筒体 76 環状体 77 冷却水路 86 冷却風吹出部 87 傾斜面 11 irradiation window 12 head 13 Electron generator 14 torso 15 cylinder 16 ring 17 Cooling channel 31 irradiation window 32 head 33 Electron generator 34 torso 35 cylinder 36 ring 37 Cooling channel 42 Press plate 51 irradiation window 52 head 53 Electron generator 54 torso 62 Press plate 66 Cooling air outlet 71 irradiation window 72 Head 73 Electron generator 74 torso 75 cylinder 76 ring 77 Cooling channel 86 Cooling air outlet 87 Inclined surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電子ビームを透過する材質からなる照射窓
を有するヘッド部と、同ヘッド部と対向した位置に電子
発生部を内装し電気的絶縁性材料で構成される胴部とで
構成される電子ビーム放出管において、 前記ヘッド部は、照射窓を有する筒体と、その中心部に
同筒体を嵌着する環状体を有して構成し、また筒体の照
射窓近傍の外周に全周に渡って冷却水路となるべき凹部
を形成し、さらに筒体は凹部の一部に流路止め板を有し
て構成し、一方環状体には冷却水導入路及び排水路を形
成し、同冷却水導入路と排水路の間に流路止め板が位置
するように前記筒体と前記環状体を嵌着することによっ
て、冷却水導入路から照射窓近傍を経て排水路に至る連
続した冷却水路が構成されることを特徴とする電子ビー
ム放出管。
1. A head portion having an irradiation window made of a material that transmits an electron beam, and a body portion having an electron generating portion internally provided at a position facing the head portion and made of an electrically insulating material. In the electron beam emitting tube according to claim 1, the head portion is configured to have a tubular body having an irradiation window and an annular body in which the tubular body is fitted in a central portion thereof, and the head portion has an outer periphery in the vicinity of the irradiation window. A concave portion to be a cooling water passage is formed all around, and the cylindrical body is configured to have a flow path stop plate in a part of the concave portion, while a cooling water introduction passage and a drainage passage are formed in the annular body. By continuously fitting the cylindrical body and the annular body so that the flow path stop plate is located between the cooling water introduction passage and the drainage passage, the cooling water introduction passage continuously passes through the irradiation window and reaches the drainage passage. An electron beam emitting tube, characterized in that a cooling water channel is formed.
【請求項2】電子ビームを透過する材質からなる照射窓
を有するヘッド部と、同ヘッド部と対向した位置に電子
発生部を内装し電気的絶縁性材料で構成される胴部とで
構成される電子ビーム放出管において、前記ヘッド部の
一部に、照射窓をヘッド部に固定するための部品であっ
て照射窓に冷却風を送る機構を内蔵している部品を有す
ることを特徴とする電子ビーム放出管。
2. A head portion having an irradiation window made of a material that transmits an electron beam, and a body portion having an electron generating portion internally provided at a position facing the head portion and made of an electrically insulating material. In the electron beam emitting tube according to claim 1, a part of the head part has a part for fixing the irradiation window to the head part and a part including a mechanism for sending cooling air to the irradiation window. Electron beam emitting tube.
【請求項3】電子ビームを透過する材質からなる照射窓
を有するヘッド部と、同ヘッド部と対向した位置に電子
発生部を内装し電気的絶縁性材料で構成される胴部とで
構成される電子ビーム放出管において、前記ヘッド部
は、照射窓を有する筒体と、その中心部に同筒体を嵌着
する環状体を有して構成し、また筒体の照射窓近傍の外
周に全周に渡って冷却水路となるべき凹部を形成し、さ
らに筒体は凹部の一部に流路止め板を有して構成し、一
方環状体には冷却水導入路及び排水路を形成し、同冷却
水導入路と排水路の間に流路止め板が位置するように前
記筒体と前記環状体を嵌着することによって、冷却水導
入路から照射窓近傍を経て排水路に至る連続した冷却水
路が構成されるとともに、前記ヘッド部の一部に、照射
窓をヘッド部に固定するための部品であって照射窓に冷
却風を送る機構を内蔵している部品を有することを特徴
とする冷却機構付電子ビーム放出管。
3. A head portion having an irradiation window made of a material which transmits an electron beam, and a body portion having an electron generating portion internally provided at a position facing the head portion and made of an electrically insulating material. In the electron beam emission tube according to the first aspect, the head portion is configured to have a tubular body having an irradiation window and an annular body in which the tubular body is fitted in the central portion thereof, A concave portion to be a cooling water passage is formed all around, and the cylindrical body is configured to have a flow path stop plate in a part of the concave portion, while a cooling water introduction passage and a drainage passage are formed in the annular body. By continuously fitting the cylindrical body and the annular body so that the flow path stop plate is located between the cooling water introduction passage and the drainage passage, the cooling water introduction passage continuously passes through the irradiation window and reaches the drainage passage. The cooling water channel is configured, and the irradiation window is fixed to the head part in a part of the head part. Electron beam discharge tube equipped with a cooling mechanism, characterized in that it comprises a component with a built-in mechanism for sending cooling air to the irradiation window be because part.
JP2002112022A 2002-04-15 2002-04-15 Electron beam emission tube Pending JP2003307598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112022A JP2003307598A (en) 2002-04-15 2002-04-15 Electron beam emission tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112022A JP2003307598A (en) 2002-04-15 2002-04-15 Electron beam emission tube

Publications (1)

Publication Number Publication Date
JP2003307598A true JP2003307598A (en) 2003-10-31

Family

ID=29394645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112022A Pending JP2003307598A (en) 2002-04-15 2002-04-15 Electron beam emission tube

Country Status (1)

Country Link
JP (1) JP2003307598A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118982A1 (en) * 2009-04-14 2010-10-21 Siemens Aktiengesellschaft Beam head
JP2012114099A (en) * 2007-09-28 2012-06-14 Varian Medical Systems Inc X-ray tube device and x-ray tube
JP2017513570A (en) * 2014-03-24 2017-06-01 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Electron beam emitter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114099A (en) * 2007-09-28 2012-06-14 Varian Medical Systems Inc X-ray tube device and x-ray tube
WO2010118982A1 (en) * 2009-04-14 2010-10-21 Siemens Aktiengesellschaft Beam head
CN102396035A (en) * 2009-04-14 2012-03-28 西门子公司 Beam head
US8946657B2 (en) 2009-04-14 2015-02-03 Siemens Aktiengesellschaft Beam head
JP2017513570A (en) * 2014-03-24 2017-06-01 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Electron beam emitter
EP3122385B1 (en) 2014-03-24 2018-11-14 Tetra Laval Holdings & Finance SA Electron beam emitter
EP3122385B2 (en) 2014-03-24 2022-06-15 Tetra Laval Holdings & Finance SA Electron beam emitter

Similar Documents

Publication Publication Date Title
WO2015185003A1 (en) Collimation modulatable x-ray generator
JP3189661B2 (en) Light source device
JPS6052527B2 (en) Device to suppress ozone generated by arc lamps
JP5911283B2 (en) Radiation generator
US20140311697A1 (en) Integral liquid-coolant passageways in an x-ray tube
WO2007026612A1 (en) X-ray tube
US5903088A (en) Short arc lamp having a thermally conductive ring
JP2003307598A (en) Electron beam emission tube
JP2012114099A (en) X-ray tube device and x-ray tube
JP4749615B2 (en) Fixed anode type X-ray tube device
CN211638696U (en) Laser generator cooling device
TW201021079A (en) Metal halide lamp
EP2873086B1 (en) Cooling arrangement for x-ray generator
KR101758278B1 (en) High­pressure discharge lamp having cooling element
JP4563760B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2009158418A (en) Rotary anode type x-ray tube assembly
JP2004319299A (en) Portable x-ray inspection device
JP5194261B2 (en) X-ray tube device
JP5235934B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JPS58210685A (en) Ion laser device
JPH03187141A (en) X-ray generator
JPH10208639A (en) Infrared ray sealing device
USRE30181E (en) Method and means for suppressing ozone generated by arc lamps
CN117715286A (en) Electron curtain accelerator and method of using the same
JP2003287600A (en) Mechanism for cooling electron beam irradiation window