JP2006038798A - Position detecting device of exothermic object - Google Patents

Position detecting device of exothermic object Download PDF

Info

Publication number
JP2006038798A
JP2006038798A JP2004223031A JP2004223031A JP2006038798A JP 2006038798 A JP2006038798 A JP 2006038798A JP 2004223031 A JP2004223031 A JP 2004223031A JP 2004223031 A JP2004223031 A JP 2004223031A JP 2006038798 A JP2006038798 A JP 2006038798A
Authority
JP
Japan
Prior art keywords
light
infrared
heat generating
reflected
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004223031A
Other languages
Japanese (ja)
Other versions
JP4859166B2 (en
Inventor
Hideki Yasui
英己 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2004223031A priority Critical patent/JP4859166B2/en
Publication of JP2006038798A publication Critical patent/JP2006038798A/en
Application granted granted Critical
Publication of JP4859166B2 publication Critical patent/JP4859166B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a position detecting device of exothermic objects, capable of realizing simplification and miniaturization of the whole device, in addition to realizing improved precision detection of the position of exothermic objects. <P>SOLUTION: In the position detecting device equipped with a optical transmitting section 2, a focusing lens 3 focusing the reflected light LR reflected at an exothermic object A, and infrared radiation IR emitted from the exothermic object A; a spectroscopic means 4 implementing spectroscopy of infrared radiation IR and reflected light LR; an infrared sensor 5 detecting infrared radiation IR via the spectroscopic means 4; an optical receiving section 6 detecting reflected light LR via the spectroscopic means 4; and a signal processing means 7 measuring the distance to the exothermic object A, based on the data from the infrared sensor 5 and the optical receiving section 6, the azimuth and the distance are detected to the exothermic object A captured by infrared images. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、人物等の発熱物体の位置を検出するのに用いられる発熱物体の位置検出装置に関するものである。   The present invention relates to a position detection device for a heating object used to detect the position of a heating object such as a person.

従来の発熱物体の位置検出装置としては、図2に示すようなものがあった。図示の位置検出装置は、発熱物体Aが発する赤外線を集光する集光レンズ101と、集光レンズ101を経た赤外線を検出する赤外線センサ102と、赤外線センサ102の検出信号を増幅するアンプ103及び信号処理装置104を備えている。赤外線センサ102は、例えば多数の画素を有する赤外線画像センサである。そして、位置検出装置は、赤外線センサ102からの検出信号を信号処理装置104で処理して赤外線画像を作成し、その画像(画面)内で発熱物体Aの位置を検出する。
『センサデバイスハンドブック』株式会社情報調査会、1983年11月15日、p.97〜100
2. Description of the Related Art As a conventional heat generating object position detecting device, there is one as shown in FIG. The illustrated position detection apparatus includes a condenser lens 101 that collects infrared rays emitted from the heating object A, an infrared sensor 102 that detects infrared rays that have passed through the condenser lens 101, an amplifier 103 that amplifies the detection signal of the infrared sensor 102, and A signal processing device 104 is provided. The infrared sensor 102 is, for example, an infrared image sensor having a large number of pixels. Then, the position detection device processes the detection signal from the infrared sensor 102 by the signal processing device 104 to create an infrared image, and detects the position of the heating object A in the image (screen).
“Sensor Device Handbook” Information Research Co., Ltd., November 15, 1983, p. 97-100

しかしながら、上記したような従来の発熱物体の位置検出装置にあっては、画像内における発熱物体の位置(方向)を検出することはできるが、発熱物体までの距離を検出することができないと共に、背景の熱分布の影響によっては発熱物体の正確な検出が困難になるという問題点があり、このような問題点を解決することが課題であった。   However, in the conventional heat generating object position detection device as described above, the position (direction) of the heat generating object in the image can be detected, but the distance to the heat generating object cannot be detected, Depending on the influence of the background heat distribution, there is a problem that it is difficult to accurately detect a heat-generating object, and it has been a problem to solve such a problem.

なお、目標までの距離を検出するものとしては、例えばレーザレンジファインダを挙げることができる。そして、上記の位置検出装置とレーザレンジファインダの両方を用いれば、発熱物体の位置検出を精度良く行うことが可能になる。しかし、従来技術として双方を組合わせたものはなく、単に双方を用いるだけでは装置全体が複雑で大型化するなどの問題点がある。   An example of detecting the distance to the target is a laser range finder. If both the position detection device and the laser range finder are used, the position of the heat generating object can be accurately detected. However, there is no conventional technique that combines the two, and there is a problem that the entire apparatus is complicated and large-sized only by using both.

本発明は、上記従来の状況に鑑みて成されたもので、発熱物体の位置検出の高精度化を実現することができるうえに、装置全体の簡略化及び小型化を図ることができる発熱物体の位置検出装置を提供することを目的としている。   The present invention has been made in view of the above-described conventional situation. In addition to achieving high accuracy in detecting the position of the heat generating object, the heat generating object capable of simplifying and downsizing the entire apparatus. An object of the present invention is to provide a position detecting device.

本発明は、発熱物体の位置を検出する装置であって、請求項1として、可視光線を送信する光送信部と、発熱物体が発する赤外線及び発熱物体で反射した反射光を集光する集光レンズと、集光レンズを経た赤外線及び反射光を二方向に分光する分光手段と、分光手段を経た赤外線を検出する赤外線センサと、分光手段を経た反射光を検出する光受信部と、赤外線センサ及び光受信部からのデータに基づいて発熱物体までの距離を測定する信号処理手段を備えた構成とし、上記構成をもって従来の課題を解決するための手段としている。   The present invention is an apparatus for detecting the position of a heat generating object. According to a first aspect of the present invention, there is provided a light transmitting unit that transmits visible light, and a light collecting unit that collects infrared light emitted from the heat generating object and reflected light reflected by the heat generating object. A lens, a spectroscopic unit that splits infrared light and reflected light that has passed through a condenser lens in two directions, an infrared sensor that detects infrared light that has passed through the spectroscopic unit, a light receiving unit that detects reflected light that has passed through the spectroscopic unit, and an infrared sensor The signal processing means for measuring the distance to the heat generating object based on the data from the light receiving unit is provided, and the above structure is used as a means for solving the conventional problems.

また、本発明の発熱物体の位置検出装置は、請求項2として、分光手段が、赤外線を透過させ且つ反射光を反射するハーフミラー(例えばコールドミラー)であって、光送信部、集光レンズ、ハーフミラー及び赤外線センサを同軸上に配置したことを特徴とし、請求項3として、光送信部からの可視光線を少なくとも一軸回りに走査するスキャナを備え、スキャナが、発熱物体からの赤外線及び反射光を集光レンズに向けて反射させる反射体を兼ねていることを特徴としている。
※以下、上記内容に合わせて構成の名称を修正します。
According to a second aspect of the present invention, the spectroscopic means is a half mirror (for example, a cold mirror) that transmits infrared rays and reflects reflected light. The half mirror and the infrared sensor are arranged on the same axis, and as a third aspect of the present invention, the scanner includes a scanner that scans at least one axis of visible light from the light transmission unit, and the scanner emits infrared and reflected light from a heating object. It also features a reflector that reflects light toward the condenser lens.
* Hereafter, the name of the configuration will be modified according to the above contents.

本発明の請求項1に係わる発熱物体の位置検出装置によれば、赤外線及び反射光の両方を集光する集光レンズを用いて、赤外線の受光系と可視光線の送受信系とを組合わせたことにより、赤外線画像内において、発熱物体の位置すなわち方向と距離を高精度に検出することができ、この際、背景の熱分布の影響を受けることなく人物等の発熱物体の位置を高精度に検出することができる。また、上記構成の採用により、装置全体の構造を簡略化することができ、これに伴って小型軽量化や低コスト化を実現し得るほか、発熱物体の温度測定も行うことが可能である。   According to the position detecting device of the heat generating object according to claim 1 of the present invention, the infrared light receiving system and the visible light transmitting / receiving system are combined by using the condensing lens for condensing both the infrared light and the reflected light. Therefore, the position, direction and distance of the heat generating object can be detected with high accuracy in the infrared image. At this time, the position of the heat generating object such as a person can be detected with high accuracy without being affected by the heat distribution of the background. Can be detected. In addition, by adopting the above configuration, the structure of the entire apparatus can be simplified. Accordingly, the size and weight can be reduced and the cost can be reduced, and the temperature of a heating object can be measured.

本発明の請求項2に係わる発熱物体の位置検出装置によれば、請求項1と同様の効果を得ることができるうえに、光送信部、集光レンズ、分光手段であるハーフミラー及び赤外線センサを同軸上に配置したことにより、構造のさらなる簡略化を実現することができ、より一層の小型軽量化や低コスト化を図ることができる。   According to the position detecting device of the heat generating object according to the second aspect of the present invention, the same effect as the first aspect can be obtained, and the light transmitting unit, the condensing lens, the half mirror as the spectroscopic means, and the infrared sensor. By arranging them on the same axis, the structure can be further simplified, and further reduction in size and weight and cost can be achieved.

本発明の請求項3に係わる発熱物体の位置検出装置によれば、スキャナで可視光線を一軸回りに走査すれば発熱物体を二次元的に捕捉することができ、同スキャナで可視光線を直交する二軸回りに走査すれば発熱物体を三次元的に捕捉することができることとなり、これに伴って発熱物体の位置検出精度をより一層高めることができる。また、スキャナが集光レンズに対する反射体を兼ねることから、構造のさらなる簡略化を実現することができ、さらには、スキャナを介して赤外線を受光することから、単一の赤外線検出素子を赤外線センサとして用いて赤外線画像を作成することが可能となり、構造のさらなる簡略化を図ることができる。   According to the heating object position detecting apparatus of the third aspect of the present invention, if the visible light is scanned around one axis by the scanner, the heating object can be captured two-dimensionally, and the visible light is orthogonalized by the scanner. By scanning around two axes, the heat generating object can be captured three-dimensionally, and accordingly, the position detection accuracy of the heat generating object can be further enhanced. Further, since the scanner also serves as a reflector for the condenser lens, the structure can be further simplified. Further, since the infrared ray is received through the scanner, a single infrared detection element is used as the infrared sensor. Can be used to create an infrared image, and the structure can be further simplified.

図1は、本発明に係わる発熱物体の位置検出装置の一実施例を説明する図である。
図示の位置検出装置は、例えば円筒状のケース1内に、可視光線であるレーザ光LTを送信する光送信部2と、発熱物体Aが発する赤外線IR及び発熱物体Aで反射した反射レーザ光(反射光)LRを集光する集光レンズ3と、集光レンズ3を経た赤外線IR及び反射レーザ光LRを二方向に分光する分光手段4と、分光手段4を経た赤外線IRを検出する赤外線センサ5と、分光手段4を経た反射レーザ光LRを検出する光受信部6を備えている。
FIG. 1 is a diagram for explaining one embodiment of a position detecting device for a heating object according to the present invention.
The position detection apparatus shown in the figure includes, for example, a light transmitting unit 2 that transmits a laser beam LT that is visible light in a cylindrical case 1, an infrared ray IR emitted from a heating object A, and a reflected laser beam reflected by the heating object A ( (Reflected light) a condensing lens 3 for condensing LR, an infrared IR passing through the condensing lens 3 and a spectroscopic means 4 for splitting the reflected laser light LR in two directions, and an infrared sensor for detecting the infrared IR via the spectroscopic means 4 5 and an optical receiver 6 that detects the reflected laser light LR that has passed through the spectroscopic means 4.

また、位置検出装置は、赤外線センサ5及び光受信部6からのデータに基づいて発熱物体Aまでの距離などを測定する信号処理手段7と、光送信部2からのレーザ光LTを少なくとも一軸回りに走査するスキャナ8を備え、スキャナ8、光送信部2、集光レンズ3、分光手段4及び赤外線センサ5の順で、これらを同軸上に配置した構成になっている。   In addition, the position detection device includes at least one axis of signal processing means 7 for measuring the distance to the heat generating object A based on data from the infrared sensor 5 and the light receiving unit 6 and the laser light LT from the light transmitting unit 2. The scanner 8, the optical transmitter 2, the condenser lens 3, the spectroscopic means 4, and the infrared sensor 5 are arranged in this order on the same axis.

光送信部2は、集光レンズ3の直径よりも充分に小さい直径を有する送光レンズであって、レーザダイオード9から光ファイバ10を通して送信されてきたパルス列状のレーザ光LTをスキャナ8に受けて送信する。   The optical transmission unit 2 is a light transmission lens having a diameter sufficiently smaller than the diameter of the condensing lens 3, and the scanner 8 receives the pulsed laser light LT transmitted from the laser diode 9 through the optical fiber 10. To send.

集光レンズ3は、赤外線IR及び反射レーザ光LRの両方の波長を通すものであれば良く、例えばフッ化バリウム(BaF)から成るものを用いることができる。 The condensing lens 3 may be any lens that passes both infrared IR and reflected laser light LR. For example, a lens made of barium fluoride (BaF 2 ) can be used.

分光手段4は、ケース1の中心軸に対して傾斜状態に設けたハーフミラーであって、より具体的にはコールドミラーが用いられる。このコールドミラーは、赤外線センサ5に向けて長波長(8〜12μm程度)の赤外線IRを通過させると共に、光受信部6に向けて短波長(0.9μm程度)の反射レーザ光LRを反射させる。   The spectroscopic means 4 is a half mirror provided in an inclined state with respect to the central axis of the case 1, and more specifically, a cold mirror is used. This cold mirror transmits infrared IR having a long wavelength (about 8 to 12 μm) toward the infrared sensor 5 and reflects reflected laser light LR having a short wavelength (about 0.9 μm) toward the light receiving unit 6. .

赤外線センサ5は、単一の赤外線検出素子から成る従来既知のセンサである。この赤外線センサ5で検出した信号は、アンプ11を介して信号処理手段7に入力する。   The infrared sensor 5 is a conventionally known sensor composed of a single infrared detection element. The signal detected by the infrared sensor 5 is input to the signal processing means 7 via the amplifier 11.

光受信部6は、例えばフォトダイオードである。この光受信部6で検出した信号は、アンプ12を介して信号処理手段7に入力する。   The light receiving unit 6 is, for example, a photodiode. The signal detected by the optical receiver 6 is input to the signal processing means 7 via the amplifier 12.

信号処理手段7は、中央処理装置(CPU)7Aと、レーザダイオード9に対するレーザ駆動発振器7Bと、赤外線センサ5及び光受信部6からのアナログ信号をデジタル信号に変換して中央処理装置7Aに入力するコンバータ7Cを備えている。レーザ駆動発振器7Bは、距離測定の際に使用する基準信号すなわちレーザレンジファインダにおいて周知の参照光に相当する基準信号をコンバータ7Cに出力する。   The signal processing means 7 converts the analog signals from the central processing unit (CPU) 7A, the laser drive oscillator 7B for the laser diode 9, the infrared sensor 5 and the light receiving unit 6 into digital signals and inputs them to the central processing unit 7A. A converter 7C is provided. The laser driven oscillator 7B outputs a reference signal used for distance measurement, that is, a reference signal corresponding to reference light known in the laser range finder, to the converter 7C.

スキャナ8は、図示しない駆動装置により駆動される反射鏡であって、回動に伴ってレーザ光LTを走査するほかに、発熱物体Aからの赤外線IR及び反射レーザ光LRを集光レンズに向けて反射させる反射体を兼ねている。このスキャナ8は、第1回動軸13を中心にして首振り動作を行うと共に、第1回動軸13に直交する第2回動軸(図示せず)を中心にしてチルト動作を行うようになっており、これらの動作によって所定の面内にレーザ光LTを走査する。なお、先の信号処理手段7では、スキャナ8の回動角度(首振り角度及びチルト角度)も入力するようにし、スキャナ8の回動による走査範囲と赤外線画像とが一致するように画像作成を行う。   The scanner 8 is a reflecting mirror driven by a driving device (not shown). In addition to scanning the laser light LT as it rotates, the infrared light IR and the reflected laser light LR from the heating object A are directed to the condenser lens. It also serves as a reflector to reflect. The scanner 8 swings around the first rotation shaft 13 and tilts around a second rotation shaft (not shown) orthogonal to the first rotation shaft 13. The laser beam LT is scanned in a predetermined plane by these operations. The previous signal processing means 7 also inputs the rotation angle (swing angle and tilt angle) of the scanner 8 and creates an image so that the scanning range by the rotation of the scanner 8 matches the infrared image. Do.

上記構成を備えた発熱物体の位置検出装置は、光送信部2から送信したパルス列状のレーザ光LTをスキャナ8により所定範囲に走査すると共に、発熱物体Aが発する赤外線IR及び発熱物体Aで反射した反射レーザ光LRをスキャナ8で反射させて集光レンズ3で集光する。   The heating object position detection apparatus having the above configuration scans the pulse train-like laser light LT transmitted from the light transmission unit 2 within a predetermined range by the scanner 8 and reflects the infrared ray IR generated by the heating object A and the heating object A. The reflected laser beam LR thus reflected is reflected by the scanner 8 and condensed by the condenser lens 3.

そして、分光手段4を通過した赤外線IRを赤外線センサ5で検出し、その信号を信号処理手段7に入力する。このとき、当該位置検出装置では、回動するスキャナ8を介して赤外線IRを受光しているので、信号処理手段7において、単一の赤外線検出素子から成る赤外線センサ5からの信号とスキャナ8の回動角度のデータに基づいて、所定の赤外線画像を作成することができる。   Then, the infrared IR passing through the spectroscopic means 4 is detected by the infrared sensor 5, and the signal is input to the signal processing means 7. At this time, since the position detecting device receives the infrared IR via the rotating scanner 8, the signal processing means 7 receives the signal from the infrared sensor 5 composed of a single infrared detecting element and the scanner 8. A predetermined infrared image can be created based on the rotation angle data.

一方、分光手段4で反射した反射レーザ光LRは、光受信部6で検出され、その信号が信号処理手段7に入力される。信号処理手段7では、レーザ光LTの送信時に発生する基準信号と反射レーザ光LRの検出信号との時間的なずれ、及び光速に基づいて発熱物体Aまでの距離を測定する。   On the other hand, the reflected laser beam LR reflected by the spectroscopic unit 4 is detected by the light receiving unit 6, and the signal is input to the signal processing unit 7. The signal processing means 7 measures the distance to the heating object A based on the time lag between the reference signal generated during transmission of the laser light LT and the detection signal of the reflected laser light LR and the speed of light.

このようにして、位置検出装置は、赤外線画像内において、発熱物体Aを三次元的に捕捉して、発熱物体Aの位置すなわち方向と距離を高精度に検出することができる。したがって、例えば一画像内に複数の発熱物体Aを捕捉した場合でも、各発熱物体Aまでの距離を測定してこれらの位置関係を判断することができ、なお且つ背景の熱分布の影響を受けることなく人物等の発熱物体Aの位置を高精度に検出し得るものとなる。また、位置検出装置は、上記の位置検出に加えて、発熱物体Aの温度を測定することもできる。   In this way, the position detection device can capture the heat generating object A three-dimensionally in the infrared image and detect the position, that is, the direction and the distance of the heat generating object A with high accuracy. Therefore, for example, even when a plurality of heating objects A are captured in one image, the distance to each heating object A can be measured to determine the positional relationship between them, and the influence of the background heat distribution is also affected. The position of the heating object A such as a person can be detected with high accuracy without any problem. In addition to the position detection described above, the position detection device can also measure the temperature of the heating object A.

さらに、位置検出装置は、赤外線IR及び反射レーザ光LRの両方を集光する集光レンズ3を用いて、赤外線IRの受光系とレーザ光LT,LRの送受信系とを組合わせたことから、装置全体の構造を簡略化し得るものとなり、これに伴って小型軽量化や低コスト化も実現できる。   Further, the position detection device combines the infrared IR light receiving system and the laser light LT, LR transmission / reception system using the condenser lens 3 that collects both the infrared IR and the reflected laser light LR. The structure of the entire apparatus can be simplified, and in association with this, a reduction in size and weight and cost can be realized.

そして、上記実施例で説明したように、スキャナ8、光送信部2、集光レンズ3、分光手段4及び赤外線センサ5を同軸上に配置したこと、スキャナ8を反射鏡にしたこと、スキャナ8がレーザ光LTの走査と集光レンズ3への反射体とを兼用する構成にしたことなどにより、構造のさらなる簡略化を実現することができる。   As described in the above embodiment, the scanner 8, the light transmitter 2, the condensing lens 3, the spectroscopic means 4 and the infrared sensor 5 are arranged on the same axis, the scanner 8 is a reflecting mirror, the scanner 8 However, the structure can be further simplified, for example, by combining the scanning of the laser beam LT with the reflector for the condenser lens 3.

なお、本発明に係わる発熱物体の位置検出装置は、その具体的構成が上記実施例のみに限定されることはなく、本発明の要旨を逸脱しない範囲で構成を適宜変更することが可能であって、例えば、赤外線及び反射レーザ光の受信系に対してレーザ光の送信系を別に設けたり、スキャナにポリゴンミラーを用いたりすることが可能である。   It should be noted that the specific configuration of the heat generating object position detection apparatus according to the present invention is not limited to the above embodiment, and the configuration can be changed as appropriate without departing from the gist of the present invention. Thus, for example, it is possible to provide a separate laser beam transmission system for the infrared and reflected laser beam reception systems, or use a polygon mirror for the scanner.

また、上記実施例のように可視光線としてレーザ光を用いれば、発熱物体の位置が遠くても正確な検出を行うことが可能であるが、発熱物体の位置が比較的近い場合には、レーザ光以外の可視光線を用いても上記実施例と同様の作用及び効果を得ることができ、この場合には、レーザ駆動発振器7Bを省略すると共に、レーザダイオード9に代えて発光ダイオード(LED)を用いることができる。   If laser light is used as visible light as in the above embodiment, accurate detection can be performed even if the position of the heating object is far, but if the position of the heating object is relatively close, the laser Even if visible light other than light is used, the same operation and effect as in the above embodiment can be obtained. In this case, the laser-driven oscillator 7B is omitted and a light-emitting diode (LED) is used instead of the laser diode 9. Can be used.

本発明に係わる発熱物体の位置検出装置の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the position detection apparatus of the heat generating object concerning this invention. 従来の発熱物体の位置検出装置を示す説明図である。It is explanatory drawing which shows the position detection apparatus of the conventional heat generating object.

符号の説明Explanation of symbols

A 発熱物体
IR 赤外線
LR 反射レーザ光(反射光)
LT レーザ光(可視光線)
2 光送信部
3 集光レンズ
4 分光手段(ハーフミラー)
5 赤外線センサ
6 光受信部
7 信号処理手段
8 スキャナ
A Heating object IR Infrared LR Reflected laser light (reflected light)
LT Laser light (visible light)
2 Optical transmitter 3 Condensing lens 4 Spectroscopic means (half mirror)
5 Infrared sensor 6 Optical receiver 7 Signal processing means 8 Scanner

Claims (3)

発熱物体の位置を検出する装置であって、可視光線を送信する光送信部と、発熱物体が発する赤外線及び発熱物体で反射した反射光を集光する集光レンズと、集光レンズを経た赤外線及び反射光を二方向に分光する分光手段と、分光手段を経た赤外線を検出する赤外線センサと、分光手段を経た反射光を検出する光受信部と、赤外線センサ及び光受信部からのデータに基づいて発熱物体までの距離を測定する信号処理手段を備えたことを特徴とする発熱物体の位置検出装置。   An apparatus for detecting the position of a heat generating object, a light transmitting unit that transmits visible light, a condensing lens that condenses infrared light emitted from the heat generating object and reflected light reflected from the heat generating object, and infrared light that passes through the condensing lens And a spectroscopic means for splitting the reflected light in two directions, an infrared sensor for detecting the infrared light passing through the spectroscopic means, a light receiving unit for detecting the reflected light passing through the spectroscopic means, and data from the infrared sensor and the light receiving unit A position detecting device for a heat generating object, comprising signal processing means for measuring a distance to the heat generating object. 分光手段が、赤外線を透過させ且つ反射光を反射するハーフミラーであって、光送信部、集光レンズ、ハーフミラー及び赤外線センサを同軸上に配置したことを特徴とする請求項1に記載の発熱物体の位置検出装置。   The spectroscopic means is a half mirror that transmits infrared light and reflects reflected light, wherein the light transmitting unit, the condensing lens, the half mirror, and the infrared sensor are arranged coaxially. Heating object position detection device. 光送信部からの可視光線を少なくとも一軸回りに走査するスキャナを備え、スキャナが、発熱物体からの赤外線及び反射光を集光レンズに向けて反射させる反射体を兼ねていることを特徴とする請求項1又は2に記載の発熱物体の位置検出装置。   A scanner that scans at least one axis of visible light from an optical transmission unit is provided, and the scanner also serves as a reflector that reflects infrared rays and reflected light from a heating object toward a condenser lens. Item 3. The heating object position detection device according to Item 1 or 2.
JP2004223031A 2004-07-30 2004-07-30 Heating object position detection device Expired - Fee Related JP4859166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223031A JP4859166B2 (en) 2004-07-30 2004-07-30 Heating object position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223031A JP4859166B2 (en) 2004-07-30 2004-07-30 Heating object position detection device

Publications (2)

Publication Number Publication Date
JP2006038798A true JP2006038798A (en) 2006-02-09
JP4859166B2 JP4859166B2 (en) 2012-01-25

Family

ID=35903935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223031A Expired - Fee Related JP4859166B2 (en) 2004-07-30 2004-07-30 Heating object position detection device

Country Status (1)

Country Link
JP (1) JP4859166B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145264A (en) * 2007-12-17 2009-07-02 Stanley Electric Co Ltd Object detector
WO2010100976A1 (en) * 2009-03-05 2010-09-10 株式会社日立国際電気 Multi-function radar device
RU2498236C2 (en) * 2010-09-17 2013-11-10 Харьковский национальный университет имени В.Н. Каразина (ХНУ имени В.Н. Каразина) Method of detecting infrared sources
JP2014505875A (en) * 2011-01-12 2014-03-06 ユーエル リミテッド ライアビリティ カンパニー Optical measurement meter device
JP2014153298A (en) * 2013-02-13 2014-08-25 Fuji Heavy Ind Ltd Light observation system and light observation method
KR20190012345A (en) * 2017-07-27 2019-02-11 주식회사 엠쏘텍 Lidar apparatus
KR20190012340A (en) * 2017-07-27 2019-02-11 주식회사 엠쏘텍 Irrotational omnidirectional lidar apparatus
JP2019052867A (en) * 2017-09-13 2019-04-04 株式会社トプコン Survey device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129681A (en) * 1983-12-16 1985-07-10 Yokogawa Hokushin Electric Corp Magnetic body detecting apparatus
JPH01113605A (en) * 1987-10-28 1989-05-02 Kowa Co Apparatus for measuring three-dimensional shape
JPH0743115A (en) * 1993-07-26 1995-02-10 Sony Corp Distance measurement method and distance measurement device
JPH11281331A (en) * 1998-03-26 1999-10-15 Toyota Central Res & Dev Lab Inc Device for measuring inner wall
JPH11284988A (en) * 1998-03-27 1999-10-15 Mitsubishi Electric Corp Supervisory camera system
JP2001091618A (en) * 1999-09-27 2001-04-06 Mazda Motor Corp Vehicle control device
JP2004037162A (en) * 2002-07-01 2004-02-05 Optec:Kk Light wave range finder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129681A (en) * 1983-12-16 1985-07-10 Yokogawa Hokushin Electric Corp Magnetic body detecting apparatus
JPH01113605A (en) * 1987-10-28 1989-05-02 Kowa Co Apparatus for measuring three-dimensional shape
JPH0743115A (en) * 1993-07-26 1995-02-10 Sony Corp Distance measurement method and distance measurement device
JPH11281331A (en) * 1998-03-26 1999-10-15 Toyota Central Res & Dev Lab Inc Device for measuring inner wall
JPH11284988A (en) * 1998-03-27 1999-10-15 Mitsubishi Electric Corp Supervisory camera system
JP2001091618A (en) * 1999-09-27 2001-04-06 Mazda Motor Corp Vehicle control device
JP2004037162A (en) * 2002-07-01 2004-02-05 Optec:Kk Light wave range finder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145264A (en) * 2007-12-17 2009-07-02 Stanley Electric Co Ltd Object detector
WO2010100976A1 (en) * 2009-03-05 2010-09-10 株式会社日立国際電気 Multi-function radar device
US8537049B2 (en) 2009-03-05 2013-09-17 Hitachi Kokusai Electric Inc. Multi-function radar device
RU2498236C2 (en) * 2010-09-17 2013-11-10 Харьковский национальный университет имени В.Н. Каразина (ХНУ имени В.Н. Каразина) Method of detecting infrared sources
JP2014505875A (en) * 2011-01-12 2014-03-06 ユーエル リミテッド ライアビリティ カンパニー Optical measurement meter device
JP2014153298A (en) * 2013-02-13 2014-08-25 Fuji Heavy Ind Ltd Light observation system and light observation method
KR20190012345A (en) * 2017-07-27 2019-02-11 주식회사 엠쏘텍 Lidar apparatus
KR20190012340A (en) * 2017-07-27 2019-02-11 주식회사 엠쏘텍 Irrotational omnidirectional lidar apparatus
KR102350621B1 (en) * 2017-07-27 2022-01-12 주식회사 엠쏘텍 Lidar apparatus
KR102350613B1 (en) * 2017-07-27 2022-01-12 주식회사 엠쏘텍 Irrotational omnidirectional lidar apparatus
JP2019052867A (en) * 2017-09-13 2019-04-04 株式会社トプコン Survey device
JP7084705B2 (en) 2017-09-13 2022-06-15 株式会社トプコン Surveying device
US11536567B2 (en) 2017-09-13 2022-12-27 Topcon Corporation Surveying instrument

Also Published As

Publication number Publication date
JP4859166B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP7084705B2 (en) Surveying device
EP2378310B1 (en) Time of flight camera unit and optical surveillance system
JP4088906B2 (en) Photo detector of surveying instrument
EP2722645B1 (en) Three-dimensional measuring device and three-dimensional measuring system
US8471705B2 (en) Method and apparatus for detecting presence of a target object via continuous laser and range of the target object via laser pulse
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP2016151422A (en) Measurement device and three-dimensional camera
CN101932952A (en) Device for determining a distance to an object
US20080024754A1 (en) Distance measurement instrument
EP1605231B1 (en) Surveying apparatus
JP2009236774A (en) Three dimensional ranging device
US11561287B2 (en) LIDAR sensors and methods for the same
JP7387803B2 (en) Electromagnetic wave detection device and information acquisition system
JP4859166B2 (en) Heating object position detection device
KR20200031680A (en) Electromagnetic wave detection device, recording medium, and electromagnetic wave detection system
CN1246665C (en) Optical axis automatic adjusting of koniogravimeter
JP2017519188A (en) Three-dimensional scanner for signal acquisition with dichroic beam splitter
KR100969169B1 (en) Millimeter wave radiometer camera and image scanning method
JPH07274215A (en) Stereoscopic video camera
JPH07151528A (en) Range finder
JP2022173534A (en) Electromagnetic wave detection device and information acquisition system
JP2023127741A (en) Surveying device
JP2006189256A (en) Optical transmission system and method
JP2021063678A (en) Measurement device
JP2020060396A (en) Electromagnetic wave detection device and data acquisition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees