JP2006038611A - Electrode structure and ionic conductance measuring device - Google Patents

Electrode structure and ionic conductance measuring device Download PDF

Info

Publication number
JP2006038611A
JP2006038611A JP2004218263A JP2004218263A JP2006038611A JP 2006038611 A JP2006038611 A JP 2006038611A JP 2004218263 A JP2004218263 A JP 2004218263A JP 2004218263 A JP2004218263 A JP 2004218263A JP 2006038611 A JP2006038611 A JP 2006038611A
Authority
JP
Japan
Prior art keywords
ion
electrodes
subject
pressure
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004218263A
Other languages
Japanese (ja)
Other versions
JP4268100B2 (en
Inventor
Minoru Umeda
実 梅田
Jiro Ouchi
二郎 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Ricoh Co Ltd
Original Assignee
Tohoku Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Ricoh Co Ltd filed Critical Tohoku Ricoh Co Ltd
Priority to JP2004218263A priority Critical patent/JP4268100B2/en
Publication of JP2006038611A publication Critical patent/JP2006038611A/en
Application granted granted Critical
Publication of JP4268100B2 publication Critical patent/JP4268100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the impedance value (ionic conductance) of an ion conduction polymer film highly accurately with a simple constitution. <P>SOLUTION: This electrode structure 1 is equipped with a pair of electrodes 4 held on one surface of holding members 2a, 2b and arranged oppositely so as to be able to sandwich a specimen 7, and a pressure adjuster 5 arranged on the surface on the opposite side to the surface holding the electrodes 4 of the holding member 2a and in point contact with a pressurizing means for pressurizing in the direction wherein the specimen 7 is sandwiched by the electrodes 4. When the holding members 2a, 2b are pressurized by the pressurizing means in the direction wherein the specimen 7 is sandwiched by the pair of electrodes 4, the pressure by the pressurizing means is applied to the electrodes 4 and the specimen 7 through the pressure adjuster 5 in point contact with the pressurizing means, and consequently the specimen 7 can be pressurized evenly, and accuracy when an alternating current is made to flow between the electrodes 4 and the impedance value (ionic conductance) of the specimen 7 is measured can be heightened. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池に用いられるイオン伝導高分子膜や固体高分子膜のイオン伝導度を測定するために適した電極構造体及びこの電極構造体を用いたイオン伝導度測定装置に関する。   The present invention relates to an electrode structure suitable for measuring the ionic conductivity of an ion conducting polymer membrane or a solid polymer membrane used in a fuel cell, and an ion conductivity measuring apparatus using the electrode structure.

燃料電池はエネルギー密度が高く、また、環境に有害となる排出物が極めて少ないことから、地球温暖化等の環境問題を解決する有力な候補となっている。このため、自動車用や各種電子機器用の電源として固体高分子形やDMFC(ダイレクトメタノール)タイプ等の各種方式の燃料電池が積極的に開発されている。   Fuel cells have high energy density and extremely low emissions that are harmful to the environment, so they are promising candidates for solving environmental problems such as global warming. Therefore, various types of fuel cells such as solid polymer type and DMFC (direct methanol) type have been actively developed as power sources for automobiles and various electronic devices.

このような燃料電池において、その特性を大きく左右するものは、燃料電池の心臓部であるMEA(イオン伝導高分子膜と電極との接合体)である。MEAは、固体高分子のイオン伝導高分子膜を、触媒を有する電極で挟持した構造のものである。   In such a fuel cell, it is MEA (an assembly of an ion conducting polymer membrane and an electrode) that is the heart of the fuel cell that greatly affects its characteristics. The MEA has a structure in which a solid polymer ion conducting polymer membrane is sandwiched between electrodes having a catalyst.

このようなイオン伝導高分子膜としては、現在、燃料電池の製品化に耐えうる特性を有するものとしては、唯一ナフィオン膜(デュポン社の商品名)のみであるといわれている。   As such an ion conductive polymer membrane, it is said that the only Nafion membrane (a product name of DuPont) is currently the only one that can withstand the commercialization of fuel cells.

しかし、ナフィオン膜は、使用可能温度が120℃以下と低いことや、水分で膨潤するなどの問題を有し、また、非常に高価である。   However, the Nafion membrane has problems such as a low usable temperature of 120 ° C. or lower and swelling with moisture, and is very expensive.

このため、低コストで、ナフィオン膜を上回る性能のイオン伝導高分子膜の実現を目指して研究が進められている。   For this reason, research is being carried out with the aim of realizing an ion-conducting polymer membrane with lower performance and higher performance than the Nafion membrane.

ナフィオン膜を上回る性能のイオン伝導高分子膜を実現するためには、イオン伝導高分子膜のイオン伝導度を高精度に、かつ、効率良く測定することが必要である。イオン伝導高分子膜のイオン伝導度は、イオン伝導高分子膜に交流電流を流したときの抵抗であるインピーダンス値を測定することにより測定することができるが、イオン伝導高分子膜のイオン伝導度を簡単に高精度に測定する方法は未だ提案されていない。   In order to realize an ion conducting polymer membrane with performance exceeding that of the Nafion membrane, it is necessary to measure the ion conductivity of the ion conducting polymer membrane with high accuracy and efficiency. The ionic conductivity of an ion conducting polymer membrane can be measured by measuring the impedance value, which is the resistance when an alternating current is passed through the ion conducting polymer membrane. A method for easily and accurately measuring the above has not been proposed yet.

イオン伝導高分子膜の膜厚方向のインピーダンス値(イオン伝導度)を測定する方法としては、非特許文献1に開示された密閉型セルを用いる方法が知られている。   As a method for measuring the impedance value (ion conductivity) in the film thickness direction of the ion conductive polymer film, a method using a sealed cell disclosed in Non-Patent Document 1 is known.

また、イオン伝導高分子膜のインピーダンス値(イオン伝導度)を精度良く測定するためには、イオン伝導高分子膜の両面にホットプレスによって膜電極を作製する方法が知られている。   In addition, in order to accurately measure the impedance value (ion conductivity) of the ion conductive polymer membrane, a method of manufacturing membrane electrodes by hot pressing on both surfaces of the ion conductive polymer membrane is known.

また、簡易的な測定法としては、イオン伝導高分子膜の片面に4探針電極を圧接し、面方向のインピーダンス値(イオン伝導度)を測る方法が知られている。   As a simple measurement method, a method is known in which four probe electrodes are pressed against one surface of an ion conducting polymer film and the impedance value (ion conductivity) in the plane direction is measured.

電気化学測定マニュアル:電気学会編の3.4節 図3.12Electrochemical Measurement Manual: Section 3.4, edited by the Institute of Electrical Engineers of Japan Figure 3.12

しかし、非特許文献1に開示された方法では、装置の構成が複雑であり、しかも、高精度の測定は困難である。   However, with the method disclosed in Non-Patent Document 1, the configuration of the apparatus is complicated, and high-precision measurement is difficult.

また、イオン伝導高分子膜の両面にホットプレスにより膜電極を作製する方法では、ホットプレスにより膜電極を作製するために多大な時間と労力とを必要とするので、簡単に測定することができない。   In addition, the method of producing membrane electrodes by hot pressing on both surfaces of the ion conducting polymer membrane requires a lot of time and labor to produce the membrane electrodes by hot pressing, and thus cannot be easily measured. .

また、イオン伝導高分子膜の面方向のインピーダンス値(イオン伝導度)を測定する方法は、簡易ではあるが、膜厚方向のインピーダンス値(イオン伝導度)が得られないという欠点がある。   Moreover, although the method of measuring the impedance value (ionic conductivity) in the surface direction of the ion conducting polymer membrane is simple, there is a drawback that the impedance value (ionic conductivity) in the film thickness direction cannot be obtained.

本発明の目的は、イオン伝導高分子膜のインピーダンス値(イオン伝導度)の測定を簡単な構成で高精度に行うことである。   An object of the present invention is to measure the impedance value (ion conductivity) of an ion conducting polymer membrane with high accuracy with a simple configuration.

請求項1記載の発明の電極構造体は、保持部材の一面に保持されて被検体を挟持可能に対向配置された一対の電極と、前記保持部材の前記電極を保持した面の反対側の面上に配置され、前記電極で前記被検体を挟持する方向に加圧する加圧手段に対して点接触する圧力調整体と、を具備する。   An electrode structure according to a first aspect of the present invention includes a pair of electrodes that are held on one surface of a holding member and arranged to face each other so as to sandwich a subject, and a surface opposite to the surface of the holding member that holds the electrode A pressure adjusting body that is disposed above and that makes point contact with a pressurizing unit that pressurizes the subject with the electrode in a direction in which the subject is sandwiched.

請求項2記載の発明は、請求項1記載の電極構造体において、前記電極と前記保持部材との間に緩衝材が介装されている。   According to a second aspect of the present invention, in the electrode structure according to the first aspect, a cushioning material is interposed between the electrode and the holding member.

請求項3記載の発明のイオン伝導度測定装置は、請求項1又は2記載の電極構造体と、前記圧力調整体に点接触し、前記電極が前記被検体を挟持する向きに前記保持部材を加圧する加圧手段と、前記一対の電極に接続されて前記電極間に位置する前記被検体のインピーダンス値を測定する測定器と、を具備する。   According to a third aspect of the present invention, there is provided an ion conductivity measuring apparatus according to the first or second aspect, wherein the electrode structure according to the first or second aspect and the pressure adjusting body are in point contact, and the holding member is disposed in a direction in which the electrode sandwiches the subject. Pressurizing means for pressurizing; and a measuring instrument connected to the pair of electrodes and measuring an impedance value of the subject located between the electrodes.

請求項4記載の発明は、請求項3記載のイオン伝導度測定装置において、前記保持部材上に取り付けられた感圧素子と、前記感圧素子に接続された圧力計と、を具備する。   According to a fourth aspect of the present invention, in the ion conductivity measuring apparatus according to the third aspect of the present invention, the pressure-sensitive element attached on the holding member and a pressure gauge connected to the pressure-sensitive element are provided.

請求項5記載の発明は、請求項3又は4記載のイオン伝導度測定装置において、前記加圧手段は、中心線回りに回転することにより前記圧力調整体に接離する方向に移動する可動部を備えている。   According to a fifth aspect of the present invention, in the ion conductivity measuring apparatus according to the third or fourth aspect, the pressurizing means is a movable part that moves in a direction of contacting and separating from the pressure adjusting body by rotating around a center line. It has.

請求項6記載の発明は、請求項3ないし5のいずれか一記載のイオン伝導度測定装置において、前記加圧手段による前記被検体に対する圧力が1.0×10Pa以上に設定されている。 A sixth aspect of the present invention is the ion conductivity measuring apparatus according to any one of the third to fifth aspects, wherein the pressure applied to the subject by the pressurizing means is set to 1.0 × 10 5 Pa or more. .

請求項7記載の発明は、請求項3ないし5のいずれか一記載のイオン伝導度測定装置において、前記被検体の面積が5mm以下に設定されている。 According to a seventh aspect of the present invention, in the ion conductivity measuring device according to any one of the third to fifth aspects, the area of the subject is set to 5 mm 2 or less.

請求項8記載の発明は、請求項3ないし5のいずれか一記載のイオン伝導度測定装置において、前記被検体に対して印加される単位厚さ当りの測定電圧が0.1〜1.0mV/μmに設定されている。   An eighth aspect of the present invention is the ion conductivity measuring device according to any one of the third to fifth aspects, wherein a measurement voltage per unit thickness applied to the subject is 0.1 to 1.0 mV. / Μm.

請求項1記載の発明の電極構造体によれば、一対の電極で被検体を挟持する向きに加圧手段で保持部材を加圧したときに、加圧手段の圧力が加圧手段に対して点接触する圧力調整体を介して電極及び被検体に作用するので、被検体に対して均等に加圧することができ、電極間に交流電流を通電して被検体のインピーダンス値(イオン伝導度)を測定する際の精度を向上させることができ、しかも、電極構造体は保持部材における電極を保持した面の反対側の面上に圧力調整体を配置する構造であり、電極構造体を簡単な構造とすることができる。   According to the electrode structure of the first aspect of the present invention, when the holding member is pressurized by the pressurizing unit in a direction in which the subject is sandwiched between the pair of electrodes, the pressure of the pressurizing unit is applied to the pressurizing unit. Since it acts on the electrode and the subject via the pressure regulator that makes point contact, the subject can be evenly pressurized, and an alternating current is passed between the electrodes to pass the impedance value (ion conductivity) of the subject. In addition, the electrode structure is a structure in which the pressure adjusting body is disposed on the surface of the holding member opposite to the surface holding the electrode, and the electrode structure can be simplified. It can be a structure.

請求項2記載の発明の電極構造体によれば、緩衝材を介装することにより、被検体に対してより一層均等に加圧することができる。   According to the electrode structure of the second aspect of the present invention, the subject can be more evenly pressurized by interposing the buffer material.

請求項3記載の発明のイオン伝導度測定装置によれば、請求項1又は2記載の電極構造体を用いているので、被検体のインピーダンス値(イオン伝導度)の測定を簡単な構成で高精度に行うことができる。   According to the ionic conductivity measuring device of the third aspect of the invention, since the electrode structure according to the first or second aspect is used, the impedance value (ionic conductivity) of the subject can be measured with a simple configuration. Can be done with precision.

請求項4記載の発明のイオン伝導度測定装置によれば、加圧手段での加圧力を感圧素子と圧力計とを用いて正確に測定することができ、被検体のインピーダンス値(イオン伝導度)の測定をより一層高精度に行うことができる。   According to the ion conductivity measuring device of the invention described in claim 4, the pressure applied by the pressurizing means can be accurately measured using the pressure sensitive element and the pressure gauge, and the impedance value of the subject (ion conduction) Degree) can be measured with higher accuracy.

請求項5記載の発明のイオン伝導度測定装置によれば、可動部を中心線回りに回転させることにより圧力調整体に作用する圧力を可変することができ、このとき、可動部が中心線回りに回転しても圧力調整体には回転する向きの力は伝わらないので、電極や被検体に対して回転力が作用せず、被検体がよじれることなく被検体のインピーダンス値(イオン伝導度)の測定を高精度に行うことができる。   According to the ion conductivity measuring device of the fifth aspect of the present invention, the pressure acting on the pressure adjusting body can be varied by rotating the movable part around the center line. The rotating force is not transmitted to the pressure regulator even if it is rotated in the direction of rotation, so the rotational force does not act on the electrode and the subject, and the impedance value (ion conductivity) of the subject is not distorted. Can be measured with high accuracy.

請求項6記載の発明のイオン伝導度測定装置によれば、被検体に対する圧力を1.0×10Pa以上とすることによりインピーダンス値(イオン伝導度)の測定値の変化がほとんどなくなり、被検体のインピーダンス値(イオン伝導度)の測定を高精度に行うことができる。 According to the ion conductivity measuring apparatus of the sixth aspect of the present invention, when the pressure on the subject is set to 1.0 × 10 5 Pa or more, there is almost no change in the measured value of the impedance value (ion conductivity), and The impedance value (ion conductivity) of the specimen can be measured with high accuracy.

請求項7記載の発明のイオン伝導度測定装置によれば、電極と被検体の界面容量が小さいほど測定したインピーダンス値(イオン伝導度)の信頼性が高くなり、被検体の面積を5mm以下とすることにより希望する信頼性のインピーダンス値(イオン伝導度)を測定することができる。 According to the ionic conductivity measuring device of the seventh aspect of the invention, the smaller the interfacial capacitance between the electrode and the specimen, the higher the reliability of the measured impedance value (ionic conductivity), and the area of the specimen is 5 mm 2 or less. Thus, the desired impedance value (ion conductivity) can be measured.

請求項8記載の発明のイオン伝導度測定装置によれば、被検体に印加する単位厚さ当りの測定電圧を0.1〜1.0mV/μmとすることにより、被検体のインピーダンス値(イオン伝導度)の測定を安定して行うことができる。   According to the ion conductivity measuring apparatus of the eighth aspect of the present invention, by setting the measurement voltage per unit thickness applied to the subject to 0.1 to 1.0 mV / μm, the impedance value of the subject (ion Conductivity) can be measured stably.

本発明の実施の形態の説明に先立ち、被検体としてのイオン伝導高分子膜のインピーダンス値(イオン伝導度)の測定を様々な測定装置で行ったので、それらについて図10ないし図12に基づいて説明する。   Prior to the description of the embodiment of the present invention, the measurement of the impedance value (ion conductivity) of the ion conducting polymer membrane as the subject was performed with various measuring devices, and these are based on FIGS. 10 to 12. explain.

まず、図10に示す測定装置では、一面に電極100を接着固定したイオン伝導高分子膜101がガラス台102上に載置され、その向きは、電極100がガラス台102に接触する向きとされている。ガラス台102上に載置されたイオン伝導高分子膜101の反対側の面上に、硫酸水溶液103を入れた絶縁性材料で形成された容器104が載置され、容器104の上に重り105が載置されている。硫酸水溶液103中に電極(例えば、Au電極)106が吊り下げられ、電極100、106間にイオン伝導高分子膜101のインピーダンス値(イオン伝導度)を測定する測定器107が接続されている。   First, in the measurement apparatus shown in FIG. 10, an ion conductive polymer film 101 having an electrode 100 bonded and fixed on one surface is placed on a glass table 102, and the direction of the electrode 100 is in contact with the glass table 102. ing. A container 104 formed of an insulating material containing a sulfuric acid aqueous solution 103 is placed on the opposite surface of the ion conducting polymer film 101 placed on the glass table 102, and a weight 105 is placed on the container 104. Is placed. An electrode (for example, an Au electrode) 106 is suspended in the sulfuric acid aqueous solution 103, and a measuring device 107 that measures the impedance value (ion conductivity) of the ion conductive polymer film 101 is connected between the electrodes 100 and 106.

図11に示す測定装置では、一面に電極100を接着固定したイオン伝導高分子膜101がガラス台102上に載置され、ガラス台102上に載置されたイオン伝導高分子膜101の反対側の面上に電極108が載置され、電極108の上に押圧部材109を介して重り105が載置されている。電極100、108間にイオン伝導高分子膜101のインピーダンス値(イオン伝導度)を測定する測定器107が接続されている。   In the measuring apparatus shown in FIG. 11, an ion conductive polymer film 101 having an electrode 100 bonded and fixed on one surface is placed on a glass table 102, and the opposite side of the ion conductive polymer film 101 placed on the glass table 102. The electrode 108 is placed on the surface of the, and the weight 105 is placed on the electrode 108 via the pressing member 109. A measuring device 107 for measuring the impedance value (ion conductivity) of the ion conducting polymer membrane 101 is connected between the electrodes 100 and 108.

図10及び図11に示す測定装置で、イオン伝導高分子膜101として代表的な膜であるナフィオン117のインピーダンス値(イオン伝導度)を測定したところ、精度の良い測定結果は得られなかった。これは、イオン伝導高分子膜101に均等に圧力をかけることができなかったためであると考えられる。図10及び図11に示した測定装置では、重し105の載置面に傾きがあるような場合、イオン伝導高分子膜101にかかる圧力が均等にならず、それが原因となって正確なインピーダンス値を測定することができなくなる。   When the impedance value (ion conductivity) of Nafion 117, which is a typical film as the ion conductive polymer film 101, was measured using the measurement apparatus shown in FIGS. 10 and 11, an accurate measurement result could not be obtained. This is considered to be because the pressure could not be applied uniformly to the ion conducting polymer film 101. In the measuring apparatus shown in FIGS. 10 and 11, when the placement surface of the weight 105 is inclined, the pressure applied to the ion conductive polymer film 101 is not uniform, and this causes accurate measurement. Impedance values cannot be measured.

また、図10に示す測定装置では、液体(硫酸水溶液103)を使用するため、液漏れを防ぐ構造が必要なため、装置としての構造が複雑になり、装置の取り扱いも煩雑になる。   In addition, since the measurement apparatus shown in FIG. 10 uses liquid (sulfuric acid aqueous solution 103), a structure for preventing liquid leakage is necessary, so that the structure of the apparatus is complicated and the handling of the apparatus becomes complicated.

また、載置形式の重り105に代えてイオン伝導高分子膜101に作用させる圧力を可変可能なネジ方式の加圧手段を用いた場合には、加圧手段のネジを回したときの回転が容器104や押圧部材109に伝わり、イオン伝導高分子膜101にもネジを回したことに伴う回転が伝わってイオン伝導高分子膜101がよじれてしまい、大幅な測定誤差が発生する。   In addition, when a screw-type pressurizing unit capable of changing the pressure applied to the ion conducting polymer film 101 is used instead of the mounting weight 105, the rotation when the screw of the pressurizing unit is rotated is performed. The rotation is transmitted to the container 104 and the pressing member 109 and the rotation of the ion conducting polymer film 101 due to the screw being turned, and the ion conducting polymer film 101 is kinked, resulting in a significant measurement error.

図12に示す測定装置では、一面に電極100を接着固定したイオン伝導高分子膜101がガラス台102上に載置されている。ガラス台102上に載置されたイオン伝導高分子膜101の反対側の面上には、内部に直径が0.3mm程度の細いPt線110を埋め込んだプラスチック等の絶縁棒111の一端がPt線110の一端と共に押し当てられ、絶縁棒111の他端に重り105が載置されている。電極100とPt線(電極)110との間にイオン伝導高分子膜101のインピーダンス値(イオン伝導度)を測定する測定器107が接続されている。   In the measuring apparatus shown in FIG. 12, an ion conductive polymer film 101 having an electrode 100 bonded and fixed on one surface is placed on a glass table 102. On the opposite surface of the ion conducting polymer film 101 placed on the glass table 102, one end of an insulating rod 111 such as plastic in which a thin Pt line 110 having a diameter of about 0.3 mm is embedded is Pt. It is pressed together with one end of the wire 110, and a weight 105 is placed on the other end of the insulating rod 111. A measuring device 107 for measuring the impedance value (ion conductivity) of the ion conducting polymer film 101 is connected between the electrode 100 and the Pt line (electrode) 110.

この測定装置では、イオン伝導高分子膜101と接するPt線(電極)111の面積が小さくなるので、イオン伝導高分子膜101の電極100、110間に作用する圧力を均等にすることができ、測定結果は、図10、図11の測定装置に比べて、ナフィオン膜の公称のインピーダンス値(イオン伝導度)に近付いている。しかし、真のインピーダンス値(イオン伝導度)に対しての誤差は依然として発生している。   In this measuring apparatus, since the area of the Pt line (electrode) 111 in contact with the ion conductive polymer film 101 becomes small, the pressure acting between the electrodes 100 and 110 of the ion conductive polymer film 101 can be made uniform, The measurement result is closer to the nominal impedance value (ion conductivity) of the Nafion membrane as compared to the measurement apparatus of FIGS. However, an error with respect to the true impedance value (ion conductivity) is still occurring.

本発明の第1の実施の形態を図1及び図2に基づいて説明する。図1は、電極構造体1を示すものであり、この電極構造体1は、保持部材である一対のガラスプレート2a、2b、ガラスプレート2a、2bの一面に設けられた絶縁材3、絶縁材3上に接着固定された電極4、一方のガラスプレート2aにおける電極4が設けられている面の反対側の面上に接着固定された圧力調整体5により構成されている。なお、ガラスプレート2a、2bにより十分な絶縁性を確保できる場合には、絶縁材3を設けずにガラスプレート2a、2b上に電極4を接着固定してもよい。電極4にはそれぞれリード線6がスポットウェルダー等で接続されている。一対のガラスプレート2a、2bは電極4を対向させるように配置され、対向した電極4により被検体であるイオン伝導高分子膜7を挟持する構成とされている。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an electrode structure 1. This electrode structure 1 includes a pair of glass plates 2a and 2b, which are holding members, and an insulating material 3 and an insulating material provided on one surface of the glass plates 2a and 2b. 3 is composed of an electrode 4 fixedly bonded on 3 and a pressure adjusting body 5 bonded and fixed on the surface of one glass plate 2a opposite to the surface on which the electrode 4 is provided. In addition, when sufficient insulation can be ensured by the glass plates 2a and 2b, the electrode 4 may be bonded and fixed on the glass plates 2a and 2b without providing the insulating material 3. A lead wire 6 is connected to each electrode 4 by a spot welder or the like. The pair of glass plates 2 a and 2 b are arranged so that the electrodes 4 are opposed to each other, and the ion conductive polymer film 7 as a subject is sandwiched between the opposed electrodes 4.

ガラスプレート2a、2bの絶縁材3上に接着固定された電極4は、図2に示すようにクロスする位置に配置され、クロスして重なり合う部分が有効電極面積とされている。   The electrodes 4 adhered and fixed on the insulating material 3 of the glass plates 2a and 2b are arranged at crossing positions as shown in FIG. 2, and the crossing and overlapping portions are effective electrode areas.

圧力調整体5は、ガラスプレート2aに接着された面はガラスプレート2aに対して面接触する平面形状に形成され、その反対側の面は凸状に湾曲した面に形成されている。凸状に湾曲した面の頂点部が、一対の電極4でイオン伝導高分子膜7を挟持する向きにガラスプレート2aを加圧する加圧手段に対して点接触する構成とされている。   The pressure adjusting body 5 has a surface bonded to the glass plate 2a formed in a planar shape that comes into surface contact with the glass plate 2a, and an opposite surface formed in a convexly curved surface. The apex of the convexly curved surface is configured to make point contact with a pressurizing unit that pressurizes the glass plate 2a in a direction in which the ion conductive polymer film 7 is sandwiched between the pair of electrodes 4.

このような構成において、この電極構造体1を用いてイオン伝導高分子膜7のインピーダンス値(イオン伝導度)を測定する場合には、一対の電極4のリード線6をイオン伝導高分子膜7のインピーダンス値(イオン伝導度)を測定する測定器に接続し、一対の電極4がイオン伝導高分子膜7を挟持する向きに加圧手段でガラスプレート2a、2bを加圧する。なお、測定器は、イオン伝導高分子膜7のインピーダンス値を測定し、測定したインピーダンス値からイオン伝導高分子膜7のイオン伝導度を算出する機能を備えている。   In such a configuration, when the impedance value (ion conductivity) of the ion conductive polymer film 7 is measured using the electrode structure 1, the lead wires 6 of the pair of electrodes 4 are connected to the ion conductive polymer film 7. The glass plates 2a and 2b are pressurized by a pressurizing means in a direction in which the pair of electrodes 4 sandwich the ion conducting polymer film 7 with a measuring instrument for measuring the impedance value (ion conductivity) of the electrode. The measuring instrument has a function of measuring the impedance value of the ion conducting polymer membrane 7 and calculating the ion conductivity of the ion conducting polymer membrane 7 from the measured impedance value.

イオン伝導高分子膜7に作用する圧力が適当な値となるように加圧手段の加圧力を調整し、電極4間に交流電流を印加することにより、イオン伝導高分子膜7のインピーダンス値を測定することができ、測定したインピーダンス値からイオン伝導高分子膜7のイオン伝導度を算出することができる。   By adjusting the pressing force of the pressurizing means so that the pressure acting on the ion conducting polymer membrane 7 becomes an appropriate value, and applying an alternating current between the electrodes 4, the impedance value of the ion conducting polymer membrane 7 can be set. The ion conductivity of the ion conducting polymer membrane 7 can be calculated from the measured impedance value.

この測定時において、加圧手段が圧力調整体5に点接触することにより、圧力調整体5を介してイオン伝導高分子膜7に作用する加圧手段からの圧力がイオン伝導高分子膜7に対して均一に分散される。これにより、イオン伝導高分子膜7のインピーダンス値の測定をイオン伝導高分子膜7に対して均一に圧力をかけた状態で行えるので、精度の良い測定を行うことができ、ひいては、イオン伝導高分子膜7のイオン伝導度を高精度に測定することができる。   In this measurement, when the pressurizing means makes point contact with the pressure adjusting body 5, the pressure from the pressurizing means acting on the ion conducting polymer film 7 via the pressure adjusting body 5 is applied to the ion conducting polymer film 7. On the other hand, it is uniformly dispersed. As a result, the impedance value of the ion conducting polymer film 7 can be measured in a state in which the pressure is uniformly applied to the ion conducting polymer film 7, so that accurate measurement can be performed. The ion conductivity of the molecular film 7 can be measured with high accuracy.

この電極構造体1は、ガラスプレート2aにおける電極4を保持した面の反対側の面上に圧力調整体5を接着固定する構造であり、簡単な構造とされている。   This electrode structure 1 is a structure in which the pressure adjusting body 5 is bonded and fixed on the surface of the glass plate 2a opposite to the surface holding the electrode 4, and has a simple structure.

なお、本実施の形態では、圧力調整体5を一方のガラスプレート2aに接着固定した場合を例に挙げて説明したが、他方のガラスプレート2bに接着固定してもよく、又は、両方のガラスプレート2a、2bに接着固定してもよい。   In this embodiment, the case where the pressure adjusting body 5 is bonded and fixed to one glass plate 2a has been described as an example. However, the pressure adjusting body 5 may be bonded and fixed to the other glass plate 2b, or both glasses may be fixed. You may adhere and fix to the plates 2a and 2b.

また、本実施の形態では、圧力調整体5として加圧手段に対向する側の面が凸状に湾曲している場合を例に挙げて説明したが、圧力調整体5の形状はこの形状に限られたものではなく、加圧手段に対して点接触する形状を有していればよい。例えば、図3(a)に示すような四角錐形状の圧力調整体5A、図3(b)、(c)に示すような四角柱と四角錐とを組み合わせた形状の圧力調整体5B、5Cとしてもよい。   Further, in the present embodiment, the case where the surface on the side facing the pressurizing unit is curved as the pressure adjusting body 5 is described as an example, but the shape of the pressure adjusting body 5 is in this shape. The shape is not limited as long as it has a shape that makes point contact with the pressing means. For example, a pressure adjusting body 5A having a quadrangular pyramid shape as shown in FIG. 3A, and pressure adjusting bodies 5B and 5C having a shape combining a quadrangular prism and a quadrangular pyramid as shown in FIGS. 3B and 3C. It is good.

本発明の第2の実施の形態を図4に基づいて説明する。なお、本実施の形態、及び、以下に説明する他の実施の形態において、先行して説明した実施の形態と同じ部分は同じ符号で示し、説明も省略する。   A second embodiment of the present invention will be described with reference to FIG. Note that in this embodiment and other embodiments described below, the same portions as those described in the preceding embodiments are denoted by the same reference numerals, and description thereof is also omitted.

本実施の形態の電極構造体10では、保持部材である一対のガラスプレート2a、2b、ガラスプレート2a、2bの一面に設けられた弾力性のある緩衝材11、緩衝材11上に接着固定された電極4、一方のガラスプレート1における電極4が設けられている面の反対側の面上に接着固定された圧力調整体5により構成されている。緩衝材11としては、弾力性と絶縁性とを有するシリコンラバー等を用いることができる。なお、ガラスプレート2a、2bによって十分な絶縁性を確保できる場合には、緩衝材11は絶縁性を有しなくてもよい。電極4にはそれぞれリード線6がスポットウェルダー等で接続されている。一対のガラスプレート2a、2bは電極4を対向させるように配置され、対向した電極4により被検体であるイオン伝導高分子膜7を挟持する構成とされている。   In the electrode structure 10 of the present embodiment, a pair of glass plates 2a and 2b, which are holding members, and an elastic buffer material 11 provided on one surface of the glass plates 2a and 2b are bonded and fixed onto the buffer material 11. The electrode 4 is composed of a pressure regulator 5 that is bonded and fixed on the surface of the one glass plate 1 opposite to the surface on which the electrode 4 is provided. As the buffer material 11, silicon rubber having elasticity and insulation can be used. In addition, when sufficient insulation can be ensured by the glass plates 2a and 2b, the buffer material 11 may not have insulation. A lead wire 6 is connected to each electrode 4 by a spot welder or the like. The pair of glass plates 2 a and 2 b are arranged so that the electrodes 4 are opposed to each other, and the ion conductive polymer film 7 as a subject is sandwiched between the opposed electrodes 4.

このような構成において、この電極構造体10を用いてイオン伝導高分子膜7のインピーダンス値(イオン伝導度)を測定する場合には、第1の実施の形態と同じように、一対の電極4のリード線6をイオン伝導高分子膜7のインピーダンス値(イオン伝導度)を測定する測定器に接続し、一対の電極4がイオン伝導高分子膜7を挟持する向きに加圧手段でガラスプレート2a、2bを加圧する。   In such a configuration, when the impedance value (ion conductivity) of the ion conducting polymer film 7 is measured using the electrode structure 10, a pair of electrodes 4 is formed as in the first embodiment. The lead wire 6 is connected to a measuring instrument for measuring the impedance value (ion conductivity) of the ion conducting polymer film 7, and the glass plate is pressed by a pressurizing means so that the pair of electrodes 4 sandwich the ion conducting polymer film 7. Pressurize 2a and 2b.

この測定時において、加圧手段が圧力調整体5に点接触することにより、圧力調整体5を介してイオン伝導高分子膜7に作用する加圧手段からの圧力がイオン伝導高分子膜7に対して均一に分散される。これにより、イオン伝導高分子膜7のインピーダンス値の測定をイオン伝導高分子膜7に対して均一に圧力をかけた状態で行えるので、精度の良い測定を行うことができ、ひいては、イオン伝導高分子膜7のイオン伝導度を高精度に測定することができる。   In this measurement, when the pressurizing means makes point contact with the pressure adjusting body 5, the pressure from the pressurizing means acting on the ion conducting polymer film 7 via the pressure adjusting body 5 is applied to the ion conducting polymer film 7. On the other hand, it is uniformly dispersed. As a result, the impedance value of the ion conducting polymer film 7 can be measured in a state in which the pressure is uniformly applied to the ion conducting polymer film 7, so that accurate measurement can be performed. The ion conductivity of the molecular film 7 can be measured with high accuracy.

さらに、この電極構造体10は、ガラスプレート2a、2bと電極4との間に緩衝材11が介装されているので、加圧手段により加圧したときにイオン伝導高分子膜7をより一層均等に加圧することができ、イオン伝導高分子膜7のインピーダンス値の測定をより一層精度良く行うことができ、ひいては、イオン伝導高分子膜7のイオン伝導度をより一層高精度に測定することができる。   Further, since the electrode structure 10 has the buffer material 11 interposed between the glass plates 2a, 2b and the electrode 4, the ion conductive polymer membrane 7 is further increased when pressurized by the pressurizing means. It is possible to pressurize evenly, the impedance value of the ion conducting polymer membrane 7 can be measured with higher accuracy, and the ion conductivity of the ion conducting polymer membrane 7 can be measured with higher accuracy. Can do.

本発明の第3の実施の形態を図5に基づいて説明する。本実施の形態のイオン伝導度測定装置20は、第2の実施の形態で説明した電極構造体10と、圧力調整体5に点接触して一対の電極4がイオン伝導高分子膜7を挟持する向きにガラスプレート2a、2bを加圧する加圧手段21と、一対の電極4に接続されて電極4間に位置するイオン伝導高分子膜7のインピーダンス値(イオン伝導度)を測定する測定器22とにより構成されている。   A third embodiment of the present invention will be described with reference to FIG. The ion conductivity measuring device 20 according to the present embodiment is in point contact with the electrode structure 10 described in the second embodiment and the pressure regulator 5, and the pair of electrodes 4 sandwich the ion conductive polymer film 7. Measuring means for measuring the impedance value (ion conductivity) of the ion conducting polymer membrane 7 connected between the pair of electrodes 4 and positioned between the electrodes 4. 22.

加圧手段21は、中心線回りに回転操作可能なマイクロメータ方式の可動部23を有し、この可動部23は可動側の先端面が圧力調整体5に点接触する位置に配置され、可動部23は中心線回りに回転操作されることにより圧力調整体5に接離する方向に移動する。この加圧手段21には、可動部23の回転操作量を検知するための目盛りが設けられている。   The pressurizing means 21 has a micrometer-type movable portion 23 that can be rotated around a center line. The movable portion 23 is arranged at a position where the movable side end surface is in point contact with the pressure adjusting body 5 and is movable. The part 23 is moved in the direction of contacting and separating from the pressure adjusting body 5 by being rotated around the center line. The pressurizing means 21 is provided with a scale for detecting the rotational operation amount of the movable portion 23.

測定器22は、交流電流を発生させる電源部、電極4間を流れる交流電流を測定することによりイオン伝導高分子膜7のインピーダンス値を測定する測定部、測定したインピーダンス値からイオン伝導高分子膜7のイオン伝導度を算出する算出部等を備えている。   The measuring device 22 includes a power supply unit that generates an alternating current, a measuring unit that measures an impedance value of the ion conducting polymer film 7 by measuring an alternating current flowing between the electrodes 4, and an ion conducting polymer film from the measured impedance value. 7 and the like.

このような構成において、このイオン伝導度測定装置20を用いてイオン伝導高分子膜7のインピーダンス値(イオン伝導度)を測定する場合には、加圧手段21の可動部23を回転操作してガラスプレート2aを加圧し、電極4間でイオン伝導高分子膜7を挟持する圧力が目的とする値となるように調節する。圧力が目的とする値になったか否かは、可動部23の回転操作量を示す目盛りを見て判断する。   In such a configuration, when the impedance value (ion conductivity) of the ion conducting polymer membrane 7 is measured using the ion conductivity measuring device 20, the movable part 23 of the pressurizing means 21 is rotated and operated. The glass plate 2a is pressurized and adjusted so that the pressure for sandwiching the ion conducting polymer film 7 between the electrodes 4 becomes a target value. Whether or not the pressure has reached a target value is determined by looking at a scale indicating the amount of rotation of the movable portion 23.

イオン伝導高分子膜7を挟持する圧力を目的とする値に調整した後、電極4間に交流電流を印加することにより、イオン伝導高分子膜7のインピーダンス値を測定することができ、測定したインピーダンス値からイオン伝導高分子膜7のイオン伝導度を算出することができる。   After adjusting the pressure for sandwiching the ion conducting polymer film 7 to a target value, the impedance value of the ion conducting polymer film 7 can be measured by applying an alternating current between the electrodes 4 and measured. The ion conductivity of the ion conducting polymer membrane 7 can be calculated from the impedance value.

この測定時において、加圧手段21の可動部23の可動側の先端面が圧力調整体5に点接触していることにより、圧力調整体5を介してイオン伝導高分子膜7に作用する加圧手段21からの圧力がイオン伝導高分子膜7に対して均一に分散される。これにより、イオン伝導高分子膜7のインピーダンス値の測定をイオン伝導高分子膜7に対して均一に圧力をかけた状態で行えるので、精度の良い測定を行うことができ、ひいては、イオン伝導高分子膜7のイオン伝導度を高精度に測定することができる。   At the time of this measurement, the movable side end surface of the movable portion 23 of the pressurizing means 21 is in point contact with the pressure adjusting body 5, so that the applied pressure acting on the ion conducting polymer film 7 via the pressure adjusting body 5 is obtained. The pressure from the pressure means 21 is uniformly dispersed with respect to the ion conductive polymer film 7. As a result, the impedance value of the ion conducting polymer film 7 can be measured in a state in which the pressure is uniformly applied to the ion conducting polymer film 7, so that accurate measurement can be performed. The ion conductivity of the molecular film 7 can be measured with high accuracy.

イオン伝導度測定装置20でのイオン伝導高分子膜7のイオン伝導度の測定を、イオン伝導高分子膜7に対する圧力を可変させて行った結果を図6のグラフに示す。このグラフから、イオン伝導高分子膜7を加圧する圧力を1.0×10Pa以上、好ましくは1.9×10Pa以上とすることで、イオン伝導度の変化がほとんどなくなり、安定した測定が可能になることが判明した。そこで、本発明では、イオン伝導高分子膜7を加圧する圧力を1.0×10Pa以上とした。 The graph of FIG. 6 shows the results of measuring the ionic conductivity of the ion conducting polymer membrane 7 with the ion conductivity measuring device 20 while varying the pressure on the ion conducting polymer membrane 7. From this graph, when the pressure for pressurizing the ion conducting polymer membrane 7 is set to 1.0 × 10 5 Pa or more, preferably 1.9 × 10 5 Pa or more, there is almost no change in ionic conductivity and stable. It was found that measurement was possible. Therefore, in the present invention, the pressure for pressurizing the ion conducting polymer film 7 is set to 1.0 × 10 5 Pa or more.

イオン伝導度測定装置20でのイオン伝導高分子膜7のイオン伝導度の測定を、イオン伝導高分子膜7の面積を1mm、4mm、16mm、40mmに可変させて行った場合の結果を図7のグラフに示す。このグラフから、イオン伝導高分子膜7の面積を小さくするほど測定したイオン伝導度の信頼性が高くなることが判明した。一方、イオン伝導高分子膜7の面積が大きいほうが測定時の取扱いが容易であることに鑑み、本発明では、イオン伝導高分子膜7の面積を5mm以下とした。これにより、希望する信頼性のイオン伝導度を測定することができる。 The ionic conductivity measurement of the ionic conductivity of the polymer film 7 in the ion conductivity measuring device 20, when the conducted by varying the area of the ion conductive polymer membrane 7 to 1mm 2, 4mm 2, 16mm 2 , 40mm 2 The results are shown in the graph of FIG. From this graph, it was found that the smaller the area of the ion conducting polymer film 7, the higher the reliability of the measured ion conductivity. On the other hand, in view of the fact that the larger the area of the ion conducting polymer film 7 is, the easier the handling at the time of measurement is, the area of the ion conducting polymer film 7 is set to 5 mm 2 or less in the present invention. This makes it possible to measure the desired reliable ion conductivity.

イオン伝導高分子膜7に印加する測定電圧の大きさについて検討したところ、175μm厚さのナフィオン117において、50〜100mVが安定した測定が可能であることが判明した。その結果から、単位厚さ当りのイオン伝導高分子膜7への印加電圧を0.2〜0.6mV/μmと割り出し、本発明では、有用な測定電圧を0.1〜1.0mV/μmとしている。   When the magnitude of the measurement voltage applied to the ion conducting polymer film 7 was examined, it was found that 50 to 100 mV can be stably measured in Nafion 117 having a thickness of 175 μm. From the result, the voltage applied to the ion conducting polymer film 7 per unit thickness is calculated as 0.2 to 0.6 mV / μm, and in the present invention, the useful measurement voltage is 0.1 to 1.0 mV / μm. It is said.

なお、本実施の形態では、マイクロメータ方式の可動部23を例に挙げて説明したが、図8に示すように、収納筒部25aと、収納筒部25aの一端側に取付けられて回転操作により収納筒部25aの軸方向に可動する回転操作部25bと、収納筒部25aの他端側に摺動可能に取付けられた摺動部25cと、回転操作部25bと摺動部25cとの間に介装されたバネ25dとを備えた形式の可動部25を用いてもよい。   In the present embodiment, the micrometer type movable portion 23 has been described as an example. However, as shown in FIG. 8, the storage cylinder portion 25a is attached to one end side of the storage cylinder portion 25a and rotated. The rotation operation part 25b movable in the axial direction of the storage cylinder part 25a, the sliding part 25c slidably attached to the other end side of the storage cylinder part 25a, and the rotation operation part 25b and the sliding part 25c You may use the movable part 25 of the type provided with the spring 25d interposed between.

本発明の第4の実施の形態を図9に基づいて説明する。本実施の形態のイオン伝導度測定装置30は、第3の実施の形態で説明したイオン伝導度測定装置20に対し、感圧素子31と、感圧素子31に接続された圧力計32とを追加したものである。   A fourth embodiment of the present invention will be described with reference to FIG. The ion conductivity measuring device 30 of this embodiment includes a pressure sensitive element 31 and a pressure gauge 32 connected to the pressure sensitive element 31 with respect to the ion conductivity measuring device 20 described in the third embodiment. It is added.

感圧素子31としては、例えば、圧電素子を用いることができ、この感圧素子31は、ガラスプレート2bと緩衝材11との間に介装されている。   For example, a piezoelectric element can be used as the pressure sensitive element 31, and the pressure sensitive element 31 is interposed between the glass plate 2 b and the buffer material 11.

このような構成において、このイオン伝導度測定装置30によれば、加圧手段21での加圧力を感圧素子31と圧力計32とを用いて正確に測定することができる。このため、イオン伝導高分子膜7のインピーダンス値(イオン伝導度)の測定をより一層高精度に行うことができる。   In such a configuration, according to the ion conductivity measuring device 30, the pressure applied by the pressurizing means 21 can be accurately measured using the pressure sensitive element 31 and the pressure gauge 32. For this reason, the impedance value (ion conductivity) of the ion conducting polymer film 7 can be measured with higher accuracy.

本発明の第1の実施の形態の電極構造体を示す概略図である。It is the schematic which shows the electrode structure of the 1st Embodiment of this invention. 対向して位置する電極の位置関係を示す平面図である。It is a top view which shows the positional relationship of the electrode located facing. 圧力調整体の変形例を示す斜視図である。It is a perspective view which shows the modification of a pressure adjustment body. 本発明の第2の実施の形態の電極構造体を示す概略図である。It is the schematic which shows the electrode structure of the 2nd Embodiment of this invention. 本発明の第3の実施の形態のイオン伝導度測定装置を示す概略図である。It is the schematic which shows the ion conductivity measuring apparatus of the 3rd Embodiment of this invention. イオン伝導度測定装置でのイオン伝導高分子膜のイオン伝導度の測定を、イオン伝導高分子膜に対する圧力を可変させて行った結果を示すグラフである。It is a graph which shows the result of having performed the measurement of the ionic conductivity of the ion conductive polymer film in an ion conductivity measuring device, changing the pressure with respect to an ion conductive polymer film. イオン伝導度測定装置でのイオン伝導高分子膜のイオン伝導度の測定を、イオン伝導高分子膜の面積を可変させて行った結果を示すグラフである。It is a graph which shows the result of having performed the measurement of the ionic conductivity of the ion conductive polymer film in an ion conductivity measuring apparatus by changing the area of an ion conductive polymer film. 加圧手段の可動部の変形例を示す概略図である。It is the schematic which shows the modification of the movable part of a pressurization means. 本発明の第4の実施の形態のイオン伝導度測定装置を示す概略図である。It is the schematic which shows the ion conductivity measuring apparatus of the 4th Embodiment of this invention. イオン伝導高分子膜のインピーダンス値(イオン伝導度)の測定を行った測定装置の比較例を示す概略図である。It is the schematic which shows the comparative example of the measuring apparatus which measured the impedance value (ionic conductivity) of the ion conductive polymer film. イオン伝導高分子膜のインピーダンス値(イオン伝導度)の測定を行った測定装置の他の比較例を示す概略図である。It is the schematic which shows the other comparative example of the measuring apparatus which measured the impedance value (ionic conductivity) of the ion conductive polymer film. イオン伝導高分子膜のインピーダンス値(イオン伝導度)の測定を行った測定装置の他の比較例を示す概略図である。It is the schematic which shows the other comparative example of the measuring apparatus which measured the impedance value (ionic conductivity) of the ion conductive polymer film.

符号の説明Explanation of symbols

1 電極構造体
2a、2b 保持部材
4 電極
5 圧力調整体
5A 圧力調整体
5B 圧力調整体
5C 圧力調整体
7 被検体
10 電極構造体
11 緩衝材
20 イオン伝導度測定装置
21 加圧手段
22 測定器
30 イオン伝導度測定装置
31 感圧素子
32 圧力計

DESCRIPTION OF SYMBOLS 1 Electrode structure 2a, 2b Holding member 4 Electrode 5 Pressure adjusting body 5A Pressure adjusting body 5B Pressure adjusting body 5C Pressure adjusting body 7 Subject 10 Electrode structure 11 Buffer material 20 Ion conductivity measuring device 21 Pressurizing means 22 Measuring device 30 Ion conductivity measuring device 31 Pressure sensitive element 32 Pressure gauge

Claims (8)

保持部材の一面に保持されて被検体を挟持可能に対向配置された一対の電極と、
前記保持部材の前記電極を保持した面の反対側の面上に配置され、前記電極で前記被検体を挟持する方向に加圧する加圧手段に対して点接触する圧力調整体と、
を具備する電極構造体。
A pair of electrodes that are held on one surface of the holding member and arranged to face each other so as to hold the subject; and
A pressure adjusting body that is disposed on a surface opposite to a surface of the holding member that holds the electrode, and that makes point contact with a pressurizing unit that pressurizes the subject in a direction of sandwiching the subject;
An electrode structure comprising:
前記電極と前記保持部材との間に緩衝材が介装されている請求項1記載の電極構造体。   The electrode structure according to claim 1, wherein a buffer material is interposed between the electrode and the holding member. 請求項1又は2記載の電極構造体と、
前記圧力調整体に点接触し、前記電極が前記被検体を挟持する向きに前記保持部材を加圧する加圧手段と、
前記一対の電極に接続されて前記電極間に位置する前記被検体のインピーダンス値を測定する測定器と、
を具備するイオン伝導度測定装置。
The electrode structure according to claim 1 or 2,
A pressurizing unit that makes point contact with the pressure adjusting body and pressurizes the holding member in a direction in which the electrode sandwiches the subject;
A measuring instrument connected to the pair of electrodes and measuring an impedance value of the subject located between the electrodes;
An ionic conductivity measuring device comprising:
前記保持部材上に取り付けられた感圧素子と、
前記感圧素子に接続された圧力計と、
を具備する請求項3記載のイオン伝導度測定装置。
A pressure sensitive element mounted on the holding member;
A pressure gauge connected to the pressure sensitive element;
The ionic conductivity measuring device according to claim 3 comprising:
前記加圧手段は、中心線回りに回転することにより前記圧力調整体に接離する方向に移動する可動部を備えている請求項3又は4記載のイオン伝導度測定装置。   5. The ion conductivity measuring apparatus according to claim 3, wherein the pressurizing unit includes a movable portion that moves in a direction in which the pressure adjusting body contacts and separates by rotating around a center line. 前記加圧手段による前記被検体に対する圧力が1.0×10Pa以上に設定されている請求項3ないし5のいずれか一記載のイオン伝導度測定装置。 The ion conductivity measuring apparatus according to claim 3, wherein the pressure applied to the subject by the pressurizing unit is set to 1.0 × 10 5 Pa or more. 前記被検体の面積が5mm以下に設定されている請求項3ないし5のいずれか一記載のイオン伝導度測定装置。 The ion conductivity measuring apparatus according to claim 3, wherein an area of the subject is set to 5 mm 2 or less. 前記被検体に対して印加される単位厚さ当りの測定電圧が0.1〜1.0mV/μmに設定されている請求項3ないし5のいずれか一記載のイオン伝導度測定装置。

6. The ion conductivity measuring device according to claim 3, wherein a measurement voltage per unit thickness applied to the subject is set to 0.1 to 1.0 mV / μm.

JP2004218263A 2004-07-27 2004-07-27 Ion conductivity measuring device Expired - Fee Related JP4268100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218263A JP4268100B2 (en) 2004-07-27 2004-07-27 Ion conductivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218263A JP4268100B2 (en) 2004-07-27 2004-07-27 Ion conductivity measuring device

Publications (2)

Publication Number Publication Date
JP2006038611A true JP2006038611A (en) 2006-02-09
JP4268100B2 JP4268100B2 (en) 2009-05-27

Family

ID=35903762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218263A Expired - Fee Related JP4268100B2 (en) 2004-07-27 2004-07-27 Ion conductivity measuring device

Country Status (1)

Country Link
JP (1) JP4268100B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298388A (en) * 2006-04-28 2007-11-15 Espec Corp Method of manufacturing membrane/electrode junction body for measuring ion conductivity by membrane-thickness-directional four-terminal method
JP2009081127A (en) * 2007-09-05 2009-04-16 Atsumi Tec:Kk Ion conductive electrolyte membrane and inspection method for ion conductive electrolyte membrane-hydrogen electrode assembly
JP2009176463A (en) * 2008-01-22 2009-08-06 Toyota Motor Corp Performance evaluation device of fuel cell
JP2014134460A (en) * 2013-01-10 2014-07-24 Yokogawa Electric Corp Measuring method of response characteristic of battery
WO2018216847A1 (en) * 2017-05-25 2018-11-29 경북대학교 산학협력단 Cell for measuring ion conductivity of ion exchange membrane and method for measuring ion conductivity by using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305894B (en) * 2011-08-24 2014-04-16 四川成发航空科技股份有限公司 Equipment and method applied for test on contact resistance of chemical conversion film
US20160274046A1 (en) 2015-03-19 2016-09-22 Panasonic Intellectual Property Management Co., Ltd. Method of measuring proton conductivity and proton conductivity measurement device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819267U (en) * 1981-07-31 1983-02-05 富士通株式会社 Surface resistance measurement terminal
JPS61221640A (en) * 1985-03-06 1986-10-02 Sharp Corp Measuring instrument for percentage of moisture content
JPH01213579A (en) * 1988-02-22 1989-08-28 Oki Electric Ind Co Ltd Method and device for measuring surface resistance
JPH0666751A (en) * 1992-08-18 1994-03-11 Osaka Gas Co Ltd Method for measuring ionic conductivity
JPH09259916A (en) * 1996-03-19 1997-10-03 Mitsubishi Electric Corp Fastening device for fuel cell
JP2004006280A (en) * 2002-03-26 2004-01-08 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell, its manufacturing method and inspection method for it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819267U (en) * 1981-07-31 1983-02-05 富士通株式会社 Surface resistance measurement terminal
JPS61221640A (en) * 1985-03-06 1986-10-02 Sharp Corp Measuring instrument for percentage of moisture content
JPH01213579A (en) * 1988-02-22 1989-08-28 Oki Electric Ind Co Ltd Method and device for measuring surface resistance
JPH0666751A (en) * 1992-08-18 1994-03-11 Osaka Gas Co Ltd Method for measuring ionic conductivity
JPH09259916A (en) * 1996-03-19 1997-10-03 Mitsubishi Electric Corp Fastening device for fuel cell
JP2004006280A (en) * 2002-03-26 2004-01-08 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell, its manufacturing method and inspection method for it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298388A (en) * 2006-04-28 2007-11-15 Espec Corp Method of manufacturing membrane/electrode junction body for measuring ion conductivity by membrane-thickness-directional four-terminal method
JP2009081127A (en) * 2007-09-05 2009-04-16 Atsumi Tec:Kk Ion conductive electrolyte membrane and inspection method for ion conductive electrolyte membrane-hydrogen electrode assembly
JP2009176463A (en) * 2008-01-22 2009-08-06 Toyota Motor Corp Performance evaluation device of fuel cell
JP2014134460A (en) * 2013-01-10 2014-07-24 Yokogawa Electric Corp Measuring method of response characteristic of battery
WO2018216847A1 (en) * 2017-05-25 2018-11-29 경북대학교 산학협력단 Cell for measuring ion conductivity of ion exchange membrane and method for measuring ion conductivity by using same

Also Published As

Publication number Publication date
JP4268100B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US20020110713A1 (en) Fuel cell assembly with an improved gas sensor
JP2001215214A (en) Hydrogen gas sensor
JP4801099B2 (en) Method and apparatus for providing an electrochemical sensor operable at high temperatures
JP4268100B2 (en) Ion conductivity measuring device
CN105116229B (en) A kind of fuel cell electric resistance measuring apparatus
JP2009243929A (en) Testing device of film load bearing insulation and testing method of film load bearing insulation
CN106813718B (en) A kind of device and method measuring thin film strain and thermal conductivity
US9714983B2 (en) Test instrument for testing charge storage devices
TW200937021A (en) Probe device
US7652479B2 (en) Electrolyte measurement device and measurement procedure
US8947110B2 (en) Suspension device for a membrane test system
KR890000606B1 (en) Gas analyzer
CN201191307Y (en) Measurement device of solid electrolyte film
JPH0666751A (en) Method for measuring ionic conductivity
CN201096687Y (en) Compressed average flexing meter
US10012609B2 (en) Packets for testing charge storage devices
EP3070461B1 (en) Impedance method for calculating proton conductivity of a proton-conducting membrane and proton conductivity measurement device
KR20230045916A (en) Ion conductivity measurement and measuring method using the same
CN219915674U (en) A test fixture for ion exchange membrane conductivity
JP4899150B2 (en) Manufacturing method of joined body, and measuring method of 4-terminal ionic conductivity in film thickness direction
JP2004294316A (en) Electric characteristics evaluation system
EP1288658A2 (en) Gas sensor with proton conduction layer
Chen et al. The Experimental Study on Thermal Conductivity of Composite Proton Exchange Membrane
CN113588730A (en) Semiconductor type gas sensor and application thereof in expiration type alcohol detection
JP2010271291A (en) Device and method for measuring ionic conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150227

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees