JP2009176463A - Performance evaluation device of fuel cell - Google Patents

Performance evaluation device of fuel cell Download PDF

Info

Publication number
JP2009176463A
JP2009176463A JP2008011468A JP2008011468A JP2009176463A JP 2009176463 A JP2009176463 A JP 2009176463A JP 2008011468 A JP2008011468 A JP 2008011468A JP 2008011468 A JP2008011468 A JP 2008011468A JP 2009176463 A JP2009176463 A JP 2009176463A
Authority
JP
Japan
Prior art keywords
current collector
fuel cell
current
performance evaluation
collectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008011468A
Other languages
Japanese (ja)
Other versions
JP5136077B2 (en
Inventor
Yuichiro Imamura
雄一郎 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008011468A priority Critical patent/JP5136077B2/en
Publication of JP2009176463A publication Critical patent/JP2009176463A/en
Application granted granted Critical
Publication of JP5136077B2 publication Critical patent/JP5136077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a performance evaluation device of a fuel cell capable of evaluating an object for evaluation with high precision and high efficiency. <P>SOLUTION: A plurality of current-collecting parts 2 each equipped with a pair of collectors 6 pinching an object for the evaluation of a fuel cell are aligned in a direction of pinching the object, and weighted points 3 are interposed between adjacent collectors 2, so that the adjacent collectors 2 transmit the weighting via the weighted parts 3. Then, at least one of the paired collectors 2 is made to movable in a direction crossing the alignment direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体高分子形燃料電池の性能評価装置に関する。   The present invention relates to a performance evaluation device for a polymer electrolyte fuel cell.

一般的な固体高分子形燃料電池は、複数の単セルが直列接続されてなるモジュール(セルスタックともいう)からなる。単セルは、一般に、固体高分子膜(電解質)と固体高分子膜の一方の面に積層されている触媒層(アノード)と固体電解質膜の他方の面に積層されている触媒層(カソード)とが一体化されてなる膜−電極接合体(Membrane Electrode Assembly、MEA)を、一対のセパレータで挟み込んでなる。MEAとセパレータとの間には、一般に、拡散層が積層される。拡散層は、触媒層に反応ガスを拡散させつつ供給するための層であり、触媒層と協働して電極を構成するため、電極の一部とみなされる場合もある。セパレータは、水素などの燃料ガスをアノードに供給するためのガス流路と、空気などの酸化ガスをカソードに供給するためのガス流路とを持つとともに、隣接するセル間における電子の流路を構成している。   A general polymer electrolyte fuel cell includes a module (also referred to as a cell stack) in which a plurality of single cells are connected in series. A single cell is generally composed of a solid polymer membrane (electrolyte), a catalyst layer (anode) laminated on one side of the solid polymer membrane, and a catalyst layer (cathode) laminated on the other side of the solid electrolyte membrane. And a membrane-electrode assembly (MEA) are sandwiched between a pair of separators. In general, a diffusion layer is laminated between the MEA and the separator. The diffusion layer is a layer for supplying the reaction gas while diffusing into the catalyst layer. Since the electrode is configured in cooperation with the catalyst layer, the diffusion layer may be regarded as a part of the electrode. The separator has a gas flow path for supplying a fuel gas such as hydrogen to the anode and a gas flow path for supplying an oxidizing gas such as air to the cathode, and also provides an electron flow path between adjacent cells. It is composed.

この種の固体高分子形燃料電池の性能を評価する装置として、従来より種々のものが提案されている(例えば、特許文献1〜2参照)。   Various devices for evaluating the performance of this type of polymer electrolyte fuel cell have been proposed (see, for example, Patent Documents 1 and 2).

特許文献1〜2に紹介されている燃料電池の性能評価装置は、MEAまたはMEGA(MEAと拡散層との積層体)を使用時と同様の荷重、温度状態におき、使用時と同じ反応ガスを供給して、MEAの性能や、セパレータの流路性能などを評価する。   The fuel cell performance evaluation apparatus introduced in Patent Documents 1 and 2 is MEA or MEGA (laminated body of MEA and diffusion layer) placed under the same load and temperature conditions as in use, and the same reaction gas as in use. To evaluate the performance of the MEA, the flow path performance of the separator, and the like.

この燃料電池の性能評価装置においては、MEAまたはMEGA(以下、燃料電池の評価対象品と呼ぶ)を一対の集電体で挟み込む。集電体は、燃料電池におけるセパレータに相当する。したがって、燃料電池の性能を精度高く評価するためには、集電体と評価対象品とを均一に密着させる必要がある。   In this fuel cell performance evaluation apparatus, an MEA or MEGA (hereinafter referred to as a fuel cell evaluation target product) is sandwiched between a pair of current collectors. The current collector corresponds to a separator in the fuel cell. Therefore, in order to evaluate the performance of the fuel cell with high accuracy, the current collector and the product to be evaluated need to be in close contact with each other.

特許文献2には、集電体に出力配線を直接取り付ける代わりに、集電体に接続される集電軸に出力端子としての機能を持たせることで、集電体の傾きを抑制して集電体と評価対象品とを均一に密着させる(すなわち、集電体と評価対象品との偏当たりを抑制する)技術が開示されている。   In Patent Document 2, instead of directly attaching the output wiring to the current collector, the current collector shaft connected to the current collector has a function as an output terminal, thereby suppressing the inclination of the current collector. A technique is disclosed in which an electric body and an evaluation target product are uniformly adhered (that is, the uneven contact between the current collector and the evaluation target product is suppressed).

ところで、特許文献1〜2に紹介されている燃料電池の性能評価装置では、一つの評価対象品を評価することはできるが、複数の評価対象品を同時に評価することができない。したがって、この種の燃料電池の性能評価装置は、評価効率を向上させ難い問題があった。また、この種の燃料電池の性能評価装置では、複数の評価対象品の性能を同一条件で評価するのが困難であった。
特開2003−203667号公報 特開2006−294463号公報
By the way, in the fuel cell performance evaluation apparatus introduced in Patent Documents 1 and 2, one evaluation target product can be evaluated, but a plurality of evaluation target products cannot be evaluated simultaneously. Therefore, this type of fuel cell performance evaluation apparatus has a problem that it is difficult to improve the evaluation efficiency. In addition, in this type of fuel cell performance evaluation apparatus, it is difficult to evaluate the performance of a plurality of evaluation target products under the same conditions.
JP 2003-203667 A JP 2006-294463 A

本発明は上記事情に鑑みてなされたものであり、評価対象品を高精度かつ効率良く評価できる燃料電池の性能評価装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel cell performance evaluation apparatus capable of evaluating an evaluation target product with high accuracy and efficiency.

上記課題を解決する本発明の燃料電池の性能評価装置は、燃料電池の評価対象品を挟み込む一対の集電体を持つ集電部が評価対象品を挟み込む方向に複数配列してなる集電列部と、集電列部の両端部に配置され、集電部をその配列方向に移動させつつ集電列部を圧縮する加圧手段と、互いに隣接する集電部の間にそれぞれ介在し、加圧手段が集電列部を圧縮する際に配列方向に移動するとともに加圧手段が加えた荷重を互いに隣接する集電部に伝達する加重点部と、を持ち、対をなす集電体の少なくとも一方は、配列方向と交叉する方向に移動可能であることを特徴とする。   In the fuel cell performance evaluation apparatus of the present invention that solves the above-described problem, a current collector array in which a plurality of current collectors having a pair of current collectors sandwiching an evaluation target product of a fuel cell are arranged in the direction of sandwiching the evaluation target product And a pressure means for compressing the current collecting column part while being arranged in both ends of the current collecting column part and moving the current collecting part in the arrangement direction thereof, respectively interposed between adjacent current collecting parts, A pair of current collectors having a weighting point portion that moves in the arrangement direction when the pressurizing means compresses the current collecting row portion and transmits the load applied by the pressurizing means to the adjacent current collecting portions. At least one of these is characterized by being movable in a direction crossing the arrangement direction.

本発明の燃料電池の性能評価装置は、下記の(1)〜(3)の何れかを備えるのが好ましい。(1)〜(3)の複数を備えるのがより好ましい。   The fuel cell performance evaluation apparatus of the present invention preferably includes any of the following (1) to (3). More preferably, a plurality of (1) to (3) are provided.

(1)上記集電部は、対をなす上記集電体の相対位置を固定する固定手段を持つ。   (1) The current collector has a fixing means for fixing a relative position of the pair of current collectors.

(2)対をなす上記集電体の一方である基準側集電体は、上記配列方向にのみ移動可能であり、対をなす上記集電体の他方であるならい側集電体は、上記配列方向と上記配列方向と交叉する方向とに移動可能である。   (2) The reference side current collector that is one of the current collectors that make a pair is movable only in the arrangement direction, and the side current collector that is the other of the current collectors that make a pair It is movable in the arrangement direction and the direction crossing the arrangement direction.

(3)上記加重点部は、上記加重点部に隣接する上記集電体の少なくとも一方を上記配列方向と交叉する方向に移動可能であるように支持している。   (3) The weight point portion supports at least one of the current collectors adjacent to the weight point portion so as to be movable in a direction crossing the arrangement direction.

本発明の燃料電池の性能評価装置は複数の集電部を持つ。それぞれの集電部は、評価対象品を挟み込む一対の集電体を持つ。そして、各集電部は評価対象品を挟み込む方向に複数配列する。本発明の燃料電池の性能評価装置によると、各集電部にそれぞれ異なる評価対象品を挟み込むことで、複数の評価対象品を同時に評価できる。このため、評価対象品の評価効率が向上する。   The fuel cell performance evaluation apparatus of the present invention has a plurality of current collectors. Each current collector has a pair of current collectors that sandwich the product to be evaluated. A plurality of current collectors are arranged in the direction in which the evaluation target product is sandwiched. According to the fuel cell performance evaluation apparatus of the present invention, it is possible to simultaneously evaluate a plurality of evaluation target products by sandwiching different evaluation target products between the current collectors. For this reason, the evaluation efficiency of the evaluation target product is improved.

また、複数の集電部を評価対象品を挟み込む方向に複数配列(すなわち、集電部を直列に配列)して、加圧手段が加えた荷重を隣接する集電部に伝達することで、各集電部には同じ大きさの荷重が加わる。したがって、本発明の燃料電池の性能評価装置によると、複数の評価対象品を同じ条件で評価できる。   In addition, by arranging a plurality of current collectors in the direction of sandwiching the evaluation target product (that is, arranging the current collectors in series), by transmitting the load applied by the pressurizing means to the adjacent current collectors, The same load is applied to each current collector. Therefore, according to the fuel cell performance evaluation apparatus of the present invention, a plurality of evaluation target products can be evaluated under the same conditions.

ところで、多数の評価対象品を同時に評価する場合には、集電部の個数が多くなる。この場合には、集電列部の重量が大きくなるため、集電列部を支持する部材が撓む場合がある。すると、複数の集電部を直線的に配列させ難くなり、対をなす集電体同士が位置ズレして、集電体と評価対象品とが偏当たりする可能性がある。また、集電部の個数が多くなると、集電列部の列長が長くなる。このことによっても、複数の集電部を直線的に配列させ難くなり、加圧手段が加えた荷重を隣接する集電部間で直線的に伝達し難くなる。この場合には、集電体と評価対象品とが偏当たりするとともに、各評価対象品に同じ大きさの荷重を加え難くなる可能性がある。   By the way, when many evaluation object goods are evaluated simultaneously, the number of current collection parts increases. In this case, since the weight of the current collecting column part becomes large, the member supporting the current collecting column part may be bent. Then, it becomes difficult to arrange a plurality of current collectors linearly, and there is a possibility that the current collectors that make a pair are misaligned and the current collectors and the evaluation target product are biased. Further, when the number of current collecting units increases, the length of the current collecting column unit becomes longer. This also makes it difficult to linearly arrange a plurality of current collectors, and makes it difficult to linearly transmit the load applied by the pressurizing means between adjacent current collectors. In this case, there is a possibility that the current collector and the evaluation target product are unevenly contacted and it is difficult to apply a load of the same magnitude to each evaluation target product.

本発明の燃料電池の性能評価装置は、複数の集電部に加えて、複数の加重点部を持つ。各加重点部は、それぞれ、隣接する集電部の間に介在し、加圧手段が加えた荷重(以下、単に荷重と略する)を互いに隣接する集電部に伝達する。換言すると、互いに隣接する集電部は、加重点部を介して荷重を伝達する。例えば、隣接する集電部同士が互いに当接して荷重を伝達する場合には、集電部の傾きによる影響を、隣接する他の集電部が受ける場合がある。しかし、本発明の燃料電池の性能評価装置によると、互いに隣接する集電部が加重点部を介して荷重を伝達することで、集電部の傾きによる影響を隣接する他の集電部が受け難くなる。このため、集電体と評価対象品との偏当たりを抑制できる。   The fuel cell performance evaluation apparatus of the present invention has a plurality of weighting points in addition to a plurality of current collectors. Each weight point is interposed between adjacent current collectors, and transmits a load applied by the pressurizing means (hereinafter simply referred to as a load) to adjacent current collectors. In other words, the current collectors adjacent to each other transmit the load via the weighted point. For example, when adjacent current collectors contact each other and transmit a load, other adjacent current collectors may be affected by the inclination of the current collector. However, according to the fuel cell performance evaluation apparatus of the present invention, the current collectors adjacent to each other transmit the load via the weighted point, so that the influence of the inclination of the current collector is affected by the other current collectors adjacent to each other. It becomes difficult to receive. For this reason, the uneven contact between the current collector and the evaluation target product can be suppressed.

また、対をなす集電体の少なくとも一方は、配列方向と交叉する方向に変位可能であるため、複数の集電部が直線的に配列せずに対をなす集電体が互いに位置ズレした場合にも、対をなす集電体の互いに対向する面を平行にすることができる。このため、集電体と評価対象品との偏当たりを抑制できる。よって、本発明の燃料電池の性能評価装置によると、集電体と評価対象品との偏当たりを信頼性高く抑制できる。   In addition, since at least one of the paired current collectors can be displaced in a direction crossing the arrangement direction, the current collectors forming a pair are misaligned with each other without the plurality of current collection units being linearly arranged. Even in this case, the opposing surfaces of the pair of current collectors can be made parallel. For this reason, the uneven contact between the current collector and the evaluation target product can be suppressed. Therefore, according to the fuel cell performance evaluation apparatus of the present invention, the uneven contact between the current collector and the evaluation target product can be suppressed with high reliability.

上記(1)を備える本発明の燃料電池の性能評価装置は、固定手段によって対をなす集電体の相対位置を固定することで、対をなす集電体の互いに対向する面(以下、対向面と呼ぶ)を平行にした状態で対をなす集電体を固定できる。したがって、集電体と評価対象品との偏当たりをより信頼性高く抑制できる。   The fuel cell performance evaluation apparatus of the present invention having the above (1) fixes the relative positions of the current collectors that make a pair by fixing means, so that the opposing surfaces of the current collectors that make a pair (hereinafter referred to as opposed) A pair of current collectors can be fixed in a state where the surfaces are called parallel. Therefore, the uneven contact between the current collector and the product to be evaluated can be suppressed with higher reliability.

上記(2)を備える本発明の燃料電池の性能評価装置は、対をなす集電体の一方(基準側集電体)の配列方向以外の方向への移動を抑止するとともに、対をなす集電体の他方(ならい側集電体)のみを配列方向以外の方向に移動させることで、基準側集電体とならい側集電体との対向面を互いに平行に配置でき、かつ、各評価対象品を各集電部に容易に組み付けることができる。このため、上記(2)を備える燃料電池の性能評価装置によると、評価対象品を高精度かつさらに効率良く評価できる。   The fuel cell performance evaluation apparatus of the present invention comprising the above (2) suppresses movement of one of the paired current collectors (reference side current collector) in a direction other than the arrangement direction, and forms a pair of current collectors. By moving only the other side of the current collector (the side current collector) in a direction other than the arrangement direction, the opposing surfaces of the reference side current collector and the side current collector can be arranged in parallel to each other, and each evaluation The target product can be easily assembled to each current collector. For this reason, according to the fuel cell performance evaluation apparatus including the above (2), it is possible to evaluate the evaluation target product with high accuracy and further efficiency.

上記(3)を備える本発明の燃料電池の性能評価装置は、加重点部が自身に隣接する集電体を支持する構成にしたことで、燃料電池の性能評価装置の形状を単純化できる。このため、燃料電池の性能評価装置の製造コストを低減できる。   The fuel cell performance evaluation apparatus according to the present invention having the above (3) can simplify the shape of the fuel cell performance evaluation apparatus because the weight point portion supports the current collector adjacent to itself. For this reason, the manufacturing cost of the fuel cell performance evaluation apparatus can be reduced.

本発明の燃料電池の性能評価装置は、MEGAの性能を評価しても良いし、MEAの性能を評価しても良い。例えば、集電体の評価対象品側に拡散層を取り付ければ、MEAの性能を評価することもできる。この場合、拡散層は、集電体に一体化していても良いし、集電体に脱着可能にしても良い。本発明の燃料電池の性能評価装置は、同種の評価対象品を同時に評価しても良いし、異種の評価対象品を同時に評価しても良い。集電体は、集電部に一体化されていても良いし、集電部に脱着可能であっても良い。   The fuel cell performance evaluation apparatus of the present invention may evaluate the performance of MEGA or the performance of MEA. For example, if the diffusion layer is attached to the evaluation target product side of the current collector, the performance of the MEA can be evaluated. In this case, the diffusion layer may be integrated with the current collector or may be removable from the current collector. The fuel cell performance evaluation apparatus of the present invention may simultaneously evaluate the same type of evaluation target product, or may simultaneously evaluate different types of evaluation target products. The current collector may be integrated with the current collector or may be removable from the current collector.

評価対象品に反応ガスを供給するガス供給手段、評価対象品の出力電圧を取り出すための出力配線、評価対象品を所定の温度に加熱する加熱手段などは、集電部に一体化しても良いし、集電部と別体であっても良い。特許文献2に紹介されている燃料電池の性能評価装置と同様に、集電部に集電軸を設けて、ガス供給手段、出力配線、加熱手段等を集電軸に一体化しても良い。   The gas supply means for supplying the reaction gas to the evaluation target product, the output wiring for taking out the output voltage of the evaluation target product, the heating means for heating the evaluation target product to a predetermined temperature, etc. may be integrated in the current collector. However, it may be separate from the current collector. Similarly to the fuel cell performance evaluation apparatus introduced in Patent Document 2, a current collecting shaft may be provided in the current collecting section, and the gas supply means, output wiring, heating means, and the like may be integrated with the current collecting shaft.

集電体および集電部は、一般的な燃料電池の性能評価装置(例えば特許文献1〜2に紹介されている燃料電池の性能評価装置)における集電体および集電部と同様の構成にすればよい。   The current collector and current collector have the same configuration as the current collector and current collector in a general fuel cell performance evaluation apparatus (for example, the fuel cell performance evaluation apparatus introduced in Patent Documents 1 and 2). do it.

加重点部は、配列方向にのみ移動可能であっても良いし、配列方向と交叉する方向と配列方向とに移動可能であっても良い。また、加重点部は、集電部と別体であっても良いし、一体であっても良い。加重点部によって、隣接する集電部の一部(すなわち集電部のなかで加重点部に隣接する側の集電体を含む部分)を支持すれば、燃料電池の性能評価装置の形状を単純化できる。加重点部が集電部と別体であれば、隣接する集電部間で集電部の傾きを伝達し難くなる。なお、隣接する集電部間における集電部の傾きの伝達をより信頼性高く抑制するためには、配列方向と直交する方向における加重点部の断面は、対向面よりも小さいことが好ましい。   The weighted point portion may be movable only in the arrangement direction, or may be movable in a direction crossing the arrangement direction and the arrangement direction. Further, the weighting point portion may be separate from the current collecting portion or may be integrated. If the weighted point part supports a part of the adjacent current collecting part (that is, the part including the current collector on the side adjacent to the weighted point part in the current collecting part), the shape of the fuel cell performance evaluation device can be changed. It can be simplified. If the weighting point is separate from the current collector, it is difficult to transmit the inclination of the current collector between adjacent current collectors. In order to more reliably suppress the transmission of the inclination of the current collector between adjacent current collectors, it is preferable that the cross section of the weighted point in the direction orthogonal to the arrangement direction is smaller than the facing surface.

加重点部は、自身に隣接する集電部と、点接触しても良いし面接触しても良い。加重点部が集電部と点接触する場合には、集電部の傾きを隣接する他の集電部に伝達し難いため、集電体と評価対象品との偏当たりを信頼性高く抑制できる。   The weighted point portion may make point contact or surface contact with the current collecting portion adjacent to itself. When the weighted point part makes point contact with the current collector part, it is difficult to transmit the inclination of the current collector part to other adjacent current collector parts. it can.

以下、具体例を挙げて本発明の燃料電池の性能評価装置を説明する。   Hereinafter, the fuel cell performance evaluation apparatus of the present invention will be described with specific examples.

(実施例1)
実施例1の燃料電池の性能評価装置は、上記(1)〜(2)を備える。実施例1の燃料電池の性能評価装置は、MEGAを評価する。実施例1の燃料電池の性能評価装置を模式的に表す側面図を図1〜図3に示す。以下、上、下、前、後とは、図1に示す上、下、前、後を指す。
Example 1
The fuel cell performance evaluation apparatus of Example 1 includes the above (1) to (2). The fuel cell performance evaluation apparatus of Example 1 evaluates MEGA. 1 to 3 are side views schematically showing a fuel cell performance evaluation apparatus of Example 1. FIG. Hereinafter, the terms “upper”, “lower”, “front”, and “rear” refer to the upper, lower, front, and rear shown in FIG.

実施例1の燃料電池の性能評価装置1は、3つの集電部2と、2つの加重点部3と、加圧手段4と、ガイド手段5とを持つ。   The fuel cell performance evaluation apparatus 1 according to the first embodiment includes three current collectors 2, two weighting points 3, a pressurizing unit 4, and a guide unit 5.

ガイド手段5は、前後方向に伸びる金属製のレールからなる。加圧手段4は、ガイド手段5の前端部に固定されている固定側加圧部41と、ガイド手段5の後端部に固定されている駆動側加圧部42とを持つ。固定側加圧部41は、後述する第1集電部21の前当接端部201に対面する受圧部410を持つ。受圧部410の後面は後側に膨出する曲面状をなす。駆動側加圧部42は、後述する第3集電部23の後当接端部200に対面する加圧部420を持つ。加圧部420の前面は前側に膨出する曲面状をなす。加圧部420は、前後方向に移動可能である。   The guide means 5 is made of a metal rail extending in the front-rear direction. The pressurizing unit 4 includes a fixed-side pressurizing unit 41 fixed to the front end of the guide unit 5 and a driving-side pressurizing unit 42 fixed to the rear end of the guide unit 5. The fixed-side pressurizing unit 41 has a pressure receiving unit 410 that faces a front contact end 201 of the first current collector 21 described later. The rear surface of the pressure receiving portion 410 has a curved shape that bulges to the rear side. The driving-side pressurizing unit 42 has a pressurizing unit 420 that faces a rear contact end portion 200 of a third current collecting unit 23 described later. The front surface of the pressurizing unit 420 has a curved surface that bulges to the front side. The pressure unit 420 is movable in the front-rear direction.

3つの集電部2(第1集電部21、第2集電部22、第3集電部23)は、第1集電部21、第2集電部22、第3集電部23の順に前から後に向けて配列している。実施例1の燃料電池の性能評価装置1においては、第1集電部21、第2集電部22、および第3集電部23が集電列部を構成している。第1集電部21、第2集電部22、および第3集電部23は同じ形状である。   The three current collectors 2 (first current collector 21, second current collector 22, and third current collector 23) are the first current collector 21, the second current collector 22, and the third current collector 23. They are arranged from front to back. In the fuel cell performance evaluation apparatus 1 according to the first embodiment, the first current collector 21, the second current collector 22, and the third current collector 23 constitute a current collector column. The first current collector 21, the second current collector 22, and the third current collector 23 have the same shape.

各集電部2は、一対の集電体6と、支持部材7とを持つ。一対の集電体6(第1集電体61、第2集電体62)は、燃料電池における一対のセパレータに相当する。第1集電体61および第2集電体62はカーボン製である。第1集電体61は第2集電体62よりも前側に配置されている。第1集電体61は図略の評価対象品(MEGA)のアノード側の面に当接し、第2集電体62は図略のMEGAのカソード側の面に当接する。第1集電体61には、燃料ガス用のガス流路(図略)が形成されている。第2集電体62には酸化ガス用のガス流路(図略)が形成されている。   Each current collector 2 has a pair of current collectors 6 and a support member 7. The pair of current collectors 6 (the first current collector 61 and the second current collector 62) correspond to a pair of separators in the fuel cell. The first current collector 61 and the second current collector 62 are made of carbon. The first current collector 61 is disposed in front of the second current collector 62. The first current collector 61 is in contact with the anode side surface of the evaluation target product (MEGA) (not shown), and the second current collector 62 is in contact with the cathode side surface of the MEGA (not shown). The first current collector 61 has a gas flow path (not shown) for fuel gas. A gas flow path (not shown) for oxidizing gas is formed in the second current collector 62.

支持部材7は、一対の電極支持部(第1電極支持部71、第2電極支持部72)と、一対の脚部(第1脚部73、第2脚部74)とを持つ。第1電極支持部71は第1集電体61を支持し、第2電極支持部72は第2集電体62を支持する。さらに、第1電極支持部71と第2電極支持部72とは、ねじ穴(図略)を持つ。このねじ穴にはボルトからなる固定手段80が取り付けられる。そして、第1電極支持部71と第2電極支持部72とは固定手段80によって、固定可能である。   The support member 7 has a pair of electrode support portions (first electrode support portion 71, second electrode support portion 72) and a pair of leg portions (first leg portion 73, second leg portion 74). The first electrode support portion 71 supports the first current collector 61, and the second electrode support portion 72 supports the second current collector 62. Further, the first electrode support portion 71 and the second electrode support portion 72 have screw holes (not shown). A fixing means 80 made of a bolt is attached to the screw hole. The first electrode support part 71 and the second electrode support part 72 can be fixed by the fixing means 80.

第1電極支持部71は、燃料ガスを第1集電体61に供給する第1供給手段(図略)、第1集電体61に電気的に接続する出力配線(図略)、第1集電体61を加熱する加熱手段(図略)を持つ。 第2電極支持部72は、酸化ガスを第2集電体62に供給する第2供給手段(図略)、第2集電体62に電気的に接続する出力配線(図略)、第2集電体62を加熱する加熱手段(図略)を持つ。   The first electrode support portion 71 includes first supply means (not shown) for supplying fuel gas to the first current collector 61, output wiring (not shown) electrically connected to the first current collector 61, first It has a heating means (not shown) for heating the current collector 61. The second electrode support 72 includes second supply means (not shown) for supplying the oxidizing gas to the second current collector 62, output wiring (not shown) electrically connected to the second current collector 62, second It has a heating means (not shown) for heating the current collector 62.

第1脚部73および第2脚部74は、ガイド手段5にスライド可能に取り付けられている。第1電極支持部71は第1脚部73に固定されている。第2脚部74の上端は球状をなす。第2電極支持部72には、第2脚部74の上端に対応する形状の孔部が設けられており、第2脚部74の上端はこの孔部に挿入されている。このため、第2電極支持部72は、第2脚部74の上端を中心として揺動可能である。換言すると、第2電極支持部72は、ガイド手段5に対してフローティング保持されている。以下、第1電極支持部71と第1脚部73とが一体化した部材を第1分体7aと呼び、第2電極支持部72と第2脚部74とが一体化した部材を第2分体7bと呼ぶ。   The first leg 73 and the second leg 74 are slidably attached to the guide means 5. The first electrode support portion 71 is fixed to the first leg portion 73. The upper end of the second leg 74 is spherical. The second electrode support portion 72 is provided with a hole having a shape corresponding to the upper end of the second leg portion 74, and the upper end of the second leg portion 74 is inserted into this hole portion. For this reason, the second electrode support portion 72 can swing around the upper end of the second leg portion 74. In other words, the second electrode support portion 72 is held floating with respect to the guide means 5. Hereinafter, a member in which the first electrode support portion 71 and the first leg portion 73 are integrated is referred to as a first split body 7a, and a member in which the second electrode support portion 72 and the second leg portion 74 are integrated is a second member. This is called the split 7b.

2つの加重点部3の一方である第1加重点部31は、第1集電部21と第2集電部22との間に配置されている。2つの加重点部3の他方である第2加重点部32は、第2集電部22と第3集電部23との間に配置されている。第1加重点部31および第2加重点部32は同じ形状である。   The first weight point 31 that is one of the two weight points 3 is disposed between the first current collector 21 and the second current collector 22. The second weighting point portion 32, which is the other of the two weighting point portions 3, is disposed between the second current collecting portion 22 and the third current collecting portion 23. The first weighted point portion 31 and the second weighted point portion 32 have the same shape.

各加重点部3は、第3脚部33と加重本体部34とを持つ。第3脚部33はガイド手段5にスライド可能に取り付けられている。第3脚部33の上端は上下方向に伸びる軸状をなす。加重本体部34は、2つの加重端部(第1加重端部341、第2加重端部342)を持つ。第1加重端部341は前側に配置され、第2加重端部342は後側に配置されている。第1加重端部341の前面は、前側に膨出する曲面状をなす。第2加重端部342の後面は、後側に膨出する曲面状をなす。加重本体部34には、第3脚部33の上端に対応する形状の孔部が設けられており、第3脚部33の上端はこの孔部に挿入されている。このため、加重本体部34は、第3脚部33の上端を中心として揺動可能である。   Each weighted point portion 3 has a third leg portion 33 and a weighted main body portion 34. The third leg 33 is slidably attached to the guide means 5. The upper end of the third leg portion 33 has an axial shape extending in the vertical direction. The weighted body 34 has two weighted ends (a first weighted end 341 and a second weighted end 342). The first weighted end 341 is disposed on the front side, and the second weighted end 342 is disposed on the rear side. The front surface of the first weighted end 341 has a curved shape that bulges to the front side. The rear surface of the second weighted end 342 has a curved shape that bulges to the rear side. The weight main body 34 is provided with a hole having a shape corresponding to the upper end of the third leg 33, and the upper end of the third leg 33 is inserted into the hole. For this reason, the weighted main body 34 can swing around the upper end of the third leg 33.

以下、実施例1の燃料電池の性能評価装置1の動作を説明する。   Hereinafter, the operation of the fuel cell performance evaluation apparatus 1 of Example 1 will be described.

先ず、各集電部2の第1分体7aと第2分体7bとをスライドレール部に対してスライドさせ、第1分体7aと第2分体7bとを前後方向に離間させる。そして、MEGAを各集電部2における第1集電体61と第2集電体62との間にそれぞれ挟み込む。そして、第1電極支持部71と第2電極支持部72とを固定手段80によって固定する。このとき、第1集電体61と第2集電体62との相対位置が固定される。そして、駆動側加圧部42を前方に移動させて、加圧部420によって第3集電部23の後側端部(後当接端部200)を前方に押圧する。加圧部420に押圧された第3集電部23は前方にスライドし、前側端部(前当接端部201)で第2加重点部32の第2加重端部342を押圧する。第3集電部23に押圧された第2加重点部32は前方にスライドして、第1加重端部341で第2集電部22の後当接端部200を押圧する。第2加重点部32に押圧された第2集電部22は前方にスライドして前当接端部201で第1加重点部31の第2加重端部342を押圧する。第2集電部22に押圧された第1加重点部31は前方にスライドして第1加重端部341で第1集電部21の後当接端部200を押圧する。第1加重点部31に押圧された第1集電部21は前方にスライドして前当接端部201で受圧部410に当接する。このため、各集電部2および各加重点部3は、配列方向(前後方向)に移動しつつ圧縮される。各第1荷重端部341、第2加重端部342、後当接端部200および前当接端部201は、ほぼ同軸的に配置されているため、加圧手段4による荷重は、それぞれ対応する加重点部3を介して互いに隣接する集電部2に伝達される。このため、各集電部2には、同じ大きさの荷重が加わる。このため、実施例1の燃料電池の性能評価装置1によると、複数のMEGAの性能を同じ条件で同時に評価できる。   First, the 1st division body 7a and the 2nd division body 7b of each current collection part 2 are slid with respect to a slide rail part, and the 1st division body 7a and the 2nd division body 7b are spaced apart in the front-back direction. Then, the MEGA is sandwiched between the first current collector 61 and the second current collector 62 in each current collector 2. Then, the first electrode support portion 71 and the second electrode support portion 72 are fixed by the fixing means 80. At this time, the relative position between the first current collector 61 and the second current collector 62 is fixed. And the drive side pressurization part 42 is moved ahead, and the rear end part (rear contact end part 200) of the 3rd current collection part 23 is pressed ahead by the pressurization part 420. The third current collector 23 pressed by the pressure unit 420 slides forward, and presses the second weighted end 342 of the second weighted point 32 at the front end (front contact end 201). The second weight point 32 pressed by the third current collector 23 slides forward and presses the rear contact end 200 of the second current collector 22 with the first weight end 341. The second current collector 22 pressed by the second weight point 32 slides forward and presses the second weight end 342 of the first weight point 31 at the front contact end 201. The first weighted point portion 31 pressed by the second current collecting portion 22 slides forward and presses the rear contact end portion 200 of the first current collecting portion 21 by the first weighted end portion 341. The first current collector 21 pressed by the first load point 31 slides forward and comes into contact with the pressure receiving part 410 at the front contact end 201. For this reason, each current collector 2 and each weighted point 3 are compressed while moving in the arrangement direction (front-rear direction). Since each first load end portion 341, second load end portion 342, rear contact end portion 200 and front contact end portion 201 are arranged substantially coaxially, the load applied by the pressurizing means 4 corresponds to each. Is transmitted to the current collectors 2 adjacent to each other via the weighted point part 3 that performs the above. For this reason, a load of the same magnitude is applied to each current collector 2. For this reason, according to the fuel cell performance evaluation apparatus 1 of the first embodiment, the performance of a plurality of MEGAs can be simultaneously evaluated under the same conditions.

ところで、図2に示すように、ガイド手段5が撓むと、各集電部2はガイド手段5の撓みに応じた方向(図2中矢印A方向)に配列する。図2に示す場合には、第2集電部22の第1分体7aと第2分体7bとが互いに交叉する方向に傾き、第2集電部22の第1集電体61と第2集電体62とが互いに交叉する方向に傾く。このため、この状態で第2集電部22の第1集電体61と第2集電体62との間にMEGAを挟み込むと、第1集電体61と第2集電体62とがMEGAに偏当たりする。   By the way, as shown in FIG. 2, when the guide means 5 bends, the current collectors 2 are arranged in a direction corresponding to the bending of the guide means 5 (the direction of arrow A in FIG. 2). In the case illustrated in FIG. 2, the first current collector 7 a and the second current body 7 b of the second current collector 22 are inclined in a direction crossing each other, and the first current collector 61 and the second current collector 61 of the second current collector 22 are The two current collectors 62 are inclined in a direction crossing each other. Therefore, when the MEGA is sandwiched between the first current collector 61 and the second current collector 62 of the second current collector 22 in this state, the first current collector 61 and the second current collector 62 are It hits MEGA.

しかし、実施例1の燃料電池の性能評価装置1では、第2分体7bの第2電極支持部72が第2脚部74に対して揺動可能である。このため、図3に示すように、第2電極支持部72を第2脚部74に対して揺動させて、第1集電体61と第2集電体62とを平行に配置することができる。そして、第1集電体61と第2集電体62とが平行になった状態で、第1集電体61と第2集電体62とでMEGAを挟み込み、固定手段80で固定することで、第1集電体61とMEGAとの偏当たりおよび第2集電体62とMEGAとの偏当たりを抑制できる。このため、実施例1の燃料電池の性能評価装置1によると、MEGAの性能を精度高く評価できる。なお、実施例1の燃料電池の性能評価装置1における第2集電体62は、本発明におけるならい側集電体に相当し、第1集電体61は本発明における基準側集電体に相当する。   However, in the fuel cell performance evaluation apparatus 1 according to the first embodiment, the second electrode support portion 72 of the second split body 7 b can swing with respect to the second leg portion 74. For this reason, as shown in FIG. 3, the first current collector 61 and the second current collector 62 are arranged in parallel by swinging the second electrode support portion 72 with respect to the second leg portion 74. Can do. The MEGA is sandwiched between the first current collector 61 and the second current collector 62 in a state where the first current collector 61 and the second current collector 62 are parallel to each other, and are fixed by the fixing means 80. Thus, it is possible to suppress the uneven contact between the first current collector 61 and the MEGA and the uneven contact between the second current collector 62 and the MEGA. For this reason, according to the fuel cell performance evaluation apparatus 1 of Example 1, the performance of MEGA can be evaluated with high accuracy. Note that the second current collector 62 in the fuel cell performance evaluation apparatus 1 of Example 1 corresponds to the side current collector in the present invention, and the first current collector 61 serves as the reference side current collector in the present invention. Equivalent to.

また、互いに隣接する集電部2は加重点部3を介して荷重を伝達し、直接当接しない。このため、集電部2の傾きは隣接する集電部2に伝達しない。このことによっても、実施例1の燃料電池の性能評価装置1では、第1集電体61とMEGAとの偏当たり、および第2集電体部62とMEGAとの偏当たりを信頼性高く抑制できる。   Moreover, the current collecting parts 2 adjacent to each other transmit a load via the weighted point part 3 and do not contact directly. For this reason, the inclination of the current collector 2 is not transmitted to the adjacent current collector 2. Also with this, in the fuel cell performance evaluation apparatus 1 of Example 1, the uneven contact between the first current collector 61 and MEGA and the second current collector portion 62 and MEGA are reliably suppressed. it can.

また、各加重点部3の加重本体部34は、第3脚部33に対して揺動可能であるため、各集電部2の傾きや第2電極支持部72の第2脚部74に対する揺動などによって前当接端部201や後当接端部200が位置ズレした場合にも、第1加重端部341や第2加重端部342は、それぞれ対応する前当接端部201や後当接端部200に当接する。このことによっても、実施例1の燃料電池の性能評価装置1では、第1集電体61とMEGAとの偏当たり、および第2集電部62とMEGAとの偏当たりを信頼性高く抑制できる。   In addition, the weighted main body 34 of each weight point 3 is swingable with respect to the third leg 33, so that the inclination of each current collector 2 and the second leg 74 of the second electrode support 72 are the same. Even when the front contact end portion 201 and the rear contact end portion 200 are misaligned due to rocking or the like, the first weighted end portion 341 and the second weighted end portion 342 are respectively associated with the corresponding front contact end portion 201 or It contacts the rear contact end portion 200. Also with this, in the fuel cell performance evaluation apparatus 1 of Example 1, the uneven contact between the first current collector 61 and the MEGA and the uneven contact between the second current collector 62 and the MEGA can be suppressed with high reliability. .

(実施例2)
実施例2の燃料電池の性能評価装置は、上記(1)〜(3)を備える。実施例3の燃料電池の性能評価装置は、第1加重点部が隣接する第1電極支持部と第2電極支持部とを支持していること以外は、実施例1の燃料電池の性能評価装置と同じである。実施例2の燃料電池の性能評価装置を模式的に表す側面図を図4に示す。
(Example 2)
The fuel cell performance evaluation apparatus of Example 2 includes the above (1) to (3). The fuel cell performance evaluation apparatus of Example 3 performs the performance evaluation of the fuel cell of Example 1 except that the first weight point supports the first electrode support part and the second electrode support part that are adjacent to each other. Same as the device. A side view schematically showing the fuel cell performance evaluation apparatus of Example 2 is shown in FIG.

実施例2の燃料電池の性能評価装置1は、2つの加重点部3(第1加重点部31、第2加重点部32)を持つ。第1加重点部31および第2加重点部32は同形状である。各加重点部3は、第3脚部33と加重本体部34とを持つ。第3脚部33はガイド手段5にスライド可能に取り付けられている。第3脚部33の上端は上下方向に伸びる軸状をなす。加重本体部34は、第3脚部33の上端に対応する形状の孔部を持つ。第3脚部33の上端はこの孔部に挿入され、加重本体部34は第3脚部33の上端を中心として揺動可能である。さらに、加重本体部34は、後述する第2電極支持部72の後当接端部200に対応する形状の孔部を持つ。この孔部には第2電極支持部72の後当接端部200が挿入される。   The fuel cell performance evaluation apparatus 1 of the second embodiment has two weighting point portions 3 (a first weighting point portion 31 and a second weighting point portion 32). The first weighted point portion 31 and the second weighted point portion 32 have the same shape. Each weighted point portion 3 has a third leg portion 33 and a weighted main body portion 34. The third leg 33 is slidably attached to the guide means 5. The upper end of the third leg portion 33 has an axial shape extending in the vertical direction. The weighted main body 34 has a hole having a shape corresponding to the upper end of the third leg 33. The upper end of the third leg portion 33 is inserted into this hole, and the weighted main body portion 34 can swing around the upper end of the third leg portion 33. Further, the weighted main body 34 has a hole having a shape corresponding to a rear contact end portion 200 of a second electrode support portion 72 described later. The rear contact end portion 200 of the second electrode support portion 72 is inserted into the hole portion.

実施例2の燃料電池の性能評価装置1における第1集電部21、第2集電部22、および第3集電部23は、実施例1の燃料電池の性能評価装置1と同じ第1電極支持部71および第2電極支持部72を持つ。第1集電部21の第1電極支持部71は、実施例1の燃料電池の性能評価装置1と同じ第1脚部73に固定されている。第1脚部73はガイド手段5にスライド可能に取り付けられている。第1集電部21の第2電極支持部72の後端部(後当接端部200)は、球状をなす。そして、後当接端部200は第1加重点部31の孔部に挿入されている。したがって、第1集電部21の第2電極支持部72は、後当接端部200を中心として揺動可能である。   The first current collector 21, the second current collector 22 and the third current collector 23 in the fuel cell performance evaluation apparatus 1 of the second embodiment are the same as those of the fuel cell performance evaluation apparatus 1 of the first embodiment. It has an electrode support 71 and a second electrode support 72. The first electrode support portion 71 of the first current collector 21 is fixed to the same first leg portion 73 as the fuel cell performance evaluation device 1 of the first embodiment. The first leg 73 is slidably attached to the guide means 5. The rear end portion (rear contact end portion 200) of the second electrode support portion 72 of the first current collector 21 has a spherical shape. The rear contact end portion 200 is inserted into the hole of the first weight point 31. Therefore, the second electrode support portion 72 of the first current collector 21 can swing around the rear contact end portion 200.

第2集電部22の第1電極支持部71は、第1加重点部31の加重本体部34に固定されている。第2集電部22の第2電極支持部72の後端部(後当接端部200)は、第1集電部21の後当接端部200と同様に、第2加重点部32の加重本体部34に揺動可能に支持されている。第3集電部23の第1電極支持部71は、第2加重点部32の加重本体部34に固定されている。第3集電部23の第2電極支持部72は、実施例1の燃料電池の性能評価装置1における第3集電部23の第2電極支持部72と同様に、第2脚部74に揺動可能に支持されている。   The first electrode support portion 71 of the second current collector 22 is fixed to the weighted main body portion 34 of the first weighted point portion 31. The rear end portion (rear contact end portion 200) of the second electrode support portion 72 of the second current collector 22 is similar to the rear contact end portion 200 of the first current collector 21. The weighted main body 34 is supported so as to be swingable. The first electrode support portion 71 of the third current collector 23 is fixed to the weighted main body portion 34 of the second weighted point portion 32. The second electrode support 72 of the third current collector 23 is connected to the second leg 74 in the same manner as the second electrode support 72 of the third current collector 23 in the fuel cell performance evaluation apparatus 1 of the first embodiment. It is supported so that it can swing.

実施例2の燃料電池の性能評価装置1においては、第1集電部21の第2電極支持部72および第2集電体62と、第2集電部22の第1電極支持部71および第1集電体61と、が第1加重点部31に支持されている。また、第2集電部22の第2電極支持部72および第2集電体62と、第3集電部23の第1電極支持部71および第1集電体61と、が第2加重点部32に支持されている。このため、実施例2の燃料電池の性能評価装置1は、単純な形状になり、安価に製造できる。また、単純な形状であるために、取り扱い性に優れる。   In the fuel cell performance evaluation apparatus 1 of Example 2, the second electrode support 72 and the second current collector 62 of the first current collector 21, the first electrode support 71 of the second current collector 22, and The first current collector 61 is supported by the first weight point 31. In addition, the second electrode support part 72 and the second current collector 62 of the second current collector part 22 and the first electrode support part 71 and the first current collector 61 of the third current collector part 23 are the second additive. It is supported by the emphasis portion 32. For this reason, the fuel cell performance evaluation apparatus 1 of Example 2 has a simple shape and can be manufactured at low cost. Moreover, since it is a simple shape, it is excellent in handleability.

また、第1集電部21の第2電極支持部72および第2集電体62、第2集電部22の第2電極支持部72および第2集電体62、第3集電部23の第2電極支持部72および第2集電体62は、それぞれ、揺動可能である。このため、第1集電部21、第2集電部22、および第3集電部23が直線上に配列しない場合にも、各第2集電体62をそれぞれ対をなす第1集電体61と平行な方向に配置できる。よって、実施例2の燃料電池の性能評価装置1においても、第1集電体61とMEGAとの偏当たりおよび第2集電体62とMEGAとの偏当たりを抑制できる。このため、実施例2の燃料電池の性能評価装置1もまた、MEGAの性能を精度高く評価できる。   The second current collector 72 and the second current collector 62 of the first current collector 21, the second electrode support 72 and the second current collector 62 of the second current collector 22, and the third current collector 23. Each of the second electrode support 72 and the second current collector 62 can swing. For this reason, even when the 1st current collection part 21, the 2nd current collection part 22, and the 3rd current collection part 23 are not arranged on a straight line, each 1st current collection which makes each 2nd current collector 62 a pair, respectively. It can be arranged in a direction parallel to the body 61. Therefore, also in the fuel cell performance evaluation apparatus 1 of Example 2, it is possible to suppress the uneven contact between the first current collector 61 and the MEGA and the second current collector 62 and the MEGA. For this reason, the fuel cell performance evaluation apparatus 1 of Example 2 can also evaluate the performance of MEGA with high accuracy.

実施例1の燃料電池の性能評価装置を模式的に表す側面図である。1 is a side view schematically showing a fuel cell performance evaluation apparatus of Example 1. FIG. 実施例1の燃料電池の性能評価装置を模式的に表す側面図である。1 is a side view schematically showing a fuel cell performance evaluation apparatus of Example 1. FIG. 実施例1の燃料電池の性能評価装置を模式的に表す側面図である。1 is a side view schematically showing a fuel cell performance evaluation apparatus of Example 1. FIG. 実施例2の燃料電池の性能評価装置を模式的に表す側面図である。FIG. 5 is a side view schematically showing a fuel cell performance evaluation apparatus of Example 2.

符号の説明Explanation of symbols

1:燃料電池の性能評価装置 2、21、22、23:集電部
3、31、32:加重点部 4:加圧手段
6、61、62:集電体 80:固定手段
1: Fuel cell performance evaluation device 2, 21, 22, 23: Current collectors 3, 31, 32: Weighted points 4: Pressurizing means 6, 61, 62: Current collector 80: Fixing means

Claims (4)

燃料電池の評価対象品を挟み込む一対の集電体を持つ集電部が該評価対象品を挟み込む方向に複数配列してなる集電列部と、
該集電列部の両端部に配置され、該集電部をその配列方向に移動させつつ該集電列部を圧縮する加圧手段と、
互いに隣接する該集電部の間にそれぞれ介在し、該加圧手段が該集電列部を圧縮する際に該配列方向に移動するとともに該加圧手段が加えた荷重を互いに隣接する該集電部に伝達する加重点部と、を持ち、
対をなす該集電体の少なくとも一方は、該配列方向と交叉する方向に移動可能であることを特徴とする燃料電池の性能評価装置。
A current collector array portion in which a plurality of current collectors having a pair of current collectors sandwiching an evaluation target product of the fuel cell are arranged in a direction of sandwiching the evaluation target product;
Pressurizing means disposed at both ends of the current collecting column portion and compressing the current collecting row portion while moving the current collecting portion in the arrangement direction;
The current collectors are interposed between the current collectors adjacent to each other, and the pressurizing means moves in the arrangement direction when compressing the current collector array, and the load applied by the pressurizing means is adjacent to the current collectors. A weighted point that is transmitted to the electric part,
A fuel cell performance evaluation apparatus, wherein at least one of the pair of current collectors is movable in a direction crossing the arrangement direction.
前記集電部は、対をなす前記集電体の相対位置を固定する固定手段を持つ請求項1に記載の燃料電池の性能評価装置。   2. The fuel cell performance evaluation apparatus according to claim 1, wherein the current collector includes a fixing unit that fixes a relative position of the pair of current collectors. 対をなす前記集電体の一方である基準側集電体は、前記配列方向にのみ移動可能であり、
対をなす前記集電体の他方であるならい側集電体は、前記配列方向と前記配列方向と交叉する方向とに移動可能である請求項1または請求項2に記載の燃料電池の性能評価装置。
A reference-side current collector that is one of the current collectors that make a pair is movable only in the arrangement direction,
The performance evaluation of the fuel cell according to claim 1 or 2, wherein a side current collector that is the other of the pair of current collectors is movable in the arrangement direction and a direction crossing the arrangement direction. apparatus.
前記加重点部は、前記加重点部に隣接する前記集電体の少なくとも一方を前記配列方向と交叉する方向に移動可能であるように支持している請求項1〜請求項3の何れか一つに記載の燃料電池の性能評価装置。   The weighted point portion supports at least one of the current collectors adjacent to the weighted point portion so as to be movable in a direction crossing the arrangement direction. The fuel cell performance evaluation apparatus according to claim 1.
JP2008011468A 2008-01-22 2008-01-22 Fuel cell performance evaluation system Expired - Fee Related JP5136077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011468A JP5136077B2 (en) 2008-01-22 2008-01-22 Fuel cell performance evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011468A JP5136077B2 (en) 2008-01-22 2008-01-22 Fuel cell performance evaluation system

Publications (2)

Publication Number Publication Date
JP2009176463A true JP2009176463A (en) 2009-08-06
JP5136077B2 JP5136077B2 (en) 2013-02-06

Family

ID=41031363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011468A Expired - Fee Related JP5136077B2 (en) 2008-01-22 2008-01-22 Fuel cell performance evaluation system

Country Status (1)

Country Link
JP (1) JP5136077B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122908A (en) * 2011-11-07 2013-06-20 Toyota Motor Corp Apparatus and method for inspecting power generation of fuel cell stack
JP2014002859A (en) * 2012-06-15 2014-01-09 Toyota Motor Corp Inspection device
JP2014041702A (en) * 2012-08-21 2014-03-06 Toyota Motor Corp Inspection apparatus
JP2014229578A (en) * 2013-05-27 2014-12-08 トヨタ自動車株式会社 Power generation inspection apparatus
KR101619269B1 (en) 2014-10-21 2016-05-10 현대자동차 주식회사 Activation apparatus of membrane-electrode assembly for fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151603A (en) * 2001-11-12 2003-05-23 Toyota Motor Corp Short-circuit inspection method for membrane-electrode assembly and short-circuit inspection device
JP2003234119A (en) * 2002-02-07 2003-08-22 Toyota Motor Corp Pallet for fc module
JP2004288558A (en) * 2003-03-25 2004-10-14 Toyota Motor Corp Method and device for evaluating fuel cell gas flow path
JP2006038611A (en) * 2004-07-27 2006-02-09 Minoru Umeda Electrode structure and ionic conductance measuring device
JP2006294463A (en) * 2005-04-12 2006-10-26 Toyota Motor Corp Performance evaluation device of fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151603A (en) * 2001-11-12 2003-05-23 Toyota Motor Corp Short-circuit inspection method for membrane-electrode assembly and short-circuit inspection device
JP2003234119A (en) * 2002-02-07 2003-08-22 Toyota Motor Corp Pallet for fc module
JP2004288558A (en) * 2003-03-25 2004-10-14 Toyota Motor Corp Method and device for evaluating fuel cell gas flow path
JP2006038611A (en) * 2004-07-27 2006-02-09 Minoru Umeda Electrode structure and ionic conductance measuring device
JP2006294463A (en) * 2005-04-12 2006-10-26 Toyota Motor Corp Performance evaluation device of fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122908A (en) * 2011-11-07 2013-06-20 Toyota Motor Corp Apparatus and method for inspecting power generation of fuel cell stack
JP2014002859A (en) * 2012-06-15 2014-01-09 Toyota Motor Corp Inspection device
JP2014041702A (en) * 2012-08-21 2014-03-06 Toyota Motor Corp Inspection apparatus
JP2014229578A (en) * 2013-05-27 2014-12-08 トヨタ自動車株式会社 Power generation inspection apparatus
KR101619269B1 (en) 2014-10-21 2016-05-10 현대자동차 주식회사 Activation apparatus of membrane-electrode assembly for fuel cell
US10026985B2 (en) 2014-10-21 2018-07-17 Hyundai Motor Company Apparatus for activating membrane electrode assembly for fuel cells
US10886555B2 (en) 2014-10-21 2021-01-05 Hyundai Motor Company Apparatus for activating membrane electrode assembly for fuel cells

Also Published As

Publication number Publication date
JP5136077B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5136077B2 (en) Fuel cell performance evaluation system
CN102171881B (en) Cell stack of fuel cells and method for fastening cell stack of fuel cells
JP5907278B2 (en) Fuel cell
JP5098493B2 (en) Assembly inspection system for fuel cells
US20070166589A1 (en) Membrane electrode assembly for a tube-shaped fuel cell and tube-shaped fuel cell
EP2201631A4 (en) An arrangement for interconnecting electrochemical cells, a fuel cell assembly and method of manufacturing a fuel cell device
US7097519B2 (en) Spring contact sheet and electrochemical battery with such a spring contact sheet
US10644329B2 (en) Fuel cell stack having a displacement absorbing member disposed in a cooling fluid channel
WO2008126358A1 (en) Polymer electrolyte fuel cell and fuel cell stack having the same
KR20140112054A (en) Fuel battery
TW200719516A (en) Solid oxide fuel cell stack of modularized design
JP2008311165A (en) Fuel cell stack, and fuel cell using the same
US10026985B2 (en) Apparatus for activating membrane electrode assembly for fuel cells
JP4989161B2 (en) Fuel cell stack
US20150188180A1 (en) Fuel cell stack
JP2007134202A (en) Fuel cell and its manufacturing method
WO2007080472A2 (en) Fuel cell
JP2012182092A (en) Fuel cell stack
JP2005235408A (en) Fuel cell, and method for measuring length in cell laminate
JP6772861B2 (en) Fuel cell cell stack
KR101406670B1 (en) Collector unit and fuel cell having thereof
KR20230131427A (en) Fuel cell stack capable of aligning a plurality of battery cells
US8841044B2 (en) Solid oxide fuel cell
JP2019029165A (en) Assembling method of cell monitor connector
JP2019192353A (en) Fuel battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees