JP2006038587A - Inspection method of crystal film and inspection device therefor - Google Patents

Inspection method of crystal film and inspection device therefor Download PDF

Info

Publication number
JP2006038587A
JP2006038587A JP2004217736A JP2004217736A JP2006038587A JP 2006038587 A JP2006038587 A JP 2006038587A JP 2004217736 A JP2004217736 A JP 2004217736A JP 2004217736 A JP2004217736 A JP 2004217736A JP 2006038587 A JP2006038587 A JP 2006038587A
Authority
JP
Japan
Prior art keywords
laser scanning
scanning direction
crystal film
fringes
density value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004217736A
Other languages
Japanese (ja)
Inventor
Yasuo Fukazawa
康男 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004217736A priority Critical patent/JP2006038587A/en
Publication of JP2006038587A publication Critical patent/JP2006038587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method of a crystal film capable of certainly determining the lowering of the characteristics of a crystal film and capable of reducing a treatment tact, and an inspection device therefor. <P>SOLUTION: In a process for calculating the number of stripes, the number of stripes is calculated by measuring only a stripe-like density change without calculating a distribution of a density value in a laser scanning direction and, at the first time when the number of stripes becomes below "1", the distribution of the density value in the laser scanning direction is calculated by a density value calculation process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、結晶膜の検査方法および検査装置に関し、たとえば液晶ディスプレイパネルを製造する際に、エキシマレーザーアニール処理を施して生成されたポリシリコン膜を検査する検査方法および検査装置に関する。
本発明において、「結晶膜」は、結晶性シリコン半導体膜と同義である。
The present invention relates to a crystal film inspection method and an inspection apparatus, and more particularly to an inspection method and an inspection apparatus for inspecting a polysilicon film generated by performing an excimer laser annealing process when a liquid crystal display panel is manufactured.
In the present invention, the “crystal film” is synonymous with a crystalline silicon semiconductor film.

液晶ディスプレイのアクティブ素子などとして用いられる薄膜薄膜トランジスタ(TFT:Thin Film Transistor)を製造するにあたっては、薄膜状のシリコン半導体を用いるのが一般的である。薄膜状のシリコン半導体は、非晶質シリコン(アモルファスシリコン)から成る非晶質シリコン半導体と、結晶性を有する結晶性シリコン半導体との2つに大別される。   In manufacturing a thin film transistor (TFT) used as an active element of a liquid crystal display, it is common to use a thin film silicon semiconductor. Thin film silicon semiconductors are roughly classified into two types: amorphous silicon semiconductors made of amorphous silicon (amorphous silicon) and crystalline silicon semiconductors having crystallinity.

非晶質シリコン半導体は、成膜温度が比較的低く、気相成長法によって比較的容易に製造することが可能であり、量産性に富むといった特徴を有するので、最も一般的に用いられている。しかし非晶質シリコン半導体は、結晶性シリコン半導体に比べて導電性などの物性が劣るので、高速特性を得るために結晶性シリコン半導体から成るTFTの製造技術の確立が強く求められている。すなわち基板の一表面部に、プラズマCVD(CVD:
Chemical Vapor Deposition)法または減圧熱化学気相成長法などによって、アモルファスシリコン薄膜が形成され、固相成長結晶化工程(略称SPC)と、レーザーアニール結晶化工程(略称ELA)とを順次経て、結晶性シリコン半導体膜(以後、結晶膜と表記)が形成される。
Amorphous silicon semiconductors are most commonly used because they have characteristics such as a relatively low film formation temperature, can be manufactured relatively easily by a vapor deposition method, and are rich in mass productivity. . However, since amorphous silicon semiconductors are inferior in physical properties such as conductivity compared to crystalline silicon semiconductors, establishment of a manufacturing technique for TFTs made of crystalline silicon semiconductors is strongly required to obtain high-speed characteristics. In other words, plasma CVD (CVD:
An amorphous silicon thin film is formed by a chemical vapor deposition (vacuum chemical vapor deposition) method or a low pressure thermal chemical vapor deposition method, and sequentially undergoes a solid phase growth crystallization process (abbreviated as SPC) and a laser annealing crystallization process (abbreviated as ELA). A conductive silicon semiconductor film (hereinafter referred to as a crystal film) is formed.

従来、エキシマレーザーアニール装置によって結晶化された結晶膜を検査する技術が開示されている(たとえば特許文献1)。前記特許文献1に記載の従来技術には、基板の一表面部に所定の方向性を有する光を照射し、一表面部からの乱反射光の強度を計測し、その計測値に基づいて一表面部の凹凸状態を判定する技術が開示されている。前記乱反射光の強度は、エキシマレーザーアニール装置におけるレーザー走査に起因する特定の方向性と周期性とを有する「すじ」の発生に着目したフーリエ解析によって計測される。前記一表面部の凹凸状態から、この基板の結晶膜は荒れていると判定されると、前記結晶膜は不良と判定される。   Conventionally, a technique for inspecting a crystal film crystallized by an excimer laser annealing apparatus has been disclosed (for example, Patent Document 1). In the prior art described in Patent Document 1, light having a predetermined directionality is irradiated to one surface portion of a substrate, the intensity of irregularly reflected light from one surface portion is measured, and one surface is based on the measured value. A technique for determining the uneven state of a portion is disclosed. The intensity of the irregularly reflected light is measured by Fourier analysis focusing on the occurrence of “streaks” having a specific directionality and periodicity resulting from laser scanning in an excimer laser annealing apparatus. If it is determined from the uneven state of the one surface portion that the crystal film of this substrate is rough, the crystal film is determined to be defective.

また本件出願人は、結晶膜の凹凸状態の周期性に依存することなく凹凸状態の変化の中から導電性などの特性低下の主原因となる微結晶を特定することで、結晶膜の特性低下を確実に判定する技術を提案している(特許文献2)。図6は、従来の結晶膜付き基板の結晶化度を計測する手順を示すフローチャートである。さらに本件出願人は、汎用性が高い結晶化度判定方法として、特許文献2を応用した技術を実用化している。つまり第1工程において、結晶膜を厚み方向一方側から撮像した画像において、レーザーエネルギー強度が段階的に異なる複数列の帯状部分の延在方向である第1方向(行)の任意の1点と交差する第2方向(列)の濃度値を算出し、第2方向の濃度値の分布を求める。   In addition, the applicant of the present invention specifies the microcrystal that is the main cause of the deterioration of the properties such as conductivity from the change of the uneven state without depending on the periodicity of the uneven state of the crystal film, thereby reducing the characteristic of the crystal film. A technique for reliably determining whether or not is present (Patent Document 2). FIG. 6 is a flowchart showing a procedure for measuring the crystallinity of a conventional substrate with a crystal film. Furthermore, the present applicant has put to practical use a technique to which Patent Document 2 is applied as a crystallinity determination method with high versatility. That is, in the first step, in the image obtained by imaging the crystal film from one side in the thickness direction, any one point in the first direction (row) that is the extending direction of the plurality of columns of band-like portions with different laser energy intensities The density values in the intersecting second direction (column) are calculated, and the density value distribution in the second direction is obtained.

第2工程では、前記第1工程とは異なる撮像系に切替える。次に第3工程において、第1工程と同一箇所を第2工程で切替えた撮像系で撮像した画像について、筋状の濃度変化領域を縞本数として抽出し、第2方向の縞本数の分布を求める。その後第4工程において、第2方向の濃度値の分析結果と、第2方向の縞本数の分析結果とを表示している。   In the second step, the imaging system is switched to a different one from that in the first step. Next, in the third step, a streaky density change region is extracted as the number of fringes for the image captured by the imaging system in which the same part as the first step is switched in the second step, and the distribution of the number of fringes in the second direction is calculated. Ask. Thereafter, in the fourth step, the analysis result of the density value in the second direction and the analysis result of the number of stripes in the second direction are displayed.

図7は、従来技術に係り、照射対象に対しレーザーエネルギー強度を段階的に変えて、帯状にレーザー照射した結晶膜付き基板の一例を示す図である。図6も参照しつつ説明する。先ずステップb1において、基板の一表面部に対し、第1計測点1の鉛直上方に図示外の計測ヘッドを移動させる。次にステップb3に移行し、光学倍率×0.5程度の第1の撮像系によって第1計測点の散乱光を計測し、濃度値を算出する。次にステップb4において、光学倍率×5程度の第2の撮像系に切替え、ステップb5において、第1計測点1の筋状の濃度変化領域を画像処理により縞本数として算出する。次にステップb7に移行して第2計測点2の鉛直上方に計測ヘッドを移動させ、第1の撮像系で第2計測点の散乱光を計測し、第2の撮像系で第2計測点の筋状濃度変化を計測する。以降、第200計測点まで同様の動作を繰り返す。一連の計測が終了した後、レーザーエネルギー強度の変化方向に対する濃度値分布結果と縞本数分布結果とを表示する。   FIG. 7 is a diagram illustrating an example of a substrate with a crystal film in which laser energy intensity is changed stepwise with respect to an irradiation target and laser irradiation is performed in a band shape according to the related art. This will be described with reference to FIG. First, in step b1, a measurement head (not shown) is moved vertically above the first measurement point 1 with respect to one surface portion of the substrate. Next, the process proceeds to step b3, in which the scattered light at the first measurement point is measured by the first imaging system having an optical magnification of about 0.5, and the density value is calculated. Next, in step b4, the optical system is switched to the second imaging system having an optical magnification of about 5. In step b5, the stripe-like density change region at the first measurement point 1 is calculated as the number of stripes by image processing. Next, the process moves to step b7, the measurement head is moved vertically above the second measurement point 2, the scattered light at the second measurement point is measured by the first imaging system, and the second measurement point is measured by the second imaging system. Measure the change in muscle density. Thereafter, the same operation is repeated up to the 200th measurement point. After a series of measurements is completed, the density value distribution result and the stripe number distribution result with respect to the changing direction of the laser energy intensity are displayed.

特開2001−110861号公報JP 2001-110861 A 特願2002−370964号Japanese Patent Application No. 2002-370964

特許文献1のような、結晶膜の周期性に基づいてフーリエ変換を用いて結晶化度を判定する技術は、結晶膜の凹凸状態に少なくとも一定の周期性があることを前提としている。しかし実際に結晶化された結晶膜には、その凹凸状態に周期性が見られないものもある。したがって結晶膜の周期性に基づいてフーリエ変換を用いて結晶化度を判定する技術は、汎用性が低い。   The technique for determining the degree of crystallinity using Fourier transform based on the periodicity of the crystal film as in Patent Document 1 is based on the premise that the unevenness state of the crystal film has at least a certain periodicity. However, some crystallized films that are actually crystallized do not have periodicity in the uneven state. Therefore, the technique for determining the degree of crystallinity using Fourier transform based on the periodicity of the crystal film has low versatility.

図7に示す特許文献2を応用した技術では、計測対象の結晶膜付き基板の計測点は200点と多く、それぞれの計測点に対して光学倍率の異なる二種類の撮像系を用いて計測している。たとえば計測点1点あたり、計測ヘッドの移動時間も含めて5秒掛かるとすると、基板全体でこの5秒に全計測点数を乗じ、さらに撮像系の種類を乗じた時間が掛かる。具体的に5秒×200点×2回(種類)=2000秒掛かることになり、処理タクトの削減が大きな課題になっている。   In the technology applying Patent Document 2 shown in FIG. 7, there are as many as 200 measurement points on the substrate with a crystal film to be measured, and measurement is performed using two types of imaging systems having different optical magnifications for each measurement point. ing. For example, if it takes 5 seconds per measurement point including the moving time of the measurement head, it takes time for the entire substrate to be multiplied by the total number of measurement points and the type of the imaging system. Specifically, it takes 5 seconds × 200 points × 2 times (type) = 2000 seconds, and the reduction of processing tact is a big problem.

本発明の目的は、結晶膜の特性低下を確実に判定するとともに、処理タクトの低減を図ることができる結晶膜の検査方法および検査装置を提供することである。   An object of the present invention is to provide an inspection method and an inspection apparatus for a crystal film that can reliably determine the deterioration of the characteristics of the crystal film and reduce the processing tact.

本発明は、レーザーエネルギー強度がレーザー走査に伴って段階的に異なって成る結晶膜を厚み方向一方側から撮像した画像であって、レーザー走査方向に連なる複数列の帯状部分を有する前記画像のうち、筋状の濃度変化領域を縞本数として抽出してレーザー走査方向の縞本数の分布だけを求める縞本数算出工程と、
前記縞本数算出工程にて抽出されるべき縞本数が予め定める本数未満になったとき、この縞本数算出工程と異なる撮像系に切替えて撮像した画像について、レーザー走査方向の濃度値を算出し、レーザー走査方向の濃度値の分布を求める濃度値算出工程とを有することを特徴とする結晶膜の検査方法である。
The present invention is an image obtained by imaging a crystal film having a laser energy intensity that varies stepwise with laser scanning from one side in the thickness direction, and includes a plurality of rows of band-shaped portions continuous in the laser scanning direction. , A stripe number calculation step of extracting a streaky density change region as the number of stripes and obtaining only the distribution of the number of stripes in the laser scanning direction;
When the number of fringes to be extracted in the fringe number calculating step is less than a predetermined number, the density value in the laser scanning direction is calculated for an image captured by switching to an imaging system different from the fringe number calculating step, A method for inspecting a crystal film, comprising: a density value calculating step for obtaining a density value distribution in a laser scanning direction.

本発明に従えば、縞本数算出工程において、レーザー走査方向に連なる複数列の帯状部分を有する画像のうち、筋状の濃度変化領域を縞本数として抽出してレーザー走査方向の縞本数の分布だけを求める。前記画像は、レーザーエネルギー強度がレーザー走査に伴って段階的に異なって成る結晶膜を厚み方向一方側から撮像した画像である。この縞本数算出工程にて抽出されるべき縞本数が予め定める本数未満になったとき、濃度値算出工程において、縞本数算出工程と異なる撮像系に切替えて撮像した画像について、レーザー走査方向の濃度値を算出する。これによってレーザー走査方向の濃度値の分布を求める。   According to the present invention, in the step of calculating the number of fringes, only the distribution of the number of fringes in the laser scanning direction by extracting the stripe-like density change region as the number of fringes from the image having the plurality of rows of strip-like portions continuous in the laser scanning direction. Ask for. The image is an image of a crystal film having a laser energy intensity that varies stepwise with laser scanning from one side in the thickness direction. When the number of fringes to be extracted in this fringe number calculation step is less than a predetermined number, in the density value calculation step, the density in the laser scanning direction is determined for an image captured by switching to an imaging system different from the fringe number calculation step. Calculate the value. Thereby, the distribution of density values in the laser scanning direction is obtained.

また本発明は、前記縞本数算出工程において、レーザーエネルギー強度が最大の帯状部分の計測点から縞本数を抽出し、前記計測点からレーザー走査方向に沿った他の計測点であって、レーザーエネルギー強度が段階的に低くなる他の計測点にて縞本数を抽出することを特徴とする。   Further, the present invention is a method of extracting the number of stripes from the measurement point of the belt-shaped portion having the maximum laser energy intensity in the step of calculating the number of stripes, and is another measurement point along the laser scanning direction from the measurement point, wherein the laser energy It is characterized in that the number of fringes is extracted at other measurement points where the intensity gradually decreases.

本発明に従えば、縞本数算出工程において、レーザーエネルギー強度が最大の帯状部分の計測点から縞本数を抽出する。また前記縞本数算出工程において、前記計測点からレーザー走査方向に沿った他の計測点であって、レーザーエネルギー強度が段階的に低くなる他の計測点にて縞本数を抽出する。   According to the present invention, in the step of calculating the number of fringes, the number of fringes is extracted from the measurement point of the belt-shaped portion having the maximum laser energy intensity. Further, in the step of calculating the number of fringes, the number of fringes is extracted at other measurement points along the laser scanning direction from the measurement points, where the laser energy intensity is gradually reduced.

また本発明は、レーザーエネルギー強度が最小の帯状部分に至るまで、縞本数算出工程および濃度値算出工程の少なくともいずれか1つを行うことを特徴とする。   Further, the present invention is characterized in that at least one of the fringe number calculation step and the density value calculation step is performed until the belt-like portion having the minimum laser energy intensity is reached.

本発明に従えば、レーザーエネルギー強度が最大の帯状部分の計測点から縞本数を抽出した後、レーザーエネルギー強度が最小の帯状部分に至るまで、縞本数算出工程および濃度値算出工程の少なくともいずれか1つを行う。   According to the present invention, after extracting the number of fringes from the measurement point of the belt-like portion with the maximum laser energy intensity, until reaching the belt-like portion with the smallest laser energy intensity, at least one of the fringe number calculating step and the concentration value calculating step Do one.

また本発明は、前記濃度値算出工程において、算出される濃度値が予め定める濃度しきい値未満のとき、計測対象である帯状部分の延在方向に位置の異なるレーザー走査方向の濃度値を算出し、レーザー走査方向の濃度値の分布を求めることを特徴とする。   According to the present invention, in the density value calculating step, when the calculated density value is less than a predetermined density threshold value, the density value in the laser scanning direction, the position of which is different in the extending direction of the band-shaped part to be measured, is calculated. And obtaining a distribution of density values in the laser scanning direction.

本発明に従えば、濃度値算出工程において、算出される濃度値が予め定める濃度しきい値未満のとき、計測対象である帯状部分の延在方向に位置の異なるレーザー走査方向の濃度値を算出する。これによって、前記レーザー走査方向の濃度値の分布を求める。   According to the present invention, in the density value calculation step, when the calculated density value is less than a predetermined density threshold value, the density value in the laser scanning direction with a different position in the extending direction of the band-shaped part to be measured is calculated. To do. Thereby, the distribution of density values in the laser scanning direction is obtained.

また本発明は、レーザーエネルギー強度がレーザー走査に伴って段階的に異なって成る結晶膜を厚み方向一方側から撮像した画像であって、レーザー走査方向に連なる複数列の帯状部分を有する前記画像のうち、筋状の濃度変化領域を縞本数として抽出してレーザー走査方向の縞本数の分布だけを求める縞本数算出手段と、
前記縞本数算出手段にて抽出されるべき縞本数が予め定める本数未満になったとき、この縞本数算出手段と異なる撮像系に切替えて撮像した画像について、レーザー走査方向の濃度値を算出し、レーザー走査方向の濃度値の分布を求める濃度値算出手段とを有することを特徴とする結晶膜の検査装置である。
Further, the present invention is an image obtained by imaging a crystal film whose laser energy intensity varies stepwise with laser scanning from one side in the thickness direction, and has a plurality of rows of strip-shaped portions continuous in the laser scanning direction. Among them, the stripe number calculation means for extracting the stripe-like density change region as the number of stripes and obtaining only the distribution of the number of stripes in the laser scanning direction;
When the number of fringes to be extracted by the fringe number calculating means is less than a predetermined number, the density value in the laser scanning direction is calculated for an image captured by switching to an imaging system different from the fringe number calculating means, A crystal film inspection apparatus comprising density value calculation means for obtaining a distribution of density values in a laser scanning direction.

本発明に従えば、縞本数算出手段は、レーザー走査方向に連なる複数列の帯状部分を有する画像のうち、筋状の濃度変化領域を縞本数として抽出してレーザー走査方向の縞本数の分布だけを求める。前記画像は、レーザーエネルギー強度がレーザー走査に伴って段階的に異なって成る結晶膜を厚み方向一方側から撮像した画像である。この縞本数算出手段にて抽出されるべき縞本数が予め定める本数未満になったとき、濃度値算出手段は、縞本数算出手段と異なる撮像系に切替えて撮像した画像について、レーザー走査方向の濃度値を算出する。これによってレーザー走査方向の濃度値の分布を求める。   According to the present invention, the fringe number calculation means extracts a streaky density change region as the number of fringes from an image having a plurality of rows of strips continuous in the laser scanning direction, and only the distribution of the number of fringes in the laser scanning direction. Ask for. The image is an image of a crystal film having a laser energy intensity that varies stepwise with laser scanning from one side in the thickness direction. When the number of fringes to be extracted by the fringe number calculating means is less than a predetermined number, the density value calculating means switches the density in the laser scanning direction for an image picked up by switching to an imaging system different from the fringe number calculating means. Calculate the value. Thereby, the distribution of density values in the laser scanning direction is obtained.

本発明によれば、特に、縞本数が予め定める本数未満になったときに、レーザー走査方向の濃度値の分布を求めている。換言すれば、縞本数算出工程においては、レーザー走査方向の濃度値の分布を求めることなく筋状の濃度変化だけを計測して縞本数を算出し、縞本数が予め定める本数未満になったとき始めて濃度値算出工程にて、レーザー走査方向の濃度値の分布を求めている。したがって本発明の結晶膜の検査方法によれば、従来技術において全計測点を、第1の撮像系で筋状の散乱光を計測するとともに、第2の撮像系で筋状の濃度変化を計測する方法に比べて、処理タクトの低減を図ることができる。しかもレーザー走査方向の濃度値とレーザーエネルギー強度との関係と、縞本数とレーザーエネルギー強度との関係とから、レーザーエネルギー強度の出力異常を即座に検知することが可能となる。それ故、不所望の結晶化度の結晶膜すなわち不良基板を排除することが可能となる。このように結晶膜の特性低下を確実に判定するとともに、処理タクトの低減を図ることができる。   According to the present invention, the density value distribution in the laser scanning direction is obtained particularly when the number of stripes is less than a predetermined number. In other words, in the step of calculating the number of fringes, when only the stripe-like density change is measured without calculating the density value distribution in the laser scanning direction, the number of fringes is calculated, and the number of fringes becomes less than the predetermined number For the first time, the density value distribution in the laser scanning direction is obtained in the density value calculation step. Therefore, according to the method for inspecting a crystal film of the present invention, all measurement points in the conventional technique are measured for streaky scattered light by the first imaging system, and a streak density change is measured by the second imaging system. The processing tact can be reduced as compared with the method of doing this. In addition, it is possible to immediately detect an output abnormality of the laser energy intensity from the relationship between the density value in the laser scanning direction and the laser energy intensity and the relationship between the number of stripes and the laser energy intensity. Therefore, it is possible to eliminate a crystal film having an undesired crystallinity, that is, a defective substrate. In this way, it is possible to reliably determine the deterioration of the characteristics of the crystal film and to reduce the processing tact.

また本発明によれば、縞本数算出工程において、レーザーエネルギー強度が最大の帯状部分の計測点から縞本数を抽出する。また前記縞本数算出工程において、前記計測点からレーザー走査方向に沿った他の計測点であって、レーザーエネルギー強度が段階的に低くなる他の計測点にて縞本数を抽出する。このようにレーザー走査方向に沿った複数の計測点にて縞本数を抽出することが可能となる。したがって縞本数とレーザーエネルギー強度との関係を求めることが可能となる。   According to the present invention, the number of fringes is extracted from the measurement point of the band-like portion having the maximum laser energy intensity in the fringe number calculating step. Further, in the step of calculating the number of fringes, the number of fringes is extracted at other measurement points along the laser scanning direction from the measurement points, where the laser energy intensity is gradually reduced. Thus, the number of fringes can be extracted at a plurality of measurement points along the laser scanning direction. Therefore, the relationship between the number of stripes and the laser energy intensity can be obtained.

また本発明によれば、レーザーエネルギー強度が最大の帯状部分の計測点から縞本数を抽出した後、レーザーエネルギー強度が最小の帯状部分に至るまで、縞本数算出工程および濃度値算出工程の少なくともいずれか1つを行う。このように本発明によれば、従来技術において全計測点を、第1の撮像系で筋状の散乱光を計測するとともに、第2の撮像系で筋状の濃度変化を計測する方法に比べて、処理タクトの低減を実現することができる。   Further, according to the present invention, after extracting the number of stripes from the measurement point of the belt-like portion having the maximum laser energy intensity, until at least one of the stripe number calculating step and the density value calculating step until reaching the belt-like portion having the minimum laser energy intensity. Do one. As described above, according to the present invention, all measurement points in the prior art are compared with the method of measuring the streaky scattered light with the first imaging system and measuring the streaky density change with the second imaging system. Thus, a reduction in processing tact can be realized.

また本発明によれば、濃度値算出工程において、算出される濃度値が予め定める濃度しきい値未満のとき、計測対象である帯状部分の延在方向に位置の異なるレーザー走査方向の濃度値を算出する。これによって、前記レーザー走査方向の濃度値の分布を求める。このように算出される濃度値が予め定める濃度しきい値未満のとき、同一の延在方向位置におけるレーザー走査方向では、それ以降計測を行わない。換言すれば計測点数を削減することが可能となる。   Further, according to the present invention, in the density value calculation step, when the calculated density value is less than a predetermined density threshold value, the density value in the laser scanning direction with a different position in the extending direction of the band-shaped part to be measured is obtained. calculate. Thereby, the distribution of density values in the laser scanning direction is obtained. When the density value calculated in this way is less than a predetermined density threshold value, no further measurement is performed in the laser scanning direction at the same extending direction position. In other words, the number of measurement points can be reduced.

また本発明によれば、縞本数が予め定める本数未満になったときに、レーザー走査方向の濃度値の分布を求めている。換言すれば、縞本数算出手段は、レーザー走査方向の濃度値の分布を求めることなく筋状の濃度変化だけを計測して縞本数を算出し、島本数が予め定める本数未満になったとき始めて濃度値算出手段にて、レーザー走査方向の濃度値の分布を求めている。したがって本発明の結晶膜の検査装置によれば、従来技術において全計測点を、第1の撮像系で筋状の散乱光を計測するとともに、第2の撮像系で筋状の濃度変化を計測する技術に比べて、処理タクトの低減を図ることができる。しかもレーザー走査方向の濃度値とレーザーエネルギー強度との関係と、縞本数とレーザーエネルギー強度との関係とから、レーザーエネルギー強度の出力異常を即座に検知することが可能となる。それ故、不所望の結晶化度の結晶膜すなわち不良基板を排除することが可能となる。このように結晶膜の特性低下を確実に判定するとともに、処理タクトの低減を図ることができる。   According to the present invention, when the number of stripes is less than a predetermined number, the distribution of density values in the laser scanning direction is obtained. In other words, the fringe number calculation means calculates only the stripe density change without calculating the density value distribution in the laser scanning direction, calculates the fringe number, and only when the island number is less than the predetermined number. The density value calculating means obtains the density value distribution in the laser scanning direction. Therefore, according to the crystal film inspection apparatus of the present invention, all the measurement points in the conventional technique are measured for the streaky scattered light by the first imaging system, and the streaky density change is measured by the second imaging system. The processing tact can be reduced as compared with the technology to do. In addition, it is possible to immediately detect an output abnormality of the laser energy intensity from the relationship between the density value in the laser scanning direction and the laser energy intensity and the relationship between the number of stripes and the laser energy intensity. Therefore, it is possible to eliminate a crystal film having an undesired crystallinity, that is, a defective substrate. In this way, it is possible to reliably determine the deterioration of the characteristics of the crystal film and to reduce the processing tact.

図1は、本発明の実施の形態に係る結晶膜付き基板の結晶化度を計測する手順を示すフローチャートである。図2は、照射対象に対しレーザーエネルギー強度を段階的に変えて、帯状にレーザー照射した結晶膜付き基板の一例を示す図である。本実施形態は、たとえばTFTを製造する際に用いられる結晶性シリコン半導体膜(以後「結晶膜」と表記する)を検査する検査装置に、本発明の検査装置を適用した場合の一例を示す。以下の説明は、結晶膜の検査方法の説明をも含む。   FIG. 1 is a flowchart showing a procedure for measuring the degree of crystallinity of a substrate with a crystal film according to an embodiment of the present invention. FIG. 2 is a diagram illustrating an example of a substrate with a crystal film that is irradiated with laser in a band shape while changing the laser energy intensity stepwise with respect to the irradiation target. This embodiment shows an example in which the inspection apparatus of the present invention is applied to an inspection apparatus for inspecting a crystalline silicon semiconductor film (hereinafter referred to as “crystal film”) used when manufacturing a TFT, for example. The following description includes a description of a crystal film inspection method.

本実施形態では図1に示すように、ステップa1において、たとえば検査装置の図示外の電源をオンにする条件で結晶膜付き基板10の結晶化度を計測する処理が開始する。ただしこの開始条件だけに限定されるものではない。本処理の制御主体は、後述する制御装置11である(図5参照)。制御装置11に、基板10の結晶化度を計測するためのプログラムが格納されている。ステップa2において先ず基板10の一表面部に対し、第1計測点の厚み方向一方に計測ヘッドを移動させる。前記「基板」は、結晶膜付き基板と同義である。第1計測点は、レーザーエネルギー強度が最大の帯状照射領域Sa内の一領域である。前記帯状照射領域Sa内が帯状部分に相当する。次にステップa3に移行し、光学倍率×5程度の撮像系によって、第1計測点の筋状の濃度変化領域を画像処理により総本数として算出する。   In the present embodiment, as shown in FIG. 1, in step a1, a process for measuring the degree of crystallinity of the substrate with crystal film 10 is started under the condition that, for example, a power supply (not shown) is turned on. However, it is not limited only to this starting condition. The control subject of this process is the control device 11 described later (see FIG. 5). The control device 11 stores a program for measuring the crystallinity of the substrate 10. In step a2, first, the measurement head is moved in the thickness direction of the first measurement point with respect to one surface portion of the substrate 10. The “substrate” is synonymous with a substrate with a crystal film. The first measurement point is a region within the belt-shaped irradiation region Sa having the maximum laser energy intensity. The inside of the belt-shaped irradiation area Sa corresponds to a belt-shaped portion. Next, the process proceeds to step a3, and a streak-like density change region at the first measurement point is calculated as a total number by image processing by an imaging system having an optical magnification of about 5.

次にステップa4に移行し、算出した縞本数が「1」未満ではない、換言すれば算出した縞本数が「1」以上であると判断されると、ステップa5に移行する。判断基準である前記縞本数「1」が、予め定める本数に相当する。このステップa5において、計測ヘッドを移動させる。つまり前記帯状照射領域Saに対しレーザー走査方向(矢符D1にて表記)に隣接する帯状照射領域Sa内であって、レーザーエネルギー強度が一段階低い(たとえば5mJ)帯状照射領域Sa内の第2計測点の厚み方向一方に計測ヘッドを移動させる。その後ステップa3に戻る。このステップa3において、第2計測点の筋状の濃度変化領域を画像処理により縞本数として算出する。このようにして、算出した縞本数が1未満(零)になるまで、筋状濃度変化計測だけを繰り返す。   Next, the process proceeds to step a4, and when it is determined that the calculated number of stripes is not less than “1”, in other words, the calculated number of stripes is “1” or more, the process proceeds to step a5. The number of stripes “1”, which is a criterion, corresponds to a predetermined number. In step a5, the measuring head is moved. That is, in the belt-shaped irradiation region Sa adjacent to the belt-shaped irradiation region Sa in the laser scanning direction (indicated by the arrow D1), the laser energy intensity is one step lower (for example, 5 mJ). The measurement head is moved in one thickness direction of the measurement point. Thereafter, the process returns to step a3. In step a3, the stripe-shaped density change region at the second measurement point is calculated as the number of stripes by image processing. Thus, only the stripe density change measurement is repeated until the calculated number of stripes is less than 1 (zero).

ステップa4において、たとえば第6計測点にて算出した縞本数が「1」未満であると判断されると、ステップa6において、光学倍率×0.5程度の撮像系に切替える。次にステップa7に移行し、前記第6計測点の散乱光を計測し、濃度値を算出する。次にステップa8に移行し、算出した濃度値が、予め定める濃度しきい値より大きいか否かを判断する。ここで算出した濃度値が、濃度しきい値より大きいと判断されると、ステップa10に移行する。このステップa10において、予め設定した計測点を計測したか否かを判断する。ここで設定した計測点を計測していないと判断されると、ステップa5に戻り計測ヘッドをレーザー走査方向に移動させ、ステップa3にて新たな計測点の筋状の濃度変化領域を画像処理により縞本数として算出する。   In step a4, for example, when it is determined that the number of fringes calculated at the sixth measurement point is less than “1”, in step a6, the imaging system is switched to an optical magnification of about 0.5. Next, the process proceeds to step a7, the scattered light at the sixth measurement point is measured, and the concentration value is calculated. Next, the process proceeds to step a8, and it is determined whether or not the calculated density value is larger than a predetermined density threshold value. If it is determined that the calculated density value is larger than the density threshold value, the process proceeds to step a10. In step a10, it is determined whether or not a preset measurement point has been measured. If it is determined that the measurement point set here is not measured, the process returns to step a5 to move the measurement head in the laser scanning direction, and in step a3, the streaky density change region of the new measurement point is obtained by image processing. Calculate as the number of stripes.

ステップa10において、予め設定した計測点を計測したと判断されると、ステップa11に移行し計測結果を表示し、その後ステップa12にて本処理を終了する。ステップa8において、算出した濃度値が濃度しきい値より大きくない、換言すれば、算出した濃度値が濃度しきい値未満であると判断されると、その列での計測を終了し、レーザー走査方向に平行な次の列の第20行目に計測ヘッドを移動させる。その後ステップa3に戻る。   If it is determined in step a10 that a preset measurement point has been measured, the process proceeds to step a11 to display the measurement result, and then the process ends in step a12. If it is determined in step a8 that the calculated density value is not greater than the density threshold value, in other words, the calculated density value is less than the density threshold value, the measurement in that column is terminated and laser scanning is performed. The measurement head is moved to the twentieth row of the next column parallel to the direction. Thereafter, the process returns to step a3.

図3は、レーザーエネルギー強度に対する濃度値および縞本数の関係を示す図である。以上説明した計測結果から、レーザーエネルギー強度に対する、濃度しきい値以上の濃度領域での計測濃度分布(ア)と、濃度しきい値に対応するレーザーエネルギー強度以上の強度領域での縞本数分布(イ)とが得られ、必要に応じて表示させることができる。本実施形態に係る検査方法によって得られるレーザーエネルギー強度に対する計測濃度分布および縞本数分布は、レーザーエネルギー強度の全領域に対して表示するものではないが、縞の有無によって微結晶が発生するレーザーエネルギー強度が判明する。これとともに微結晶が発生しないレーザーエネルギー強度領域での、結晶化度に対応する濃度値が判明するため、必要かつ十分な情報が得られるものである。   FIG. 3 is a diagram showing the relationship between the density value and the number of stripes with respect to the laser energy intensity. From the measurement results described above, the measured density distribution (a) in the density region above the density threshold with respect to the laser energy intensity, and the stripe number distribution in the intensity area above the laser energy intensity corresponding to the density threshold ( B) can be obtained and displayed as necessary. The measured concentration distribution and the number distribution of the stripes with respect to the laser energy intensity obtained by the inspection method according to the present embodiment are not displayed for the entire region of the laser energy intensity, but the laser energy that generates microcrystals depending on the presence or absence of the stripes. Strength is revealed. At the same time, since the concentration value corresponding to the crystallinity in the laser energy intensity region where no microcrystals are generated is found, necessary and sufficient information can be obtained.

本実施形態において計測点数については、たとえば第1列で縞本数が「1」以上の計測点は第20行目から第16行目までで、かつ第1列で濃度値がしきい値未満の計測点は、第5行目以下の計測点である。このとき第1列における計測点数は、第20行目から第16行目までの「5」行に、前記第5行目以下の「5」行を加えた値である「10」点に「2」回(異なる撮像系での計測回数)を乗じ、さらに「5」点を加えた25点となる。以後同様に、第2列で縞本数が「1」以上の計測点は第20行目から第16行目までで、かつ第2列で濃度値がしきい値未満の計測点は、第5行目以下の計測点である。このとき第2列における計測点数は、「10」点に「2」回を乗じ、さらに「5」点を加えた25点となる。   Regarding the number of measurement points in this embodiment, for example, the measurement points with the number of stripes “1” or more in the first column are from the 20th row to the 16th row, and the density value in the first column is less than the threshold value. The measurement points are measurement points on the fifth row and below. At this time, the number of measurement points in the first column is “10”, which is a value obtained by adding “5” rows from the fifth row to the “5” rows from the 20th row to the 16th row. Multiply 2 ”times (number of times of measurement in different imaging systems) and add“ 5 ”points to 25 points. Thereafter, similarly, the measurement points having the number of stripes of “1” or more in the second column are from the 20th row to the 16th row, and the measurement points having a density value less than the threshold value in the second column are the fifth. Measurement points below the line. At this time, the number of measurement points in the second row is 25 points obtained by multiplying “10” points by “2” times and adding “5” points.

第3列で縞本数が「1」以上の計測点は第20行目から第15行目までで、かつ第3列で濃度値がしきい値未満の計測点は、第4行目以下の計測点である。このとき第3列における計測点数は、「10」点に「2」回を乗じ、さらに「6」点を加えた26点となる。第4列で縞本数が「1」以上の計測点は第20行目から第17行目までで、かつ第4列で濃度値がしきい値未満の計測点は、第6行目以下の計測点である。このとき第4列における計測点数は、「10」点に「2」回を乗じ、さらに「4」点を加えた24点となる。第5列で縞本数が「1」以上の計測点は第20行目から第16行目までで、かつ第5列で濃度値がしきい値未満の計測点は、第5行目以下の計測点である。このとき第5列における計測点数は、「10」点に「2」回を乗じ、さらに「5」点を加えた25点となる。   The measurement points with the number of stripes of “1” or more in the third column are from the 20th row to the 15th row, and the measurement points whose density value is less than the threshold value in the third column are the 4th row or less. It is a measuring point. At this time, the number of measurement points in the third row is 26 points obtained by multiplying “10” points by “2” times and adding “6” points. The measurement points with the number of stripes “1” or more in the fourth column are from the 20th row to the 17th row, and the measurement points having a density value less than the threshold value in the fourth column are those in the sixth row or less. It is a measuring point. At this time, the number of measurement points in the fourth column is 24 points obtained by multiplying “10” points by “2” times and adding “4” points. The measurement points with the number of stripes “1” or more in the fifth column are from the 20th row to the 16th row, and the measurement points whose density value is less than the threshold value in the fifth column are those in the fifth row or less. It is a measuring point. At this time, the number of measurement points in the fifth column is 25 points obtained by multiplying “10” points by “2” times and adding “5” points.

したがって本実施形態では、計測点数の合計は125点となる。従来の計測点数は200点(20行×5列×2回)であるから、本実施形態では、計測点数を従来技術に比べて約38%削減できることになる。このように本実施形態に係る検査方法によれば、従来技術において全計測点を、第1の撮像系で筋状の散乱光を計測するとともに、第2の撮像系で筋状の濃度変化を計測する方法に比べて、処理タクトの低減を図ることができる。   Therefore, in this embodiment, the total number of measurement points is 125 points. Since the conventional number of measurement points is 200 (20 rows × 5 columns × 2 times), in this embodiment, the number of measurement points can be reduced by about 38% compared to the conventional technique. As described above, according to the inspection method according to the present embodiment, in the conventional technique, all of the measurement points are measured for the streaky scattered light by the first imaging system, and the streaky density change is measured by the second imaging system. The processing tact can be reduced as compared with the measuring method.

図4は、レーザーエネルギー強度に対する結晶化度および表面粗さの関係を示す図である。レーザーエネルギー強度に対する結晶化度および結晶膜の表面粗さについて説明する。非晶質シリコン層に対し、照射するレーザーエネルギー強度が所望の値よりも低い場合には、結晶膜の結晶化度は、所望の100%よりも低く、結晶膜の表面粗さも低い傾向にある。レーザーアニール用レーザーエネルギー強度が適切な場合には、レーザーエネルギーによって溶融した内部に、非溶融部が点在する。そして前記非溶融部を結晶核として結晶が成長するので、結晶粒径が数μmの大きな結晶となる。   FIG. 4 is a diagram showing the relationship between the crystallinity and the surface roughness with respect to the laser energy intensity. The crystallinity with respect to the laser energy intensity and the surface roughness of the crystal film will be described. When the intensity of laser energy applied to an amorphous silicon layer is lower than a desired value, the crystallinity of the crystal film tends to be lower than the desired 100% and the surface roughness of the crystal film tends to be low. . When the laser energy intensity for laser annealing is appropriate, non-melted portions are scattered inside melted by the laser energy. Since the crystal grows with the non-melted portion as a crystal nucleus, the crystal has a large crystal grain size of several μm.

非晶質シリコン層に対し、照射するレーザーエネルギー強度が所望の値よりも高い場合には、結晶膜に微結晶が発生し、その微結晶化部分の表面粗さは極めて低くなる。微結晶化部分は微結晶部分とも呼ばれており、前記微結晶は、レーザーアニールのレーザーエネルギー強度が過大となった場合に、結晶膜が前記レーザーエネルギーによって完全に溶融し、冷却時に結晶核が高密度かつランダムに形成され、各々の結晶核から結晶が成長するため、結晶粒径が数百nmの極めて小さい結晶の集合となったものである。   When the intensity of laser energy applied to the amorphous silicon layer is higher than a desired value, microcrystals are generated in the crystal film, and the surface roughness of the microcrystallized portion becomes extremely low. The microcrystallized part is also called a microcrystalline part. When the laser energy intensity of laser annealing becomes excessive, the crystal film is completely melted by the laser energy, and crystal nuclei are formed during cooling. Since it is formed at a high density and randomly, and the crystal grows from each crystal nucleus, it is an aggregate of extremely small crystals having a crystal grain size of several hundred nm.

レーザーエネルギー強度に対する濃度値(結晶化度)および縞本数について、図3を参照しつつ説明する。エキシマレーザーアニール装置のレーザーエネルギー強度と結晶化度との間には、所望の結晶化度が得られるレーザーエネルギー強度よりも小さい領域において、レーザーエネルギー強度が大きくなれば、結晶膜の結晶化度および濃度値は高くなる傾向にある。所望の結晶化度が得られるレーザーエネルギー強度を超える領域においては、レーザーエネルギー強度が大きくなれば、結晶膜の結晶化度および濃度値は低くなる傾向にある。   The concentration value (crystallinity) and the number of stripes with respect to the laser energy intensity will be described with reference to FIG. Between the laser energy intensity and the crystallinity of the excimer laser annealing apparatus, if the laser energy intensity increases in a region smaller than the laser energy intensity at which the desired crystallinity is obtained, the crystallinity of the crystal film and The concentration value tends to be high. In a region exceeding the laser energy intensity at which a desired crystallinity is obtained, the crystallinity and concentration value of the crystal film tend to decrease as the laser energy intensity increases.

またエキシマレーザーアニール装置のレーザーエネルギー強度と、筋状濃度変化から画像処理により抽出される縞本数との間には、所望の結晶化度が得られるレーザーエネルギー強度よりも小さい領域において、レーザーエネルギー強度の大小に関わらず、前記縞本数は「0」となる。所望の結晶化度が得られるレーザーエネルギー強度を超える領域においては、レーザーエネルギー強度が大きくなれば、縞本数は大きくなる傾向にある。   The laser energy intensity between the laser energy intensity of the excimer laser annealing apparatus and the number of stripes extracted by image processing from the streak density change is smaller than the laser energy intensity at which the desired crystallinity is obtained. Regardless of the size, the number of stripes is “0”. In a region exceeding the laser energy intensity at which a desired crystallinity can be obtained, the number of stripes tends to increase as the laser energy intensity increases.

したがってエキシマレーザーアニール装置による結晶化工程の直後に、生産される全基板の結晶膜の検査つまり全数検査、または全ての生産ロット単位内での結晶膜の抜取り検査をして、濃度値および縞本数の変動を、たとえばディスプレイなどで常に監視することによって、レーザーエネルギー強度を検出し得る。つまり濃度値があるレベルを下回りかつ、縞が「0」になった場合には、レーザーエネルギー強度は、所望の結晶化度が得られるレーザーエネルギー強度よりも小さくなっていることを即座に検出し得る。濃度値があるレベルを下回るかまたは、縞本数が「0」でない場合には、レーザーエネルギー強度は所望の結晶化度が得られるレーザーエネルギー強度よりも大きくなっていることを即座に検出し得る。このように二つの関係すなわち、撮像した画像の濃度値とレーザーエネルギー強度との関係と、縞本数とレーザーエネルギー強度との関係とから、レーザーエネルギー強度の出力異常を即座に検知することができ、不所望の結晶化度の結晶膜すなわち不良基板を排除することが可能となる。   Therefore, immediately after the crystallization process by the excimer laser annealing device, the inspection of the crystal film of all the substrates to be produced, that is, the total inspection, or the sampling inspection of the crystal film in all production lot units, the concentration value and the number of stripes The laser energy intensity can be detected by constantly monitoring the fluctuations in the display, for example, on a display. In other words, when the density value falls below a certain level and the stripes become “0”, it is immediately detected that the laser energy intensity is smaller than the laser energy intensity that provides the desired crystallinity. obtain. If the density value is below a certain level or the number of fringes is not “0”, it can be immediately detected that the laser energy intensity is greater than the laser energy intensity at which the desired crystallinity is obtained. In this way, from the relationship between the density value of the captured image and the laser energy intensity, and the relationship between the number of fringes and the laser energy intensity, an output abnormality of the laser energy intensity can be immediately detected, It becomes possible to eliminate a crystal film having an undesired crystallinity, that is, a defective substrate.

図5は、本発明の実施の形態に係る結晶膜の検査装置12の構成を概略示す図である。結晶膜を検査する検査装置12は、たとえばxyステージ13と、撮像手段を含む計測ヘッド14と、図示外の照射手段と、縞本数算出手段および濃度値算出手段としての制御装置11と、表示装置であるディスプレイ15とを有する。xyステージ13は、基板10を吸着支持可能に構成されている。このxyステージ13の一方つまり基板10の厚み方向一方には、計測ヘッド14が設けられている。この計測ヘッド14は、xyステージ13に対しxおよびy方向に相対移動可能に構成されている。前記x方向は、長方形状のxyステージ13の長手方向に沿った方向であり、前記y方向は、x方向および基板10の厚み方向に直交する方向である。計測ヘッド14は、基板10に形成された結晶膜10Aを撮像可能に配置して設けられている。この計測ヘッド14および前記照射手段を用いて、結晶膜10Aを厚み方向一方側から撮像することが可能となる。   FIG. 5 is a diagram schematically showing the configuration of the crystal film inspection apparatus 12 according to the embodiment of the present invention. The inspection apparatus 12 for inspecting the crystal film includes, for example, an xy stage 13, a measurement head 14 including an imaging unit, an irradiation unit (not shown), a control unit 11 as a fringe number calculation unit and a density value calculation unit, and a display device. And the display 15. The xy stage 13 is configured to be capable of sucking and supporting the substrate 10. A measurement head 14 is provided on one of the xy stages 13, that is, on one side in the thickness direction of the substrate 10. The measurement head 14 is configured to be movable relative to the xy stage 13 in the x and y directions. The x direction is a direction along the longitudinal direction of the rectangular xy stage 13, and the y direction is a direction orthogonal to the x direction and the thickness direction of the substrate 10. The measurement head 14 is provided so that the crystal film 10A formed on the substrate 10 can be imaged. Using this measuring head 14 and the irradiation means, the crystal film 10A can be imaged from one side in the thickness direction.

以上説明した結晶膜10Aの検査方法および検査装置12によれば、特に、縞本数が「1」未満になったときに、レーザー走査方向の濃度値の分布を求めている。換言すれば、縞本数算出工程においては、レーザー走査方向の濃度値の分布を求めることなく筋状の濃度変化だけを計測して縞本数を算出し、縞本数が「1」未満になったとき始めて濃度値算出工程にて、レーザー走査方向の濃度値の分布を求めている。したがって本検査方法および検査装置12によれば、従来技術において全計測点を、第1の撮像系で筋状の散乱光を計測するとともに、第2の撮像系で筋状の濃度変化を計測する技術に比べて、処理タクトの低減を図ることができる。しかもレーザー走査方向の濃度値とレーザーエネルギー強度との関係と、縞本数とレーザーエネルギー強度との関係とから、レーザーエネルギー強度の出力異常を即座に検知することが可能となる。   According to the inspection method and inspection apparatus 12 for the crystal film 10A described above, the density value distribution in the laser scanning direction is obtained particularly when the number of stripes is less than “1”. In other words, in the step of calculating the number of fringes, when the number of fringes is less than “1” by calculating only the stripe-like density change without calculating the density value distribution in the laser scanning direction and calculating the number of fringes. For the first time, the density value distribution in the laser scanning direction is obtained in the density value calculation step. Therefore, according to the present inspection method and the inspection apparatus 12, all the measurement points in the conventional technique are measured for the streaky scattered light by the first imaging system, and the streaky density change is measured by the second imaging system. Compared with technology, the processing tact can be reduced. In addition, it is possible to immediately detect an output abnormality of the laser energy intensity from the relationship between the density value in the laser scanning direction and the laser energy intensity and the relationship between the number of stripes and the laser energy intensity.

縞本数算出工程においては、レーザーエネルギー強度が最大の帯状部分の計測点から縞本数を抽出し、前記計測点からレーザー走査方向に沿った他の計測点であって、レーザーエネルギー強度が段階的に低くなる他の計測点にて縞本数を抽出する。このようにレーザー走査方向に沿った複数の計測点にて縞本数を抽出することが可能となる。したがって縞本数とレーザーエネルギー強度との関係を求めることが可能となる。またレーザーエネルギー強度が最大の帯状部分の計測点から縞本数を抽出した後、レーザーエネルギー強度が最小の帯状部分に至るまで、縞本数算出工程および濃度値算出工程の少なくともいずれか1つを行う。このように本実施形態によれば、従来技術に比べて、処理タクトの低減を実現することができる。   In the step of calculating the number of fringes, the number of fringes is extracted from the measurement point of the belt-shaped portion where the laser energy intensity is maximum, and the laser energy intensity is stepwise from other measurement points along the laser scanning direction from the measurement point. The number of stripes is extracted at other measurement points that become lower. Thus, the number of fringes can be extracted at a plurality of measurement points along the laser scanning direction. Therefore, the relationship between the number of stripes and the laser energy intensity can be obtained. In addition, after extracting the number of stripes from the measurement point of the belt-like portion having the maximum laser energy intensity, at least one of the stripe number calculating step and the density value calculating step is performed until reaching the belt-like portion having the minimum laser energy intensity. As described above, according to the present embodiment, it is possible to realize a reduction in processing tact as compared with the prior art.

また濃度値算出工程において、算出される濃度値が予め定める濃度しきい値未満のとき、計測対象である帯状部分の延在方向に位置の異なるレーザー走査方向の濃度値を算出する。これによって、前記レーザー走査方向の濃度値の分布を求める。このように算出される濃度値が予め定める濃度しきい値未満のとき、同一の延在方向位置におけるレーザー走査方向では、それ以降計測を行わない。換言すれば計測点数を削減することが可能となる。   Further, in the density value calculating step, when the calculated density value is less than a predetermined density threshold value, the density value in the laser scanning direction, the position of which is different in the extending direction of the band-like part to be measured, is calculated. Thereby, the distribution of density values in the laser scanning direction is obtained. When the density value calculated in this way is less than a predetermined density threshold value, no further measurement is performed in the laser scanning direction at the same extending direction position. In other words, the number of measurement points can be reduced.

本実施形態では、予め定める縞本数が「1」に設定されているが、予め定める縞本数は、必ずしも「1」に限定されるものではない。本発明の実施の他の形態として、縞本数を、光学倍率×5以外の撮像系を用いて撮像し算出することも可能である。ステップa6における撮像系を、光学倍率×0.5以外の撮像系にすることも可能である。本実施形態においては、一つの列での計測を終了すると隣接する次の列に計測ヘッドを移動させているが、計測ヘッドを移動させるべき列は、隣接する列に限定されるものではない。   In the present embodiment, the predetermined number of stripes is set to “1”, but the predetermined number of stripes is not necessarily limited to “1”. As another embodiment of the present invention, the number of stripes can be imaged and calculated using an imaging system other than optical magnification × 5. The imaging system in step a6 can be an imaging system other than optical magnification × 0.5. In this embodiment, when the measurement in one column is completed, the measurement head is moved to the next adjacent column. However, the column to which the measurement head is to be moved is not limited to the adjacent column.

本発明の実施の形態に係る結晶膜付き基板の結晶化度を計測する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the crystallinity degree of the board | substrate with a crystal film which concerns on embodiment of this invention. 照射対象に対しレーザーエネルギー強度を段階的に変えて、帯状にレーザー照射した結晶膜付き基板の一例を示す図である。It is a figure which shows an example of the board | substrate with a crystal film which changed the laser energy intensity | strength with respect to the irradiation object in steps, and irradiated the laser in the strip | belt shape. レーザーエネルギー強度に対する濃度値および縞本数の関係を示す図である。It is a figure which shows the relationship between the density value with respect to a laser energy intensity | strength, and the number of fringes. レーザーエネルギー強度に対する結晶化度および表面粗さの関係を示す図である。It is a figure which shows the relationship of the crystallinity degree and surface roughness with respect to a laser energy intensity | strength. 本発明の実施の形態に係る結晶膜の検査装置12の構成を概略示す図である。1 is a diagram schematically showing the configuration of a crystal film inspection apparatus 12 according to an embodiment of the present invention. 従来の結晶膜付き基板の結晶化度を計測する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the crystallinity degree of the board | substrate with a conventional crystal film. 従来技術に係り、照射対象に対しレーザーエネルギー強度を段階的に変えて、帯状にレーザー照射した結晶膜付き基板の一例を示す図である。It is a figure which shows an example of the board | substrate with a crystal film which concerns on the prior art and changed the laser energy intensity | strength with respect to the irradiation object in steps, and laser-irradiated in strip shape.

符号の説明Explanation of symbols

10 基板
10A 結晶膜
11 制御装置
12 検査装置
DESCRIPTION OF SYMBOLS 10 Substrate 10A Crystal film 11 Control apparatus 12 Inspection apparatus

Claims (5)

レーザーエネルギー強度がレーザー走査に伴って段階的に異なって成る結晶膜を厚み方向一方側から撮像した画像であって、レーザー走査方向に連なる複数列の帯状部分を有する前記画像のうち、筋状の濃度変化領域を縞本数として抽出してレーザー走査方向の縞本数の分布だけを求める縞本数算出工程と、
前記縞本数算出工程にて抽出されるべき縞本数が予め定める本数未満になったとき、この縞本数算出工程と異なる撮像系に切替えて撮像した画像について、レーザー走査方向の濃度値を算出し、レーザー走査方向の濃度値の分布を求める濃度値算出工程とを有することを特徴とする結晶膜の検査方法。
An image obtained by imaging a crystal film whose laser energy intensity varies stepwise with laser scanning from one side in the thickness direction, and having a plurality of rows of strip-shaped portions continuous in the laser scanning direction. A fringe number calculating step for extracting only the distribution of the number of fringes in the laser scanning direction by extracting the density change region as the number of fringes;
When the number of fringes to be extracted in the fringe number calculating step is less than a predetermined number, the density value in the laser scanning direction is calculated for an image captured by switching to an imaging system different from the fringe number calculating step, And a density value calculating step for obtaining a density value distribution in the laser scanning direction.
前記縞本数算出工程において、レーザーエネルギー強度が最大の帯状部分の計測点から縞本数を抽出し、前記計測点からレーザー走査方向に沿った他の計測点であって、レーザーエネルギー強度が段階的に低くなる他の計測点にて縞本数を抽出することを特徴とする請求項1に記載の結晶膜の検査方法。   In the step of calculating the number of fringes, the number of fringes is extracted from the measurement point of the belt-shaped portion where the laser energy intensity is maximum, and the other measurement points along the laser scanning direction from the measurement point. The method for inspecting a crystal film according to claim 1, wherein the number of fringes is extracted at another measurement point that becomes lower. レーザーエネルギー強度が最小の帯状部分に至るまで、縞本数算出工程および濃度値算出工程の少なくともいずれか1つを行うことを特徴とする請求項1または2に記載の結晶膜の検査方法。   3. The crystal film inspection method according to claim 1, wherein at least one of a fringe number calculation step and a concentration value calculation step is performed until the laser energy intensity reaches a strip-shaped portion. 前記濃度値算出工程において、算出される濃度値が予め定める濃度しきい値未満のとき、計測対象である帯状部分の延在方向に位置の異なるレーザー走査方向の濃度値を算出し、レーザー走査方向の濃度値の分布を求めることを特徴とする請求項1または2に記載の結晶膜の検査方法。   In the density value calculating step, when the calculated density value is less than a predetermined density threshold value, the density value in the laser scanning direction, the position of which is different in the extending direction of the band-shaped part to be measured, is calculated, and the laser scanning direction 3. The method for inspecting a crystal film according to claim 1, wherein a distribution of concentration values of the crystal is obtained. レーザーエネルギー強度がレーザー走査に伴って段階的に異なって成る結晶膜を厚み方向一方側から撮像した画像であって、レーザー走査方向に連なる複数列の帯状部分を有する前記画像のうち、筋状の濃度変化領域を縞本数として抽出してレーザー走査方向の縞本数の分布だけを求める縞本数算出手段と、
前記縞本数算出手段にて抽出されるべき縞本数が予め定める本数未満になったとき、この縞本数算出手段と異なる撮像系に切替えて撮像した画像について、レーザー走査方向の濃度値を算出し、レーザー走査方向の濃度値の分布を求める濃度値算出手段とを有することを特徴とする結晶膜の検査装置。
An image obtained by imaging a crystal film whose laser energy intensity varies stepwise with laser scanning from one side in the thickness direction, and having a plurality of rows of strip-shaped portions continuous in the laser scanning direction. A fringe number calculating means for extracting the density change region as the number of fringes and obtaining only the distribution of the number of fringes in the laser scanning direction;
When the number of fringes to be extracted by the fringe number calculating means is less than a predetermined number, the density value in the laser scanning direction is calculated for an image captured by switching to an imaging system different from the fringe number calculating means, An apparatus for inspecting a crystal film, comprising density value calculation means for obtaining a distribution of density values in a laser scanning direction.
JP2004217736A 2004-07-26 2004-07-26 Inspection method of crystal film and inspection device therefor Pending JP2006038587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217736A JP2006038587A (en) 2004-07-26 2004-07-26 Inspection method of crystal film and inspection device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217736A JP2006038587A (en) 2004-07-26 2004-07-26 Inspection method of crystal film and inspection device therefor

Publications (1)

Publication Number Publication Date
JP2006038587A true JP2006038587A (en) 2006-02-09

Family

ID=35903739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217736A Pending JP2006038587A (en) 2004-07-26 2004-07-26 Inspection method of crystal film and inspection device therefor

Country Status (1)

Country Link
JP (1) JP2006038587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061476A1 (en) * 2011-10-26 2013-05-02 シャープ株式会社 Polysilicon crystal film inspection method and inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061476A1 (en) * 2011-10-26 2013-05-02 シャープ株式会社 Polysilicon crystal film inspection method and inspection device

Similar Documents

Publication Publication Date Title
JP4135347B2 (en) Method for producing polysilicon film
KR100724648B1 (en) Manufacturing method for display device and manufacturing apparatus for the same
JP2006237525A (en) Laser irradiation method and equipment
JP4715016B2 (en) Method for evaluating polysilicon film
US8193008B2 (en) Method of forming semiconductor thin film and semiconductor thin film inspection apparatus
US6194023B1 (en) Method of manufacturing a poly-crystalline silicon film
JP4556302B2 (en) Thin film transistor manufacturing system and method, polysilicon evaluation method and polysilicon inspection apparatus
JP2006038587A (en) Inspection method of crystal film and inspection device therefor
JP2001308009A (en) Non-single crystal film, substrate therewith method and device for manufacturing the same, inspection device and method of inspecting the same, thin-film transistor formed by use thereof, thin-film transistor array and image display device
EP1115150B1 (en) Polysilicon evaluating method, polysilicon inspection apparatus and method for preparation of thin film transistor
JP3954488B2 (en) Crystal film inspection method and inspection apparatus
JP4556266B2 (en) Polysilicon evaluation method, polysilicon inspection apparatus, thin film transistor manufacturing method, and annealing treatment apparatus
JP4256123B2 (en) Crystal film inspection method and inspection apparatus
JP2010182841A (en) Method of forming semiconductor thin film and inspection device for semiconductor thin film
JP2003133560A (en) Method of manufacturing thin film transistor
JP5309059B2 (en) Method and apparatus for determining microcrystallization
TW202022363A (en) Monitoring system of laser polycrystallization apparatus
JP5878835B2 (en) Crystal film inspection method and inspection apparatus
JP4774598B2 (en) Polysilicon evaluation apparatus and thin film transistor manufacturing system
JP5453372B2 (en) Inspection method and inspection apparatus for polysilicon crystal film
JP2005072313A (en) Method and device for inspecting crystal film
JP2006032835A (en) Crystallized state measuring method and device
JP2005003566A (en) Inspection method and inspection device for crystal film
JP4770027B2 (en) Polysilicon evaluation method and thin film transistor manufacturing system and method
JP5034123B2 (en) Display device and manufacturing method thereof