JP2006036118A - Ship - Google Patents

Ship Download PDF

Info

Publication number
JP2006036118A
JP2006036118A JP2004221862A JP2004221862A JP2006036118A JP 2006036118 A JP2006036118 A JP 2006036118A JP 2004221862 A JP2004221862 A JP 2004221862A JP 2004221862 A JP2004221862 A JP 2004221862A JP 2006036118 A JP2006036118 A JP 2006036118A
Authority
JP
Japan
Prior art keywords
ship
degrees
hull
wind
bow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004221862A
Other languages
Japanese (ja)
Other versions
JP4401891B2 (en
Inventor
Yoshikazu Tanaka
良和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui OSK Lines Ltd
Original Assignee
Mitsui OSK Lines Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui OSK Lines Ltd filed Critical Mitsui OSK Lines Ltd
Priority to JP2004221862A priority Critical patent/JP4401891B2/en
Priority to KR1020040096004A priority patent/KR100609820B1/en
Publication of JP2006036118A publication Critical patent/JP2006036118A/en
Application granted granted Critical
Publication of JP4401891B2 publication Critical patent/JP4401891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/06Shape of fore part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/02Ventilation; Air-conditioning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce wind pressure resistance on a ship by providing a notch-stepped part in a corner part along the direction from the bow to the stern. <P>SOLUTION: A ship comprises a hull 11, notch-stepped parts 18a, (18b) formed on each corner part formed by an upper deck 14-1 of the hull and both side parts 16a, 16b along the direction from the bow to the stern, a ventilation unit 21 provided on at least one notch-stepped part, and a housing 24 in which the corner parts to cover the ventilation unit, formed by an upper surface and side surfaces, and located on the ship side parts 16a, 16b are formed on a first inclined surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、自動車専用船,コンテナ船等の貨物船、タンカー、客船等の船舶に関する。   The present invention relates to a cargo ship such as an automobile ship, a container ship, and a ship such as a tanker and a passenger ship.

図10に示すように、推進力Pで航走する船舶1が受ける抵抗は、水中抵抗と風圧抵抗に分けることができる。水中抵抗には、造波抵抗R1と摩擦抵抗R2とがあり、全抵抗のうち多くを占めている。このため、水中抵抗に関しては従来から研究され、その解析結果が現在の船舶の形状に反映されている。ところが、風圧抵抗R3に関しては軽視されており、風圧抵抗R3を軽減するような形状の改良がなされていないのが実情であった。   As shown in FIG. 10, the resistance received by the ship 1 sailing with the propulsive force P can be divided into underwater resistance and wind pressure resistance. The underwater resistance includes a wave forming resistance R1 and a frictional resistance R2, and occupies most of the total resistance. For this reason, underwater resistance has been studied from the past, and the analysis results are reflected in the current ship shape. However, the wind pressure resistance R3 is neglected, and the actual situation is that the shape is not improved so as to reduce the wind pressure resistance R3.

しかしながら、船舶1、特に風圧を受け易い水面上形状を有する自動車専用船,コンテナ船,タンカー等は、前方から風を受けると、その風の直接的な影響によって船速が低下するばかりでなく、風に起因する船体の姿勢変化(斜航)により水中抵抗が増加して、運行性能に影響を及ぼすことがあった。   However, the ship 1, especially a car-only ship, a container ship, a tanker, etc. having a water surface shape that is easily subjected to wind pressure, when receiving wind from the front, not only the ship speed decreases due to the direct influence of the wind, Underwater resistance may increase due to changes in the attitude of the hull caused by wind (sloped), which may affect operational performance.

例えば、図11に示すように、船舶1は、針路3に対して左斜め前から風2を受けた場合、左舷から右舷方向に横力Sが生じ、船体に時計方向の回転力を与えるヨーモーメントMが発生する。このヨーモーメントMに対抗して船首方位を針路3の方向に維持しようとすると当て舵4を取る必要がある。このときに舵4に働く水の力が抵抗となる。また船舶1は、横力を受けているため斜め(矢印5の方向)に進むことになる。このように斜航することによって船体に働く水中抵抗は増大する。このときの斜航角度αが大きいほど当て舵4量も大きく、また、船体が水から受ける抵抗も大きくなる。   For example, as shown in FIG. 11, when the ship 1 receives the wind 2 from the diagonally left front with respect to the course 3, a lateral force S is generated from the port side to the starboard side, and a yaw that imparts a clockwise rotational force to the hull. Moment M is generated. In order to counter the yaw moment M and maintain the heading in the direction of the course 3, it is necessary to take a guessing rudder 4. At this time, the water force acting on the rudder 4 becomes resistance. Further, since the ship 1 receives the lateral force, the ship 1 proceeds diagonally (in the direction of the arrow 5). The underwater resistance acting on the hull is increased by such a skew. At this time, the larger the tilt angle α, the larger the amount of the rudder 4 and the greater the resistance that the hull receives from the water.

この発明は、斜航角度を小さく、また船体に働く水中抵抗を小さくできるようにした船舶を提供しようとするものである。   An object of the present invention is to provide a ship capable of reducing a tilt angle and reducing underwater resistance acting on a hull.

この発明は、船体と、
この船体の上甲板と両舷側部とがなすそれぞれの角部に船首から船尾の方向に沿って形成された切欠段部と、
少なくとも一方の切欠段部に設けられた換気ユニットと、
この換気ユニットを覆うとともに上面と側面とがなす前記舷側部側に位置する角部が第1の傾斜面に形成されたハウジングと
を具備したことを特徴とする船舶にある。
The invention includes a hull,
A notch step formed along the direction from the bow to the stern at each corner formed by the upper deck and both sides of the hull,
A ventilation unit provided in at least one notch step, and
The ship has a housing that covers the ventilation unit and has a housing formed on the first inclined surface at a corner portion located on the side of the heel side formed by an upper surface and a side surface.

前記換気ユニットは、前記切欠段部の水平面に形成された開口部に対応する前記切欠段部の上面に設けられたベントダクトと、このベントダクトに対応する前記切欠段部の下面側に設けられた換気ファンとを備えていることが好ましい。   The ventilation unit is provided on a lower surface side of the notch step portion corresponding to the vent duct, and a vent duct provided on an upper surface of the notch step portion corresponding to an opening formed on a horizontal surface of the notch step portion. And a ventilation fan.

前記ハウジングの幅寸法は、前記切欠段部の幅寸法よりも小さく設定されていることが好ましい。   It is preferable that the width dimension of the housing is set smaller than the width dimension of the notch step portion.

船首部に、船首前縁上端から上甲板に向かって水平面に対して上向きの第2の傾斜面が形成されていることが好ましい。   It is preferable that a second inclined surface that is upward with respect to a horizontal plane from the upper end of the front edge of the bow toward the upper deck is formed on the bow.

前記切欠段部の上甲板からの深さを、バラスト積載時の乾舷に対して5〜20%に設定されることが好ましい。   It is preferable that the depth from the upper deck of the notch step portion is set to 5 to 20% with respect to the freeboard when the ballast is loaded.

前記第2の傾斜面の水平面に対する上向き角度を20〜60度に設定されることが好ましい。   The upward angle of the second inclined surface with respect to the horizontal plane is preferably set to 20 to 60 degrees.

この発明によれば、風圧による抵抗、横力、ヨーモーメントを軽減できる船体構造となるから、斜航角度が小さく、また船体に働く水中抵抗が小さい船舶を提供できる。   According to the present invention, since the hull structure can reduce the resistance, lateral force, and yaw moment due to wind pressure, it is possible to provide a ship with a small angle of skew and a low underwater resistance acting on the hull.

以下、この発明の実施の形態を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

この実施の形態は、この発明のうち全長にわたる切欠段部を自動車専用船に適用した場合であって、自動車専用船の船体概略図を図1に示し、船体の切欠段部を設けた部位を幅方向に切断したときの断面模式図を図2に示し、船首部の側面図及び上面図を図3(a),(b)に示す。   This embodiment is a case where the notch step portion over the entire length of the present invention is applied to an automobile ship, and a hull schematic diagram of the car ship is shown in FIG. FIG. 2 shows a schematic cross-sectional view when cut in the width direction, and FIGS. 3A and 3B show a side view and a top view of the bow.

この自動車専用船は、船体11の船首12から船尾13にわたって水平面にほぼ平行の複数の甲板14−1,14−2,14−3,…,14−nで仕切られた階層構造を有している。最上部の甲板、いわゆる上甲板14−1には、船首側に船楼15が設けられている。   This exclusive vehicle has a hierarchical structure partitioned by a plurality of decks 14-1, 14-2, 14-3,..., 14 -n substantially parallel to the horizontal plane from the bow 12 to the stern 13 of the hull 11. Yes. A superstructure 15 is provided on the bow side of the uppermost deck, so-called upper deck 14-1.

上甲板14−1と両舷側部16a,16bとを結ぶ両角部17a,17bに、それぞれ船首12から船尾13のほぼ全長にわたって切欠段部18a,18bが形成されている。船体の上甲板14−1からキール19までの深さをDとし、バラスト航海状態,つまり積荷が無く適当量のバラストを搭載して航海するときの喫水をd,乾舷をf(f=D−d)としたとき、両切欠段部18a,18bの上甲板14−1からの深さgは、前記乾舷fに対して5〜20%に設定されている。また、両切欠段部18a,18bの幅hは、深さgとほぼ等しくなるように設定されている。   Cutout step portions 18a and 18b are formed in both corner portions 17a and 17b connecting the upper deck 14-1 and both side portions 16a and 16b over substantially the entire length from the bow 12 to the stern 13, respectively. The depth from the upper deck 14-1 of the hull to the keel 19 is D, and the draft is f and f (f = D). -D), the depth g from the upper deck 14-1 of the notched step portions 18a and 18b is set to 5 to 20% with respect to the freeboard f. Moreover, the width h of both notch steps 18a and 18b is set to be substantially equal to the depth g.

因みに、この実施の形態では、両切欠段部18a,18bは、上甲板14−1から第2甲板14−2に亙って、積荷となる自動車1台分の幅で、方形状に切り欠くことによって形成されている。   Incidentally, in this embodiment, the two notch steps 18a and 18b are cut out in a square shape with a width corresponding to one automobile to be loaded from the upper deck 14-1 to the second deck 14-2. It is formed by.

船体11の船首12には、船首前縁上端12aから上甲板14−1に向かって上向きの第2の傾斜面20が形成されている。この第2の傾斜面20は、水平面に対する上向き角度が20〜60度(deg.)の幅で設定されている。好ましくは、積荷積載量等を考慮すると、ほぼ38度(deg.)がよい。   The bow 12 of the hull 11 is formed with a second inclined surface 20 that faces upward from the bow leading edge upper end 12a toward the upper deck 14-1. As for this 2nd inclined surface 20, the upward angle with respect to a horizontal surface is set by the width | variety of 20-60 degrees (deg.). Preferably, in consideration of the load capacity and the like, approximately 38 degrees (deg.) Is good.

一対の切欠段部18a,18bの船尾13側の部分には、それぞれ船体11の内部を換気するための複数の換気ユニット21(1つのみ図示)が設けられている。換気ユニット21は図4と図5に示すように切欠段部18a,18bの水平な上面に設けられたベントダクト22を有する。   A plurality of ventilation units 21 (only one is shown) for ventilating the interior of the hull 11 are provided at the stern 13 side portions of the pair of notch steps 18a and 18b. As shown in FIGS. 4 and 5, the ventilation unit 21 has a vent duct 22 provided on the horizontal upper surface of the notch steps 18 a and 18 b.

切欠段部18a,18bの水平面には開口部31が形成され、ベントダクト22はこの開口部31に対応する位置に設けられている。ベントダクト22は円筒状であって、開口した上面は蓋体22aによって開閉される。この蓋体22aはベントダクト22の上面開口を開放した所定の角度で保持可能となっている。   An opening 31 is formed in the horizontal plane of the notch steps 18 a and 18 b, and the vent duct 22 is provided at a position corresponding to the opening 31. The vent duct 22 has a cylindrical shape, and the opened upper surface is opened and closed by a lid 22a. The lid 22a can be held at a predetermined angle with the upper surface opening of the vent duct 22 opened.

上甲板14−1の切欠段部18a,18bの水平面に形成された部分の下面に対応する位置には、筒状のファンケース32が設けられている。このファンケース32内には換気ファン23が保持されている。換気ファン23を作動させれば、船体11の内部の換気を行なうことができる。   A cylindrical fan case 32 is provided at a position corresponding to the lower surface of the portion formed on the horizontal plane of the cutout step portions 18a and 18b of the upper deck 14-1. A ventilation fan 23 is held in the fan case 32. If the ventilation fan 23 is operated, the inside of the hull 11 can be ventilated.

換気ファン23を切欠段部18a,18bの下面に設けたことで、ベントダクト22の内部に設けた場合に比べ、ベントダクト22の高さ寸法を低くすることができる。   By providing the ventilation fan 23 on the lower surface of the notched step portions 18 a and 18 b, the height dimension of the vent duct 22 can be reduced as compared with the case where it is provided inside the vent duct 22.

換気ユニット21はハウジング24によって覆われている。ハウジング24は、切欠段部18a,18bの上面に立設された複数の脚部材25によって支持されている。ハウジング24の幅寸法は切欠段部18a,18bの幅寸法の約半分に設定されている。それによって、ハウジング24が切欠段部18a,18bの幅方向全長を塞ぐことがないようにしている。   The ventilation unit 21 is covered with a housing 24. The housing 24 is supported by a plurality of leg members 25 erected on the upper surfaces of the notch step portions 18a and 18b. The width dimension of the housing 24 is set to about half of the width dimension of the notch steps 18a and 18b. Accordingly, the housing 24 is prevented from blocking the entire length in the width direction of the notch step portions 18a and 18b.

ハウジング24の上面と両舷側部16a,16b側に位置する側面とがなす角部は第1の傾斜面26に形成されている。第1の傾斜面26の角度は45度程度が好ましく、この実施の形態では45度に設定されている。   A corner portion formed by the upper surface of the housing 24 and the side surfaces located on the both side portions 16 a and 16 b is formed in the first inclined surface 26. The angle of the first inclined surface 26 is preferably about 45 degrees, and is set to 45 degrees in this embodiment.

第1の傾斜面26の高さ寸法hは、できるだけ大きい方が好ましく、例えばハウジング24の高さ寸法Hの3分の2〜3分の1程度が好ましく、この実施の形態では約3分の1に設定されている。つまり、第1の傾斜面26の高さ寸法hは、ベントダクト22の蓋体22aの開閉に支障がない範囲で大きくすることが好ましく、大きくすることで、横風を受けたときの抵抗を低減することができる。   The height dimension h of the first inclined surface 26 is preferably as large as possible. For example, it is preferably about one-third to one-third of the height dimension H of the housing 24. In this embodiment, the height dimension h is about 3 minutes. 1 is set. That is, the height h of the first inclined surface 26 is preferably increased within a range that does not hinder the opening and closing of the lid 22a of the vent duct 22, and the resistance when subjected to cross wind is reduced by increasing the height h. can do.

ベントダクト22の高さ寸法を低くできたことで、それに応じてハウジング24の高さ寸法も低くすることができる。この実施の形態では、ハウジング24の高さ寸法は、切欠段部18a,18bの深さ(高さ)g、つまり上甲板14−1の最上面よりもわずかに低くなっている。   Since the height dimension of the vent duct 22 can be lowered, the height dimension of the housing 24 can be lowered accordingly. In this embodiment, the height dimension of the housing 24 is slightly lower than the depth (height) g of the notch steps 18a and 18b, that is, the uppermost surface of the upper deck 14-1.

この他の船体構造は、従来周知の自動車専用船と同じであり、ここでの詳細な説明は省略する。
次に、この実施の形態の船体構造を有する自動車専用船が風圧抵抗の軽減に効果があることを、風洞実験の結果と、CFD(Computational Fluid Dynamics)ソルバーを用いた数値解析の結果から説明する。
The other hull structure is the same as that of a conventionally well-known automobile-only ship, and a detailed description thereof is omitted here.
Next, it will be explained from the results of wind tunnel experiments and the results of numerical analysis using a CFD (Computational Fluid Dynamics) solver that the dedicated car having the hull structure of this embodiment is effective in reducing wind pressure resistance. .

因みに、風洞実験は、上流と下流に開口部を有する風路(高さ110m,幅480m,長さ600m)を造り、その内部に実験対象となる自動車専用船を船首が風路の上流側を向くように設置して、風路上流側から風向きが異なる風(相対風向=β)を適宜流すことにより、船体に生じる流体力を実測するというものである。   By the way, in the wind tunnel experiment, a wind channel (height 110m, width 480m, length 600m) with openings on the upstream and downstream sides was built, and the car dedicated ship to be tested was placed inside the wind tunnel on the upstream side of the wind channel. It is installed so as to face, and the fluid force generated in the hull is measured by appropriately flowing different wind directions (relative wind direction = β) from the upstream side of the wind path.

一方、CFDソルバーを用いた数値解析、いわゆるCFD解析は、風洞実験と同様の風路を計算機内の仮想空間内に形成し、その内部に実験対象となる自動車専用船を船首が風路の上流側を向くように設置して風路上流側から風向きが異なる風を流すというシミュレーションにより、船体に生ずる流体力を解析するというものである。このとき、風路壁面の摩擦はないものとし、また、風路入口からは完全な一様流が流入することにした。   On the other hand, numerical analysis using the CFD solver, so-called CFD analysis, forms a wind path similar to that of the wind tunnel experiment in a virtual space in the computer, and inside the virtual vehicle inside the experiment, the bow is located upstream of the wind path. The fluid force generated in the hull is analyzed by a simulation in which winds with different wind directions are flown from the upstream side of the wind path. At this time, it is assumed that there is no friction on the wall surface of the air passage, and a completely uniform flow flows from the air passage entrance.

実験対象となる自動車専用船の主要寸法を[表1]に示す。この[表1]は、実験対象となる自動車専用船の垂線間長Lpp、船幅B(mld.)、深さD(mld.)、バラスト積載時の喫水d、バラスト積載時の乾舷f、代表面積(=B×f)及び代表長さ(=Lpp)を示すものである。

Figure 2006036118
[Table 1] shows the main dimensions of the car carrier for the experiment. This [Table 1] shows the vertical length Lpp, the width B (mld.), The depth D (mld.), The draft d when ballast is loaded, and the freeboard f when ballast is loaded. , Representative area (= B × f) and representative length (= Lpp).
Figure 2006036118

風洞実験においては、前記主要寸法を有する従来構造の自動車専用船(以下、原型船と称する)と、この原型船に対して、深さgが2.2m(乾舷fに対して約8.6%)で幅が1.8mの各切欠段部18a,18bと、水平面に対する角度が38度(deg.)の第2の傾斜面20を形成したこの実施の形態の自動車専用船(以下、最終型船と称する)を用いた。   In the wind tunnel experiment, the depth g is 2.2 m (about 8. with respect to the freeboard f) with respect to the conventional automobile ship having the main dimensions (hereinafter referred to as a prototype ship) and the prototype ship. 6%) and the notch step portions 18a and 18b having a width of 1.8 m and the second inclined surface 20 having an angle with respect to the horizontal plane of 38 degrees (deg.) Are formed in the vehicle dedicated ship of this embodiment (hereinafter, Used as the final ship).

CFD解析においては、前記原型船及び最終型船に加えて、最終型船に対して第2の傾斜面20の角度のみそれぞれ20度(deg.),45度(deg.),60度(deg.)及び90度(deg.)に設定した自動車専用船を用いた。   In the CFD analysis, in addition to the prototype ship and the final ship, only the angle of the second inclined surface 20 with respect to the final ship is 20 degrees (deg.), 45 degrees (deg.), And 60 degrees (deg.), Respectively. .) And an automobile ship set at 90 degrees (deg.).

風洞実験及びCFD解析において得られる流体力は、実験対象となる自動車専用船の船体水線面の中央を原点とし、船体固定座標系における流体力としてまとめた。その座標系を図6に示す。得られた流体力は、次に示す無次元化係数によりまとめた。   The fluid force obtained in the wind tunnel experiment and CFD analysis is summarized as the fluid force in the hull fixed coordinate system, with the origin at the center of the hull waterline surface of the car dedicated to the experiment. The coordinate system is shown in FIG. The obtained fluid force was summarized by the following dimensionless coefficient.

抵抗係数:CFx=Fx/q・A
横力係数:CFy=Fy/q・A
ヨーモーメント係数:CMz=Mz/q・A・L
ここで、
q:動圧(=ρV/2)
ρ:空気密度
V:船に対する相対風速
A:代表面積(=船幅B×乾舷f)
L:代表長さ(=垂線長Lpp)である。
Resistance coefficient: CFx = Fx / q · A
Lateral force coefficient: CFy = Fy / q · A
Yaw moment coefficient: CMz = Mz / q · A · L
here,
q: dynamic pressure (= ρV 2/2)
ρ: Air density V: Relative wind speed with respect to the ship A: Representative area (= ship width B x freeboard f)
L: representative length (= perpendicular length Lpp).

最終型船に対する風洞実験の結果を[表2]に、原型船に対する風洞実験の結果を[表3]に、最終型船に対するCFD解析結果を[表4]に、原型船に対するCFD解析結果を[表5]にそれぞれ示す。[表2]〜[表5]は、各種の相対風向β度に対する抵抗係数CFx、横力係数CFy及びヨーモーメント係数CMzを示すものである。

Figure 2006036118
Table 2 shows the results of the wind tunnel test for the final model ship, Table 3 shows the results of the wind tunnel test for the prototype ship, Table 4 shows the CFD analysis results for the final model ship, and Table 3 shows the CFD analysis results for the prototype ship. Each is shown in [Table 5]. [Table 2] to [Table 5] show resistance coefficient CFx, lateral force coefficient CFy, and yaw moment coefficient CMz with respect to various relative wind directions β degrees.
Figure 2006036118

Figure 2006036118
Figure 2006036118

Figure 2006036118
Figure 2006036118

Figure 2006036118
Figure 2006036118

以下、これらの結果に基づいて、原型船と最終型船との各流体力係数について分析する。   Hereinafter, based on these results, each fluid force coefficient of the original ship and the final ship is analyzed.

(1)抵抗係数CFx
原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対する抵抗係数CFxの関係を、図7に示す。
(1) Resistance coefficient CFx
FIG. 7 shows the relationship of the resistance coefficient CFx with respect to the relative wind direction β of the wind tunnel test result and CFD analysis result for the prototype ship and the wind tunnel test result and CFD analysis result for the final ship.

風洞実験及びCFD解析によって得られた結果によると、解析を行なった全ての相対風向で、最終型船は原型船に対して抵抗係数CFxが小さな値を示した。CFD解析において、それぞれの相対風向での最終型船の原型船に対する抵抗係数CFxの軽減率は、相対風向0度(deg.)において約18%、相対風向20度(deg.)において約21%、相対風向30度(deg.)において約19%であった。また、風洞実験においても、相対風向0度(deg.)における軽減率は約20%、相対風向20度(deg.)おける軽減率は約20%、相対風向30度(deg.)における軽減率は約22%で、最終型船の方が原型船よりも抵抗係数CFxが軽減された。   According to the results obtained by the wind tunnel experiment and the CFD analysis, the final type ship showed a smaller resistance coefficient CFx than the original type ship in all the relative wind directions analyzed. In the CFD analysis, the reduction rate of the resistance coefficient CFx for the prototype ship of the final ship in each relative wind direction is about 18% at a relative wind direction of 0 degrees (deg.) And about 21% at a relative wind direction of 20 degrees (deg.). The relative wind direction was about 19% at 30 degrees (deg.). Also, in the wind tunnel experiment, the reduction rate at a relative wind direction of 0 degrees (deg.) Is about 20%, the reduction rate at a relative wind direction of 20 degrees (deg.) Is about 20%, and the reduction rate at a relative wind direction of 30 degrees (deg.). Was about 22%, and the resistance coefficient CFx of the final type ship was reduced compared to the original type ship.

CFD解析結果と風洞実験結果とを対比すると、CFD解析結果は風洞実験結果に比べて抵抗係数CFxが大きな値を示しているが、相対風向に対する軽減率は、定性的には比較的良好な一致を示した。   When the CFD analysis results and the wind tunnel test results are compared, the CFD analysis results show that the resistance coefficient CFx is larger than the wind tunnel test results, but the reduction rate relative to the relative wind direction is relatively good qualitatively. showed that.

(2)横力係数CFy
原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対する横力係数CFyの関係を、図8に示す。
(2) Lateral force coefficient CFy
FIG. 8 shows the relationship of the lateral force coefficient CFy with respect to the relative wind direction β in the wind tunnel test result and CFD analysis result for the prototype ship and the wind tunnel test result and CFD analysis result for the final ship.

風洞実験及びCFD解析によって得られた結果によると、解析を行なった全ての相対風向で、最終型船は原型船に対して横力係数CFyが小さな値を示した。CFD解析において、それぞれの相対風向での最終型船の原型船に対する横力係数CFyの軽減率は、相対風向20度(deg.)において約13%、相対風向30度(deg.)において約19%であった。また、風洞実験においても、相対風向20度(deg.)おける軽減率は約19%、相対風向30度(deg.)における軽減率は約21%で、軽減率に若干の違いはあるものの、最終型船の方が原型船よりも横力係数CFyが軽減された。   According to the results obtained by the wind tunnel experiment and CFD analysis, the final type ship showed a smaller lateral force coefficient CFy than the original type ship in all the relative wind directions analyzed. In the CFD analysis, the reduction rate of the lateral force coefficient CFy with respect to the prototype ship of the final type ship in each relative wind direction is about 13% at a relative wind direction of 20 degrees (deg.) And about 19 at a relative wind direction of 30 degrees (deg.). %Met. Also, in the wind tunnel experiment, the reduction rate at a relative wind direction of 20 degrees (deg.) Is about 19%, and the reduction rate at a relative wind direction of 30 degrees (deg.) Is about 21%, although there are some differences in the reduction rate. The lateral force coefficient CFy was reduced on the final type ship compared to the original type ship.

(3)ヨーモーメント係数CMz
原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対するヨーモーメント係数CMzの関係を、図9に示す。
(3) Yaw moment coefficient CMz
FIG. 9 shows the relationship between the relative wind direction β and the yaw moment coefficient CMz of the wind tunnel test result and CFD analysis result for the prototype ship and the wind tunnel test result and CFD analysis result for the final ship.

風洞実験及びCFD解析によって得られた結果によると、相対風向20度(deg.)以上で最終型船は原型船に対してヨーモーメント係数CMzが小さな値を示した。CFD解析において、それぞれの相対風向での最終型船の原型船に対するヨーモーメント係数CMzの軽減率は、相対風向20度(deg.)において約21%、相対風向30度(deg.)において約21%であった。また、風洞実験においても、相対風向20度(deg.)における軽減率は約12%、相対風向30度(deg.)における軽減率は約12%で、CFD解析結果の方が風洞実験結果よりも船型変更による違いを大きく評価しているが、いずれにしても、相対風向や形状の違いによるヨーモーメント係数CMzの大小関係はおよそ捉えることができている。   According to the results obtained by the wind tunnel experiment and CFD analysis, the final ship showed a smaller yaw moment coefficient CMz than the original ship at a relative wind direction of 20 degrees (deg.) Or more. In the CFD analysis, the reduction rate of the yaw moment coefficient CMz with respect to the prototype ship of the final type ship in each relative wind direction is about 21% at a relative wind direction of 20 degrees (deg.) And about 21 at a relative wind direction of 30 degrees (deg.). %Met. Also, in the wind tunnel experiment, the reduction rate at a relative wind direction of 20 degrees (deg.) Is about 12%, and the reduction rate at a relative wind direction of 30 degrees (deg.) Is about 12%. However, in any case, the magnitude relationship of the yaw moment coefficient CMz due to the difference in relative wind direction and shape can be roughly grasped.

次に、原型船及び最終型船について、CFD解析によって得られた風の流場情報を検討する。図6に示すように、針路をX方向に向けた原型船及び最終型船に対して左斜め前方(相対風向β=20度)より風Wを流すと、原型船と最終型船とは、船体右舷下流側に生じる、流速が遅くなる領域の広さに大きな違いがある。原型船では、船体によって作られた渦や剥離によって流速が遅くなる領域が船体右舷下流側に広がる。一般に、流速が遅くなる領域が広くなるほど風圧抵抗は大きくなる。最終型船は、船側部に形成された切欠段部18a,18bや船首部に形成された第2の傾斜面20によって、この流速が遅くなる領域が小さくなっており、抵抗改善の効果を覗うことができる。   Next, the wind flow field information obtained by CFD analysis is examined for the prototype ship and the final ship. As shown in FIG. 6, when the wind W is flowed from the diagonally left front (relative wind direction β = 20 degrees) with respect to the original ship and the final ship whose course is directed in the X direction, the original ship and the final ship are There is a big difference in the size of the area where the flow velocity is slowed down on the starboard downstream side. In the prototype ship, a region where the flow velocity becomes slow due to vortices and separation created by the hull extends to the hull starboard downstream. In general, the wind pressure resistance increases as the region where the flow velocity decreases becomes wider. In the final type ship, the region where the flow velocity becomes slow is reduced by the notched step portions 18a and 18b formed on the side of the ship and the second inclined surface 20 formed on the bow portion, and the effect of improving the resistance is observed. I can.

また、同じく左斜め前方(相対風向β=20度)から風を流したときの船首部の流速分布を見ると、原型船と最終型船とは、船首部上甲板面の流速に大きな違いがある。船首部上甲板面の流速を比較すると、原型船は最終型船に比べて非常に流速が遅い。原型船は、船首部のエッジ部分で流れが剥離したために流速が遅くなったと思われ、抵抗悪化の原因と認めることができる。最終型船は、船首部に水平面に対して上向きの第2の傾斜面20を形成しているので、この部分において流速が十分に速く剥離が発生し難いため、風圧抵抗を小さくできる。   Similarly, looking at the flow velocity distribution at the bow when the wind is flowing from the left front (relative wind direction β = 20 degrees), there is a big difference in the flow velocity of the upper deck surface between the prototype ship and the final ship. is there. Comparing the flow velocity on the upper deck surface of the bow, the flow rate of the original ship is much slower than that of the final ship. The prototype ship seems to have slowed the flow velocity due to the separation of the flow at the edge of the bow, which can be regarded as a cause of resistance deterioration. Since the final type ship has the second inclined surface 20 facing upward with respect to the horizontal plane at the bow portion, the flow velocity is sufficiently high in this portion and peeling is unlikely to occur, so that the wind pressure resistance can be reduced.

さらに、同じく左斜め前方(相対風向β=20度)から風を流したときの船側部の流速分布を見ると、原型船と最終型船とは、上甲板14−1上で発生する渦の有無に大きな違いがある。渦が発生した場合は、渦が発生しない場合と比べて、渦による2次流れによる損失が発生し、風圧抵抗増加の原因となる。原型船では、大きな渦が発生しているが、最終型船では大きな渦は発生していない。この効果は、最終型船が、船体の上甲板と両舷側部とを結ぶ両角部を切り欠いたことにより達成されていると思われる。   Furthermore, when looking at the velocity distribution on the side of the ship when the wind flows from the left front (relative wind direction β = 20 degrees), the prototype ship and the final ship have vortices generated on the upper deck 14-1. There is a big difference in existence. When the vortex is generated, a loss due to the secondary flow due to the vortex is generated as compared with the case where the vortex is not generated, which causes an increase in the wind pressure resistance. A large vortex is generated in the prototype ship, but no large vortex is generated in the final ship. This effect seems to be achieved by the fact that the final ship cut out both corners connecting the upper deck of the hull and both sides.

最終型船の船首部の第2の傾斜面20の水平線に対する角度をそれぞれ20度(deg.),45度(deg.),60度(deg.)及び90度(deg.)に設定した自動車専用船を用いてCFD解析を行なった結果を[表6]に示す。[表6]は、各種の傾斜面角度(船首傾斜角)毎に、相対風向20度(deg.)における抵抗係数CFx、横力係数CFy及びヨーモーメント係数CMzを示すものである。

Figure 2006036118
Automobiles whose angles with respect to the horizontal line of the second inclined surface 20 of the bow of the final type ship are set to 20 degrees (deg.), 45 degrees (deg.), 60 degrees (deg.) And 90 degrees (deg.), Respectively. The results of CFD analysis using a dedicated ship are shown in [Table 6]. [Table 6] shows the resistance coefficient CFx, lateral force coefficient CFy, and yaw moment coefficient CMz at a relative wind direction of 20 degrees (deg.) For each of various inclined surface angles (bow inclination angles).
Figure 2006036118

CFD解析によって得られた結果によると、抵抗係数CFxは、第2の傾斜面20の水平線に対する角度の増加とともに増加するが、角度が45度(deg.)以上になると抵抗係数CFxの増加が大きくなり、特に60度(deg.)を超え90度(deg.)の範囲ではその増加が顕著となる。一方、45度(deg.)以下の角度では大きな差はないことが確認できる。一方、横力係数CFy及びヨーモーメント係数CMzは、第2の傾斜面20の水平線に対する角度が異なっても、大きな差はないことが確認できる。   According to the result obtained by the CFD analysis, the resistance coefficient CFx increases as the angle of the second inclined surface 20 with respect to the horizontal line increases. However, when the angle becomes 45 degrees (deg.) Or more, the resistance coefficient CFx increases greatly. In particular, the increase becomes remarkable in the range exceeding 60 degrees (deg.) And 90 degrees (deg.). On the other hand, it can be confirmed that there is no significant difference at an angle of 45 degrees (deg.) Or less. On the other hand, it can be confirmed that the lateral force coefficient CFy and the yaw moment coefficient CMz are not significantly different even if the angle of the second inclined surface 20 with respect to the horizontal line is different.

さらに、第2の傾斜面20の角度が異なる各自動車専用船について、CFD解析によって得られた風の流場情報を検討する。第2の傾斜面20の水平面に対する角度が90度(deg.)の自動車専用船においては、前述の原型船と同様に、上甲板14−1上で流れが剥離している領域を確認することができる。第2の傾斜面20の角度が60度(deg.)の船においても若干の剥離の兆候を認めることができるが、第2の傾斜面20の角度が45度(deg.)以下では、剥離の兆候はほとんど見られない。すなわち、第2の傾斜面20の角度が45度(deg.)以下であれば、抵抗係数CFxに大きな違いはない。   Further, the wind flow field information obtained by the CFD analysis is examined for each automobile dedicated ship having a different angle of the second inclined surface 20. In an automobile-only ship having an angle of 90 degrees (deg.) With respect to the horizontal plane of the second inclined surface 20, the region where the flow is separated on the upper deck 14-1 is confirmed in the same manner as the prototype ship described above. Can do. Even in the case of a ship having an angle of the second inclined surface 20 of 60 degrees (deg.), Some signs of delamination can be observed, but if the angle of the second inclined surface 20 is 45 degrees (deg.) Or less, the peeling is performed. There are few signs of. That is, if the angle of the second inclined surface 20 is 45 degrees (deg.) Or less, there is no significant difference in the resistance coefficient CFx.

以上説明した風洞実験及びCFD解析の結果から、次のような事項を確認することができる。   The following matters can be confirmed from the results of the wind tunnel experiment and the CFD analysis described above.

(1) 最終型船は、原型船に対して抵抗係数CFxの軽減を達成できる。その軽減率は、相対風向β=0,20,30度(deg.)において、約20%程度である。   (1) The final type ship can achieve a reduction of the resistance coefficient CFx compared to the original type ship. The reduction rate is about 20% in the relative wind direction β = 0, 20, and 30 degrees (deg.).

(2) 最終型船は、原型船に対して横力係数CFyの軽減を達成できる。その軽減率は、相対風向β=20,30度(deg.)において、約20%程度である。   (2) The final ship can achieve a reduction in the lateral force coefficient CFy compared to the original ship. The reduction rate is about 20% at a relative wind direction β = 20, 30 degrees (deg.).

(3) 最終型船は、原型船に対してヨーモーメント係数CMzの軽減を達成できる。その軽減率は、相対風向β=20,30度(deg.)において、約10〜20%程度である。   (3) The final ship can achieve a reduction in the yaw moment coefficient CMz relative to the original ship. The reduction rate is about 10 to 20% at a relative wind direction β = 20, 30 degrees (deg.).

(4) 船首部に形成した第2の傾斜面20の水平面に対する角度と抵抗係数CFxとの関係は、角度の増加とともに増加し、角度が45度(deg.)以上になると抵抗係数CFxの増加が大きくなり、特に60度(deg.)を超え90(deg.)度の範囲ではその増加が顕著となるが、45度(deg.)以下の角度では大きな差はない。一方、横力係数CFyとヨーモーメント係数CMzとは、第2の傾斜面20の水平面に対する角度が異なっても大きな差がない。   (4) The relationship between the angle of the second inclined surface 20 formed on the bow and the horizontal plane and the resistance coefficient CFx increases as the angle increases. When the angle exceeds 45 degrees (deg.), The resistance coefficient CFx increases. Especially, the increase becomes remarkable in the range of more than 60 degrees (deg.) And 90 (deg.) Degrees, but there is no big difference at an angle of 45 degrees (deg.) Or less. On the other hand, there is no significant difference between the lateral force coefficient CFy and the yaw moment coefficient CMz even if the angle of the second inclined surface 20 with respect to the horizontal plane is different.

一方、船体11の幅方向両側に設けられた一対の切欠段部18a,18bには換気ユニット21が設けられ、この換気ユニット21はハウジング24によって覆われている。ハウジング24の上面と側面とがなす角部は第1の傾斜面26に形成されている。   On the other hand, a ventilation unit 21 is provided on the pair of notch steps 18 a and 18 b provided on both sides in the width direction of the hull 11, and the ventilation unit 21 is covered with a housing 24. A corner formed by the upper surface and the side surface of the housing 24 is formed in the first inclined surface 26.

船体11が斜め前方若しくは側方からの風、つまり横風を受けた場合、その横風はハウジング24の側面に当たる。ハウジング24の側面に当たる横風のほとんどは第1の傾斜面26に沿って流れる。そのため、ハウジング24に当たる風によって船体11の水中抵抗が増加するのを抑制することができる。   When the hull 11 receives wind from diagonally forward or from the side, that is, cross wind, the cross wind strikes the side surface of the housing 24. Most of the cross wind that hits the side surface of the housing 24 flows along the first inclined surface 26. Therefore, it is possible to suppress the underwater resistance of the hull 11 from increasing due to the wind hitting the housing 24.

つまり、換気ユニット21を覆うハウジング24の側面と上面とがなす角部を第1の傾斜面26としたことで、船体11が横風を受けたときに、ハウジング24によって生じる抵抗を低減することができる。   That is, the corner portion formed by the side surface and the upper surface of the housing 24 that covers the ventilation unit 21 is the first inclined surface 26, so that the resistance generated by the housing 24 when the hull 11 receives a crosswind can be reduced. it can.

換気ユニット21の換気ファン23を切欠段部18a,18bの下面に設けたことで、ベントダクト22の高さ寸法を低くすることができる。ベントダクト22の高さを低くできれば、ハウジング24の高さを低くすることができる。   By providing the ventilation fan 23 of the ventilation unit 21 on the lower surface of the notch steps 18a and 18b, the height of the vent duct 22 can be reduced. If the height of the vent duct 22 can be reduced, the height of the housing 24 can be reduced.

ハウジング24の高さを低くできれば、このハウジング24が横風を受けたときの抵抗が小さくなるから、そのことによっても、ハウジング24によって生じる船体11の水中抵抗を低減することができる。   If the height of the housing 24 can be reduced, the resistance when the housing 24 is subjected to a crosswind is reduced. Therefore, the underwater resistance of the hull 11 caused by the housing 24 can also be reduced.

ハウジング24の幅寸法は、切欠段部18a,18bの幅寸法の約半分に設定されている。そのため、ハウジング24は、切欠段部18a,18bの幅方向全長を塞ぐことがないから、切欠段部18a,18bに沿う風の流れを遮断するということがない。   The width dimension of the housing 24 is set to about half of the width dimension of the notch steps 18a and 18b. For this reason, the housing 24 does not block the entire length in the width direction of the cutout step portions 18a and 18b, and therefore does not block the flow of wind along the cutout step portions 18a and 18b.

ハウジング24が切欠段部18a,18bに沿う風の流れを遮断しなければ、これら切欠段部18a,18bによる上述した作用、つまり上甲板14−1で大きな渦が発生するのを抑制できるという作用が損なわれることがほとんどない。   If the housing 24 does not block the flow of the wind along the notched step portions 18a and 18b, the above-described operation by the notch step portions 18a and 18b, that is, the operation that the generation of a large vortex in the upper deck 14-1 can be suppressed. Is hardly compromised.

なお、この発明は、自動車専用船に限らず、コンテナ船などの貨物船や、タンカー、客船等にも適用することによって、風圧による抵抗,横力,ヨーモーメントの軽減を図ることができる。横力,ヨーモーメントを軽減することにより、斜航及び必要な当て舵量を小さくすることができ、それらによる水中抵抗も軽減できる。   Note that the present invention is not limited to a dedicated car ship, but can also be applied to cargo ships such as container ships, tankers, passenger ships, and the like, thereby reducing resistance, lateral force, and yaw moment due to wind pressure. By reducing the lateral force and yaw moment, it is possible to reduce the amount of tilting and the required rudder, and to reduce the underwater resistance.

また、前記実施の形態では、船体11の上甲板14−1と両舷側部16a,16bとを結ぶ両角部17a,17bに、それぞれ船首12から船尾13のほぼ全長にわたって切欠段部18a,18bを設けたが、同様な切欠段部を船首からほぼ船体中央部までの範囲にわたって設けるだけでもほぼ同様な作用効果を奏し得る。すなわち風圧下の斜航を減らすには、前述したように横力とヨーモーメントの少なくとも一方を減らすことができればよい。横力は、風を斜め前方から受けた場合には船体中央よりも前方(船首側)に作用する。横力の作用位置は、ヨーモーメントMzを横力Fyで除することによって求まる。例えば[表2]に示した最終型船に対する風洞実験結果から相対風向20度(deg.)の場合には、ヨーモーメント係数CMzが0.398であり、横力係数CFyが1.920であるので、横力作用位置(CMz/CFy)は0.21となる。すなわち、このとき横力は、船体中央より前方0.21Lの位置に働いていることになる。そこで、船体前半部に働く横力を軽減させれば、これによるヨーモーメントをより軽減できる可能性がある。このため、船体前半部だけに切欠段部を設置することも有効である。   Moreover, in the said embodiment, notch step part 18a, 18b is provided in the corner part 17a, 17b which connects the upper deck 14-1 of the hull 11 and both sides 16a, 16b over substantially the full length of the bow 12 from the stern 13, respectively. However, it is possible to obtain substantially the same operational effects only by providing the same notch step portion over the range from the bow to the center of the hull. In other words, in order to reduce the slanting under wind pressure, it is only necessary to reduce at least one of the lateral force and the yaw moment as described above. When the wind is received obliquely from the front, the lateral force acts more forward (bow side) than the center of the hull. The acting position of the lateral force is obtained by dividing the yaw moment Mz by the lateral force Fy. For example, in the case of a relative wind direction of 20 degrees (deg.) From the wind tunnel test results for the final type ship shown in [Table 2], the yaw moment coefficient CMz is 0.398 and the lateral force coefficient CFy is 1.920. Therefore, the lateral force acting position (CMz / CFy) is 0.21. That is, at this time, the lateral force works at a position 0.21L ahead of the center of the hull. Therefore, if the lateral force acting on the first half of the hull is reduced, there is a possibility that the resulting yaw moment can be further reduced. For this reason, it is also effective to install notch steps only in the first half of the hull.

また、一対の切欠段部18a,18bの両方に換気ユニットが設けられている場合について説明したが、一方の切欠段部だけに換気ユニットが設けられる場合であっても、この発明は適用できる。   Moreover, although the case where the ventilation unit was provided in both of a pair of notch step part 18a, 18b was demonstrated, this invention is applicable even when the ventilation unit is provided only in one notch step part.

この発明の一実施の形態である自動車専用船の船型概略図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 自動車専用船の船体の切欠段部を設けた部位を幅方向に切断したときの縦断面模式図。The longitudinal cross-sectional schematic diagram when the site | part which provided the notch step part of the hull of a motor vehicle exclusive ship was cut | disconnected in the width direction. 自動車専用船の船首部における側面図及び上面図。The side view and top view in the bow part of a motor vehicle special ship. 切欠段部に設けられたハウジングを示す斜視図。The perspective view which shows the housing provided in the notch step part. 切欠段部に設けられた換気ユニットを示す断面図。Sectional drawing which shows the ventilation unit provided in the notch step part. 風洞実験及びCFD解析の説明に用いる座標系を示す図。The figure which shows the coordinate system used for description of a wind tunnel experiment and CFD analysis. 原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対する抵抗係数CFxの関係を示す図。The figure which shows the relationship of the resistance coefficient CFx with respect to the relative wind direction (beta) of the wind tunnel test result and CFD analysis result with respect to a prototype ship, and the wind tunnel test result and CFD analysis result with respect to a final type ship. 原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対する横力係数CFyの関係を示す図。The figure which shows the relationship of the lateral force coefficient CFy with respect to the relative wind direction (beta) of the wind tunnel test result and CFD analysis result with respect to a prototype ship, and the wind tunnel test result and CFD analysis result with respect to a final type ship. 原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対するヨーモーメント係数CMzの関係を示す図。The figure which shows the relationship of the yaw moment coefficient CMz with respect to the relative wind direction (beta) of the wind tunnel test result and CFD analysis result with respect to a prototype ship, and the wind tunnel test result and CFD analysis result with respect to a final type ship. 船舶に作用する抵抗の説明図。Explanatory drawing of the resistance which acts on a ship. 風向きと船舶との関係を示す図。The figure which shows the relationship between a wind direction and a ship.

符号の説明Explanation of symbols

11…船体、12…船首、13…船尾、14−1…上甲板、15…船楼、16a,16b…舷側、17a,17b…角部、18a,18b…切欠段部、20…第2の傾斜面、21…換気ユニット、22…ベントダクト、23…換気ファン、24…ハウジング、26…第1の傾斜面、32…ファンケース。     DESCRIPTION OF SYMBOLS 11 ... Hull, 12 ... Bow, 13 ... Stern, 14-1 ... Upper deck, 15 ... Supermarket, 16a, 16b ... Minor side, 17a, 17b ... Corner, 18a, 18b ... Notch step, 20 ... Second Inclined surface, 21 ... ventilation unit, 22 ... vent duct, 23 ... ventilation fan, 24 ... housing, 26 ... first inclined surface, 32 ... fan case.

Claims (6)

船体と、
この船体の上甲板と両舷側部とがなすそれぞれの角部に船首から船尾の方向に沿って形成された切欠段部と、
少なくとも一方の切欠段部に設けられた換気ユニットと、
この換気ユニットを覆うとともに上面と側面とがなす前記舷側部側に位置する角部が第1の傾斜面に形成されたハウジングと
を具備したことを特徴とする船舶。
The hull,
A notch step formed along the direction from the bow to the stern at each corner formed by the upper deck and both sides of the hull,
A ventilation unit provided in at least one notch step, and
A ship that includes a housing that covers the ventilation unit and that has a corner formed on the first inclined surface on the side of the ridge that is formed by an upper surface and a side surface.
前記換気ユニットは、前記切欠段部の水平面に形成された開口部に対応する前記切欠段部の上面に設けられたベントダクトと、このベントダクトに対応する前記切欠段部の下面側に設けられた換気ファンとを備えていることを特徴とする請求項1記載の船舶。   The ventilation unit is provided on a lower surface side of the notch step portion corresponding to the vent duct, and a vent duct provided on an upper surface of the notch step portion corresponding to an opening formed on a horizontal surface of the notch step portion. The ship according to claim 1, further comprising a ventilation fan. 前記ハウジングの幅寸法は、前記切欠段部の幅寸法よりも小さく設定されていることを特徴とする請求項1記載の船舶。   The ship according to claim 1, wherein a width dimension of the housing is set smaller than a width dimension of the notch step portion. 船首部に、船首前縁上端から上甲板に向かって水平面に対して上向きの第2の傾斜面が形成されていることを特徴とする請求項1項記載の船舶。   The ship according to claim 1, wherein a second inclined surface is formed on the bow portion so as to be upward with respect to a horizontal plane from the upper end of the bow leading edge toward the upper deck. 前記切欠段部の上甲板からの深さを、バラスト積載時の乾舷に対して5〜20%に設定されることを特徴とする請求項1記載の船舶。   The ship according to claim 1, wherein the depth from the upper deck of the notch step portion is set to 5 to 20% with respect to the freeboard when the ballast is loaded. 前記第2の傾斜面の水平面に対する上向き角度を20〜60度に設定されることを特徴とする請求項4記載の船舶。   The ship according to claim 4, wherein an upward angle of the second inclined surface with respect to a horizontal plane is set to 20 to 60 degrees.
JP2004221862A 2004-07-29 2004-07-29 Ship Active JP4401891B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004221862A JP4401891B2 (en) 2004-07-29 2004-07-29 Ship
KR1020040096004A KR100609820B1 (en) 2004-07-29 2004-11-22 Ship for decreasing wind pressure resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221862A JP4401891B2 (en) 2004-07-29 2004-07-29 Ship

Publications (2)

Publication Number Publication Date
JP2006036118A true JP2006036118A (en) 2006-02-09
JP4401891B2 JP4401891B2 (en) 2010-01-20

Family

ID=35901562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221862A Active JP4401891B2 (en) 2004-07-29 2004-07-29 Ship

Country Status (2)

Country Link
JP (1) JP4401891B2 (en)
KR (1) KR100609820B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280067A (en) * 2008-05-21 2009-12-03 Kyokuyo Shipyard Co Ltd Low fuel consumption type transport ship
JP2013537140A (en) * 2010-09-16 2013-09-30 ヴォッベン プロパティーズ ゲーエムベーハー Ship with ventilation device
JP2015044539A (en) * 2013-08-29 2015-03-12 三菱重工業株式会社 Vent sleeve, ship, and opening and closing method of vent sleeve
JP2015074297A (en) * 2013-10-08 2015-04-20 株式会社大内海洋コンサルタント Stowage method on container ship
WO2017000973A1 (en) * 2015-06-30 2017-01-05 TECHNOLOG GmbH Handels- und Beteiligungsgesellschaft für Technologie Ship
JP2017024643A (en) * 2015-07-27 2017-02-02 サノヤス造船株式会社 Wind pressure resistance reduction device of ship and ship having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280067A (en) * 2008-05-21 2009-12-03 Kyokuyo Shipyard Co Ltd Low fuel consumption type transport ship
JP2013537140A (en) * 2010-09-16 2013-09-30 ヴォッベン プロパティーズ ゲーエムベーハー Ship with ventilation device
US9016223B2 (en) 2010-09-16 2015-04-28 Wobben Properties Gmbh Ship comprising a ventilation device
JP2015044539A (en) * 2013-08-29 2015-03-12 三菱重工業株式会社 Vent sleeve, ship, and opening and closing method of vent sleeve
CN104417742A (en) * 2013-08-29 2015-03-18 三菱重工业株式会社 Air funnel, ship and opening and closing method of air funnel
JP2015074297A (en) * 2013-10-08 2015-04-20 株式会社大内海洋コンサルタント Stowage method on container ship
WO2017000973A1 (en) * 2015-06-30 2017-01-05 TECHNOLOG GmbH Handels- und Beteiligungsgesellschaft für Technologie Ship
JP2017024643A (en) * 2015-07-27 2017-02-02 サノヤス造船株式会社 Wind pressure resistance reduction device of ship and ship having the same

Also Published As

Publication number Publication date
JP4401891B2 (en) 2010-01-20
KR100609820B1 (en) 2006-08-08
KR20060011771A (en) 2006-02-03

Similar Documents

Publication Publication Date Title
JP2009280067A (en) Low fuel consumption type transport ship
JP4401891B2 (en) Ship
KR20080092850A (en) Ship
CN112272637B (en) Small wind resistance ship
JP5638215B2 (en) Ship with low wind pressure resistance and its design method
KR20180090770A (en) Full ship
KR20030042415A (en) Bow form of ship
JP3841712B2 (en) Ship
JP4009643B2 (en) Ship bow shape
JP4297930B2 (en) Stern duct
Hasegawa et al. Study on the maneuverability of a large vessel installed with a mariner type Super VecTwin rudder
EP4122813A1 (en) Gate rudder provided with port rudder and starboard rudder disposed on either side of propeller of ship
JP4747685B2 (en) Twin-skeg ship propulsion performance improvement device
JP4216858B2 (en) Ship
JP4721836B2 (en) Ship
KR101886920B1 (en) Rudder for ship
JP5268999B2 (en) Ship
JP7473622B1 (en) Ships
JPH1129090A (en) Accommodation space shape of ship
KR102510333B1 (en) Hull with a ridge in the bottom region of the hull
WO2016158880A1 (en) Vessel
WO2023223617A1 (en) Ship
JP2024090410A (en) Ships
JP2554957Y2 (en) Bow thruster grid
JP4654014B2 (en) Large low-speed enlargement ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4401891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250