JP3841712B2 - Ship - Google Patents

Ship Download PDF

Info

Publication number
JP3841712B2
JP3841712B2 JP2002097833A JP2002097833A JP3841712B2 JP 3841712 B2 JP3841712 B2 JP 3841712B2 JP 2002097833 A JP2002097833 A JP 2002097833A JP 2002097833 A JP2002097833 A JP 2002097833A JP 3841712 B2 JP3841712 B2 JP 3841712B2
Authority
JP
Japan
Prior art keywords
ship
degrees
hull
wind
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002097833A
Other languages
Japanese (ja)
Other versions
JP2003291883A (en
Inventor
良和 田中
光一郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2002097833A priority Critical patent/JP3841712B2/en
Publication of JP2003291883A publication Critical patent/JP2003291883A/en
Application granted granted Critical
Publication of JP3841712B2 publication Critical patent/JP3841712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Description

【0001】
【発明の属する技術分野】
本発明は、自動車専用船,コンテナ船等の貨物船、タンカー、客船等の船舶に関する。
【0002】
【従来の技術】
図8に示すように、船舶1が航走時に受ける抵抗は、水中抵抗と風圧抵抗に分けることができる。水中抵抗には、造波抵抗と摩擦抵抗とがあり、全抵抗のうち多くを占めている。このため、水中抵抗に関しては従来から研究され、その解析結果が現在の船舶の形状に反映されている。ところが、風圧抵抗に関しては軽視されており、風圧抵抗を軽減するような形状の改良がなされていないのが実情であった。
【0003】
【発明が解決しようとする課題】
しかしながら、船舶1、特に風圧を受け易い水面上形状を有する自動車専用船,コンテナ船,タンカー等は、前方から風を受けると、その風の直接的な影響によって船速が低下するばかりでなく、風に起因する船体の姿勢変化(斜航)により水中抵抗が増加して、運行性能に影響を及ぼすことがあった。
【0004】
例えば、図9に示すように、船舶1は、針路3に対して左斜め前から風2を受けた場合、左舷から右舷方向に横力が生じ、船体に時計方向のヨーモーメント(回転力)が発生する。このヨーモーメントに対抗して船首方位を針路3の方向に維持しようとすると当て舵を取る必要がある。このときに舵に働く水の力が抵抗となる。また船舶1は、横力を受けているため斜め(矢印4の方向)に進むことになる。このように斜航することによって船体に働く水中抵抗は増大する。このときの斜航角度αが大きいほど当て舵量も大きく、また、船体が水から受ける抵抗も大きくなる。
【0005】
本発明はこのような事情に基づいてなされたもので、その目的とするところは、風圧による抵抗,横力,ヨーモーメントを軽減できる船体構造を有することで、斜航角度を小さく、また船体に働く水中抵抗を小さくできる船舶を提供しようとするものである。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、上記課題を解決し、目的を達成するために、船体の上甲板と両舷側部とを結ぶ両角部に、それぞれ船首から船尾のほぼ全長にわたって風圧抵抗低減用の切欠段部を設け、この切欠段部の上甲板からの深さを、バラスト積載時の乾舷に対して5〜20%に設定した船舶にある。
【0007】
また、請求項2に係る発明は、同様な風圧抵抗低減用の切欠段部を船首からほぼ船体中央部までの範囲にわたって設け、この切欠段部の上甲板からの深さを、バラスト積載時の乾舷に対して5〜20%に設定した船舶にある。
【0009】
また、請求項1または2記載の船舶において、請求項3に係る発明のように、船首部に、船首前縁上端から上甲板に向かって水平面に対して上向きの傾斜面を形成すると、より効果的である。
【0010】
この請求項3記載の船舶において、請求項4に係る発明のように、傾斜面の水平面に対する上向き角度を20〜60度に設定するとよい。
【0011】
また、好ましくは、請求項5に係る発明のように、傾斜面の水平面に対する上向き角度をほぼ38度に設定する。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
【0013】
この実施の形態は、本発明のうち全長にわたる切欠段部を自動車専用船に適用した場合であり、自動車専用船の船体概略図を図1に示し、船体の切欠段部を設けた部位を幅方向に切断したときの断面模式図を図2に示し、船首部の側面図及び上面図を図3に示す。
【0014】
この自動車専用船は、船体11の船首12から船尾13に亙って水平面にほぼ平行の複数の甲板14−1,14−2,14−3,…,14−nで仕切られた階層構造を有している。最上部の甲板,いわゆる上甲板14−1には、船首側に船楼15が設けられている。
【0015】
上甲板14−1と両舷側部16a,16bとを結ぶ両角部17a,17bに、それぞれ船首12から船尾13のほぼ全長にわたって風圧抵抗低減用の切欠段部18a,18bが形成されている。船体の上甲板14−1からキール19までの深さをDとし、バラスト航海状態,つまり積荷が無く適当量のバラストを搭載して航海するときの喫水をd,乾舷をf(f=D−d)としたとき、両切欠段部18a,18bの上甲板14−1からの深さgは、上記乾舷fに対して5〜20%に設定されている。また、両切欠段部18a,18bの幅hは、深さgとほぼ等しくなるように設定されている。
【0016】
因みに、この実施の形態では、両切欠段部18a,18bは、上甲板14−1から第2甲板14−2に亙って、積荷となる自動車1台分の幅で、方形状に切り欠くことによって形成されている。
【0017】
船体11の船首12には、船首前縁上端12aから上甲板14−1に向かって上向きの傾斜面20が形成されている。この傾斜面20は、水平面に対する上向き角度が20〜60度(deg.)の幅で設定されている。好ましくは、積荷積載量等を考慮すると、ほぼ38度(deg.)がよい。
【0018】
この他の船体構造は、従来周知の自動車専用船と同じであり、ここでの詳細な説明は省略する。
【0019】
次に、本実施の形態の船体構造を有する自動車専用船が風圧抵抗の軽減に効果があることを、風洞実験の結果と、CFD(Computational Fluid Dynamics)ソルバーを用いた数値解析の結果から説明する。
【0020】
因みに、風洞実験は、上流と下流に開口部を有する風路(高さ110m,幅480m,長さ600m)を造り、その内部に実験対象となる自動車専用船を船首が風路の上流側を向くように設置して、風路上流側から風向きが異なる風(相対風向=β)を適宜流すことにより、船体に生じる流体力を実測するというものである。
【0021】
一方、CFDソルバーを用いた数値解析,いわゆるCFD解析は、風洞実験と同様の風路を計算機内の仮想空間内に形成し、その内部に実験対象となる自動車専用船を船首が風路の上流側を向くように設置して風路上流側から風向きが異なる風を流すというシミュレーションにより、船体に生ずる流体力を解析するというものである。このとき、風路壁面の摩擦はないものとし、また、風路入口からは完全な一様流が流入することにした。
【0022】
実験対象となる自動車専用船の主要寸法を[表1]に示す。この[表1]は、実験対象となる自動車専用船の垂線長Lpp、船幅B(mld.)、深さD(mld.)、バラスト積載時の喫水d、バラスト積載時の乾舷f、代表面積(=B×f)及び代表長さ(=Lpp)を示すものである。
【0023】
【表1】

Figure 0003841712
【0024】
風洞実験においては、上記主要寸法を有する従来構造の自動車専用船(以下、原型船と称する)と、この原型船に対して、深さgが2.2m(乾舷fに対して約8.6%)で幅が1.8mの各切欠段部18a,18bと、水平面に対する角度が38度(deg.)の傾斜面20を形成した本実施の形態の自動車専用船(以下、最終型船と称する)を用いた。
【0025】
CFD解析においては、上記原型船及び最終型船に加えて、最終型船に対して傾斜面20の角度のみそれぞれ20度(deg.),45度(deg.),60度(deg.)及び90度(deg.)に設定した自動車専用船を用いた。
【0026】
風洞実験及びCFD解析において得られる流体力は、実験対象となる自動車専用船の船体水線面の中央を原点とし、船体固定座標系における流体力としてまとめた。その座標系を図4に示す。得られた流体力は、次に示す無次元化係数によりまとめた。
【0027】
抵抗係数:CFx=Fx/q・A
横力係数:CFy=Fy/q・A
ヨーモーメント係数:CMz=Mz/q・A・L
ここで、
q:動圧(=ρV/2)
ρ:空気密度
V:船に対する相対風速
A:代表面積(=船幅B×乾舷f)
L:代表長さ(=垂線長Lpp)である。
【0028】
最終型船に対する風洞実験の結果を[表2]に、原型船に対する風洞実験の結果を[表3]に、最終型船に対するCFD解析結果を[表4]に、原型船に対するCFD解析結果を[表5]にそれぞれ示す。[表2]〜[表5]は、各種の相対風向β度に対する抵抗係数CFx、横力係数CFy及びヨーモーメント係数CMzを示すものである。
【0029】
【表2】
Figure 0003841712
【0030】
【表3】
Figure 0003841712
【0031】
【表4】
Figure 0003841712
【0032】
【表5】
Figure 0003841712
【0033】
以下、これらの結果に基づいて、原型船と最終型船との各流体力係数について分析する。
【0034】
(1)抵抗係数CFx
原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対する抵抗係数CFxの関係を、図5に示す。
【0035】
風洞実験及びCFD解析によって得られた結果によると、解析を行なった全ての相対風向で、最終型船は原型船に対して抵抗係数CFxが小さな値を示した。CFD解析において、それぞれの相対風向での最終型船の原型船に対する抵抗係数CFxの軽減率は、相対風向0度(deg.)において約18%、相対風向20度(deg.)において約21%、相対風向30度(deg.)において約19%であった。また、風洞実験においても、相対風向0度(deg.)における軽減率は約20%、相対風向20度(deg.)おける軽減率は約20%、相対風向30度(deg.)における軽減率は約22%で、最終型船の方が原型船よりも抵抗係数CFxが軽減された。
【0036】
CFD解析結果と風洞実験結果とを対比すると、CFD解析結果は風洞実験結果に比べて抵抗係数CFxが大きな値を示しているが、相対風向に対する軽減率は、定性的には比較的良好な一致を示した。
【0037】
(2)横力係数CFy
原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対する横力係数CFyの関係を、図6に示す。
【0038】
風洞実験及びCFD解析によって得られた結果によると、解析を行なった全ての相対風向で、最終型船は原型船に対して横力係数CFyが小さな値を示した。CFD解析において、それぞれの相対風向での最終型船の原型船に対する横力係数CFyの軽減率は、相対風向20度(deg.)において約13%、相対風向30度(deg.)において約19%であった。また、風洞実験においても、相対風向20度(deg.)おける軽減率は約19%、相対風向30度(deg.)における軽減率は約21%で、軽減率に若干の違いはあるものの、最終型船の方が原型船よりも横力係数CFyが軽減された。
【0039】
(3)ヨーモーメント係数CMz
原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対するヨーモーメント係数CMzの関係を、図7に示す。
【0040】
風洞実験及びCFD解析によって得られた結果によると、相対風向20度(deg.)以上で最終型船は原型船に対してヨーモーメント係数CMzが小さな値を示した。CFD解析において、それぞれの相対風向での最終型船の原型船に対するヨーモーメント係数CMzの軽減率は、相対風向20度(deg.)において約21%、相対風向30度(deg.)において約21%であった。また、風洞実験においても、相対風向20度(deg.)における軽減率は約12%、相対風向30度(deg.)における軽減率は約12%で、CFD解析結果の方が風洞実験結果よりも船型変更による違いを大きく評価しているが、いずれにしても、相対風向や形状の違いによるヨーモーメント係数CMzの大小関係はおよそ捉えることができている。
【0041】
次に、原型船及び最終型船について、CFD解析によって得られた風の流場情報を検討する。図4に示すように、針路をX方向に向けた原型船及び最終型船に対して左斜め前方(相対風向β=20度)より風を流すと、原型船と最終型船とは、船体右舷下流側に生じる、流速が遅くなる領域の広さに大きな違いがある。原型船では、船体によって作られた渦や剥離によって流速が遅くなる領域が船体右舷下流側に広がる。一般に、流速が遅くなる領域が広くなるほど風圧抵抗は大きくなる。最終型船は、船側部に形成された切欠段部18a,18bや船首部に形成された傾斜面20によって、この流速が遅くなる領域が小さくなっており、抵抗改善の効果を覗うことができる。
【0042】
また、同じく左斜め前方(相対風向β=20度)から風を流したときの船首部の流速分布を見ると、原型船と最終型船とは、船首部上甲板面の流速に大きな違いがある。船首部上甲板面の流速を比較すると、原型船は最終型船に比べて非常に流速が遅い。原型船は、船首部のエッジ部分で流れが剥離したために流速が遅くなったと思われ、抵抗悪化の原因と認めることができる。最終型船は、船首部に水平面に対して上向きの傾斜面20を形成しているので、この部分において流速が十分に速く剥離が発生し難いため、風圧抵抗を小さくできる。
【0043】
さらに、同じく左斜め前方(相対風向β=20度)から風を流したときの船側部の流速分布を見ると、原型船と最終型船とは、上甲板14−1上で発生する渦の有無に大きな違いがある。渦が発生した場合は、渦が発生しない場合と比べて、渦による2次流れによる損失が発生し、風圧抵抗増加の原因となる。原型船では、大きな渦が発生しているが、最終型船では大きな渦は発生していない。この効果は、最終型船が、船体の上甲板と両舷側部とを結ぶ両角部を切り欠いたことにより達成されていると思われる。
【0044】
最後に、最終型船の船首部傾斜面20の水平線に対する角度をそれぞれ20度(deg.),45度(deg.),60度(deg.)及び90度(deg.)に設定した自動車専用船を用いてCFD解析を行なった結果を[表6]に示す。[表6]は、各種の傾斜面角度(船首傾斜角)毎に、相対風向20度(deg.)における抵抗係数CFx、横力係数CFy及びヨーモーメント係数CMzを示すものである。
【0045】
【表6】
Figure 0003841712
【0046】
CFD解析によって得られた結果によると、抵抗係数CFxは、傾斜面20の水平線に対する角度の増加とともに増加するが、角度が45度(deg.)以上になると抵抗係数CFxの増加が大きくなり、特に60度(deg.)を超え90度(deg.)の範囲ではその増加が顕著となる。一方、45度(deg.)以下の角度では大きな差はないことが確認できる。一方、横力係数CFy及びヨーモーメント係数CMzは、傾斜面20の水平線に対する角度が異なっても、大きな差はないことが確認できる。
【0047】
さらに、傾斜面20の角度が異なる各自動車専用船について、CFD解析によって得られた風の流場情報を検討する。傾斜面20の水平面に対する角度が90度(deg.)の自動車専用船においては、前述の原型船と同様に、上甲板14−1上で流れが剥離している領域を確認することができる。傾斜面20の角度が60度(deg.)の船においても若干の剥離の兆候を認めることができるが、傾斜面20の角度が45度(deg.)以下では、剥離の兆候はほとんど見られない。すなわち、傾斜面20の角度が45度(deg.)以下であれば、抵抗係数CFxに大きな違いはない。
【0048】
以上説明した風洞実験及びCFD解析の結果から、次のような事項を確認することができる。
【0049】
▲1▼ 最終型船は、原型船に対して抵抗係数CFxの軽減を達成できる。その軽減率は、相対風向β=0,20,30度(deg.)において、約20%程度である。
【0050】
▲2▼ 最終型船は、原型船に対して横力係数CFyの軽減を達成できる。その軽減率は、相対風向β=20,30度(deg.)において、約20%程度である。
【0051】
▲3▼ 最終型船は、原型船に対してヨーモーメント係数CMzの軽減を達成できる。その軽減率は、相対風向β=20,30度(deg.)において、約10〜20%程度である。
【0052】
▲4▼ 船首部に形成した傾斜面20の水平面に対する角度と抵抗係数CFxとの関係は、角度の増加とともに増加し、角度が45度(deg.)以上になると抵抗係数CFxの増加が大きくなり、特に60度(deg.)を超え90(deg.)度の範囲ではその増加が顕著となるが、45度(deg.)以下の角度では大きな差はない。一方、横力係数CFyとヨーモーメント係数CMzとは、傾斜面20の水平面に対する角度が異なっても大きな差がない。
【0053】
なお、本発明は、自動車専用船に限らず、コンテナ船などの貨物船や、タンカー,客船等にも適用することによって、風圧による抵抗,横力,ヨーモーメントの軽減を図ることができる。横力,ヨーモーメントを軽減することにより、斜航及び必要な当て舵量を小さくすることができ、それらによる水中抵抗も軽減できる。
【0054】
また、前記実施の形態では、船体11の上甲板14−1と両舷側部16a,16bとを結ぶ両角部17a,17bに、それぞれ船首12から船尾13のほぼ全長にわたって風圧抵抗低減用の切欠段部18a,18bを設けたが、同様な風圧抵抗低減用の切欠段部を船首からほぼ船体中央部までの範囲にわたって設けるだけでもほぼ同様な作用効果を奏し得る。
すなわち風圧下の斜航を減らすには、前述したように横力とヨーモーメントの少なくとも一方を減らすことができればよい。横力は、風を斜め前方から受けた場合には船体中央よりも前方(船首側)に作用する。横力の作用位置は、ヨーモーメントMzを横力Fyで除することによって求まる。
例えば[表2]に示した最終型船に対する風洞実験結果から相対風向20度(deg.)の場合には、ヨーモーメント係数CMzが0.398であり、横力係数CFyが1.920であるので、横力作用位置(CMz/CFy)は0.21となる。
すなわち、このとき横力は、船体中央より前方0.21Lの位置に働いていることになる。そこで、船体前半部に働く横力を軽減させれば、これによるヨーモーメントをより軽減できる可能性がある。このため、船体前半部だけに風圧抵抗低減用の切欠段部を設置することも有効である。
【0055】
【発明の効果】
以上詳述したように本発明によれば、風圧による抵抗,横力,ヨーモーメントを軽減できる船体構造を有し、斜航角度が小さく、また船体に働く水中抵抗が小さい船舶を提供できる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態である自動車専用船の船型概略図。
【図2】 同自動車専用船の船体の切欠段部を設けた部位を幅方向に切断したときの縦断面模式図。
【図3】 同自動車専用船の船首部における側面図及び上面図。
【図4】 風洞実験及びCFD解析の説明に用いる座標系を示す図。
【図5】 原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対する抵抗係数CFxの関係を示す図。
【図6】 原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対する横力係数CFyの関係を示す図。
【図7】 原型船に対する風洞実験結果及びCFD解析結果と、最終型船に対する風洞実験結果及びCFD解析結果の、相対風向βに対するヨーモーメント係数CMzの関係を示す図。
【図8】 船舶に作用する抵抗の説明図。
【図9】 風向きと船舶との関係を示す図。
【符号の説明】
11…船体
12…船首
13…船尾
14−1…上甲板
15…船楼
16a,16b…舷側
17a,17b…角部
18a,18b…切欠段部
20…傾斜面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cargo ship such as a car carrier, a container ship, a ship such as a tanker or a passenger ship.
[0002]
[Prior art]
As shown in FIG. 8, the resistance received by the ship 1 during traveling can be divided into underwater resistance and wind pressure resistance. Underwater resistance includes wave resistance and frictional resistance, and occupies most of the total resistance. For this reason, underwater resistance has been studied from the past, and the analysis results are reflected in the current ship shape. However, the wind pressure resistance is neglected, and the actual situation is that the shape has not been improved so as to reduce the wind pressure resistance.
[0003]
[Problems to be solved by the invention]
However, the ship 1, especially a car-only ship, a container ship, a tanker, etc. having a water surface shape that is easily subjected to wind pressure, not only receives a wind from the front, but the ship speed decreases due to the direct influence of the wind. Underwater resistance may increase due to changes in the attitude of the hull caused by wind (sloped), which may affect operational performance.
[0004]
For example, as shown in FIG. 9, when the ship 1 receives the wind 2 from the diagonally left front with respect to the course 3, a lateral force is generated from the port side to the starboard side, and a clockwise yaw moment (rotational force) is generated in the hull. Will occur. If it is attempted to maintain the heading in the direction of course 3 against this yaw moment, it is necessary to steer. At this time, the force of water acting on the rudder becomes resistance. Further, since the ship 1 receives the lateral force, the ship 1 moves diagonally (in the direction of the arrow 4). The underwater resistance acting on the hull is increased by such a skew. At this time, the larger the tilt angle α, the larger the amount of steering, and the greater the resistance the hull receives from the water.
[0005]
The present invention has been made based on such circumstances, and the object of the present invention is to have a hull structure that can reduce resistance, lateral force, and yaw moment due to wind pressure, thereby reducing the tilt angle and reducing the hull. It is intended to provide a ship that can reduce the working underwater resistance.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems and achieve the object, the invention according to claim 1 is provided with notches for reducing wind pressure resistance at both corners connecting the upper deck of the hull and both sides of the hull over almost the entire length from the bow to the stern. There is a stepped portion, and the depth from the upper deck of this notched stepped portion is in the ship set to 5 to 20% with respect to the freeboard at the time of ballast loading .
[0007]
Further, in the invention according to claim 2, a notch step portion for reducing wind pressure resistance is provided over a range from the bow to almost the center of the hull, and the depth from the upper deck of the notch step portion is set at the time of ballast loading. It is in the ship set to 5-20% with respect to psoriasis .
[0009]
In the ship according to claim 1 or 2 , as in the invention according to claim 3 , it is more effective if an inclined surface is formed on the bow portion that is upward from the upper edge of the front edge of the bow toward the upper deck. Is.
[0010]
In the ship according to claim 3 , as in the invention according to claim 4 , the upward angle of the inclined surface with respect to the horizontal plane is preferably set to 20 to 60 degrees.
[0011]
Preferably, as in the invention according to claim 5 , the upward angle of the inclined surface with respect to the horizontal plane is set to approximately 38 degrees.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
This embodiment is a case in which the notch step portion extending over the entire length of the present invention is applied to an automobile ship, and a hull schematic diagram of the automobile ship is shown in FIG. FIG. 2 shows a schematic cross-sectional view when cut in the direction, and FIG. 3 shows a side view and a top view of the bow portion.
[0014]
This automobile exclusive ship has a hierarchical structure partitioned by a plurality of decks 14-1, 14-2, 14-3,..., 14-n extending from the bow 12 to the stern 13 of the hull 11 and substantially parallel to the horizontal plane. Have. A superstructure 15 is provided on the bow side of the uppermost deck, so-called upper deck 14-1.
[0015]
Notched step portions 18a and 18b for reducing wind pressure resistance are formed on both corner portions 17a and 17b connecting the upper deck 14-1 and both side portions 16a and 16b over almost the entire length from the bow 12 to the stern 13, respectively. The depth from the upper deck 14-1 of the hull to the keel 19 is D, and the draft is f and f (f = D). -D), the depth g from the upper deck 14-1 of the notched step portions 18a and 18b is set to 5 to 20% with respect to the dry fridge f. Moreover, the width h of both notch steps 18a and 18b is set to be substantially equal to the depth g.
[0016]
Incidentally, in this embodiment, the two notch steps 18a and 18b are cut out in a square shape with a width corresponding to one automobile to be loaded from the upper deck 14-1 to the second deck 14-2. It is formed by.
[0017]
On the bow 12 of the hull 11, an upward inclined surface 20 is formed from the bow leading edge upper end 12a toward the upper deck 14-1. The inclined surface 20 is set so that the upward angle with respect to the horizontal plane is 20 to 60 degrees (deg.). Preferably, in consideration of the load capacity and the like, approximately 38 degrees (deg.) Is good.
[0018]
The other hull structure is the same as that of a conventionally well-known automobile-only ship, and a detailed description thereof is omitted here.
[0019]
Next, it will be explained from the results of wind tunnel experiments and the results of numerical analysis using a CFD (Computational Fluid Dynamics) solver that the dedicated car having the hull structure of this embodiment is effective in reducing wind pressure resistance. .
[0020]
By the way, in the wind tunnel experiment, a wind channel (height 110m, width 480m, length 600m) with openings on the upstream and downstream sides was built, and the car dedicated ship to be tested was placed inside the wind tunnel on the upstream side of the wind channel. It is installed so as to face, and the fluid force generated in the hull is measured by appropriately flowing different wind directions (relative wind direction = β) from the upstream side of the wind path.
[0021]
On the other hand, numerical analysis using the CFD solver, so-called CFD analysis, forms a wind path similar to the wind tunnel experiment in the virtual space inside the computer, and the dedicated vehicle for the experiment is placed in the upstream of the wind path. The fluid force generated in the hull is analyzed by a simulation in which winds with different wind directions are flown from the upstream side of the wind path. At this time, it is assumed that there is no friction on the wall surface of the air passage, and a completely uniform flow flows from the air passage entrance.
[0022]
[Table 1] shows the main dimensions of the car carrier for the experiment. This [Table 1] shows the normal length Lpp, the ship width B (mld.), The depth D (mld.), The draft d when loading the ballast, the freeboard f when loading the ballast, A representative area (= B × f) and a representative length (= Lpp) are shown.
[0023]
[Table 1]
Figure 0003841712
[0024]
In the wind tunnel experiment, the depth g is 2.2 m (about 8. with respect to the freeboard f) with respect to the conventional automobile ship (hereinafter referred to as a prototype ship) having the above main dimensions and the prototype ship. 6%) and a notch step portion 18a, 18b having a width of 1.8 m and an inclined plane 20 having an angle with respect to the horizontal plane of 38 degrees (deg.) (Hereinafter referred to as final type ship). Used).
[0025]
In the CFD analysis, in addition to the prototype ship and the final ship, only the angle of the inclined surface 20 with respect to the final ship is 20 degrees (deg.), 45 degrees (deg.), 60 degrees (deg.) And An automobile ship set at 90 degrees (deg.) Was used.
[0026]
The fluid force obtained in the wind tunnel experiment and CFD analysis is summarized as the fluid force in the hull fixed coordinate system, with the origin at the center of the hull waterline surface of the car dedicated to the experiment. The coordinate system is shown in FIG. The obtained fluid force was summarized by the following dimensionless coefficient.
[0027]
Resistance coefficient: CFx = Fx / q · A
Lateral force coefficient: CFy = Fy / q · A
Yaw moment coefficient: CMz = Mz / q · A · L
here,
q: dynamic pressure (= ρV 2/2)
ρ: Air density V: Relative wind speed A: Typical area (= ship width B × dry f)
L: representative length (= perpendicular length Lpp).
[0028]
Table 2 shows the results of the wind tunnel test for the final model ship, Table 3 shows the results of the wind tunnel test for the prototype ship, Table 4 shows the CFD analysis results for the final model ship, and Table 3 shows the CFD analysis results for the prototype ship. Each is shown in [Table 5]. [Table 2] to [Table 5] show resistance coefficient CFx, lateral force coefficient CFy, and yaw moment coefficient CMz with respect to various relative wind directions β degrees.
[0029]
[Table 2]
Figure 0003841712
[0030]
[Table 3]
Figure 0003841712
[0031]
[Table 4]
Figure 0003841712
[0032]
[Table 5]
Figure 0003841712
[0033]
Hereinafter, based on these results, each fluid force coefficient of the original ship and the final ship is analyzed.
[0034]
(1) Resistance coefficient CFx
FIG. 5 shows the relationship of the resistance coefficient CFx with respect to the relative wind direction β of the wind tunnel test result and CFD analysis result for the prototype ship and the wind tunnel test result and CFD analysis result for the final ship.
[0035]
According to the results obtained by the wind tunnel experiment and the CFD analysis, the final type ship showed a smaller resistance coefficient CFx than the original type ship in all the relative wind directions analyzed. In the CFD analysis, the reduction rate of the resistance coefficient CFx for the prototype ship of the final ship in each relative wind direction is about 18% at a relative wind direction of 0 degrees (deg.) And about 21% at a relative wind direction of 20 degrees (deg.). The relative wind direction was about 19% at 30 degrees (deg.). Also, in the wind tunnel experiment, the reduction rate at a relative wind direction of 0 degrees (deg.) Is about 20%, the reduction rate at a relative wind direction of 20 degrees (deg.) Is about 20%, and the reduction rate at a relative wind direction of 30 degrees (deg.). Was about 22%, and the resistance coefficient CFx of the final type ship was reduced compared to the original type ship.
[0036]
When the CFD analysis results and the wind tunnel test results are compared, the CFD analysis results show that the resistance coefficient CFx is larger than the wind tunnel test results, but the reduction rate relative to the relative wind direction is relatively good qualitatively. showed that.
[0037]
(2) Lateral force coefficient CFy
FIG. 6 shows the relationship of the lateral force coefficient CFy with respect to the relative wind direction β in the wind tunnel test results and CFD analysis results for the prototype ship, and the wind tunnel test results and CFD analysis results for the final ship.
[0038]
According to the results obtained by the wind tunnel experiment and CFD analysis, the final type ship showed a smaller lateral force coefficient CFy than the original type ship in all the relative wind directions analyzed. In the CFD analysis, the reduction rate of the lateral force coefficient CFy with respect to the prototype ship of the final type ship in each relative wind direction is about 13% at a relative wind direction of 20 degrees (deg.) And about 19 at a relative wind direction of 30 degrees (deg.). %Met. Also, in the wind tunnel experiment, the reduction rate at a relative wind direction of 20 degrees (deg.) Is about 19%, and the reduction rate at a relative wind direction of 30 degrees (deg.) Is about 21%, although there are some differences in the reduction rate. The lateral force coefficient CFy was reduced on the final type ship compared to the original type ship.
[0039]
(3) Yaw moment coefficient CMz
FIG. 7 shows the relationship of the yaw moment coefficient CMz to the relative wind direction β in the wind tunnel test result and CFD analysis result for the prototype ship, and the wind tunnel test result and CFD analysis result for the final ship.
[0040]
According to the results obtained by the wind tunnel experiment and CFD analysis, the final ship showed a smaller yaw moment coefficient CMz than the original ship at a relative wind direction of 20 degrees (deg.) Or more. In the CFD analysis, the reduction rate of the yaw moment coefficient CMz with respect to the prototype ship of the final type ship in each relative wind direction is about 21% at a relative wind direction of 20 degrees (deg.) And about 21 at a relative wind direction of 30 degrees (deg.). %Met. Also, in the wind tunnel experiment, the reduction rate at a relative wind direction of 20 degrees (deg.) Is about 12%, and the reduction rate at a relative wind direction of 30 degrees (deg.) Is about 12%. However, in any case, the magnitude relationship of the yaw moment coefficient CMz due to the difference in relative wind direction and shape can be roughly grasped.
[0041]
Next, the wind flow field information obtained by CFD analysis is examined for the prototype ship and the final ship. As shown in FIG. 4, when the wind is flowed from the left front side (relative wind direction β = 20 degrees) with respect to the original ship and the final ship whose course is directed in the X direction, the original ship and the final ship are There is a big difference in the size of the area where the flow velocity is slowed down on the starboard side. In the prototype ship, a region where the flow velocity becomes slow due to vortices and separation created by the hull extends to the hull starboard downstream. In general, the wind pressure resistance increases as the region where the flow velocity decreases becomes wider. In the final type ship, the region where the flow velocity becomes slow is reduced by the notched step portions 18a and 18b formed on the side of the ship and the inclined surface 20 formed on the bow portion, so that the effect of resistance improvement can be observed. it can.
[0042]
Similarly, looking at the flow velocity distribution at the bow when the wind is flowing from the left front (relative wind direction β = 20 degrees), there is a big difference in the flow velocity on the upper deck surface between the prototype ship and the final ship. is there. Comparing the flow velocity on the upper deck surface of the bow, the flow rate of the original ship is much slower than that of the final ship. The prototype ship seems to have slowed the flow velocity due to the separation of the flow at the edge of the bow, which can be regarded as a cause of resistance deterioration. Since the final type ship has an inclined surface 20 that is directed upward with respect to the horizontal plane at the bow, the flow velocity is sufficiently high at this portion, and separation is unlikely to occur, so that the wind pressure resistance can be reduced.
[0043]
Furthermore, when looking at the flow velocity distribution on the side of the ship when the wind flows from the left front (relative wind direction β = 20 degrees), the prototype ship and the final ship have vortices generated on the upper deck 14-1. There is a big difference in existence. When the vortex is generated, a loss due to the secondary flow due to the vortex is generated as compared with the case where the vortex is not generated, which causes an increase in the wind pressure resistance. A large vortex is generated in the prototype ship, but no large vortex is generated in the final ship. This effect seems to be achieved by the fact that the final ship cut out both corners connecting the upper deck of the hull and both sides.
[0044]
Lastly, the angle of the inclined surface 20 of the bow of the final type ship with respect to the horizontal line is set to 20 degrees (deg.), 45 degrees (deg.), 60 degrees (deg.) And 90 degrees (deg.), Respectively. The results of CFD analysis using a ship are shown in [Table 6]. [Table 6] shows the resistance coefficient CFx, lateral force coefficient CFy, and yaw moment coefficient CMz at a relative wind direction of 20 degrees (deg.) For each of various inclined surface angles (bow inclination angles).
[0045]
[Table 6]
Figure 0003841712
[0046]
According to the result obtained by the CFD analysis, the resistance coefficient CFx increases as the angle of the inclined surface 20 with respect to the horizontal line increases. However, when the angle exceeds 45 degrees (deg.), The resistance coefficient CFx increases greatly. The increase becomes remarkable in the range exceeding 60 degrees (deg.) And 90 degrees (deg.). On the other hand, it can be confirmed that there is no significant difference at an angle of 45 degrees (deg.) Or less. On the other hand, it can be confirmed that the lateral force coefficient CFy and the yaw moment coefficient CMz are not significantly different even when the angle of the inclined surface 20 with respect to the horizontal line is different.
[0047]
Furthermore, the wind flow field information obtained by the CFD analysis is examined for each automobile-only ship having a different angle of the inclined surface 20. In an automobile-only ship whose angle with respect to the horizontal surface of the inclined surface 20 is 90 degrees (deg.), The region where the flow is separated on the upper deck 14-1 can be confirmed, as in the above-described prototype ship. Although there are some signs of delamination even on ships with an angle of the inclined surface 20 of 60 degrees (deg.), Almost no signs of delamination are seen when the angle of the inclined surface 20 is 45 degrees (deg.) Or less. Absent. That is, if the angle of the inclined surface 20 is 45 degrees (deg.) Or less, there is no significant difference in the resistance coefficient CFx.
[0048]
The following matters can be confirmed from the results of the wind tunnel experiment and the CFD analysis described above.
[0049]
(1) The final ship can achieve a reduction in the resistance coefficient CFx compared to the original ship. The reduction rate is about 20% in the relative wind direction β = 0, 20, and 30 degrees (deg.).
[0050]
(2) The final ship can achieve a reduction in the lateral force coefficient CFy relative to the original ship. The reduction rate is about 20% at a relative wind direction β = 20, 30 degrees (deg.).
[0051]
(3) The final ship can achieve a reduction in the yaw moment coefficient CMz relative to the original ship. The reduction rate is about 10 to 20% at a relative wind direction β = 20, 30 degrees (deg.).
[0052]
(4) The relationship between the angle of the inclined surface 20 formed on the bow portion with respect to the horizontal plane and the resistance coefficient CFx increases as the angle increases, and when the angle exceeds 45 degrees (deg.), The increase in the resistance coefficient CFx increases. In particular, the increase becomes remarkable in the range of more than 60 degrees (deg.) And 90 (deg.) Degrees, but there is no significant difference at angles of 45 degrees (deg.) Or less. On the other hand, there is no significant difference between the lateral force coefficient CFy and the yaw moment coefficient CMz even if the angle of the inclined surface 20 with respect to the horizontal plane is different.
[0053]
Note that the present invention is not limited to an automobile-only ship, but can also be applied to cargo ships such as container ships, tankers, passenger ships, etc., thereby reducing resistance, lateral force, and yaw moment due to wind pressure. By reducing the lateral force and yaw moment, it is possible to reduce the amount of tilting and the required rudder, and to reduce the underwater resistance.
[0054]
Further, in the above-described embodiment, the notch steps for reducing wind pressure resistance are provided at both corners 17a and 17b connecting the upper deck 14-1 of the hull 11 and both side portions 16a and 16b over almost the entire length from the bow 12 to the stern 13, respectively. Although the portions 18a and 18b are provided, substantially the same operational effects can be obtained only by providing a similar notch step portion for reducing wind pressure resistance over the range from the bow to the center of the hull.
In other words, in order to reduce the slanting under wind pressure, it is only necessary to reduce at least one of the lateral force and the yaw moment as described above. When the wind is received obliquely from the front, the lateral force acts more forward (bow side) than the center of the hull. The acting position of the lateral force is obtained by dividing the yaw moment Mz by the lateral force Fy.
For example, in the case of a relative wind direction of 20 degrees (deg.) From the wind tunnel test results for the final type ship shown in [Table 2], the yaw moment coefficient CMz is 0.398 and the lateral force coefficient CFy is 1.920. Therefore, the lateral force acting position (CMz / CFy) is 0.21.
That is, at this time, the lateral force works at a position 0.21L ahead of the center of the hull. Therefore, if the lateral force acting on the first half of the hull is reduced, there is a possibility that the resulting yaw moment can be further reduced. For this reason, it is also effective to install a notch step for reducing wind pressure resistance only in the first half of the hull.
[0055]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a ship having a hull structure that can reduce resistance, lateral force, and yaw moment due to wind pressure, a small angle of skew, and a low underwater resistance acting on the hull.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a hull form of a dedicated automobile ship according to an embodiment of the present invention.
FIG. 2 is a schematic vertical cross-sectional view when a portion provided with a notch step portion of the hull of the car carrier is cut in the width direction.
FIGS. 3A and 3B are a side view and a top view of the bow portion of the car exclusive ship.
FIG. 4 is a diagram showing a coordinate system used for explanation of a wind tunnel experiment and CFD analysis.
FIG. 5 is a diagram showing a relationship of a resistance coefficient CFx with respect to a relative wind direction β of a wind tunnel test result and a CFD analysis result for a prototype ship, and a wind tunnel test result and a CFD analysis result for a final ship.
FIG. 6 is a diagram showing the relationship of the lateral force coefficient CFy with respect to the relative wind direction β in the wind tunnel test result and CFD analysis result for the prototype ship, and the wind tunnel test result and CFD analysis result for the final ship.
FIG. 7 is a diagram showing the relationship of the yaw moment coefficient CMz to the relative wind direction β in the wind tunnel test result and CFD analysis result for the prototype ship, and the wind tunnel test result and CFD analysis result for the final ship.
FIG. 8 is an explanatory diagram of resistance acting on a ship.
FIG. 9 is a diagram showing a relationship between a wind direction and a ship.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Hull 12 ... Bow 13 ... Stern 14-1 ... Upper deck 15 ... Superstructure 16a, 16b ... Side 17a, 17b ... Corner 18a, 18b ... Notch step 20 ... Inclined surface

Claims (5)

船体の上甲板と両舷側部とを結ぶ両角部に、それぞれ船首から船尾のほぼ全長にわたって風圧抵抗低減用の切欠段部を設け、この切欠段部の上甲板からの深さを、バラスト積載時の乾舷に対して5〜20%に設定したことを特徴とする船舶。At the corners connecting the upper deck of the hull and both sides of the hull, a notch step for reducing wind pressure resistance is provided over almost the entire length from the bow to the stern, and the depth from the upper deck of this notch step is measured when ballast is loaded. A ship characterized in that it is set to 5 to 20% with respect to the freeboard . 船体の上甲板と両舷側部とを結ぶ両角部に、それぞれ船首からほぼ船体中央部までの範囲にわたって風圧抵抗低減用の切欠段部を設け、この切欠段部の上甲板からの深さを、バラスト積載時の乾舷に対して5〜20%に設定したことを特徴とする船舶。At both corners connecting the upper deck and both sides of the hull , a notch step for reducing wind pressure resistance is provided over the range from the bow to the center of the hull, and the depth from the upper deck of this notch step, A ship characterized by being set to 5 to 20% with respect to the freeboard when the ballast is loaded . 船首部に、船首前縁上端から上甲板に向かって水平面に対して上向きの傾斜面を形成したことを特徴とする請求項1および請求項2のいずれかに記載の船舶。The ship according to any one of claims 1 and 2, wherein an inclined surface upward with respect to a horizontal plane is formed on the bow from the upper end of the front edge of the bow toward the upper deck. 前記傾斜面の水平面に対する上向き角度を20〜60度に設定したことを特徴とする請求項3記載の船舶。The ship according to claim 3, wherein an upward angle of the inclined surface with respect to a horizontal plane is set to 20 to 60 degrees. 前記傾斜面の水平面に対する上向き角度をほぼ38度に設定したことを特徴とする請求項3記載の船舶。The ship according to claim 3, wherein an upward angle of the inclined surface with respect to a horizontal plane is set to approximately 38 degrees.
JP2002097833A 2002-03-29 2002-03-29 Ship Expired - Lifetime JP3841712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097833A JP3841712B2 (en) 2002-03-29 2002-03-29 Ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097833A JP3841712B2 (en) 2002-03-29 2002-03-29 Ship

Publications (2)

Publication Number Publication Date
JP2003291883A JP2003291883A (en) 2003-10-15
JP3841712B2 true JP3841712B2 (en) 2006-11-01

Family

ID=29240150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097833A Expired - Lifetime JP3841712B2 (en) 2002-03-29 2002-03-29 Ship

Country Status (1)

Country Link
JP (1) JP3841712B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5986856B2 (en) * 2012-09-11 2016-09-06 三井造船株式会社 Commercial cargo ship
JP5858898B2 (en) * 2012-10-16 2016-02-10 株式会社新来島どっく Chip ship bow shape
JP2015074297A (en) * 2013-10-08 2015-04-20 株式会社大内海洋コンサルタント Stowage method on container ship

Also Published As

Publication number Publication date
JP2003291883A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
US8210116B2 (en) Watercraft with hull ventilation
US20070107646A1 (en) Transonic hull and hydrofield
JP2009280067A (en) Low fuel consumption type transport ship
KR20080092850A (en) Ship
WO2019235281A1 (en) Ship with little wind-pressure resistance
JP3571023B2 (en) Ship bow shape
JP2002154475A (en) Transom stern type stern shape and its wave making resistance reducing method
JP4401891B2 (en) Ship
JP3841712B2 (en) Ship
JP5638215B2 (en) Ship with low wind pressure resistance and its design method
JP4009643B2 (en) Ship bow shape
JP4297930B2 (en) Stern duct
Hasegawa et al. Study on the maneuverability of a large vessel installed with a mariner type Super VecTwin rudder
EP4122813A1 (en) Gate rudder provided with port rudder and starboard rudder disposed on either side of propeller of ship
JP4747685B2 (en) Twin-skeg ship propulsion performance improvement device
JP4938056B2 (en) Stern wave interference fin
KR101886920B1 (en) Rudder for ship
JP7473622B1 (en) Ships
WO2023223617A1 (en) Ship
JP2007522032A (en) Transonic hull and transonic hydrofield (III)
JP3356006B2 (en) Ship bow shape
TWI772675B (en) A hull in particular for a container ship, a bulk carrier or a tanker
JPH1129090A (en) Accommodation space shape of ship
JP3247970B2 (en) Hull structure of a trimaran
JP2000142553A (en) Enlarged ship

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Ref document number: 3841712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term