WO2019235281A1 - Ship with little wind-pressure resistance - Google Patents

Ship with little wind-pressure resistance Download PDF

Info

Publication number
WO2019235281A1
WO2019235281A1 PCT/JP2019/020880 JP2019020880W WO2019235281A1 WO 2019235281 A1 WO2019235281 A1 WO 2019235281A1 JP 2019020880 W JP2019020880 W JP 2019020880W WO 2019235281 A1 WO2019235281 A1 WO 2019235281A1
Authority
WO
WIPO (PCT)
Prior art keywords
hull
ship
angle
range
stern
Prior art date
Application number
PCT/JP2019/020880
Other languages
French (fr)
Japanese (ja)
Inventor
田中 良和
豪 谷口
校優 木村
剛大 池田
則道 浅沼
Original Assignee
商船三井テクノトレード株式会社
株式会社三井造船昭島研究所
株式会社商船三井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 商船三井テクノトレード株式会社, 株式会社三井造船昭島研究所, 株式会社商船三井 filed Critical 商船三井テクノトレード株式会社
Priority to CN201980037295.0A priority Critical patent/CN112272637B/en
Priority to KR1020207031722A priority patent/KR102438509B1/en
Publication of WO2019235281A1 publication Critical patent/WO2019235281A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/08Shape of aft part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B15/00Superstructures, deckhouses, wheelhouses or the like; Arrangements or adaptations of masts or spars, e.g. bowsprits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention particularly relates to a ship having a low wind pressure resistance against an oblique head wind, and more particularly to a ship having a reduced wind pressure resistance against an oblique head wind by devising the shape of the stern side of an upper structure such as a bridge or a residential area.
  • the shape of the stern side of the upper structure provided on the upper deck, or the stern side of the hull on the water surface In the shape of each cross section parallel to the water surface in the range of at least 0% to 50% of the vertical structure of the water surface structure, the maximum width B Compared to an isosceles trapezoid with the rearmost part at the stern side of the lower side of the base, the lower side length B1 being 0.9 ⁇ B, the base angle ⁇ 1 being 40 deg to 80 deg, and the upper side length B2 being 0.5 ⁇ B
  • the wind pressure area on the surface of the water is relatively large, and it is possible to reduce the influence of wind pressure on car carriers, container ships, passenger ships, etc. that are easily affected by wind pressure, and improve the ship's operational performance.
  • it has proposed a shape that prevents outflow vortices such as stagnant vortices and Karman vortices that occur in the dead water region behind the structures on the surface of the water, mainly for headwinds from the front.
  • the inventors of the present invention said that the ship's own ship speed and the wind speed of the natural wind are approximately the same during the navigation of the ship, and there is a high probability that the wind will be diagonally headwind when considered in the relative wind direction. Obtained knowledge. And by the results of wind tunnel experiments with diagonal headwinds, etc., especially the shape at the stern has a great influence on the wind pressure resistance, and by devising the shape of the outer structure of the ship's surface structure, without providing a sail in particular They also learned that thrust can be obtained when the wind is diagonally headwind.
  • the present invention has been made in view of the above situation, and the purpose thereof is relatively large in the wind pressure area on the water surface, and is easily affected by wind pressure in an automobile carrier ship, a passenger ship, a container ship, a wood carrier ship, etc.
  • An object of the present invention is to provide a ship with low wind pressure resistance that can improve the propulsion performance of the ship.
  • the ship with low wind pressure resistance according to the present invention for achieving the above object is a ship having a cruising speed of 0.13 to 0.30 in terms of fluid number, and an upper part provided on the hull on the water surface or on the upper deck.
  • a point on the hull center line at the rearmost portion of the stern side of the maximum width of the water surface structure is defined as a first position, and the space between the first position and the last tail of the hull
  • the first range on the stern side of the structure on the water surface is defined as a first range on the stern side, and a range of 50% or more and 100% or less in an arbitrary continuous portion in the vertical direction of the structure on the water surface is defined as a first range in the vertical direction.
  • a line extending at a first angle from a virtual point on the hull center line with respect to the bow direction in the front-rear direction of the hull is defined as a first inclined line, and from the virtual point Second angle with respect to the bow direction of the hull
  • the extending line is a second inclined line
  • the reason why the Froude number Fn of the ship targeted by the present invention is set to 0.13 to 0.30 is that the Froude number Fn is larger than 0.30. This is to distinguish the stealth technique from the stealth cover, because the entire hull may be covered and covered.
  • the stern shape of the hull on the water surface or at least one water surface structure of the upper structure provided on the upper deck has an angle ⁇ on one side of 40 degrees (degrees) to 80 degrees.
  • the wind at the stern is improved when the wind is diagonally headed, the flow of the structure on the surface of the water is smooth, and the portion of the structure on the surface of the water exerts the function of the wing to increase the lift.
  • the thrust of the ship can be obtained by the component of the lift in the longitudinal direction of the hull. The generation of lift and thrust has been confirmed by the results of wind tunnel experiments. Further, due to the obtuse stern side shape of the structure on the water surface, if the vessels have the same overall length, there is also an advantage that the volume increases and the load capacity increases accordingly.
  • the width of the unevenness is the maximum width of the structure on the water surface.
  • the width of the unevenness is the maximum width of the structure on the water surface.
  • the side wall portion that forms the stern side of the structure on the water surface is 30 degrees or more and 90 degrees or less with respect to the horizontal plane in the first range on the stern side and the first range on the upper and lower sides. If it is formed to have an inclination angle, the following effects can be obtained.
  • the corner portion between the stern side upper surface and the stern side wall portion forming the stern side of the structure on the water surface by inclining the side wall portion on the stern side at 30 degrees or more and 90 degrees or less with respect to the horizontal plane.
  • the hull when the hull is a structure on the water surface, 30% or more of the stern side of the structure on the water surface is a straight line in the first range on the stern side and the first range on the upper and lower sides.
  • the angle ⁇ 2 is 20 degrees
  • ⁇ 1 is 50 degrees
  • the third average angle ⁇ m has a relationship of ( ⁇ 1 ⁇ 2) ⁇ ⁇ m ⁇ ( ⁇ 1 + ⁇ 2).
  • the stern shape of the hull exhibits the wing shape rear end effect, While suppressing an increase in wind pressure resistance of the entire ship in the wind, it is possible to improve the propulsion performance resulting from the generation of lift.
  • the overall shape of the loaded cargo can be matched to the stern shape of the hull or similar, so that In addition to the rear end effect of the wing shape, the rear end effect of the wing shape can be exhibited also in the shape of the cargo on the upper deck as a whole.
  • the wind pressure area on the surface of the water is relatively large, and in the automobile carrier ship, passenger ship, container ship, timber carrier ship, etc. that are easily affected by the wind pressure, the influence of the diagonally headwind is reduced.
  • To improve the propulsion performance of the ship by generating lift from the surface structure formed by the hull or superstructure and loaded cargo such as containers, and obtaining thrust from the longitudinal components of this hull Can be obtained, and the propulsion performance of the ship can be improved. As a result, fuel consumption can be improved and energy saving can be achieved.
  • FIG. 1 is a view of a ship according to the first embodiment of the present invention as seen from the rear above a diagonal port.
  • FIG. 2 is a side view of the rear side of the hull as a structure on the water surface in the ship of FIG.
  • FIG. 3 is a plan view showing a stern side shape of a horizontal section of a hull as a structure on the water surface in the ship of FIG.
  • FIG. 4 is a right side view of the ship according to the second embodiment of the present invention.
  • FIG. 5 is a view of the upper structure as the water surface structure in the ship of FIG.
  • FIG. 6 is a right side view of the stern portion of the ship of FIG.
  • FIG. 7 is a horizontal sectional view of the stern portion of the ship of FIG.
  • FIG. 1 is a view of a ship according to the first embodiment of the present invention as seen from the rear above a diagonal port.
  • FIG. 2 is a side view of the rear side of the hull as a structure on the
  • FIG. 8 is a schematic plan view showing a relationship in angle between the rear side wall portion of the upper structure of the ship of FIG. 4 and the side wall portion of the hull in plan view.
  • FIG. 9 is a right side view of the ship according to the third embodiment of the present invention.
  • FIG. 10 is a schematic plan view showing a relationship of angles in a plan view of the side wall portion of the hull in the ship of FIG.
  • the ship 1 of the first embodiment is an example of an automobile carrier ship.
  • the upper deck 3, which is the uppermost deck, has a plurality of decks, and is provided with a mast 4 and a chimney 5, but is not provided with a bridge such as a bridge or a residential area.
  • the bridge and the residential area are provided below the upper deck 3, and nothing projecting as much as possible above the upper deck 3 is provided to reduce wind pressure resistance.
  • the bridge is provided in the bow portion that is well-viewed below the upper deck 3, and the residential area is provided on the stern side near the engine room with the engine.
  • a bow valve 2a is provided on the bow side, and a propeller 6 and a rudder 7 are provided on the stern side.
  • a 1-axis 1 rudder is used, but the present invention is not limited to this, and a 2-axis 2-rudder multi-axis ship or the like may be used.
  • an inclined surface 3a that faces upward from the upper end of the front edge of the bow toward the upper deck 3 is formed at the bow.
  • the inclined surface 3a is formed so that the upward angle with respect to the horizontal plane is 20 degrees (degrees) to 60 degrees, and preferably 38 degrees.
  • a notch 9 is provided at the corner formed by the upper deck 3 and the side 8 of the hull 2 over the entire length from the bow to the stern. As shown in FIG. 1, this notch 9 is 5 to 20% of the freeboard fb in the ballast state obtained by subtracting the ballast draft db from the depth D from the upper deck to the bottom of the ship (the keel line) in the center of the hull. It is formed having a depth ds and a width bs. For example, it is formed by cutting out into a square shape with a width of one or two cars to be loaded.
  • the notch step portion 9 suppresses the separation and vortex generation at the corner portion connecting the upper deck 3 and the heel side portion 8 with respect to the oblique wind, thereby reducing the resistance, lateral force, and yaw moment due to the wind pressure. .
  • the cut-out step 9 has a great effect when it is provided over almost the entire length from the bow to the stern, but it may be provided over a range from the bow to almost the center of the hull.
  • the opening part for the lampway for performing the cargo handling of a motor vehicle, and its door 10 are provided in the stern of the part on the water surface (structure on water surface) of the side part 8 of the hull 2. . Moreover, you may provide the opening part for the lampway for performing the cargo handling of a motor vehicle, and its door also in the side part 8 near the center part of the hull 2.
  • a point on the hull center line Lc at the stern side rearmost portion of the maximum width Bmax of the hull 2 is defined as a first position P1.
  • the stern side first range Rx1 is defined between the first position P1 and the rearmost Pa of the hull 2.
  • a range of 50% or more and 100% or less, preferably 40% or more and 100% or less, in an arbitrary continuous portion in the vertical direction of the water surface structure 2 is defined as a first vertical range Rz1.
  • the stern-side first range Rx1 of the water surface structure 2 and the first vertical range Rz1 are defined as the stern specific range Sa1 (cross-hatched portion in FIGS. 1 and 2). Note that the entire vertical range is the bottom of the water surface, up to the top of the hull 2 excluding the mast 4 and chimney 5, and up to the top of the upper structure (not shown). To do.
  • first angle ⁇ 1 is 50 degrees (preferably 55 degrees)
  • second angle ⁇ 2 is 80 degrees, preferably 65 degrees
  • a space between the first inclined line L1 and the second inclined line L2 is defined as a sector area R ⁇ (z).
  • the horizontal section Sh (z) A virtual line in which an external line Ls (z) having a length of 50% or more and 100% or less, preferably 60% or more and 100% or less of the length of the external line Ls (z) enters the sector region R ⁇ (z). It is configured so that the position of the point P2 (z) exists.
  • the horizontal cross section Sh (z) is located inside the sector region R ⁇ (z) having the virtual point P2 (z) as a vertex.
  • the outer shape Ls (z) has a length of 50% to 100%, preferably 60% to 100%.
  • the stern shape of the structure on the surface of the hull 2 on the surface of the water is a relatively wide open V having an angle ⁇ on one side of 40 degrees (degrees) to 80 degrees, preferably 55 degrees to 65 degrees. It can be a letter shape. With this stern shape, the flow at the stern is similar to the flow at the rear end of the wing, and lift can be generated in the same direction as the wing when the wind is diagonally headed.
  • the hull 2 having the stern shape improves the draft of the wind at the stern when the wind is diagonally headwind, and the flow toward the rear of the water surface structure 2 is smooth.
  • the function of the wing can be demonstrated to generate lift.
  • the thrust of the ship 1 can be obtained by the component in the longitudinal direction X of the hull 2 of this lift. The generation of lift and thrust has been confirmed by the results of wind tunnel experiments.
  • the generation of vortex in the stern part of the hull 2 is reduced, and the hull side due to the wind in this part is reduced.
  • the wind force in the direction Y can be reduced, and the turning moment due to the wind acting on the hull 2 can be reduced.
  • the rudder angle for canceling the turning moment can be reduced, the propulsion efficiency can be improved from this aspect, and the maneuverability can also be improved.
  • the side wall 8 (side portion) of the stern specific range Sa1 that forms the stern side of the structure 2 on the water surface has a width of unevenness in the shape of each horizontal cross section Sh (z) of the upper and lower first range Rz1. It is preferable to form a smooth curved portion having a maximum width Bmax of 5% or less, a straight portion having an uneven width of 5% or less of the maximum width Bmax of the hull 2, or a combination of both. By adopting this configuration, it is possible to suppress the occurrence of a large vortex due to separation in the flow at the curved portion or the straight portion.
  • the side wall portion 8 forming the stern side of the structure 2 on the water surface has an inclination angle ⁇ of 30 degrees or more and 90 degrees or less with respect to the horizontal plane in the stern side first range Rx1 and the first vertical range Rz1. If it forms in this, the eddy current which arises in the corner
  • this side wall part 8 is formed in the curved surface shape where the whole on the water surface or a part on the upper side protrudes outward, the air flow that has flowed above the water surface structure 2 (the upper surface of the deck or the bridge, etc.) Further, it may be lowered along the curved surface of the side wall portion 8 so that an increase in resistance due to generation of a vortex or the like can be suppressed.
  • the angle between the tangent surface at each point on the curved surface and the horizontal plane is defined as an inclination angle ⁇ .
  • the inclination angle ⁇ is smaller than 30 degrees, the lower part of the stern side part will extend greatly in the stern direction, and if it is larger than 90 degrees, it becomes impractical. Furthermore, eddy currents can be more effectively suppressed by providing chamfering or rounding at the corners of the upper deck 3 and the side wall 8.
  • the ship 1A of the second embodiment is an example of a cargo ship (in this case, a bulker), and has a bridge 21 and a residential area on the upper deck 3 of the stern part.
  • This is a stern funnel ship in which an upper structure 20 having 22 is arranged.
  • a ship having a stern living area such as a bulker, a tanker, and a general cargo ship is given as an example.
  • a mast 4 and a chimney 5 are provided on the upper surface of the upper structure 20, and a navigation wing (dodger) 21 a, which is a portion projecting to the ship side with a part of the deck of the navigation bridge on both sides of the bridge 21. Is provided.
  • the water surface structure 20 that is the upper structure 20 provided on the upper deck 3, on the hull center line Lc at the stern side rearmost portion of the maximum width Bmax of the upper structure 20.
  • a point is defined as a first position P1
  • a stern side first range Rx1 is defined between the first position P1 and the last tail Pa of the hull 2.
  • the range of 50% or more and 100% or less, preferably 40% or more and 100% or less in the vertical direction of the water surface structure 20 is defined as the first vertical range Rz1.
  • the entire range in the vertical direction is from the lower end of the upper structure 20, that is, from the upper surface of the upper deck 3 to the uppermost part of the upper structure 20 excluding the mast 4 and the chimney 5.
  • the stern side first range Rx1 of the water surface structure 20 and the first vertical range Rz1 are defined as the stern specific range Sa1 (cross-hatched portion in FIGS. 4 to 6).
  • the horizontal cross section Sh (z) parallel to the water surface in the stern specific range Sa1 is the first to the bow direction (plus X direction) in the front-rear direction X of the hull 2 from the virtual point P2 (z) on the hull center line Lc.
  • a line extending at one angle ⁇ 1 is defined as a first inclined line L1
  • a line extending at a second angle ⁇ 2 with respect to the bow direction (plus X direction) in the longitudinal direction X of the hull 2 from the virtual point P2 (z) is defined as a second inclined line.
  • first angle ⁇ 1 is 50 degrees (preferably 55 degrees)
  • second angle ⁇ 2 is 80 degrees, preferably 65 degrees.
  • a space between the first inclined line L1 and the second inclined line L2 is defined as a sector area R ⁇ (z).
  • the horizontal section Sh (z) The outline Ls (z) having a length of 50% to 100%, preferably 60% to 100% of the length of the outline Ls (z) is in the sector region R ⁇ (z). It is configured so that the position of the virtual point P2 (z) exists. In other words, when the virtual point P2 (z) is provided at an appropriate position on the hull center line Lc, the horizontal cross section Sh (z) is located inside the sector region R ⁇ (z) having the virtual point P2 (z) as a vertex.
  • the outer shape Ls (z) has a length of 50% to 100%, preferably 60% to 100%.
  • the stern shape of the structure 20 on the water surface of the upper structure 20 is a relatively wide open V having an angle ⁇ on one side of 40 degrees (degrees) to 80 degrees, preferably 55 degrees to 65 degrees. It can be a letter shape. With this stern shape, the flow at the stern is similar to the flow at the rear end of the wing, and lift can be generated in the same direction as the wing when the wind is diagonally headed.
  • the upper structure 20 having the stern shape improves air flow at the stern when the wind is diagonally headed, and the flow of the structure 20 on the water surface to the rear becomes smooth.
  • the portion can function as a wing and generate lift.
  • the thrust of the ship 1 can be obtained by the component in the longitudinal direction X of the hull 2 of this lift. The generation of lift and thrust has been confirmed by the results of wind tunnel experiments.
  • the container (loading cargo) 30 is loaded on the upper deck 3 and the timber or the like is loaded on the timber carrier ship. Therefore, the shape on the upper deck 3 is an elongated shape as a whole.
  • the upper structure 20 from the bow to the stern and the loaded cargo 30 have a shape similar to the wing shape, so the stern side shape of the upper structure 20 has substantially the same function as the rear end of the wing. With such a shape, it is possible to increase the lift generated in an oblique wind, and to obtain a thrust from this lift.
  • the wind escape on the stern side of the upper structure 20 is improved with respect to the oblique head wind, the generation of vortex in the stern side portion is reduced, and the hull caused by the wind in this portion is reduced.
  • the wind force in the lateral direction Y can be reduced, and the turning moment due to the wind acting on the upper structure 20 can be reduced.
  • the rudder angle for canceling the turning moment can be reduced, the propulsion efficiency can be improved from this aspect, and the maneuverability can also be improved.
  • the effect related to the turning moment can be exhibited even when the loaded cargo 30 is not loaded on the upper deck 3 in front of the upper structure 20, and the propulsion efficiency and the maneuverability can be improved.
  • the side wall portion (wall surface of the upper structure 10) 28 of the stern side first range Rx1 that forms the stern side of the structure 20 on the water surface in the shape of each horizontal cross section Sh (z) of the upper and lower first range Rz1, A smooth curved portion where the unevenness width is 5% or less of the maximum width Bmax of the upper structure 20, or a straight line portion where the unevenness width is 5% or less of the maximum width Bmax of the upper structure 20, or It is preferable to form a combination of both. By adopting this configuration, it is possible to suppress the occurrence of a large vortex due to separation in the flow at the curved portion or the straight portion.
  • the side wall 28 forming the stern side of the water surface structure 20 has an inclination angle ⁇ of 30 degrees or more and 90 degrees or less with respect to the horizontal plane in the stern side first range Rx1 and the upper and lower first range Rz1. If it forms in this, the eddy current which arises in the corner
  • the side wall portion 28 is preferably formed in a curved surface shape in which the whole or a part of the upper side of the water surface is convex outward. In this case, the angle formed by the contact surface at each point on the curved surface with the horizontal surface is set. The inclination angle is ⁇ .
  • the inclination angle ⁇ is smaller than 30 degrees, the lower part of the stern side part will extend greatly in the stern direction, and if it is larger than 90 degrees, it becomes impractical. Furthermore, by providing cornering or rounding at the corners of the stern side upper surface 27 and the side wall portion 28, it becomes possible to more effectively suppress vortex flow.
  • the stern side first range Rx1 and the upper and lower first range Rz1 are further configured as follows.
  • 50% or more of the side wall 28 of the upper structure 20 is formed by a straight line L3 (z) in each horizontal section, and the first line L3 (z) with respect to the hull center line Lc.
  • An average value in the first vertical range Rz1 with respect to the vertical direction Z of the angle ⁇ (z) is defined as a first average angle ⁇ m.
  • the straight line L4 represents 20% or more, preferably 30% or more, more preferably 40% or more on the stern side of the front surface of the upper structure 20 in the side wall (dry ridge) 8 of the hull 2 below the upper structure 20. (Z).
  • the average value in the range of the freeboard 8 of the hull 2 with respect to the vertical direction Z of the third angle ⁇ (z) with respect to the hull center line Lc of this straight line L4 (z) is defined as the third average angle ⁇ m, and the angle ⁇ 2 is set. 5 degrees.
  • the relationship between the first average angle ⁇ m and the third average angle ⁇ m is a relationship of ( ⁇ m ⁇ 2) ⁇ ⁇ m ⁇ ( ⁇ m + ⁇ 2).
  • FIGS. 9 and 10 show an example of a container ship.
  • This ship 1B is a container ship or the like, and has an upper structure 20 having a bridge 21 and a residential area 22 on the upper deck 3, but the upper structure 20 is not on the stern side but on the bow side in the longitudinal direction X of the hull. Ships placed at intermediate positions are mainly targeted.
  • the stern side first range Rx1 and the upper and lower first range Rz1 are provided in the same manner as the ship 1 of the first embodiment.
  • Rx1 and the upper and lower first range Rz1 are set as the stern specific range Sa1, and the stern shape in this portion is formed as follows.
  • the stern side of the hull (water surface structure) 2 is formed by a straight line L4 (z), and the vertical direction of the third angle ⁇ (z) of the straight line L4 (z) with respect to the hull center line Lc (
  • the angle ⁇ 2 is 20 degrees, preferably 10 degrees, more preferably 5 degrees, and ⁇ 1 is 50 degrees
  • the third average angle ⁇ m is ( ⁇ 1 ⁇ 2) ⁇ ⁇ m ⁇ ( ⁇ 1 + ⁇ 2).
  • the stern shape of the hull 2 exhibits the wing-shaped rear end effect.
  • the propulsion performance resulting from the generation of lift can be improved while suppressing an increase in wind pressure resistance of the entire ship in an oblique headwind.
  • the shape of the cargo at the time of loading is matched to the stern shape of the hull 2 or is made similar to that of the hull 2.
  • the wing shape rear end effect can be exhibited also in the overall shape of the cargo 30 loaded on the upper deck 3.
  • the wind pressure area on the surface of the water is relatively large, and the influence of the diagonally headed wind is reduced in an automobile carrier ship, a passenger ship, a container ship, a timber carrier ship, etc.
  • lift is generated by the surface components 2 and 20 formed by the hull 2 or the upper structure 20 and the loaded cargo 30 such as a container, and thrust can be obtained from the components in the longitudinal direction X of the hull 2 of this lift.
  • the propulsion performance of the ships 1, 1A, 1B can be improved.
  • fuel consumption can be improved and energy saving can be achieved.

Abstract

The present invention is configured such that, in a horizontal cross-section Sh(z) of above-water structures 2, 20, having a stern-side first range Rx1 and a vertical first range Rz1, a fan-shaped region Rα denotes the space between a first inclined line L1 that extends at a first angle α1 of 50° with respect to the bow direction Lc in the longitudinal direction X, and a second inclined line L2 that extends at a second angle α2 of 80°. A virtual point P2(z) of the pivot of the fan-shaped region Rα is positioned such that, when the virtual point P2(z) is moved forward or backward along a hull center line Lc, 50-100% of the length of a contour Ls(Z) of the horizontal cross-section Sh(z) falls within the fan-shaped region Rα. According to this configuration, a ship with little wind-pressure resistance can be provided, thereby reducing the effects of cross-head winds, generating lift in the above-water structures constituted by a ship hull or from an upper structure and loaded freight, making it possible to obtain thrust from the lift component in the longitudinal direction of the hull, and enabling improved propulsion performance of the ship.

Description

風圧抵抗の少ない船舶Ship with low wind pressure resistance
 本発明は、特に斜め向かい風に対する風圧抵抗の少ない船舶に関し、更に詳細には、船橋や居住区などの上部構造物の船尾側の形状を工夫することにより斜め向かい風に対する風圧抵抗を少なくした船舶に関する。 The present invention particularly relates to a ship having a low wind pressure resistance against an oblique head wind, and more particularly to a ship having a reduced wind pressure resistance against an oblique head wind by devising the shape of the stern side of an upper structure such as a bridge or a residential area.
 水上を走行する商船の殆どの船舶においては、船舶の水面下の船体形状の工夫による抵抗減少や船体とプロペラと舵などの関係による推進性能の向上が進められ、また、水面付近での波による造波抵抗や砕波抵抗や反射波における抵抗減少についても船首形状や船尾形状の工夫により抵抗減少が図られている。 Most merchant vessels traveling on the water have reduced drag by devising the shape of the hull below the surface of the ship and improved propulsion performance due to the relationship between the hull, propeller and rudder. Regarding resistance reduction in wave-making resistance, breaking wave resistance, and reflected wave, resistance reduction is achieved by devising bow shape and stern shape.
 一方、水面上の空気による抵抗に関しても、空気抵抗即ち風圧抵抗への改善の要求があり、様々な努力がなされてきている。特に、乾舷が高く風圧面積が大きい自動車運搬船(自動車専用船)や積み荷の積載により風圧面積が増加するコンテナ船や上部構造部が大きい客船等は水面上の風圧面積が大きいため、風圧力の影響を受け易く、風圧抵抗の減少は省エネルギーにつながるので、大きな期待が寄せられている。 On the other hand, regarding the resistance by air on the water surface, there is a demand for improvement in air resistance, that is, wind pressure resistance, and various efforts have been made. In particular, car carriers with large psoriasis and a large wind pressure area (automobile dedicated ships), container ships that increase the wind pressure area due to loading of cargo, and passenger ships with large superstructures have a large wind pressure area on the water surface. There is great expectation because it is easily affected and the reduction in wind pressure resistance leads to energy saving.
 これに関連して、例えば、日本出願の特開2011-57052号公報に記載されているように、上甲板上に設けた上部構造物の船尾側の形状、または、水面上の船体の船尾側の形状の少なくとも一方の水面上構造物の形状を、この水面上構造物の上下方向の範囲のうちで少なくとも0%~50%の範囲における、水面に平行な各断面の形状において、最大幅Bの船尾側最後部を下辺とし、該下辺の長さB1を0.9×Bとし、底角θ1を40deg~80degとし、上辺の長さB2を0.5×Bとする等脚台形よりも外側の範囲で、かつ、前記最大幅Bの船尾側最後部を底辺とし、該底辺の長さB3を1.2×Bとし、底角θ2を40deg~80degとする二等辺三角形よりも内側の領域に入るように形成した風圧抵抗の少ない船舶が提案されている。 In this connection, for example, as described in Japanese Patent Application Laid-Open No. 2011-57052, the shape of the stern side of the upper structure provided on the upper deck, or the stern side of the hull on the water surface In the shape of each cross section parallel to the water surface in the range of at least 0% to 50% of the vertical structure of the water surface structure, the maximum width B Compared to an isosceles trapezoid with the rearmost part at the stern side of the lower side of the base, the lower side length B1 being 0.9 × B, the base angle θ1 being 40 deg to 80 deg, and the upper side length B2 being 0.5 × B The outer side of the isosceles triangle with the stern side rearmost portion of the maximum width B as the base, the base length B3 is 1.2 × B, and the base angle θ2 is 40 deg to 80 deg. A ship with low wind pressure resistance formed to enter the area Proposed.
 この風圧抵抗の少ない船舶では、水面上の風圧面積が比較的大きく、風圧力の影響を受け易い自動車運搬船、コンテナ船、客船などの風圧力の影響を低減できて、船舶の運航性能を向上することを目的としているが、主に正面からの向かい風に関して、水面上構造物の後方において、死水領域に生じる停滞渦やカルマン渦のような流出渦の発生を防止する形状を提案している。 In this ship with low wind pressure resistance, the wind pressure area on the surface of the water is relatively large, and it is possible to reduce the influence of wind pressure on car carriers, container ships, passenger ships, etc. that are easily affected by wind pressure, and improve the ship's operational performance. However, it has proposed a shape that prevents outflow vortices such as stagnant vortices and Karman vortices that occur in the dead water region behind the structures on the surface of the water, mainly for headwinds from the front.
 また、一方で、例えば、日本出願の特表2014-501194号公報に記載されているように、船の進行方向への空気力学的揚力を相対風により発生し、船殻が帆として機能するように、水面上の船穀の形状を対称形のNASA翼型の空中翼とし、船尾側となる後縁をカットオフして、船殻の前後方向に垂直な断面としている船殻が提案されている。この船殻では、約13から39度の風のセクターで船の移動方向に作用する風力の成分が得られたとの風洞試験の結果を開示している。 On the other hand, as described in Japanese Patent Application No. 2014-501194, for example, aerodynamic lift in the traveling direction of the ship is generated by relative wind so that the hull functions as a sail. In addition, there is proposed a hull whose cross section is perpendicular to the front and rear direction of the hull by cutting off the trailing edge on the stern side with a symmetrical NASA aerial wing as the shape of the hull on the water surface. Yes. The hull discloses the results of a wind tunnel test in which a wind component acting in the direction of ship movement was obtained in a wind sector of about 13 to 39 degrees.
 このように、船舶の進行方向の正面からの向かい風だけではなく、船舶が航行する航路や航行時の気象条件により、斜め向かい風に対しても風圧抵抗の減少を図ることが重要視されるようになってきた。 In this way, it is important to reduce the wind pressure resistance not only against the head wind in the direction of travel of the ship but also against the head wind obliquely depending on the route the ship navigates and the weather conditions at the time of navigation. It has become.
日本出願の特開2011-57052号公報Japanese Patent Application No. 2011-57052 日本出願の特表2014-501194号公報Japanese Patent Application No. 2014-501194
 本発明の発明者らは、船舶の航行中においては、船舶の自身の船速と自然風の風速とが同程度の大きさになり、相対風向で考えると斜め向かい風になる確率が高いとの知見を得た。そして、斜め向かい風での風洞実験の結果等により、特に船尾における形状が風圧抵抗に大きな影響を与えることと、船舶の水面上構造物の外形の形状を工夫することで、特に帆を設けることなく、斜め向かい風のときに推力を得ることができるとの知見も得た。 The inventors of the present invention said that the ship's own ship speed and the wind speed of the natural wind are approximately the same during the navigation of the ship, and there is a high probability that the wind will be diagonally headwind when considered in the relative wind direction. Obtained knowledge. And by the results of wind tunnel experiments with diagonal headwinds, etc., especially the shape at the stern has a great influence on the wind pressure resistance, and by devising the shape of the outer structure of the ship's surface structure, without providing a sail in particular They also learned that thrust can be obtained when the wind is diagonally headwind.
 本発明は、上記の状況を鑑みてなされたものであり、その目的は、水面上の風圧面積が比較的大きく、風圧力の影響を受け易い自動車運搬船、客船、コンテナ船、木材運搬船などにおいて、斜め向かい風の影響を低減するとともに、船体又は上部構造物とコンテナ等の積載貨物30で形成する水面上構成物で揚力を発生し、この揚力の船体の前後方向の成分から推力を得ることできて、船舶の推進性能を向上することができる風圧抵抗の少ない船舶を提供することにある。 The present invention has been made in view of the above situation, and the purpose thereof is relatively large in the wind pressure area on the water surface, and is easily affected by wind pressure in an automobile carrier ship, a passenger ship, a container ship, a wood carrier ship, etc. In addition to reducing the effects of slant headwinds, it is possible to generate lift from the surface structure formed by the hull or superstructure and cargo loaded 30 such as containers, and to obtain thrust from the longitudinal components of this hull An object of the present invention is to provide a ship with low wind pressure resistance that can improve the propulsion performance of the ship.
 上記の目的を達成するための本発明の風圧抵抗の少ない船舶は、航海速力が、フルード数で0.13~0.30の船舶で、水面上の船体、又は、上甲板上に設けた上部構造物の少なくとも一方の水面上構造物において、前記水面上構造物の最大幅の船尾側最後部における船体中心線上の点を第1位置とし、この第1位置と船体の最後尾との間を船尾側第1範囲とし、前記水面上構造物の上下方向の任意の連続部分での50%以上かつ100%以下の範囲を上下第1範囲として、前記水面上構造物の前記船尾側第1範囲かつ前記上下第1範囲における水面に平行な各水平断面で、船体中心線上の仮想点から船体の前後方向の船首方向に対して第1角度で延びる線を第1傾斜線とし、前記仮想点から船体の前後方向の船首方向に対して第2角度で延びる線を第2傾斜線とし、前記第1角度を50度(θ=40度に対応)とし、前記第2角度を80度(θ=10度に対応)とし、前記第1傾斜線と前記第2傾斜線との間を扇形領域として、前記仮想点を船体中心線上で移動させて、扇形領域を船体の前後方向に移動させたときに、前記水平断面の外形線の長さの50%以上100%以下の長さの外形線が前記扇形領域に入るような前記仮想点の位置があることを特徴とする。 The ship with low wind pressure resistance according to the present invention for achieving the above object is a ship having a cruising speed of 0.13 to 0.30 in terms of fluid number, and an upper part provided on the hull on the water surface or on the upper deck. In at least one water surface structure of the structure, a point on the hull center line at the rearmost portion of the stern side of the maximum width of the water surface structure is defined as a first position, and the space between the first position and the last tail of the hull The first range on the stern side of the structure on the water surface is defined as a first range on the stern side, and a range of 50% or more and 100% or less in an arbitrary continuous portion in the vertical direction of the structure on the water surface is defined as a first range in the vertical direction. And in each horizontal cross section parallel to the water surface in the upper and lower first range, a line extending at a first angle from a virtual point on the hull center line with respect to the bow direction in the front-rear direction of the hull is defined as a first inclined line, and from the virtual point Second angle with respect to the bow direction of the hull The extending line is a second inclined line, the first angle is 50 degrees (corresponding to θ = 40 degrees), the second angle is 80 degrees (corresponding to θ = 10 degrees), and the first inclined line and the When the imaginary point is moved on the hull center line with the second inclined line as a sector area, and the sector area is moved in the front-rear direction of the hull, 50% of the length of the outline of the horizontal section The position of the imaginary point is such that an outline having a length of 100% or less enters the sector area.
 また、フルード数Fnは、航海速力をV(m/s)、垂線間長をLpp(m)、重力加速度をg(m/s2)としたときに、Fn=V/(Lpp×g)1/2となる。ここで、本発明の対象とする船舶のフルード数Fnを0.13~0.30とする理由は、フルード数Fnが0.30より大きい場合が殆どの高速の艦艇では、レーダー反射をする少なくするためのステルス技術に関して、船体全体を覆いでカバーすることがあるので、このようなステルス用のカバーと区別するためである。 The Froude number Fn is Fn = V / (Lpp × g) where V (m / s) is the navigation speed, Lpp (m) is the length between perpendiculars, and g (m / s 2 ) is the gravitational acceleration. 1/2 . Here, the reason why the Froude number Fn of the ship targeted by the present invention is set to 0.13 to 0.30 is that the Froude number Fn is larger than 0.30. This is to distinguish the stealth technique from the stealth cover, because the entire hull may be covered and covered.
 この構成によれば、水面上の船体、又は、上甲板上に設けた上部構造物の少なくとも一方の水面上構造物の船尾形状を、片舷側の角度αが40度(degree)~80度の比較的大きく開いたV字形状として、船尾の流れを翼の後端の流れに類似させることで、斜め向かい風の時に揚力を発生できるような形状にすることができる。 According to this configuration, the stern shape of the hull on the water surface or at least one water surface structure of the upper structure provided on the upper deck has an angle α on one side of 40 degrees (degrees) to 80 degrees. By making the stern flow similar to the flow at the rear end of the wing as a relatively wide open V-shape, it is possible to make a shape that can generate lift when the wind is diagonally headwind.
 この形状により、斜め向かい風のときに船尾における風の抜けがよくなり、水面上構造物の後方への流れが円滑になると共に、この水面上構造物の部分が翼の機能を発揮して揚力を発生させることができ、この揚力の船体前後方向の成分により船舶の推力を得ることができる。なお、この揚力及び推力の発生は、風洞実験の結果で確認されている。
 また、水面上構造物の鈍角的な船尾側形状により、全長が同じ船舶であれば、容積が増えて、その分積載量が多くなるというメリットもある。
Due to this shape, the wind at the stern is improved when the wind is diagonally headed, the flow of the structure on the surface of the water is smooth, and the portion of the structure on the surface of the water exerts the function of the wing to increase the lift. The thrust of the ship can be obtained by the component of the lift in the longitudinal direction of the hull. The generation of lift and thrust has been confirmed by the results of wind tunnel experiments.
Further, due to the obtuse stern side shape of the structure on the water surface, if the vessels have the same overall length, there is also an advantage that the volume increases and the load capacity increases accordingly.
 上記の風圧抵抗の少ない船舶において、前記上下第1範囲(Rz1)の前記各水平断面の形状において、前記船尾側第1範囲の側壁部を、凹凸の幅が前記水面上構造物の最大幅の5%以下となる滑らかな曲線状の部分、又は、凹凸の幅が前記水面上構造物の最大幅の5%以下となる直線部分、又は、両者の組み合わせで形成していると、次のような効果を得ることができる。 In the ship with low wind pressure resistance, in the shape of each horizontal cross section in the first vertical range (Rz1), the width of the unevenness is the maximum width of the structure on the water surface. When formed with a smooth curved portion that is 5% or less, or a straight portion where the width of the unevenness is 5% or less of the maximum width of the structure on the water surface, or a combination of both, as follows Effects can be obtained.
 この構成によれば、この凹凸の少ない滑らかな曲線状又は直線状に形成することにより、この曲線状の部分又は直線状の部分で流れに剥離が生じて大きな渦が発生することを抑制することができる。 According to this configuration, it is possible to suppress the occurrence of a large vortex by causing separation in the flow at the curved portion or the straight portion by forming the smooth curved shape or the straight shape with less unevenness. Can do.
 上記の風圧抵抗の少ない船舶において、前記水面上構造物の船尾側を形成する側壁部を、前記船尾側第1範囲かつ前記上下第1範囲において、水平面に対して30度以上かつ90度以下の傾斜角を有するように形成していると、次のような効果を得ることができる。 In the above-mentioned ship with low wind pressure resistance, the side wall portion that forms the stern side of the structure on the water surface is 30 degrees or more and 90 degrees or less with respect to the horizontal plane in the first range on the stern side and the first range on the upper and lower sides. If it is formed to have an inclination angle, the following effects can be obtained.
 この構成によれば、この船尾側の側壁部を水平面に対して30度以上90度以下で傾斜させることにより、水面上構造物の船尾側を形成する船尾側上面と船側側壁部との角部で生じる渦流を抑制することができる。また、更に、この船尾側上面と船側側壁部との角部に角取り又は丸めを設けることにより、より効果的に渦流を抑制することができるようになる。 According to this configuration, the corner portion between the stern side upper surface and the stern side wall portion forming the stern side of the structure on the water surface by inclining the side wall portion on the stern side at 30 degrees or more and 90 degrees or less with respect to the horizontal plane. The eddy current generated by the Furthermore, by providing cornering or rounding at the corner between the stern side upper surface and the ship side wall, eddy current can be more effectively suppressed.
 上記の風圧抵抗の少ない船舶において、前記上部構造物を水面上構造物とした場合において、前記船尾側第1範囲かつ前記上下第1範囲で、各水平断面で前記上部構造物の側壁部の50%以上を直線で形成して、この直線の船体中心線に対する第1角度の上下方向に関しての上下第1範囲における平均値を第1平均角度αmとし、前記上部構造物の下の前記船体の側壁部における前記上部構造物の前面よりも船尾側の20%以上を直線で形成し、この船体中心線に対する第3角度の上下方向に関しての船体の乾舷の範囲における平均値を第3平均角度θmとし、角度γ1を5度としたときに、前記第1平均角度αmと前記第3平均角度θmの関係を、(αm-γ1)≦θm≦(αm+γ1)の関係とすると、次のような効果を発揮できる。 In the above-described ship with low wind pressure resistance, when the upper structure is a water surface structure, 50% of the side wall portion of the upper structure in each horizontal section in the first range on the stern side and the first range in the upper and lower sides. % Of the straight line with respect to the center line of the hull, and the average value in the first vertical range with respect to the vertical direction of the first hull is defined as the first average angle αm, and the side wall of the hull below the superstructure 20% or more of the stern side from the front surface of the superstructure in the section is formed with a straight line, and the average value in the range of the freeboard of the hull in the vertical direction of the third angle with respect to the center line of the hull is the third average angle θm When the angle γ1 is 5 degrees and the relationship between the first average angle αm and the third average angle θm is (αm−γ1) ≦ θm ≦ (αm + γ1), the following effects are obtained. Can be demonstrated.
 この構成によれば、この船尾側の上部構造物と船体の乾舷との間で、上下方向に流れが少なくなり、平面的な流れの維持により、上部構造物と船体のそれぞれによる翼形状の後端効果を発揮を維持でき、斜め向風における船舶全体の風圧抵抗の増加を抑制しつつ、揚力発生に起因する推進性能の向上を図ることができる。 According to this configuration, there is less flow in the vertical direction between the upper structure on the stern side and the freeboard of the hull, and the wing shape of each of the upper structure and the hull is maintained by maintaining a planar flow. The rear end effect can be maintained, and the propulsion performance due to the generation of lift can be improved while suppressing an increase in wind pressure resistance of the entire ship in an oblique wind.
 上記の風圧抵抗の少ない船舶において、前記船体を水面上構造物とした場合において、前記船尾側第1範囲かつ前記上下第1範囲で、前記水面上構造物の船尾側の30%以上を直線で形成し、この船体中心線に対する第3角度の上下方向に関しての船体の乾舷の範囲における平均値を第3平均角度θmとし、角度γ2を20度とし、θ1を50度としたときに、前記第3平均角度θmを、(θ1-γ2)≦θm≦(θ1+γ2)の関係とする。 In the above-mentioned ship with low wind pressure resistance, when the hull is a structure on the water surface, 30% or more of the stern side of the structure on the water surface is a straight line in the first range on the stern side and the first range on the upper and lower sides. When the average value in the range of the hull of the hull in the vertical direction of the third angle with respect to the hull centerline is the third average angle θm, the angle γ2 is 20 degrees, and θ1 is 50 degrees, The third average angle θm has a relationship of (θ1−γ2) ≦ θm ≦ (θ1 + γ2).
 この構成によれば、コンテナ船等の上部構造物を船体前後方向において前方又は中間に配置しているような船舶においても、船体の船尾形状で翼形状の後端効果を発揮して、斜め向風における船舶全体の風圧抵抗の増加を抑制しつつ、揚力発生に起因する推進性能の向上を図ることができる。 According to this configuration, even in a ship in which an upper structure such as a container ship is arranged forward or in the hull longitudinal direction, the stern shape of the hull exhibits the wing shape rear end effect, While suppressing an increase in wind pressure resistance of the entire ship in the wind, it is possible to improve the propulsion performance resulting from the generation of lift.
 また、コンテナ等の積載貨物30の上甲板上への配置の仕方により、積載時の貨物の全体としての形状を船体の船尾形状に合わせたり、類似形状にしたりすることで、船体の船尾側の翼形状の後端効果に加えて、上甲板上の積載時の貨物の全体としての形状においても、翼形状の後端効果を発揮させることができるようになる。 Also, depending on the way the container or the like is placed on the upper deck of the loaded cargo 30, the overall shape of the loaded cargo can be matched to the stern shape of the hull or similar, so that In addition to the rear end effect of the wing shape, the rear end effect of the wing shape can be exhibited also in the shape of the cargo on the upper deck as a whole.
 本発明の風圧抵抗の少ない船舶によれば、水面上の風圧面積が比較的大きく、風圧力の影響を受け易い自動車運搬船、客船、コンテナ船、木材運搬船などにおいて、斜め向かい風の影響を低減するとともに、船体又は上部構造物とコンテナ等の積載貨物で形成する水面上構成物で揚力を発生し、この揚力の船体の前後方向の成分から推力を得ることできて、船舶の推進性能を向上することができる推力を得ることできて、船舶の推進性能を向上することができる。その結果、燃費が向上し、省エネルギー化を図ることができる。 According to the ship with low wind pressure resistance of the present invention, the wind pressure area on the surface of the water is relatively large, and in the automobile carrier ship, passenger ship, container ship, timber carrier ship, etc. that are easily affected by the wind pressure, the influence of the diagonally headwind is reduced. To improve the propulsion performance of the ship by generating lift from the surface structure formed by the hull or superstructure and loaded cargo such as containers, and obtaining thrust from the longitudinal components of this hull Can be obtained, and the propulsion performance of the ship can be improved. As a result, fuel consumption can be improved and energy saving can be achieved.
図1は、本発明の第1の実施の形態における船舶を斜め左舷上方の後方から見た図である。FIG. 1 is a view of a ship according to the first embodiment of the present invention as seen from the rear above a diagonal port. 図2は、図1の船舶における水面上構造物としての船体の後部側の側面図である。FIG. 2 is a side view of the rear side of the hull as a structure on the water surface in the ship of FIG. 図3は、図1の船舶における水面上構造物としての船体の水平断面の船尾側形状を示した平面図である。FIG. 3 is a plan view showing a stern side shape of a horizontal section of a hull as a structure on the water surface in the ship of FIG. 図4は、本発明の第2の実施の形態における船舶の右側面図である。FIG. 4 is a right side view of the ship according to the second embodiment of the present invention. 図5は、図4の船舶における水面上構造物としての上部構造物を斜め上方の前方から見た図である。FIG. 5 is a view of the upper structure as the water surface structure in the ship of FIG. 図6は、図4の船舶の船尾部分の右側面図である。FIG. 6 is a right side view of the stern portion of the ship of FIG. 図7は、図4の船舶の船尾部分の水平断面図である。FIG. 7 is a horizontal sectional view of the stern portion of the ship of FIG. 図8は、図4の船舶の上部構造物の後側の側壁部と船体の側壁部との平面視における角度の関係を示す模式的な平面図である。FIG. 8 is a schematic plan view showing a relationship in angle between the rear side wall portion of the upper structure of the ship of FIG. 4 and the side wall portion of the hull in plan view. 図9は、本発明の第3の実施の形態における船舶の右側面図である。FIG. 9 is a right side view of the ship according to the third embodiment of the present invention. 図10は、図9の船舶における、船体の側壁部の平面視における角度の関係を示す模式的な平面図である。FIG. 10 is a schematic plan view showing a relationship of angles in a plan view of the side wall portion of the hull in the ship of FIG.
 以下、図面を参照して本発明に係る風圧抵抗の少ない船舶の実施の形態について説明する。ここでは、第1の実施の形態では自動車運搬船(自動車専用船)を例にして説明し、第2の実施の形態では上甲板より上に設けられた居住区兼船橋の上部構造物を有する貨物船を例にして説明している。しかしながら、本発明は、自動車運搬船や貨物船のみならず、客船等の他の船舶にも適用できる。なお、ステルス技術のために船体を覆いでカバーしている艦艇を除くために、船舶の航海速力Vに関係するフルード数Fnが、0.13~0.30の船舶としている。なお、船首垂線F.P.と船尾垂線A.P.の間の距離を垂線間長Lppという。 Hereinafter, an embodiment of a ship with low wind pressure resistance according to the present invention will be described with reference to the drawings. Here, in the first embodiment, an explanation will be given taking an automobile carrier (automobile ship) as an example, and in the second embodiment, a cargo having an upper structure of a residential area and a bridge provided above the upper deck. The explanation is given by taking a ship as an example. However, the present invention can be applied not only to automobile carriers and cargo ships but also to other ships such as passenger ships. In order to exclude ships that cover and cover the hull for stealth technology, the number of fluids Fn related to the ship's navigational speed V is 0.13 to 0.30. Note that the bow perpendicular F.R. P. And Stern perpendicular line A. P. Is the distance between perpendiculars Lpp.
 先ず、第1の実施の形態の風圧抵抗の少ない船舶(以下船舶という)について説明する。図1~図3に示すように、この第1の実施形態の船舶1は、自動車運搬船を例にしたものであり、船体2の船首から船尾にわたって、自動車を固定して搬送するために、階層構造の複数の甲板を有し、最上部の甲板である上甲板3には、マスト4や煙突5は設けるが、船橋や居住区等の船楼を設けない。この船舶1では、船橋も居住区も上甲板3より下に設け、上甲板3より上にはできるだけ突出するものを設けず、風圧抵抗を減少させる。例えば、船橋は上甲板3より下で見晴らしがよい船首部に設け、居住区はエンジンのある機関室に近い船尾側に設ける。 First, a ship (hereinafter referred to as a ship) with low wind pressure resistance according to the first embodiment will be described. As shown in FIGS. 1 to 3, the ship 1 of the first embodiment is an example of an automobile carrier ship. In order to fix and transport a car from the bow of the hull 2 to the stern, The upper deck 3, which is the uppermost deck, has a plurality of decks, and is provided with a mast 4 and a chimney 5, but is not provided with a bridge such as a bridge or a residential area. In this ship 1, the bridge and the residential area are provided below the upper deck 3, and nothing projecting as much as possible above the upper deck 3 is provided to reduce wind pressure resistance. For example, the bridge is provided in the bow portion that is well-viewed below the upper deck 3, and the residential area is provided on the stern side near the engine room with the engine.
 また、水面より下には、船首側に船首バルブ2aが、船尾側にプロペラ6と舵7が設けられている。この図1の船舶1では1軸1舵となっているが、これに限定されることなく、2軸2舵の多軸船等であってもよい。 Also, below the water surface, a bow valve 2a is provided on the bow side, and a propeller 6 and a rudder 7 are provided on the stern side. In the ship 1 of FIG. 1, a 1-axis 1 rudder is used, but the present invention is not limited to this, and a 2-axis 2-rudder multi-axis ship or the like may be used.
 この構成では、船首部では、船首前縁上端から上甲板3に向かって上向きの傾斜面3aを形成する。この傾斜面3aは、水平面に対する上向き角度が20度(degree)~60度で、好ましくは38度になるように形成される。これにより、風の流れが船首前縁上端から上甲板3に向かって流れる際に、上甲板3の部分における剥離と渦の発生を抑制して、風圧抵抗を低減する。 In this configuration, an inclined surface 3a that faces upward from the upper end of the front edge of the bow toward the upper deck 3 is formed at the bow. The inclined surface 3a is formed so that the upward angle with respect to the horizontal plane is 20 degrees (degrees) to 60 degrees, and preferably 38 degrees. As a result, when the wind flow flows from the upper end of the bow front edge toward the upper deck 3, the separation of the upper deck 3 and the generation of vortices are suppressed to reduce the wind pressure resistance.
 船体2の上甲板3と舷側部8とがなす角部に、船首から船尾のほぼ全長にわたって切欠段部9を設ける。この切欠段部9は、図1に示すように、船体中央における、上甲板から船底(キールライン)までの深さDからバラスト喫水dbを引き算したバラスト状態における乾舷fbの5~20%の深さdsと幅bsを有して形成される。例えば、積み荷となる自動車1台~2台分の幅で、方形状に切り欠くことによって形成される。 A notch 9 is provided at the corner formed by the upper deck 3 and the side 8 of the hull 2 over the entire length from the bow to the stern. As shown in FIG. 1, this notch 9 is 5 to 20% of the freeboard fb in the ballast state obtained by subtracting the ballast draft db from the depth D from the upper deck to the bottom of the ship (the keel line) in the center of the hull. It is formed having a depth ds and a width bs. For example, it is formed by cutting out into a square shape with a width of one or two cars to be loaded.
 この切欠段部9により斜め方向の風に対して上甲板3と舷側部8とを結ぶ角部での剥離及び渦の発生が抑制されて、風圧による抵抗、横力、ヨーモーメントが軽減される。なお、この切欠段部9は、船首から船尾のほぼ全長にわたって設けると効果が大きいが、船首からほぼ船体中央部までの範囲にわたって設けてもよい。 The notch step portion 9 suppresses the separation and vortex generation at the corner portion connecting the upper deck 3 and the heel side portion 8 with respect to the oblique wind, thereby reducing the resistance, lateral force, and yaw moment due to the wind pressure. . The cut-out step 9 has a great effect when it is provided over almost the entire length from the bow to the stern, but it may be provided over a range from the bow to almost the center of the hull.
 また、図1の構成では、船体2の舷側部8の水面上の部分(水面上構造物)の船尾に、自動車の荷役を行うためのランプウエイ用の開口部とその扉10を設けている。また、船体2の中央部付近の舷側部8にも自動車の荷役を行うためのランプウエイ用の開口部とその扉を設けてもよい。 Moreover, in the structure of FIG. 1, the opening part for the lampway for performing the cargo handling of a motor vehicle, and its door 10 are provided in the stern of the part on the water surface (structure on water surface) of the side part 8 of the hull 2. . Moreover, you may provide the opening part for the lampway for performing the cargo handling of a motor vehicle, and its door also in the side part 8 near the center part of the hull 2. FIG.
 図1~図3に示すように、この水面上の船体である水面上構造物2において、船体2の最大幅Bmaxの船尾側最後部における船体中心線Lc上の点を第1位置P1とし、この第1位置P1と船体2の最後尾Paとの間を船尾側第1範囲Rx1とする。また、水面上構造物2の上下方向の任意の連続部分での50%以上かつ100%以下、好ましくは40%以上かつ100%以下の範囲を上下第1範囲Rz1とする。この水面上構造物2の船尾側第1範囲Rx1で、かつ、上下第1範囲Rz1を船尾特定範囲Sa1(図1及び図2のクロスハッチング部分)とする。なお、この上下方向の全範囲としては、水面位置を下端とし、マスト4と煙突5などを除いた船体2の最上部までとし、上部構造物(図示しない)が有る場合はその最上部までとする。 As shown in FIGS. 1 to 3, in the above-surface structure 2 that is a hull on the water surface, a point on the hull center line Lc at the stern side rearmost portion of the maximum width Bmax of the hull 2 is defined as a first position P1. The stern side first range Rx1 is defined between the first position P1 and the rearmost Pa of the hull 2. Further, a range of 50% or more and 100% or less, preferably 40% or more and 100% or less, in an arbitrary continuous portion in the vertical direction of the water surface structure 2 is defined as a first vertical range Rz1. The stern-side first range Rx1 of the water surface structure 2 and the first vertical range Rz1 are defined as the stern specific range Sa1 (cross-hatched portion in FIGS. 1 and 2). Note that the entire vertical range is the bottom of the water surface, up to the top of the hull 2 excluding the mast 4 and chimney 5, and up to the top of the upper structure (not shown). To do.
 そして、この船尾特定範囲Sa1における水面に平行な各水平断面Sh(z)で、船体中心線Lc上の仮想点P2(z)から船体2の前後方向Xの船首方向(プラスX方向)に対して第1角度α1で延びる線を第1傾斜線L1とし、仮想点P2(z)から船体2の前後方向Xの船首方向(プラスX方向)に対して第2角度α2で延びる線を第2傾斜線L2とする。さらに、ここで、第1角度α1を50度(degree)、好ましくは55度とし、第2角度α2を80度、好ましくは65度とする。また、第1傾斜線L1と第2傾斜線L2との間を扇形領域Rα(z)とする。 And in each horizontal cross section Sh (z) parallel to the water surface in the stern specific range Sa1, with respect to the bow direction (plus X direction) in the longitudinal direction X of the hull 2 from the virtual point P2 (z) on the hull center line Lc. The line extending at the first angle α1 is defined as the first inclined line L1, and the line extending at the second angle α2 with respect to the bow direction (plus X direction) in the front-rear direction X of the hull 2 from the virtual point P2 (z) The inclined line L2. Further, here, the first angle α1 is 50 degrees (preferably 55 degrees), and the second angle α2 is 80 degrees, preferably 65 degrees. Further, a space between the first inclined line L1 and the second inclined line L2 is defined as a sector area Rα (z).
 上記の条件の下で、仮想点P2(z)を船体中心線Lc上で移動させて、扇形領域Rα(z)を船体の前後方向Xに移動させたときに、水平断面Sh(z)の外形線Ls(z)の長さの50%以上100%以下の長さ、好ましくは60%以上100%以下の長さの外形線Ls(z)が扇形領域Rα(z)に入るような仮想点P2(z)の位置があるように構成する。言い換えれば、船体中心線Lc上の適当な位置に仮想点P2(z)を設けた場合に、仮想点P2(z)を頂点とする扇形領域Rα(z)の内部に水平断面Sh(z)の外形線Ls(z)の長さの50%以上100%以下の長さ、好ましくは60%以上100%以下の長さの外形線Ls(z)が入る構成とする。 Under the above conditions, when the virtual point P2 (z) is moved on the hull center line Lc and the sector region Rα (z) is moved in the longitudinal direction X of the hull, the horizontal section Sh (z) A virtual line in which an external line Ls (z) having a length of 50% or more and 100% or less, preferably 60% or more and 100% or less of the length of the external line Ls (z) enters the sector region Rα (z). It is configured so that the position of the point P2 (z) exists. In other words, when the virtual point P2 (z) is provided at an appropriate position on the hull center line Lc, the horizontal cross section Sh (z) is located inside the sector region Rα (z) having the virtual point P2 (z) as a vertex. The outer shape Ls (z) has a length of 50% to 100%, preferably 60% to 100%.
 この構成によれば、水面上の船体2の水面上構造物の船尾形状を、片舷側の角度αが40度(degree)~80度、好ましくは55度~65度の比較的大きく開いたV字形状とすることができる。この船尾形状にすると、船尾の流れが翼の後端の流れに類似した流れとなり、斜め向かい風のときに翼と同じく、揚力を発生できるようになる。 According to this configuration, the stern shape of the structure on the surface of the hull 2 on the surface of the water is a relatively wide open V having an angle α on one side of 40 degrees (degrees) to 80 degrees, preferably 55 degrees to 65 degrees. It can be a letter shape. With this stern shape, the flow at the stern is similar to the flow at the rear end of the wing, and lift can be generated in the same direction as the wing when the wind is diagonally headed.
 つまり、この船尾形状を持つ船体2により、斜め向かい風のときに船尾における風の抜けがよくなり、水面上構造物2の後方への流れが円滑になると共に、この水面上構造物2の部分が翼の機能を発揮して揚力を発生させることができる。この揚力の船体2の前後方向Xの成分により船舶1の推力を得ることができる。なお、この揚力及び推力の発生は、風洞実験の結果で確認されている。 In other words, the hull 2 having the stern shape improves the draft of the wind at the stern when the wind is diagonally headwind, and the flow toward the rear of the water surface structure 2 is smooth. The function of the wing can be demonstrated to generate lift. The thrust of the ship 1 can be obtained by the component in the longitudinal direction X of the hull 2 of this lift. The generation of lift and thrust has been confirmed by the results of wind tunnel experiments.
 この自動車運搬船や客船などのように、暴露甲板上に起立する上部構造物が殆んどないか、非常に小さくて、水面上の部分が、水面から船体2がそのまま上に延びたような形状をした船舶では、この船首から船尾までの船体2が、翼形状に類似した形状となるので、船尾形状を翼の後端とほぼ同じ機能を持つような形状とすることで、斜め向風において発生する揚力を大きくすることができ、この揚力から推力を得ることができる。 There is almost no superstructure that stands on the exposed deck like this car carrier or passenger ship, or it is very small, and the part on the surface of the water is such that the hull 2 extends upward from the surface. Since the hull 2 from the bow to the stern has a shape similar to the wing shape, the stern shape has substantially the same function as the rear end of the wing. The generated lift can be increased, and thrust can be obtained from this lift.
 また、この構成によれば、斜め向風に対して、船体2の船尾側における風の抜けがよくなるので、船体2の船尾部分における渦流の発生を少なくして、この部分での風による船体横方向Yの風力を小さくすることができ、船体2に作用する風による旋回モーメントを減少することができる。これにより、旋回モーメントを相殺するための当舵の角度を小さくすることができ、この面からも推進効率を向上することができ、また、操縦性も向上することができる。 Further, according to this configuration, since the wind escape on the stern side of the hull 2 is improved with respect to the oblique wind, the generation of vortex in the stern part of the hull 2 is reduced, and the hull side due to the wind in this part is reduced. The wind force in the direction Y can be reduced, and the turning moment due to the wind acting on the hull 2 can be reduced. As a result, the rudder angle for canceling the turning moment can be reduced, the propulsion efficiency can be improved from this aspect, and the maneuverability can also be improved.
 また、船体2の鈍角的な船尾側形状により、全長が同じ船舶であれば、容積が増えて、その分積載量が多くなるというメリットもある。 Also, due to the obtuse stern side shape of the hull 2, if the vessels have the same overall length, there is an advantage that the volume increases and the loading capacity increases accordingly.
 また、水面上構造物2の船尾側を形成する船尾特定範囲Sa1の側壁部(舷側部)8を、上下第1範囲Rz1の各水平断面Sh(z)の形状において、凹凸の幅が船体2の最大幅Bmaxの5%以下となる滑らかな曲線状の部分、又は、凹凸の幅が船体2の最大幅Bmaxの5%以下となる直線部分、又は、両者の組み合わせで形成することが好ましい。この構成にすることにより、この曲線状の部分又は直線状の部分で流れに剥離が生じて大きな渦が発生することを抑制することができる。 Further, the side wall 8 (side portion) of the stern specific range Sa1 that forms the stern side of the structure 2 on the water surface has a width of unevenness in the shape of each horizontal cross section Sh (z) of the upper and lower first range Rz1. It is preferable to form a smooth curved portion having a maximum width Bmax of 5% or less, a straight portion having an uneven width of 5% or less of the maximum width Bmax of the hull 2, or a combination of both. By adopting this configuration, it is possible to suppress the occurrence of a large vortex due to separation in the flow at the curved portion or the straight portion.
 また、水面上構造物2の船尾側を形成する側壁部8を、船尾側第1範囲Rx1かつ上下第1範囲Rz1において、水平面に対して30度以上かつ90度以下の傾斜角βを有するように形成していると、水面上構造物2の船尾側を形成する船尾側上面の上甲板3と側壁部8との角部で生じる渦流を抑制することができる。なお、この側壁部8は、水面上の全体又は上側の一部分が外側に凸となる曲面状に形成すると、水面上構造物2の上側(デッキや船橋の上面等)を流れてきた空気流れが、この側壁部8の曲面に沿って下降できて、渦流などの発生による抵抗増加を抑制できるようにしてもよい。この場合には、曲面上の各点における接面が水平面となす角度を傾斜角βとする。 Further, the side wall portion 8 forming the stern side of the structure 2 on the water surface has an inclination angle β of 30 degrees or more and 90 degrees or less with respect to the horizontal plane in the stern side first range Rx1 and the first vertical range Rz1. If it forms in this, the eddy current which arises in the corner | angular part of the upper deck 3 and the side wall part 8 of the stern side upper surface which forms the stern side of the structure 2 on the water surface can be suppressed. In addition, if this side wall part 8 is formed in the curved surface shape where the whole on the water surface or a part on the upper side protrudes outward, the air flow that has flowed above the water surface structure 2 (the upper surface of the deck or the bridge, etc.) Further, it may be lowered along the curved surface of the side wall portion 8 so that an increase in resistance due to generation of a vortex or the like can be suppressed. In this case, the angle between the tangent surface at each point on the curved surface and the horizontal plane is defined as an inclination angle β.
 この傾斜角βを30度より小さくすると、船尾側部分の下部が大きく船尾方向に延びることになり、90度より大きくし過ぎると、実用的ではなくなる。また、更に、この上甲板3と側壁部8との角部に角取り又は丸めを設けることにより、より効果的に渦流を抑制することができるようになる。 If the inclination angle β is smaller than 30 degrees, the lower part of the stern side part will extend greatly in the stern direction, and if it is larger than 90 degrees, it becomes impractical. Furthermore, eddy currents can be more effectively suppressed by providing chamfering or rounding at the corners of the upper deck 3 and the side wall 8.
 次に、第2の実施の形態の風圧抵抗の少ない船舶(以下船舶という)について説明する。図4~図8に示すように、この第2の実施形態の船舶1Aは、貨物船(ここではバルカー)を例にしたものであり、船尾部の上甲板3の上に艦橋21と居住区22を備えた上部構造物20が配置されている船尾船橋船である。この貨物船としては、バルカー、タンカー、一般貨物船等の居住区が船尾にある船舶が例としてある。この上部構造物20の上面には、マスト4や煙突5が設けられ、さらには、船橋21の両舷側に航海船橋甲板の一部で船側に張り出している部分であるナビゲーションウイング(ドジャー)21aが設けられている。 Next, a ship with a low wind pressure resistance (hereinafter referred to as a ship) according to the second embodiment will be described. As shown in FIGS. 4 to 8, the ship 1A of the second embodiment is an example of a cargo ship (in this case, a bulker), and has a bridge 21 and a residential area on the upper deck 3 of the stern part. This is a stern funnel ship in which an upper structure 20 having 22 is arranged. As an example of this cargo ship, a ship having a stern living area such as a bulker, a tanker, and a general cargo ship is given as an example. A mast 4 and a chimney 5 are provided on the upper surface of the upper structure 20, and a navigation wing (dodger) 21 a, which is a portion projecting to the ship side with a part of the deck of the navigation bridge on both sides of the bridge 21. Is provided.
 図4~図8に示すように、上甲板3上に設けた上部構造物20である水面上構造物20において、上部構造物20の最大幅Bmaxの船尾側最後部における船体中心線Lc上の点を第1位置P1とし、この第1位置P1と船体2の最後尾Paとの間を船尾側第1範囲Rx1とする。また、水面上構造物20の上下方向の50%以上かつ100%以下、好ましくは40%以上かつ100%以下の範囲を上下第1範囲Rz1とする。この上下方向の全範囲としては、上部構造物20の下端、即ち、上甲板3の上面から、マスト4と煙突5などを除いた上部構造物20の最上部までとする。 As shown in FIGS. 4 to 8, in the water surface structure 20 that is the upper structure 20 provided on the upper deck 3, on the hull center line Lc at the stern side rearmost portion of the maximum width Bmax of the upper structure 20. A point is defined as a first position P1, and a stern side first range Rx1 is defined between the first position P1 and the last tail Pa of the hull 2. Moreover, the range of 50% or more and 100% or less, preferably 40% or more and 100% or less in the vertical direction of the water surface structure 20 is defined as the first vertical range Rz1. The entire range in the vertical direction is from the lower end of the upper structure 20, that is, from the upper surface of the upper deck 3 to the uppermost part of the upper structure 20 excluding the mast 4 and the chimney 5.
 そして、水面上構造物20の船尾側第1範囲Rx1で、かつ、上下第1範囲Rz1を船尾特定範囲Sa1(図4~図6のクロスハッチング部分)とする。この船尾特定範囲Sa1における水面に平行な各水平断面Sh(z)で、船体中心線Lc上の仮想点P2(z)から船体2の前後方向Xの船首方向(プラスX方向)に対して第1角度α1で延びる線を第1傾斜線L1とし、仮想点P2(z)から船体2の前後方向Xの船首方向(プラスX方向)に対して第2角度α2で延びる線を第2傾斜線L2とする。さらに、ここで、第1角度α1を50度(degree)、好ましくは55度とし、第2角度α2を80度、好ましくは65度とする。また、第1傾斜線L1と第2傾斜線L2との間を扇形領域Rα(z)とする。 The stern side first range Rx1 of the water surface structure 20 and the first vertical range Rz1 are defined as the stern specific range Sa1 (cross-hatched portion in FIGS. 4 to 6). The horizontal cross section Sh (z) parallel to the water surface in the stern specific range Sa1 is the first to the bow direction (plus X direction) in the front-rear direction X of the hull 2 from the virtual point P2 (z) on the hull center line Lc. A line extending at one angle α1 is defined as a first inclined line L1, and a line extending at a second angle α2 with respect to the bow direction (plus X direction) in the longitudinal direction X of the hull 2 from the virtual point P2 (z) is defined as a second inclined line. Let L2. Further, here, the first angle α1 is 50 degrees (preferably 55 degrees), and the second angle α2 is 80 degrees, preferably 65 degrees. Further, a space between the first inclined line L1 and the second inclined line L2 is defined as a sector area Rα (z).
 上記の条件の下で、仮想点P2(z)を船体中心線Lc上で移動させて、扇形領域Rα(z)を船体2の前後方向Xに移動させたときに、水平断面Sh(z)の外形線Ls(z)の長さの50%以上100%以下の長さ、好ましくは60%以上100%以下の長さの外形線Ls(z)が扇形領域Rα(z)に入るような仮想点P2(z)の位置があるように構成する。言い換えれば、船体中心線Lc上の適当な位置に仮想点P2(z)を設けた場合に、仮想点P2(z)を頂点とする扇形領域Rα(z)の内部に水平断面Sh(z)の外形線Ls(z)の長さの50%以上100%以下の長さ、好ましくは60%以上100%以下の長さの外形線Ls(z)が入る構成とする。 When the virtual point P2 (z) is moved on the hull center line Lc and the fan-shaped region Rα (z) is moved in the front-rear direction X of the hull 2 under the above conditions, the horizontal section Sh (z) The outline Ls (z) having a length of 50% to 100%, preferably 60% to 100% of the length of the outline Ls (z) is in the sector region Rα (z). It is configured so that the position of the virtual point P2 (z) exists. In other words, when the virtual point P2 (z) is provided at an appropriate position on the hull center line Lc, the horizontal cross section Sh (z) is located inside the sector region Rα (z) having the virtual point P2 (z) as a vertex. The outer shape Ls (z) has a length of 50% to 100%, preferably 60% to 100%.
 この構成によれば、上部構造物20の水面上構造物20の船尾形状を、片舷側の角度αが40度(degree)~80度、好ましくは55度~65度の比較的大きく開いたV字形状とすることができる。この船尾形状にすると、船尾の流れが翼の後端の流れに類似した流れとなり、斜め向かい風のときに翼と同じく、揚力を発生できるようになる。 According to this configuration, the stern shape of the structure 20 on the water surface of the upper structure 20 is a relatively wide open V having an angle α on one side of 40 degrees (degrees) to 80 degrees, preferably 55 degrees to 65 degrees. It can be a letter shape. With this stern shape, the flow at the stern is similar to the flow at the rear end of the wing, and lift can be generated in the same direction as the wing when the wind is diagonally headed.
 つまり、この船尾形状を持つ上部構造物20により、斜め向かい風のときに船尾における風の抜けがよくなり、水面上構造物20の後方への流れが円滑になると共に、この水面上構造物20の部分が翼の機能を発揮して揚力を発生させることができる。この揚力の船体2の前後方向Xの成分により船舶1の推力を得ることができる。なお、この揚力及び推力の発生は、風洞実験の結果で確認されている。 In other words, the upper structure 20 having the stern shape improves air flow at the stern when the wind is diagonally headed, and the flow of the structure 20 on the water surface to the rear becomes smooth. The portion can function as a wing and generate lift. The thrust of the ship 1 can be obtained by the component in the longitudinal direction X of the hull 2 of this lift. The generation of lift and thrust has been confirmed by the results of wind tunnel experiments.
 この第2の実施の形態の船舶1Aのように、船尾部分に上部構造物20を有する船舶では、上甲板3上にコンテナ船ではコンテナ(積載貨物)30を、木材運搬船では木材等の積載するため、上甲板3の上の形状が全体として細長い形状となる。このような船舶では、この船首から船尾までの上部構造物20と積載貨物30とにより、翼形状に類似した形状となるので、上部構造物20の船尾側形状を翼の後端とほぼ同じ機能を持つような形状とすることで、斜め向風において発生する揚力を大きくすることができ、この揚力から推力を得ることができる。 As in the case of the ship 1A of the second embodiment, in the ship having the upper structure 20 at the stern part, the container (loading cargo) 30 is loaded on the upper deck 3 and the timber or the like is loaded on the timber carrier ship. Therefore, the shape on the upper deck 3 is an elongated shape as a whole. In such a ship, the upper structure 20 from the bow to the stern and the loaded cargo 30 have a shape similar to the wing shape, so the stern side shape of the upper structure 20 has substantially the same function as the rear end of the wing. With such a shape, it is possible to increase the lift generated in an oblique wind, and to obtain a thrust from this lift.
 また、この構成によれば、斜め向風に対して、上部構造物20の船尾側における風の抜けがよくなるので、この船尾側部分における渦流の発生を少なくして、この部分での風による船体横方向Yの風力を小さくすることができ、上部構造物20に作用する風による旋回モーメントを減少することができる。これにより、旋回モーメントを相殺するための当舵の角度を小さくすることができ、この面からも推進効率を向上することができ、また、操縦性も向上することができる。この旋回モーメントに関する効果は、上部構造物20の前方の上甲板3の上に積載貨物30を積載していない状態でも発揮でき、推進効率と操縦性を向上することができる。 Further, according to this configuration, since the wind escape on the stern side of the upper structure 20 is improved with respect to the oblique head wind, the generation of vortex in the stern side portion is reduced, and the hull caused by the wind in this portion is reduced. The wind force in the lateral direction Y can be reduced, and the turning moment due to the wind acting on the upper structure 20 can be reduced. As a result, the rudder angle for canceling the turning moment can be reduced, the propulsion efficiency can be improved from this aspect, and the maneuverability can also be improved. The effect related to the turning moment can be exhibited even when the loaded cargo 30 is not loaded on the upper deck 3 in front of the upper structure 20, and the propulsion efficiency and the maneuverability can be improved.
 また、上部構造物20の鈍角的な船尾側形状により、全長が同じ船舶であれば、容積が増えて、その分積載量が多くなるというメリットもある。 Also, due to the obtuse stern side shape of the upper structure 20, if the vessels have the same overall length, there is also an advantage that the volume increases and the load capacity increases accordingly.
 また、水面上構造物20の船尾側を形成する船尾側第1範囲Rx1の側壁部(上部構造物10の壁面)28を、上下第1範囲Rz1の各水平断面Sh(z)の形状において、凹凸の幅が上部構造物20の最大幅Bmaxの5%以下となる滑らかな曲線状の部分、又は、凹凸の幅が上部構造物20の最大幅Bmaxの5%以下となる直線部分、又は、両者の組み合わせで形成することが好ましい。この構成にすることにより、この曲線状の部分又は直線状の部分で流れに剥離が生じて大きな渦が発生することを抑制することができる。 Further, the side wall portion (wall surface of the upper structure 10) 28 of the stern side first range Rx1 that forms the stern side of the structure 20 on the water surface, in the shape of each horizontal cross section Sh (z) of the upper and lower first range Rz1, A smooth curved portion where the unevenness width is 5% or less of the maximum width Bmax of the upper structure 20, or a straight line portion where the unevenness width is 5% or less of the maximum width Bmax of the upper structure 20, or It is preferable to form a combination of both. By adopting this configuration, it is possible to suppress the occurrence of a large vortex due to separation in the flow at the curved portion or the straight portion.
 また、水面上構造物20の船尾側を形成する側壁部28を、船尾側第1範囲Rx1かつ上下第1範囲Rz1において、水平面に対して30度以上かつ90度以下の傾斜角βを有するように形成していると、水面上構造物20の船尾側を形成する船尾側上面27と側壁部28との角部で生じる渦流を抑制することができる。なお、この側壁部28は、水面上の全体又は上側の一部分が外側に凸となる曲面状に形成することが好ましく、この場合には、曲面上の各点における接面が水平面となす角度を傾斜角βとする。 Further, the side wall 28 forming the stern side of the water surface structure 20 has an inclination angle β of 30 degrees or more and 90 degrees or less with respect to the horizontal plane in the stern side first range Rx1 and the upper and lower first range Rz1. If it forms in this, the eddy current which arises in the corner | angular part of the stern side upper surface 27 and the side wall part 28 which forms the stern side of the water surface structure 20 can be suppressed. The side wall portion 28 is preferably formed in a curved surface shape in which the whole or a part of the upper side of the water surface is convex outward. In this case, the angle formed by the contact surface at each point on the curved surface with the horizontal surface is set. The inclination angle is β.
 この傾斜角βを30度より小さくすると、船尾側部分の下部が大きく船尾方向に延びることになり、90度より大きくし過ぎると、実用的ではなくなる。また、更に、この船尾側上面27と側壁部28との角部に角取り又は丸めを設けることにより、より効果的に渦流を抑制することができるようになる。 If the inclination angle β is smaller than 30 degrees, the lower part of the stern side part will extend greatly in the stern direction, and if it is larger than 90 degrees, it becomes impractical. Furthermore, by providing cornering or rounding at the corners of the stern side upper surface 27 and the side wall portion 28, it becomes possible to more effectively suppress vortex flow.
 また、この上部構造物20を水面上構造物20とした貨物船1Aにおいては、船尾側第1範囲Rx1かつ上下第1範囲Rz1で、さらに次のように構成することが好ましい。 Further, in the cargo ship 1A in which the upper structure 20 is the water surface structure 20, it is preferable that the stern side first range Rx1 and the upper and lower first range Rz1 are further configured as follows.
 つまり、図8に示すように、各水平断面で上部構造物20の側壁部28の50%以上を直線L3(z)で形成して、この直線L3(z)の船体中心線Lcに対する第1角度α(z)の上下方向Zに関しての上下第1範囲Rz1における平均値を第1平均角度αmとする。また、上部構造物20の下の船体2の側壁部(乾舷)8における上部構造物20の前面よりも船尾側の20%以上、好ましくは30%以上、より好ましくは40%以上を直線L4(z)で形成する。 That is, as shown in FIG. 8, 50% or more of the side wall 28 of the upper structure 20 is formed by a straight line L3 (z) in each horizontal section, and the first line L3 (z) with respect to the hull center line Lc. An average value in the first vertical range Rz1 with respect to the vertical direction Z of the angle α (z) is defined as a first average angle αm. In addition, the straight line L4 represents 20% or more, preferably 30% or more, more preferably 40% or more on the stern side of the front surface of the upper structure 20 in the side wall (dry ridge) 8 of the hull 2 below the upper structure 20. (Z).
 それと共に、この直線L4(z)の船体中心線Lcに対する第3角度θ(z)の上下方向Zに関しての船体2の乾舷8の範囲における平均値を第3平均角度θmとし、角度γ2を5度とする。このときに、第1平均角度αmと第3平均角度θmの関係を、(αm-γ2)≦θm≦(αm+γ2)の関係とする。 At the same time, the average value in the range of the freeboard 8 of the hull 2 with respect to the vertical direction Z of the third angle θ (z) with respect to the hull center line Lc of this straight line L4 (z) is defined as the third average angle θm, and the angle γ2 is set. 5 degrees. At this time, the relationship between the first average angle αm and the third average angle θm is a relationship of (αm−γ2) ≦ θm ≦ (αm + γ2).
 これにより、この船尾側の上部構造物20と船体2の乾舷8との間で、平面視における第1平均角度αmと第3平均角度θmとの間に大きな差が無くなるため、上部構造物20と船体2との上下方向の流れによって乱される可能性が少なくなり、平面的な流れが維持され易くなるので、上部構造物20と船体2のそれぞれによる翼形状の後端効果を発揮でき、斜め向風における船舶1A全体の風圧抵抗の増加を抑制しつつ、揚力発生に起因する推進性能の向上を図ることができる。
 渦流を抑制することができるようになる。
As a result, there is no significant difference between the first average angle αm and the third average angle θm in a plan view between the stern-side upper structure 20 and the freeboard 8 of the hull 2. 20 and the hull 2 are less likely to be disturbed by the vertical flow, and a planar flow is easily maintained, so that the wing-shaped rear end effect of the upper structure 20 and the hull 2 can be exhibited. Further, it is possible to improve the propulsion performance due to the generation of lift while suppressing an increase in the wind pressure resistance of the entire ship 1A in an oblique headwind.
The eddy current can be suppressed.
 次に、第3の実施の形態の風圧抵抗の少ない船舶(以下船舶という)について説明する。図9及び図10に示すように、この第3の実施形態の船舶1Bは、第1の実施の形態の船舶1において、さらに、船尾形状を限定したものである。なお、図9はコンテナ船の例である。 Next, a ship with a low wind pressure resistance (hereinafter referred to as a ship) according to the third embodiment will be described. As shown in FIGS. 9 and 10, the ship 1 </ b> B according to the third embodiment is obtained by further limiting the stern shape in the ship 1 according to the first embodiment. FIG. 9 shows an example of a container ship.
 この船舶1Bは、コンテナ船などで上甲板3の上に艦橋21と居住区22を備えた上部構造物20を持つが、この上部構造物20が船体前後方向Xに関して船尾側ではなく、船首側や中間位置に配置されている船舶が主に対象となる。 This ship 1B is a container ship or the like, and has an upper structure 20 having a bridge 21 and a residential area 22 on the upper deck 3, but the upper structure 20 is not on the stern side but on the bow side in the longitudinal direction X of the hull. Ships placed at intermediate positions are mainly targeted.
 この船体2を水面上構造物2とした船舶1Bにおいて、第1の実施の形態の船舶1と同様に、船尾側第1範囲Rx1と上下第1範囲Rz1を設けて、この船尾側第1範囲Rx1で、かつ、上下第1範囲Rz1を、船尾特定範囲Sa1とし、この部分での船尾形状を次のように形成する。 In the ship 1B in which the hull 2 is the water surface structure 2, the stern side first range Rx1 and the upper and lower first range Rz1 are provided in the same manner as the ship 1 of the first embodiment. Rx1 and the upper and lower first range Rz1 are set as the stern specific range Sa1, and the stern shape in this portion is formed as follows.
 つまり、船体(水面上構造物)2の船尾側の30%以上を直線L4(z)で形成し、この直線L4(z)の船体中心線Lcに対する第3角度θ(z)の上下方向(Z)に関しての平均値を第3平均角度θmとし、角度γ2を20度、好ましくは10度、より好ましくは5度とし、θ1を50度としたときに、第3平均角度θmを、(θ1-γ2)≦θm≦(θ1+γ2)の関係とする。 That is, 30% or more of the stern side of the hull (water surface structure) 2 is formed by a straight line L4 (z), and the vertical direction of the third angle θ (z) of the straight line L4 (z) with respect to the hull center line Lc ( When the average value for Z) is the third average angle θm, the angle γ2 is 20 degrees, preferably 10 degrees, more preferably 5 degrees, and θ1 is 50 degrees, the third average angle θm is (θ1 −γ2) ≦ θm ≦ (θ1 + γ2).
 この構成によれば、コンテナ船などの上部構造物20を船体前後方向Zにおいて前方又は中間に配置しているような船舶1Bにおいても、船体2の船尾形状で、翼形状の後端効果を発揮し易くすることができ、斜め向風における船舶全体の風圧抵抗の増加を抑制しつつ、揚力発生に起因する推進性能の向上を図ることができる。 According to this configuration, even in a ship 1B in which an upper structure 20 such as a container ship is arranged forward or in the middle of the hull longitudinal direction Z, the stern shape of the hull 2 exhibits the wing-shaped rear end effect. The propulsion performance resulting from the generation of lift can be improved while suppressing an increase in wind pressure resistance of the entire ship in an oblique headwind.
 また、コンテナ等の積載貨物30の上甲板3上への配置の仕方により、積載時の貨物の全体としての形状を船体2の船尾形状に合わせたり、類似形状にしたりすることで、船体2の船尾側の翼形状の後端効果に加えて、上甲板3上の積載時の積載貨物30の全体としての形状においても、翼形状の後端効果を発揮させることができるようになる。 Further, depending on the manner in which the loaded cargo 30 such as a container is arranged on the upper deck 3, the shape of the cargo at the time of loading is matched to the stern shape of the hull 2 or is made similar to that of the hull 2. In addition to the wing shape rear end effect on the stern side, the wing shape rear end effect can be exhibited also in the overall shape of the cargo 30 loaded on the upper deck 3.
 上記の構成の船舶1、1A、1Bによれば、水面上の風圧面積が比較的大きく、風圧力の影響を受け易い自動車運搬船、客船、コンテナ船、木材運搬船などにおいて、斜め向かい風の影響を低減するとともに、船体2又は上部構造物20とコンテナ等の積載貨物30で形成する水面上構成物2、20で揚力を発生し、この揚力の船体2の前後方向Xの成分から推力を得ることできて、船舶1、1A、1Bの推進性能を向上することができる。その結果、燃費が向上し、省エネルギー化を図ることができる。 According to the vessels 1, 1A, 1B having the above-described configuration, the wind pressure area on the surface of the water is relatively large, and the influence of the diagonally headed wind is reduced in an automobile carrier ship, a passenger ship, a container ship, a timber carrier ship, etc. At the same time, lift is generated by the surface components 2 and 20 formed by the hull 2 or the upper structure 20 and the loaded cargo 30 such as a container, and thrust can be obtained from the components in the longitudinal direction X of the hull 2 of this lift. Thus, the propulsion performance of the ships 1, 1A, 1B can be improved. As a result, fuel consumption can be improved and energy saving can be achieved.
1、1A、1B 船舶
2 船体(水上構造物)
3 上甲板
8 舷側部
20 上部構造物
21 艦橋
22 居住区
30 積載貨物(コンテナ)
A.P. 船尾垂線
Bmax 最大幅
F.P. 船首垂線
L1 第1傾斜線
L2 第2傾斜線
Lc 船体中心線
Lpp 垂線間長
Ls(z) 水平断面の外形線
P1 第1位置
P2 仮想点
Pa 船体の最後尾
Rx1 船尾側第1範囲
Rz1 上下第1範囲
Rα(z) 扇形領域
Sa1 船尾特定範囲
Sh(z)船尾特定範囲における水平断面
X 船体の前後方向
Y 船体の左右方向
Z 船体の上下方向
α 片舷側の角度
α1 第1角度
α2 第2角度
β 傾斜角
θ 第3角度
1, 1A, 1B Ship 2 Hull (water structure)
3 Upper deck 8 Side 20 Upper structure 21 Bridge 22 Residence area 30 Cargo (container)
A. P. Stern perpendicular Bmax Maximum width F. P. Bow vertical line L1 First inclined line L2 Second inclined line Lc Hull center line Lpp Vertical length Ls (z) Horizontal cross section outline P1 First position P2 Virtual point Pa Hull tail tail Rx1 Stern side first range Rz1 Up and down first 1 range Rα (z) Fan-shaped region Sa1 Stern specific range Sh (z) Horizontal cross section X in stern specific range Y Front / rear direction Y Hull's left / right direction Z Hull's vertical direction α Side angle α1 First angle α2 Second angle β Inclination angle θ Third angle

Claims (5)

  1.  航海速力が、フルード数で0.13~0.30の船舶で、水面上の船体、又は、上甲板上に設けた上部構造物の少なくとも一方の水面上構造物において、
     前記水面上構造物の最大幅の船尾側最後部における船体中心線上の点を第1位置とし、この第1位置と船体の最後尾との間を船尾側第1範囲とし、前記水面上構造物の上下方向の任意の連続部分での50%以上かつ100%以下の範囲を上下第1範囲として、
     前記水面上構造物の前記船尾側第1範囲かつ前記上下第1範囲における水面に平行な各水平断面で、
     船体中心線上の仮想点から船体の前後方向の船首方向に対して第1角度で延びる線を第1傾斜線とし、前記仮想点から船体の前後方向の船首方向に対して第2角度で延びる線を第2傾斜線とし、前記第1角度を50度とし、前記第2角度を80度とし、前記第1傾斜線と前記第2傾斜線との間を扇形領域として、前記仮想点を船体中心線上で移動させて、扇形領域を船体の前後方向に移動させたときに、
     前記水平断面の外形線の長さの50%以上100%以下の長さの外形線が前記扇形領域に入るような前記仮想点の位置があることを特徴とする風圧抵抗の少ない船舶。
    In a ship with a voyage speed of 0.13 to 0.30 in terms of fluid number, at least one of the hull on the surface of the water or the upper structure provided on the upper deck,
    A point on the hull centerline at the rearmost portion of the maximum width of the above-ground structure on the stern side is defined as a first position, and a stern-side first range is defined between the first position and the last tail of the hull. A range of 50% or more and 100% or less in an arbitrary continuous portion in the vertical direction of
    In each horizontal cross section parallel to the water surface in the first range on the stern side of the structure on the water surface and the first range above and below,
    A line extending from a virtual point on the hull center line at a first angle with respect to the bow direction in the front-rear direction of the hull is defined as a first inclined line, and a line extending from the virtual point at a second angle with respect to the bow direction in the front-rear direction of the hull. Is the second inclined line, the first angle is 50 degrees, the second angle is 80 degrees, the fan-shaped region is between the first inclined line and the second inclined line, and the virtual point is the center of the hull. When moving on the line and moving the sector area in the longitudinal direction of the hull,
    A ship with low wind pressure resistance, characterized in that the position of the imaginary point is such that an outline having a length of 50% or more and 100% or less of the length of the outline of the horizontal section falls within the fan-shaped region.
  2.  前記上下第1範囲の前記各水平断面の形状において、前記船尾側第1範囲の側壁部を、凹凸の幅が前記水面上構造物の最大幅の5%以下となる滑らかな曲線状の部分、又は、凹凸の幅が前記水面上構造物の最大幅の5%以下となる直線部分、又は、両者の組み合わせで形成したことを特徴とする請求項1に記載の風圧抵抗の少ない船舶。 In the shape of each horizontal section of the upper and lower first range, the side wall portion of the first range on the stern side has a smooth curved portion in which the width of the unevenness is 5% or less of the maximum width of the structure on the water surface, Or the ship with little wind pressure resistance of Claim 1 formed in the linear part from which the width | variety of an unevenness | corrugation becomes 5% or less of the maximum width of the said structure on a water surface, or the combination of both.
  3.  前記水面上構造物の船尾側を形成する側壁部を、前記船尾側第1範囲かつ前記上下第1範囲において、水平面に対して30度以上かつ90度以下の傾斜角を有するように形成したことを特徴とする請求項1又は2に記載の風圧抵抗の少ない船舶。 The side wall portion that forms the stern side of the structure on the water surface is formed so as to have an inclination angle of 30 degrees or more and 90 degrees or less with respect to the horizontal plane in the first range on the stern side and the first range in the upper and lower sides. The ship with little wind pressure resistance according to claim 1 or 2.
  4.  前記上部構造物を水面上構造物とした場合において、
     前記船尾側第1範囲かつ前記上下第1範囲で、
     各水平断面で前記上部構造物の側壁部の50%以上を直線で形成して、この直線の船体中心線に対する第1角度の上下方向に関しての上下第1範囲における平均値を第1平均角度αmとし、
     前記上部構造物の下の前記船体の側壁部における前記上部構造物の前面よりも船尾側の20%以上を直線で形成し、この直線の船体中心線に対する第3角度の上下方向に関しての船体の乾舷の範囲における平均値を第3平均角度θmとし、角度γ1を5度としたときに、
     前記第1平均角度αmと前記第3平均角度θmの関係を、(αm-γ1)≦θm≦(αm+γ1)の関係とすることを特徴とする請求項1に記載の風圧抵抗の少ない船舶。
    In the case where the upper structure is a water surface structure,
    In the first range on the stern side and the first range on the upper and lower sides,
    In each horizontal section, 50% or more of the side wall portion of the superstructure is formed with a straight line, and the average value in the first vertical range with respect to the vertical direction of the first angle with respect to the center line of the hull is the first average angle αm. age,
    20% or more of the stern side of the side wall of the hull under the superstructure is formed in a straight line with respect to the front side of the superstructure, and the hull in the vertical direction of the third angle with respect to the straight hull centerline. When the average value in the range of dry ridge is the third average angle θm and the angle γ1 is 5 degrees,
    2. The ship with low wind pressure resistance according to claim 1, wherein the relationship between the first average angle αm and the third average angle θm is a relationship of (αm−γ1) ≦ θm ≦ (αm + γ1).
  5.  前記船体を水面上構造物とした場合において、
     前記船尾側第1範囲かつ前記上下第1範囲で、
     前記水面上構造物の船尾側の30%以上を直線で形成し、この直線の船体中心線に対する第3角度の上下方向に関しての平均値を第3平均角度θmとし、角度γ2を20度とし、θ1を50度としたときに、
     前記第3平均角度θmを、(θ1-γ2)≦θm≦(θ1+γ2)の関係とすることを特徴とする請求項1に記載の風圧抵抗の少ない船舶。
    In the case where the hull is a water surface structure,
    In the first range on the stern side and the first range on the upper and lower sides,
    30% or more of the stern side of the structure on the water surface is formed as a straight line, the average value of the third angle with respect to the center line of the hull in the vertical direction is the third average angle θm, the angle γ2 is 20 degrees, When θ1 is 50 degrees,
    2. The ship with low wind pressure resistance according to claim 1, wherein the third average angle θm has a relationship of (θ1−γ2) ≦ θm ≦ (θ1 + γ2).
PCT/JP2019/020880 2018-06-04 2019-05-27 Ship with little wind-pressure resistance WO2019235281A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980037295.0A CN112272637B (en) 2018-06-04 2019-05-27 Small wind resistance ship
KR1020207031722A KR102438509B1 (en) 2018-06-04 2019-05-27 Vessels with low wind pressure resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018107091A JP6687673B2 (en) 2018-06-04 2018-06-04 Vessels with low wind resistance
JP2018-107091 2018-06-04

Publications (1)

Publication Number Publication Date
WO2019235281A1 true WO2019235281A1 (en) 2019-12-12

Family

ID=68770748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020880 WO2019235281A1 (en) 2018-06-04 2019-05-27 Ship with little wind-pressure resistance

Country Status (4)

Country Link
JP (1) JP6687673B2 (en)
KR (1) KR102438509B1 (en)
CN (1) CN112272637B (en)
WO (1) WO2019235281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111619729A (en) * 2020-05-29 2020-09-04 广船国际有限公司 Ship cargo hold strong frame arrangement mode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114901404A (en) 2019-12-24 2022-08-12 株式会社佐竹 Optical sorting device
JP7404883B2 (en) 2020-01-17 2023-12-26 株式会社サタケ optical sorter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169084U (en) * 1984-04-20 1985-11-09 日本鋼管株式会社 ship superstructure
JP2008074277A (en) * 2006-09-22 2008-04-03 Shin Kurushima Dockyard Co Ltd Stern duct
JP2011057052A (en) * 2009-09-09 2011-03-24 Mitsui Zosen Akishima Kenkyusho:Kk Marine vessel with little wind-pressure resistance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146723B1 (en) 2009-11-23 2012-05-17 이종준 Gas leak predicting system and method
NO331872B1 (en) 2010-12-22 2012-04-23 Lade As Ship hulls, as well as ships including the said hulls
JP5651269B2 (en) * 2012-03-21 2015-01-07 今治造船株式会社 Ship
JP6184688B2 (en) * 2012-12-20 2017-08-23 三井造船株式会社 Construction method for ship-shaped structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169084U (en) * 1984-04-20 1985-11-09 日本鋼管株式会社 ship superstructure
JP2008074277A (en) * 2006-09-22 2008-04-03 Shin Kurushima Dockyard Co Ltd Stern duct
JP2011057052A (en) * 2009-09-09 2011-03-24 Mitsui Zosen Akishima Kenkyusho:Kk Marine vessel with little wind-pressure resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111619729A (en) * 2020-05-29 2020-09-04 广船国际有限公司 Ship cargo hold strong frame arrangement mode
CN111619729B (en) * 2020-05-29 2021-08-03 广船国际有限公司 Ship cargo hold strong frame arrangement mode

Also Published As

Publication number Publication date
KR102438509B1 (en) 2022-08-30
JP2019209821A (en) 2019-12-12
CN112272637B (en) 2023-05-12
CN112272637A (en) 2021-01-26
JP6687673B2 (en) 2020-04-28
KR20210006354A (en) 2021-01-18

Similar Documents

Publication Publication Date Title
JP4933487B2 (en) Fuel efficient transport ship
US6311635B1 (en) Monohull having stern stabilizers for a high speed ship
WO2019235281A1 (en) Ship with little wind-pressure resistance
US20070107646A1 (en) Transonic hull and hydrofield
US7487736B2 (en) Hybrid boat hull
CN108349570B (en) Ship with a detachable cover
AU693858B2 (en) Hull configuration
JP5638215B2 (en) Ship with low wind pressure resistance and its design method
DK2029420T3 (en) Ship with a carrying wing below the waterline
JP4009643B2 (en) Ship bow shape
US7243607B2 (en) Wind driven sailing craft
AU2015206001B2 (en) Marine propulsion multihull ship
US20070017428A1 (en) Vessel provided with a foil situated below the waterline
US20010045492A1 (en) Triple hybrid water craft
JP4575985B2 (en) Rudder and ship for ships
WO2023223617A1 (en) Ship
JPS6121890A (en) Sailing ship
KR102460495B1 (en) Energy saving device for ship and Ship thereof
US7841285B2 (en) Waterborne vessel with loop keel
AU610599B2 (en) Planing motor boat hull
KR100544899B1 (en) The type of ship with airpoil-fin
JPH0130316Y2 (en)
JP2003291883A (en) Ship
JPH0594091U (en) Hydrofoil keel structure
JPH0535583U (en) Hydrofoil of a composite-supported ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207031722

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814669

Country of ref document: EP

Kind code of ref document: A1