JP2006035217A - Method for accelerating reaction of chemical substance utilizing ultrasonic wave - Google Patents

Method for accelerating reaction of chemical substance utilizing ultrasonic wave Download PDF

Info

Publication number
JP2006035217A
JP2006035217A JP2005236512A JP2005236512A JP2006035217A JP 2006035217 A JP2006035217 A JP 2006035217A JP 2005236512 A JP2005236512 A JP 2005236512A JP 2005236512 A JP2005236512 A JP 2005236512A JP 2006035217 A JP2006035217 A JP 2006035217A
Authority
JP
Japan
Prior art keywords
gas
reaction
chemical substance
reactor
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005236512A
Other languages
Japanese (ja)
Inventor
Masazumi Kanazawa
正澄 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Kensetsu KK
Original Assignee
Daio Kensetsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Kensetsu KK filed Critical Daio Kensetsu KK
Priority to JP2005236512A priority Critical patent/JP2006035217A/en
Publication of JP2006035217A publication Critical patent/JP2006035217A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accelerating a reaction of a chemical substance utilizing an ultrasonic wave without performing an advanced refining process and capable of performing a continuous process from introducing raw materials to recovering a residual gas. <P>SOLUTION: This method for accelerating the reaction of the chemical substance utilizing the ultrasonic wave uses the steps of irradiating a decomposed formation gas of the chemical substance with the ultrasonic wave to generate a compressional wave thereby to induce molecular motion repeating high-speed inversion and to increase intense collision of mutual molecules and the frequency thereof, and of utilizing a compressed part becoming adiabatic compression by the ultrasonic wave to thereby become a locally high-temperature and high-pressure condition to accelerating the reaction of the chemical substance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超音波を利用した化学物質の二重結合の解裂等の反応促進方法に関する。   The present invention relates to a reaction promoting method such as cleavage of a double bond of a chemical substance using ultrasonic waves.

従来から冷媒として使用されているフロンガスとか、消化剤として使用されているハロンガスは環境汚染物質であることが指摘されており、これら物質の無害化処理が地球環境を守る観点から全世界的な関心事であって各種の対処手段が提案されている。例えばフロン処理方法に関しては、水熱反応法,焼却法,爆発反応分解法,微生物分解法,超音波分解法及びプラズマ反応法等が提案されている。また、オゾン層の破壊物質であるフロンR22(CHClF)は分解してから廃棄処理する手段が通例であるが、近時はフッ素樹脂にリサイクルして再利用する試みが行われている。例えば使用済みのエアコン等から回収したフロンR22を回収後に精製してからポリテトラフルオロエチレン樹脂原料として利用する手段が工夫されている。 It has been pointed out that chlorofluorocarbon gas, which has been used as a refrigerant, and halon gas, which has been used as a digestive agent, are environmental pollutants. Various countermeasures have been proposed. For example, hydrothermal reaction methods, incineration methods, explosion reaction decomposition methods, microbial decomposition methods, ultrasonic decomposition methods, plasma reaction methods, and the like have been proposed for chlorofluorocarbon treatment methods. Further, a means for disposing of CFCs R22 (CHClF 2 ), which is a depleting substance of the ozone layer, is generally disposed of after being decomposed, but recently, attempts have been made to recycle and reuse the fluororesin. For example, a means has been devised in which chlorofluorocarbon R22 recovered from a used air conditioner or the like is purified after recovery and then used as a polytetrafluoroethylene resin material.

一般にポリテトラフルオロエチレンの製造方法としては、フッ化塩化エタンの脱塩素法、C,F,H,Cl,Br等を含む低級脂肪族の熱分解法、三フッ化酢酸のアルカリ金属塩の熱分解法、PTFTの熱分解法等が知られている。工業的には白金,銀,炭素などの反応管を使用し、無充填流動方式により650℃〜800℃熱分解を行ってポリテトラフルオロエチレンを得ている。副生成物の主なものはCである(非特許文献1,2を参照)。
フッ素樹脂ハンドブック(里川孝臣編,1990年,日刊工業新聞社発行) フッ素系材料の開発(山辺正顕,松尾 仁編,1997年,株式会社シーエムシー出版発行)
In general, polytetrafluoroethylene production methods include dechlorination of fluorinated chloroethane, thermal decomposition of lower aliphatics including C, F, H, Cl, Br, etc., heat of alkali metal salt of trifluoroacetic acid A decomposition method, a thermal decomposition method of PTFT, and the like are known. Industrially, a reaction tube made of platinum, silver, carbon or the like is used, and polytetrafluoroethylene is obtained by thermal decomposition at 650 ° C. to 800 ° C. by an unfilled flow method. The main by-product is C 3 F 6 (see Non-Patent Documents 1 and 2).
Fluorine resin handbook (Takaomi Satokawa, 1990, published by Nikkan Kogyo Shimbun) Development of fluorine-based materials (Masaaki Yamabe, Hitoshi Matsuo, 1997, issued by CMC Publishing Co., Ltd.)

しかしながら、上記従来のフロンR22をフッ素樹脂にリサイクルする手段では、原料であるフロンR22の純度が高いことが要求され、一方家庭用エアコン等から回収したフロンR22は水分,油分,空気等を含んでいるため、充分に精製して純度を高めないと原料として使用できないという問題がある。更に熱分解法により4フッ化エチレンガス(CF=CFガス)を作る際に副生成物として有害なガスが発生するので、この有毒ガスの処理が難しいという課題がある。また、原料としてのフロンR22からポリテトラフルオロエチレンまでを連続的に製造することはできないという問題点もある。 However, the conventional means for recycling Freon R22 to fluorocarbon resin requires that the purity of Freon R22 as a raw material is high, while Freon R22 recovered from a home air conditioner contains moisture, oil, air, and the like. Therefore, there is a problem that it cannot be used as a raw material unless it is sufficiently purified to increase its purity. Furthermore, since harmful gas is generated as a by-product when ethylene tetrafluoride gas (CF 2 = CF 2 gas) is produced by a thermal decomposition method, there is a problem that it is difficult to treat this toxic gas. In addition, there is a problem in that it is impossible to continuously produce from fluorocarbon R22 as a raw material to polytetrafluoroethylene.

また、熱分解により4フッ化エチレンガス(CF=CFガス)ができても、このCF=CFガスの純度が高くないと重合が開始されないので、CF=CFガスを精製して重合が開始されるまでの純度に高める必要がある。一方、純度が高くなると常温常圧でも重合が始まり止めることができないくらい激しく重合し、このとき大きな反応熱を出すので爆発したり危険な反応となる。また、純度の高いCF=CFガスを保存するには、重合阻止剤を入れて−20℃以下にして保管しなければならず、それでも徐々に重合する。 Further, even if tetrafluoroethylene gas (CF 2 = CF 2 gas) is produced by thermal decomposition, polymerization does not start unless the purity of this CF 2 = CF 2 gas is high. Therefore, the CF 2 = CF 2 gas is purified. Thus, it is necessary to increase the purity until the polymerization is started. On the other hand, when the purity is high, the polymerization is so intense that the polymerization cannot be started and stopped even at room temperature and normal pressure, and at this time, a large reaction heat is generated, which causes an explosion or a dangerous reaction. Also, to save the high-purity CF 2 = CF 2 gas must be stored in the -20 ° C. or less put polymerization inhibitor, still gradually polymerization.

また、フロンR22(CHClF)の1個の塩素(Cl)がフッ素(F)に置き換わったフロンR23(CHF)という物質がある。このフロンR23はフッ素樹脂の原料としてフロンR22を作る際の副生成物として必ずできるフロンであり、特に重要な用途は存在しない。しかしながら、フロンR23は、フロンR22のようにオゾン層の破壊物質ではないため看過されてきたが、近時大きな環境問題となっている地球温暖化の指数が炭酸ガスの10000倍以上(フロンR22は1000倍程度)あることが明らかとなり、その分解処理が大きな課題となっている。一方において、このフロンR23は塩素(Cl)を含んでいないので、このフロンR23からフッ素樹脂を製造することができれば塩素の混入がないので、非常に効率的に樹脂化でき、更にはポリテトラフルオロエチレンのみを製造することができるという画期的な効果を得ることができる。 In addition, there is a substance called Freon R23 (CHF 3 ) in which one chlorine (Cl) of Freon R22 (CHClF 2 ) is replaced with fluorine (F). This chlorofluorocarbon R23 is chlorofluorocarbon that is always produced as a by-product in producing fluorocarbon R22 as a raw material for fluororesin, and has no particularly important use. However, Freon R23 has been overlooked because it is not an ozone-depleting substance like Freon R22, but the index of global warming, which has recently become a major environmental problem, is more than 10,000 times that of carbon dioxide (Freon R22 is It is clear that there are about 1000 times), and the decomposition process is a big problem. On the other hand, since chlorofluorocarbon R23 does not contain chlorine (Cl), if fluorocarbon resin can be produced from chlorofluorocarbon R23, there is no mixing of chlorine. An epoch-making effect that only ethylene can be produced can be obtained.

そこで本発明はこれらの事情に鑑み、上記従来のフロンR22をフッ素樹脂にリサイクルして再利用する手段等が有している課題を解消して、超音波を利用した各種化学物質の二重結合の解裂,重合,置換等の各種反応促進方法を提供することを目的とするものである。   Accordingly, in view of these circumstances, the present invention solves the problems of the above-mentioned means for recycling and reusing the conventional Freon R22 to fluororesin, and double bonds of various chemical substances using ultrasonic waves. The purpose of this invention is to provide various reaction promotion methods such as cleavage, polymerization and substitution.

本発明は上記目的を達成するために、化学物質の分解生成ガスに超音波を照射することによって、化学物質の反応を促進すること、即ち化学物質の分解生成ガスに超音波を照射して疎密波を作ることで、高速反転を繰り返す分子運動を起こし、分子同士の激しい衝突とその頻度を多くすることと、超音波による圧縮部分が断熱圧縮となることから局部的な高温高圧状態となることを利用して化学物質の反応を促進する超音波を利用した化学物質の反応促進方法を基本として提供する。   In order to achieve the above object, the present invention promotes the reaction of the chemical substance by irradiating the chemical decomposition product gas with ultrasonic waves, that is, the chemical substance decomposition product gas is irradiated with ultrasonic waves to reduce the density. By creating waves, it causes molecular motion that repeats high-speed reversal, and increases the frequency and frequency of intense collisions between molecules. The method of promoting the reaction of chemical substances using ultrasonic waves, which promotes the reaction of chemical substances by using, is basically provided.

また、二重結合を有する化学物質の分解生成ガスに超音波を照射することによって、該二重結合を解裂する超音波を利用した化学物質の反応促進方法、二重結合を有する化学物質の分解生成ガスに超音波を照射して疎密波を作ることで、高速反転を繰り返す分子運動を起こし、分子同士の激しい衝突とその頻度を多くすることと、超音波による圧縮部分が断熱圧縮となることから局部的な高温高圧状態となることを利用して二重結合を解裂する超音波を利用した化学物質の反応促進方法を提供する。   In addition, by irradiating ultrasonic waves to the decomposition product gas of a chemical substance having a double bond, a reaction promotion method for the chemical substance using ultrasonic waves that cleave the double bond, a chemical substance having a double bond By irradiating the decomposition product gas with ultrasonic waves to create a dense wave, molecular motion that repeats high-speed reversal occurs, increasing the frequency and frequency of intense collisions between molecules, and the compression part by ultrasonic waves becomes adiabatic compression Therefore, the present invention provides a method for promoting the reaction of a chemical substance using ultrasonic waves that cleave double bonds by utilizing a local high-temperature and high-pressure state.

かかる超音波を利用した化学物質の反応促進方法によれば、超音波によって各種化学物質の反応を促進させることができる。即ち、超音波を化学物質の分解生成ガスに照射することで運動エネルギーの増加と衝突頻度の増大、さらに、断熱圧縮による高温高圧状態でエネルギーの供給が可能となるから十分な活性化エネルギーが与えられ化学反応が促進されるのである。例えば、二重結合の解裂,重合(分子結合反応),置換反応等が活発に行われる場ができることとなる。   According to the chemical substance reaction promoting method using ultrasonic waves, the reaction of various chemical substances can be promoted by ultrasonic waves. In other words, by irradiating the chemical decomposition product gas with ultrasonic waves, the kinetic energy increases and the collision frequency increases, and furthermore, energy can be supplied in a high temperature and high pressure state by adiabatic compression, so that sufficient activation energy is given. The chemical reaction is promoted. For example, there can be a place where double bond breakage, polymerization (molecular bond reaction), substitution reaction, and the like are actively performed.

以下本発明にかかる超音波を利用した化学物質の反応促進方法の最良の実施形態を、フロンR22の解裂及びフロンR22からポリテトラフルオロエチレン等のフッ素樹脂を製造する場合を例として説明する。なお、本発明はフロンR22(又はフロンR23)に限ることなく、各種の化学物質の解裂,重合,置換等の反応促進に広く適用することができる。   BEST MODE FOR CARRYING OUT THE INVENTION The best embodiment of the method for promoting the reaction of chemical substances using ultrasonic waves according to the present invention will be described below by taking as an example the cleavage of Freon R22 and the production of a fluororesin such as polytetrafluoroethylene from Freon R22. The present invention is not limited to chlorofluorocarbon R22 (or chlorofluorocarbon R23), and can be widely applied to the promotion of reactions such as cleavage, polymerization, and substitution of various chemical substances.

図1は本発明を適用してフロンR22からポリテトラフルオロエチレン等のフッ素樹脂を製造する際の工程例を示すフローチャートであり、先ず主要な構成要素を説明すると、1は予熱器であり、この予熱器1にはフロンR22投入口1aと水蒸気投入口1bが配設されている。2は第一反応器、3は冷却器、4はガス洗浄器、5は第二反応器、6は濾過装置、7は圧縮機、8は残ガス回収容器である。第二反応器5内には超音波振動子5aが配置されており、外部に該超音波振動子5aを作動させるための超音波発振器5bと制御回路5cが配備されている。   FIG. 1 is a flowchart showing an example of a process for producing a fluororesin such as polytetrafluoroethylene from Freon R22 by applying the present invention. First, main components will be described. 1 is a preheater, The preheater 1 is provided with a Freon R22 inlet 1a and a steam inlet 1b. 2 is a first reactor, 3 is a cooler, 4 is a gas scrubber, 5 is a second reactor, 6 is a filtration device, 7 is a compressor, and 8 is a residual gas recovery container. An ultrasonic transducer 5a is disposed in the second reactor 5, and an ultrasonic oscillator 5b and a control circuit 5c for operating the ultrasonic transducer 5a are provided outside.

本発明の要旨は、化学物質の分解生成ガスに超音波を照射することで運動エネルギーの増加と衝突頻度の増大、更に断熱圧縮による高温高圧状態でエネルギーの供給が可能となるから十分な活性化エネルギーが与えられ化学反応が促進され、例えば、二重結合の解裂,重合(分子結合反応),置換反応等が活発に行われる場ができることにある。そこで、先ずこれらに関する基本的実験データに関して、図3〜図8に基づいて説明する。   The gist of the present invention is that sufficient activation is achieved by irradiating ultrasonic waves to the decomposition product gas of chemical substances, increasing kinetic energy and collision frequency, and enabling energy supply at high temperature and high pressure by adiabatic compression. Energy is applied and chemical reaction is promoted, and for example, there is a place where a double bond breakage, polymerization (molecular bond reaction), substitution reaction and the like are actively performed. First, basic experimental data relating to these will be described with reference to FIGS.

図3は第二反応器5内での動作時における超音波を照射したときの音圧と断熱圧縮による温度上昇曲線を示しており、縦軸に圧力(Pa)と温度(℃)、横軸に電圧を取っている。圧力が約1000Paで温度は約450℃となるから供給できるエネルギーレベルは高いものといえる。   FIG. 3 shows a temperature rise curve due to sound pressure and adiabatic compression when ultrasonic waves are applied during operation in the second reactor 5, and the vertical axis represents pressure (Pa) and temperature (° C.), and the horizontal axis. Is taking the voltage. Since the pressure is about 1000 Pa and the temperature is about 450 ° C., it can be said that the energy level that can be supplied is high.

図4は第一反応器2で生成される分解生成ガスの内、CF=CFガスの収率(%)と第一反応器2の温度(℃)との関係を示すグラフであり、図5は第二反応器5の温度(℃)によるCF=CFガス量の比率(%)の関係を示すグラフである。図4によればCF=CFガスの収率は最大40%程度となっている。一方、図5に示すように反応温度によってCF=CFガスの収率は高くなるが、これは温度が高くなると分解して全体のガス量が少なくなるためで、850℃のときにはほぼ90%以上がCF=CFガスで構成されているが、これは見かけ上であって、図4の850℃のときの収率から明らかなように実際のCF=CFガスの量は著しく少なくなっている。収率がよいのは550℃〜650℃の間である。図6は650℃を100%としたときにおける生成される他のガスには含まれないCF=CFガスに特有のイオン分子量81の量と第一反応器2の温度との関係を示すグラフである。このイオンの量が多いとそれだけCF=CFガスの量が多いと考えられ、図6に示すように550℃〜650℃の間で比率が高くなっている。 FIG. 4 is a graph showing the relationship between the yield (%) of CF 2 = CF 2 gas and the temperature (° C.) of the first reactor 2 among the cracked gas produced in the first reactor 2. FIG. 5 is a graph showing the relationship of CF 2 = CF 2 gas amount ratio (%) depending on the temperature (° C.) of the second reactor 5. According to FIG. 4, the yield of CF 2 = CF 2 gas is about 40% at maximum. On the other hand, as shown in FIG. 5, the yield of CF 2 = CF 2 gas increases with the reaction temperature. This is because the total gas amount is reduced when the temperature is increased. % Is composed of CF 2 = CF 2 gas. This is apparent, and as is apparent from the yield at 850 ° C. in FIG. 4, the actual amount of CF 2 = CF 2 gas is Remarkably reduced. The yield is good between 550 ° C and 650 ° C. Figure 6 shows the relationship between the temperature amount and the first reactor second unique ion molecular weight 81 to 650 ° C. to 100% by CF 2 = CF 2 gas not included in the other gas produced at the time the It is a graph. If the amount of ions is large, the amount of CF 2 = CF 2 gas is considered to be large, and the ratio is high between 550 ° C. and 650 ° C. as shown in FIG.

図7はCF=CFガスの温度と分解率の関係を示すグラフであり、第一反応器2に水蒸気を供給するため、加水分解との関係を検討する必要があり、図7に示すように500℃〜650℃程度が効果的である。温度が650℃を超えるとフロンR22が加水分解又は熱分解によってほとんど分解してしまい、CF=CFガスの構成比率が高くても図4に示すようにその量は少なくなる。また、温度500℃より低いと熱分解が不充分となる。図8は第一反応器2の温度と排出されるガス量の関係を示すグラフであり、温度による排出ガス量はあまり変化していないことが分かる。これは塩酸により洗浄した後のガス量が下記の式(1)(2)から同じモル量となるためと考えられる。
CHClF+HO=CO+HCl+2HF(加水分解)・・・・・・・(1)
2CHClF=CFCF+2HCl(期待する転化の反応式)・・・(2)
FIG. 7 is a graph showing the relationship between the temperature of CF 2 = CF 2 gas and the decomposition rate, and it is necessary to examine the relationship with hydrolysis in order to supply water vapor to the first reactor 2, as shown in FIG. Thus, about 500 to 650 ° C. is effective. When the temperature exceeds 650 ° C., Freon R22 is almost decomposed by hydrolysis or thermal decomposition, and the amount thereof decreases as shown in FIG. 4 even if the composition ratio of CF 2 = CF 2 gas is high. On the other hand, if the temperature is lower than 500 ° C., thermal decomposition becomes insufficient. FIG. 8 is a graph showing the relationship between the temperature of the first reactor 2 and the amount of gas discharged, and it can be seen that the amount of exhaust gas due to temperature does not change much. This is presumably because the gas amount after washing with hydrochloric acid becomes the same molar amount from the following formulas (1) and (2).
CHClF 2 + H 2 O = CO + HCl + 2HF (hydrolysis) (1)
2CHClF 2 = CF 2 CF 2 + 2HCl (expected conversion reaction formula) (2)

よって、第一反応器2におけるCF=CFガスへの転化率は温度が550℃から650℃で40%程度であるが収率は良好である。温度が650℃から850℃では転化率は高くなるが、CF=CFガス量は少なくなる。温度が850℃以上では転化率は良くなるが副生成物が多くなり、900℃を越えると加水分解が顕著となって前記(1)(2)式で示した転化率も低下する。 Therefore, the conversion rate to CF 2 = CF 2 gas in the first reactor 2 is about 40% at a temperature of 550 ° C. to 650 ° C., but the yield is good. When the temperature is from 650 ° C. to 850 ° C., the conversion rate increases, but the amount of CF 2 = CF 2 gas decreases. When the temperature is 850 ° C. or higher, the conversion rate is improved, but by-products are increased. When the temperature is higher than 900 ° C., the hydrolysis becomes remarkable and the conversion rate expressed by the above formulas (1) and (2) also decreases.

次にこれら実験データに基づき、図2に示す具体的な装置例の概要図に基づいて、本発明によるフッ素樹脂製造時の反応条件に関して説明する。先ずフロンR22投入口1aから一定量のフロンR22を予熱器1に投入するのと同時に水蒸気投入口1bから該フロンR22と同重量の水蒸気を投入して約300℃〜500℃に予熱する。この予熱器1内ではフロンR22と水蒸気は混合することなく、別々に予熱して次段の第一反応器2内に流入させる。尚、原料としてのフロンR22は移充填することである程度油分と水分を除去した後に予熱器1に投入する。尚、予熱器1は次段の第一反応器2で被分解物の熱分解をすぐに始めることが目的であり、必ずしも必要不可欠の構成要素ではないが、反応時間を少なくして副生成物の混入の少ない分解生成ガスを得るためには、予熱をしておくことが好ましい。また、フロンR22と水蒸気にそれぞれ個別の予熱器を使用することもできる。   Next, based on these experimental data, based on the schematic view of the specific example of an apparatus shown in FIG. 2, it demonstrates regarding the reaction conditions at the time of the fluororesin manufacture by this invention. First, a predetermined amount of Freon R22 is introduced into the preheater 1 from the Freon R22 inlet 1a, and at the same time, the same amount of steam as the Freon R22 is introduced from the steam inlet 1b to preheat to about 300 ° C to 500 ° C. In the preheater 1, Freon R22 and water vapor are not mixed but preheated separately and flow into the first reactor 2 in the next stage. In addition, Freon R22 as a raw material is transferred to the preheater 1 after removing oil and moisture to some extent by transfer filling. The preheater 1 is intended to immediately start pyrolysis of the decomposition product in the first reactor 2 in the next stage and is not necessarily an indispensable component, but by reducing the reaction time, It is preferable to preheat in order to obtain a cracked product gas with less contamination. In addition, separate preheaters can be used for Freon R22 and water vapor, respectively.

第一反応器2の外周部には加熱ヒータ2a,2aが配備されていて、予熱されたフロンR22と水蒸気とをこの第一反応器2において混合し、約500℃〜750℃,圧力−100mHO〜常圧の条件下で反応を行わせる。第一反応器2内でのフロンR22と水蒸気との滞留時間は約1秒とする。なお、第一反応器2における分解反応は熱分解なので水蒸気は特に必要なわけではないが、水蒸気を存在させることにより、副生成物の発生が少なくなり、目的とするガスの収率も高くなることから水蒸気を入れることが好ましい。 Heaters 2a and 2a are provided on the outer periphery of the first reactor 2, and preheated Freon R22 and water vapor are mixed in the first reactor 2, and the temperature is about 500 ° C. to 750 ° C., pressure −100 mH. The reaction is carried out under conditions of 2 O to normal pressure. The residence time of Freon R22 and water vapor in the first reactor 2 is about 1 second. In addition, since the decomposition reaction in the first reactor 2 is thermal decomposition, water vapor is not particularly necessary. However, the presence of water vapor reduces the generation of by-products and increases the yield of the target gas. Therefore, it is preferable to add water vapor.

この第一反応器2では熱分解反応が起こり、フロンR22は熱分解によってCF=CFガスと塩化水素に分解生成され、CF=CFガスと塩化水素からなる分解生成ガスが得られる。その反応式は次の通りである。
2CHClF→CF=CF+2HCl
The first reactor 2, thermal decomposition reaction occurs, Freon R22 is generated decomposed into hydrogen chloride and CF 2 = CF 2 gas by thermal decomposition, decomposition product gas of CF 2 = CF 2 gas with hydrogen chloride to obtain . The reaction formula is as follows.
2CHClF 2 → CF 2 = CF 2 + 2HCl

本発明はフロンR22に替えて、フロンR23の解裂及びフッ素樹脂への重合にもそのまま適用することができる。なお、フロンR23を原料とする場合は、フロンR23は第一反応器2での熱分解によってCF=CFガスとフッ化水素に分解生成され、CF=CFガスとフッ化水素からなる分解生成ガスが得られる。その反応式は次の通りである。
2CHF→CF=CF+2HF
よって、本実施形態では、フロンR22をフロンR23と、塩化水素をフッ化水素と読み替えることにより、そのままフロンR23を原料とする場合に該当する。
The present invention can be directly applied to the cleavage of Freon R23 and polymerization to a fluororesin instead of Freon R22. When using Freon R23 as a raw material, Freon R23 is decomposed and generated into CF 2 = CF 2 gas and hydrogen fluoride by thermal decomposition in the first reactor 2, and from CF 2 = CF 2 gas and hydrogen fluoride. A cracked product gas is obtained. The reaction formula is as follows.
2CHF 3 → CF 2 = CF 2 + 2HF
Therefore, this embodiment corresponds to the case where Freon R23 is used as a raw material by replacing Freon R22 with Freon R23 and hydrogen chloride with hydrogen fluoride.

次に熱分解によって生成された分解生成ガス(CF=CFガス+塩化水素)と水蒸気は冷却器3に入り、冷却水入口3aから流入して冷却水出口3bに流出する冷却水により分解生成ガスと水蒸気を冷却することにより、分解生成ガスの温度を下げるとともに水蒸気の液化が行われる。冷却器3内の温度は水蒸気を液化できる温度であればよく、常温程度が適当である。この冷却は水蒸気を液化して除去するためのものであるが、その際多くの酸も水に溶けることとなり、併せて酸の除去にもなる。このように急速に冷却液化することにより副生成物の発生が防止され、分解生成ガス中のCF=CFガスの純度が高くなることによって第二反応器5内での解裂,重合反応が効率良く行えることになる。 Next, the decomposition product gas (CF 2 = CF 2 gas + hydrogen chloride) and water vapor generated by thermal decomposition enter the cooler 3 and are decomposed by the cooling water flowing in from the cooling water inlet 3a and flowing out to the cooling water outlet 3b. By cooling the product gas and water vapor, the temperature of the decomposition product gas is lowered and the water vapor is liquefied. The temperature in the cooler 3 should just be the temperature which can liquefy water vapor | steam, and about normal temperature is suitable. This cooling is for liquefying and removing water vapor, but at that time, many acids are also dissolved in water, and at the same time, the acid is also removed. By rapidly liquefying in this way, the generation of by-products is prevented, and the purity of CF 2 = CF 2 gas in the decomposition product gas is increased, so that the cracking and polymerization reaction in the second reactor 5 occurs. Can be performed efficiently.

水蒸気を除去した分解生成ガスはガス洗浄器4,4により、分解生成ガスに含まれる酸を中和洗浄して、CF=CFガスとしてから第二反応器5内に導入する。第二反応器5内の温度は通常常温であるが反応性を高めるため適宜加熱していてもよく、そのためのヒーターを装備してある。この第二反応器5は圧力−100mHO〜常圧、制御回路5cによりコントロールされた超音波発振器5bによる超音波振動子5aの超音波振動数は200KHz,駆動電圧は1kVの条件下で超音波を照射して反応を行わせる。第二反応器5内での被反応物の滞留時間は0.5〜3秒程度とする。 The cracked product gas from which the water vapor has been removed is neutralized and washed with the acid contained in the cracked product gas by the gas scrubbers 4 and 4, and is introduced into the second reactor 5 after CF 2 = CF 2 gas. The temperature in the second reactor 5 is usually room temperature, but may be appropriately heated to increase the reactivity, and is equipped with a heater for that purpose. This second reactor 5 has a pressure of −100 mH 2 O to normal pressure, an ultrasonic oscillator 5b controlled by the control circuit 5c has an ultrasonic frequency of 200 KHz and a drive voltage of 1 kV. The reaction is performed by irradiating sound waves. The residence time of the reactant in the second reactor 5 is about 0.5 to 3 seconds.

第二反応器5内で超音波の照射によりCF=CFガスの二重結合が解裂してポリテトラフルオロエチレンに代表される各種のフッ素樹脂への重合反応が開始・促進される。第二反応器5での超音波照射によってCF=CFガスが解裂,重合するメカニズムは以下の通りである。即ち、超音波照射における疎密波の高圧と真空の繰り返しによる物理的な衝撃と超音波の持つ断熱圧縮作用で局部的な高温高圧状態が得られ、このエネルギーによってCF=CFガスの二重結合が解裂される。解裂後の分子は反応性に富んでいるため、同様な分子の衝突により次々に結合して重合していき、更に一度重合が開始すると発熱反応によって重合が加速されるが、負圧の部分では温度が下がるため爆発的な重合は起こらず、超音波照射を停止すると二重結合の解裂も止まり、重合も停止する。即ち、超音波の照射の有無によって、重合反応の開始と停止を任意に制御することができる。また、他の化学物質についても同様に解裂,重合,置換等の化学反応の促進を行うことができる。 In the second reactor 5, the double bond of CF 2 = CF 2 gas is cleaved by ultrasonic irradiation, and polymerization reactions to various fluororesins represented by polytetrafluoroethylene are started and promoted. The mechanism by which CF 2 = CF 2 gas is cleaved and polymerized by ultrasonic irradiation in the second reactor 5 is as follows. That is, a local high-temperature and high-pressure state is obtained by a physical impact caused by repetition of high-pressure and vacuum of dense waves in ultrasonic irradiation and an adiabatic compression action of ultrasonic waves, and this energy causes a double CF 2 = CF 2 gas. The bond is broken. Since the molecules after cleavage are rich in reactivity, they are bonded and polymerized one after another by collision of similar molecules, and once polymerization is initiated, polymerization is accelerated by exothermic reaction, but the negative pressure part In this case, explosive polymerization does not occur because the temperature decreases, and when the ultrasonic irradiation is stopped, the double bond breakage stops and the polymerization also stops. That is, the start and stop of the polymerization reaction can be arbitrarily controlled by the presence or absence of ultrasonic irradiation. Similarly, for other chemical substances, chemical reactions such as cleavage, polymerization, and substitution can be promoted.

9は第二反応器5からの生成物取出口である。残ガスはフィルタ等の濾過装置6から圧縮機7を介して残ガス回収容器8内に取り込む。濾過装置6は重合によって固体となったフッ素樹脂の粒子が小さくてガスとともに飛散してしまうため、適当なフィルターを用いてこれを補足する機能を有している。圧縮機7は分解しなかったフロンR22を大気放出せずにボンベに回収することで再度フッ素樹脂の原料として利用するためのものである。   9 is a product outlet from the second reactor 5. The residual gas is taken into the residual gas recovery container 8 from the filter 6 such as a filter through the compressor 7. The filtration device 6 has a function of supplementing this by using an appropriate filter because the fluororesin particles that have become solid by polymerization are small and scatter with the gas. The compressor 7 is used again as a raw material for the fluororesin by recovering the fluorocarbon R22, which has not been decomposed, into a cylinder without releasing it to the atmosphere.

上記の工程途中に精製工程は必要とせず、第二反応器5内で超音波発振器5bの駆動による超音波振動子5aから発せられる超音波振動によってフロンR22からポリテトラフルオロエチレン等のフッ素樹脂を重合させることができた。なお、使用した原料のフロンR22は移充填することで大まかに油分、水分の除去を行ったものを使用しても問題なく重合させることができた。但し、空気があるとCF=CFガスに転化しないので液で取り出し供給した。また、実験によれば超音波振動の発振と同時に重合が開始され、超音波振動の発振停止とともに上記重合も停止することが判明した。 A purification step is not required in the middle of the above process, and fluorocarbon resin such as polytetrafluoroethylene is obtained from Freon R22 by ultrasonic vibration emitted from the ultrasonic vibrator 5a driven by the ultrasonic oscillator 5b in the second reactor 5. Polymerization was possible. In addition, the used raw material Freon R22 could be polymerized without any problems even if it was transferred and filled and the oil and water were roughly removed. However, since it was not converted into CF 2 = CF 2 gas when there was air, it was taken out and supplied as a liquid. Further, it has been found from experiments that the polymerization is started simultaneously with the oscillation of the ultrasonic vibration, and that the polymerization is stopped when the ultrasonic vibration is stopped.

また、解裂,重合等の反応を促進させる化学物質を直接反応器(第二反応器5)に供給するようにすることも可能である。   It is also possible to supply a chemical substance that promotes reactions such as cleavage and polymerization directly to the reactor (second reactor 5).

下記条件の下で上記反応促進装置を使用して、フロンR22から連続してCF=CFガスを分解生成し、該CF=CFガスの二重結合を解裂し、重合反応によってポリテトラフルオロエチレンを製造した。
第一反応器2における条件
1.反応器温度 650℃
2.フロンR22の投入量 2kg/h
3.水蒸気の投入量 フロンR22と同量(重量)
4.滞留時間 約1秒程度
5.フロンR22,水蒸気の予熱温度 約500℃
6.反応器圧力 −100mHO〜常圧
第二反応器5における条件
1.反応器温度 常温
2.反応器圧力 −100mHO〜常圧
3.超音波振動数 200KHz
4.駆動電圧 1kV(p−p)
5.滞留時間 約3秒
6.CF=CFガス濃度 60%
Using the above reaction accelerator under the following conditions, CF 2 ═CF 2 gas is continuously decomposed and generated from Freon R22, the double bond of the CF 2 ═CF 2 gas is cleaved, and polymerization reaction is performed. Polytetrafluoroethylene was produced.
Conditions in the first reactor 2 Reactor temperature 650 ° C
2. Input amount of Freon R22 2kg / h
3. Amount of steam input Same amount as Freon R22 (weight)
4). Residence time About 1 second 5. Fluorocarbon R22, preheat temperature of steam about 500 ℃
6). Reactor pressure −100 mH 2 O to atmospheric pressure in the second reactor 5 Reactor temperature Normal temperature 2. Reactor pressure −100 mH 2 O to normal pressure Ultrasonic frequency 200KHz
4). Drive voltage 1kV (pp)
5. Residence time Approx. 3 seconds 6. CF 2 = CF 2 gas concentration 60%

上記データに示すとおり、フロンR22と水蒸気を各々2kg/hで予熱器1に投入して500℃に予熱した後、第一反応器2で予熱したフロンR22と水蒸気とを混合して650℃,圧力−100mHO〜常圧の条件下で約1秒反応を行わせ、冷却器3で冷却して水蒸気を凝縮液化して除去してからガス洗浄器4,4で酸を中和洗浄して第二反応器5内に流入し、常温下で圧力−100mHO、超音波振動数は200KHz,駆動電圧は1kVで3秒反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図9に示す。 As shown in the above data, Freon R22 and water vapor were respectively charged at 2 kg / h into the preheater 1 and preheated to 500 ° C., and then CFC R22 preheated in the first reactor 2 and water vapor were mixed at 650 ° C. The reaction is carried out for about 1 second under conditions of a pressure of −100 mH 2 O to normal pressure, and after cooling with the cooler 3, the water vapor is condensed and removed and then the acid is neutralized and washed with the gas washers 4 and 4. Then, it was allowed to flow into the second reactor 5 and reacted at room temperature at a pressure of −100 mH 2 O, an ultrasonic frequency of 200 KHz, and a drive voltage of 1 kV for 3 seconds. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

超音波の照射を0.1秒間隔で60回照射し、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図10に示す。   Ultrasonic irradiation was performed 60 times at intervals of 0.1 seconds, and the others were reacted under the same conditions as in Example 1. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

超音波の照射を0.1秒間隔で120回照射し、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図11に示す。図12は、図9〜図11に示すクロマトグラフの各ピークA〜Lの組成物の化学式を示す図である。図11はGC−MSによるクロマトグラフであるが、このグラフのみCF=CFガスの分離効率を高めるためカラムがHP=PLOT/Qを使用している。超音波の照射回数が増えるとCF=CFガスの二重結合を解いて連鎖していくことになり、CF=CFガスとしては検出されずに他のガスのピークが目立っている。図11では二重結合を持ったガスはない。従って第一反応器で転化させたCF=CFガスを常温まで冷却、洗浄した後に超音波を照射すると、図11のピークGに示すように排気ガスはフロンR22だけが残ることになる。 Ultrasonic irradiation was performed 120 times at intervals of 0.1 seconds, and the others were reacted under the same conditions as in Example 1. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG. FIG. 12 is a diagram showing chemical formulas of the compositions of the peaks A to L in the chromatographs shown in FIGS. 9 to 11. FIG. 11 is a chromatograph by GC-MS. In this graph only, the column uses HP = PLOT / Q in order to increase the separation efficiency of CF 2 = CF 2 gas. When the number of times of irradiation with ultrasonic waves increases, CF 2 = CF 2 gas double bonds are broken and chained, and CF 2 = CF 2 gas is not detected and other gas peaks are conspicuous . In FIG. 11, there is no gas having a double bond. Therefore, when the CF 2 = CF 2 gas converted in the first reactor is cooled to room temperature and washed, and then irradiated with ultrasonic waves, only the flon R22 remains as shown in the peak G of FIG.

第一反応器2の温度を550℃とし、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図13に示す。   The temperature of the first reactor 2 was set to 550 ° C., and the others were reacted under the same conditions as in Example 1. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

第一反応器2の温度を650℃とし、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図14に示す。   The temperature of the first reactor 2 was set to 650 ° C., and the others were reacted under the same conditions as in Example 1. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

第一反応器2の温度を750℃とし、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図15に示す。図16は、図13〜図15に示すクロマトグラフの各ピークA〜Eの組成物の化学式を示す図である。温度が高くなると転化率も高くなり、図15に示すようにフロンR22はほとんど残らない。   The temperature of the first reactor 2 was 750 ° C., and the others were reacted under the same conditions as in Example 1. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG. FIG. 16 is a diagram showing chemical formulas of the compositions of the respective peaks A to E in the chromatographs shown in FIGS. 13 to 15. As the temperature increases, the conversion rate also increases, and almost no Freon R22 remains as shown in FIG.

超音波を連続照射とし、その他は実施例4と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図17に示す。   The reaction was performed under the same conditions as in Example 4 except that the ultrasonic wave was continuously irradiated. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

超音波を連続照射とし、その他は実施例5と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図18に示す。   The reaction was performed under the same conditions as in Example 5 except that the ultrasonic wave was continuously irradiated. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

超音波を連続照射とし、その他は実施例6と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図19に示す。実施例7〜実施例9においては、それぞれ超音波を連続照射とすることにより、超音波が定常状態になる場所が第二反応器5内に発生して超音波の振幅が大きくなるところができて、音圧レベルや温度の上昇が計算よりも高くなるケースが生じて容易に重合が開始される。   The reaction was performed under the same conditions as in Example 6 except that the ultrasonic wave was continuously irradiated. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG. In Example 7 to Example 9, by continuously irradiating ultrasonic waves, a place where the ultrasonic waves are in a steady state is generated in the second reactor 5 and the amplitude of the ultrasonic waves is increased. In some cases, the sound pressure level or temperature rises higher than the calculation, and polymerization is easily started.

第一反応器2における水蒸気量を4kg/hに変え、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図20に示す。   The amount of water vapor in the first reactor 2 was changed to 4 kg / h, and the others were reacted under the same conditions as in Example 1. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

第一反応器2における水蒸気量を2kg/hに変え、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図21に示す。   The amount of water vapor in the first reactor 2 was changed to 2 kg / h, and the others were reacted under the same conditions as in Example 1. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

第一反応器2における水蒸気量を1kg/hに変え、その他は実施例1と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図22に示す。図23は、図20〜図22に示すクロマトグラフの各ピークA〜Fの組成物の化学式を示す図である。フロンR22とともに水蒸気を混合することにより、副生成物の種類は少なくなるとともに転化効率も上昇する。しかし水蒸気量が多すぎると目的外のガスも発生してCF=CFガスの収率が低下する惧れがある。そのため、好ましくはフロンR22と同重量程度の水蒸気を投入することが適当である。 The amount of water vapor in the first reactor 2 was changed to 1 kg / h, and the others were reacted under the same conditions as in Example 1. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG. FIG. 23 is a diagram showing a chemical formula of the composition of each peak A to F of the chromatographs shown in FIGS. 20 to 22. By mixing water vapor with Freon R22, the types of by-products are reduced and the conversion efficiency is increased. However, if the amount of water vapor is too large, undesired gas may be generated and the yield of CF 2 = CF 2 gas may be reduced. Therefore, it is preferable to introduce water vapor having the same weight as that of Freon R22.

次に水蒸気量を0にし、その他は実施例4と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図24に示す。   Next, the amount of water vapor was set to 0, and the others were reacted under the same conditions as in Example 4. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

次に水蒸気量を0にし、その他は実施例5と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図25に示す。   Next, the amount of water vapor was set to 0, and the others were reacted under the same conditions as in Example 5. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG.

次に水蒸気量を0にし、その他は実施例6と同一の条件で反応させた。その結果第二反応器5から排出された排気ガスのクロマトグラフを図26に示す。図27は、図24〜図26に示すクロマトグラフの各ピークA〜Lの組成物の化学式を示す図である。図24は温度を550℃とした場合、図25は温度を650℃とした場合、図26は温度を750℃とした場合であり、温度が低いと多種のガスが生成して二重結合を持つガス以外のガスも発生する。一方温度が高くなると生成されるガスの種類は少なくなり、CF=CFガスの比率は高くなるが、全体としての熱分解が多くなってガス量は少なくなるからCF=CFガスの収率は悪化する。 Next, the amount of water vapor was set to 0, and the others were reacted under the same conditions as in Example 6. As a result, a chromatograph of the exhaust gas discharged from the second reactor 5 is shown in FIG. FIG. 27 is a diagram illustrating chemical formulas of the compositions of the peaks A to L of the chromatographs illustrated in FIGS. 24 to 26. 24 shows a case where the temperature is 550 ° C., FIG. 25 shows a case where the temperature is 650 ° C., and FIG. 26 shows a case where the temperature is 750 ° C. When the temperature is low, various gases are generated and double bonds are formed. Gas other than the gas it has is also generated. On the other hand, as the temperature increases, the type of gas produced decreases and the ratio of CF 2 = CF 2 gas increases, but the overall thermal decomposition increases and the amount of gas decreases, so CF 2 = CF 2 gas Yield deteriorates.

他方で温度を上げると加水分解や熱分解が多くなり、特に水蒸気を入れない場合にはCF=CFガス量は少なくなる。これはカーボンが大量に出てくることと分子量が大きなガスが多く発生するためと考えられる。水蒸気を2kg/hとして温度を高くすると、CF=CFガスと未分解フロンの構成比はCF=CFガスの方が高くなり、COガス量も多くなってくることから加水分解されるフロンR22が多くなって全体のガス量は少なくなる。従って水蒸気を入れることでガス量を大きくすることができるが、熱分解及び加水分解が大きくならない転化条件が必要となる。 On the other hand, when the temperature is raised, hydrolysis and thermal decomposition increase, and the amount of CF 2 = CF 2 gas decreases especially when water vapor is not added. This is thought to be because a large amount of carbon is emitted and a large amount of gas having a large molecular weight is generated. When the temperature is increased by setting the steam to 2 kg / h, the composition ratio of CF 2 = CF 2 gas and undecomposed chlorofluorocarbon is higher in CF 2 = CF 2 gas and the amount of CO 2 gas is increased, so that hydrolysis is increased. The amount of CFCs R22 to be increased increases and the total gas amount decreases. Therefore, the amount of gas can be increased by adding water vapor, but conversion conditions are required so that thermal decomposition and hydrolysis do not increase.

以上詳細に説明したように、本発明によれば回収したフロンR22(又はフロンR23)が不純物を多く含んでいても高度な精製工程を行うことなく、原料投入から残ガス回収まで連続した工程で行うことができるとともに副生成物として有害なガスの発生を防止することができるので、従来から冷媒として使用されているフロンガスの無害化処理を容易に行うことができるとともに、フロンR22(又はフロンR23)を回収後に簡単な精製の後ポリテトラフルオロエチレン樹脂に代表されるフッ素樹脂の原料として利用することができる。また、地球温暖化の指数が炭酸ガスの10000倍以上(フロンR22は1000倍程度)あり、地球温暖化への負荷の高いフロンR23を分解処理するとともに、フッ素樹脂の原材料として有効利用できる。   As described above in detail, according to the present invention, even if the recovered chlorofluorocarbon R22 (or chlorofluorocarbon R23) contains a large amount of impurities, it is a continuous process from raw material input to residual gas recovery without performing an advanced purification process. Since it is possible to prevent generation of harmful gas as a by-product, it is possible to easily detoxify chlorofluorocarbon gas that has been conventionally used as a refrigerant, and chlorofluorocarbon R22 (or chlorofluorocarbon R23). ) Can be used as a raw material for fluororesins represented by polytetrafluoroethylene resin after simple purification after recovery. Moreover, the index of global warming is 10,000 times or more of carbon dioxide gas (Freon R22 is about 1000 times), and it can be effectively used as a raw material for fluororesin while decomposing Freon R23, which has a high impact on global warming.

本発明を適用してフッ素樹脂を製造する際の工程例を示すフローチャート。The flowchart which shows the process example at the time of manufacturing a fluororesin by applying this invention. 本発明に係る反応促進装置例を示す概要図。1 is a schematic diagram showing an example of a reaction promoting device according to the present invention. 第二反応器内での超音波による音圧と断熱圧縮による温度上昇曲線を示すグラフ。The graph which shows the temperature rise curve by the sound pressure by an ultrasonic wave in a 2nd reactor, and adiabatic compression. 連続重合によるCF=CFガスの収率(%)と温度(℃)の関係を示すグラフ。Graph continuous polymerization by CF 2 = CF 2 gas yield and (%) shows the relationship between the temperature (° C.). 第二反応器の温度(℃)によるCF=CFガス量の比率(%)の関係を示すグラフ。Graph showing the relationship between the CF 2 = CF 2 gas amount ratio of According to a second reactor temperature (℃) (%). 650℃を100%としたときにおける生成される他のガスには含まれないCF=CFガスに特有のイオン分子量81の量と第一反応器の温度との関係を示すグラフ。Graph showing the relationship between the amount and the temperature of the first reactor of unique ion molecular weight 81 to 650 ° C. to CF 2 = CF 2 gas not included in the other gases produced in is 100%. CF=CFガスの温度と分解率の関係を示すグラフ。Graph showing the relationship between the CF 2 = CF 2 gas temperature and decomposition rate. 第一反応器の温度とガス量の関係を示すグラフ。The graph which shows the relationship between the temperature of a 1st reactor, and gas amount. 実施例1の排気ガスのクロマトグラフ。2 is an exhaust gas chromatograph of Example 1. FIG. 実施例2の排気ガスのクロマトグラフ。2 is a chromatograph of exhaust gas of Example 2. 実施例3の排気ガスのクロマトグラフ。FIG. 4 is a chromatograph of exhaust gas of Example 3. FIG. 図9〜図11の各ピークA〜Lの組成物の化学式の図。The figure of the chemical formula of the composition of each peak A-L of FIGS. 実施例4の排気ガスのクロマトグラフ。6 is an exhaust gas chromatograph of Example 4. 実施例5の排気ガスのクロマトグラフ。6 is a chromatograph of exhaust gas of Example 5. 実施例6の排気ガスのクロマトグラフ。FIG. 7 is an exhaust gas chromatograph of Example 6. FIG. 図13〜図15の各ピークA〜Eの組成物の化学式の図。The figure of the chemical formula of the composition of each peak AE of FIGS. 実施例7の排気ガスのクロマトグラフ。10 is a chromatograph of exhaust gas of Example 7. 実施例8の排気ガスのクロマトグラフ。10 is an exhaust gas chromatograph of Example 8. 実施例9の排気ガスのクロマトグラフ。10 is an exhaust gas chromatograph of Example 9. 実施例10の排気ガスのクロマトグラフ。10 is a chromatograph of exhaust gas of Example 10. 実施例11の排気ガスのクロマトグラフ。FIG. 14 is an exhaust gas chromatograph of Example 11. FIG. 実施例12の排気ガスのクロマトグラフ。14 is an exhaust gas chromatograph of Example 12. 図20〜図22の各ピークA〜Fの組成物の化学式の図。The figure of the chemical formula of the composition of each peak AF of FIGS. 実施例13の排気ガスのクロマトグラフ。14 is an exhaust gas chromatograph of Example 13. 実施例14の排気ガスのクロマトグラフ。FIG. 14 is an exhaust gas chromatograph of Example 14. FIG. 実施例15の排気ガスのクロマトグラフ。FIG. 19 is an exhaust gas chromatograph of Example 15. FIG. 図24〜図26の各ピークA〜Lの組成物の化学式の図。The figure of the chemical formula of the composition of each peak A-L of FIGS.

符号の説明Explanation of symbols

1…予熱器
1a…フロンR22投入口
1b…水蒸気投入口
2…第一反応器
3…冷却器
4…ガス洗浄器
5…第二反応器
5a…超音波振動子
5b…超音波発振器
5c…制御回路
6…濾過装置
7…圧縮機
8…残ガス回収容器
9…生成物取出口
DESCRIPTION OF SYMBOLS 1 ... Preheater 1a ... Freon R22 inlet 1b ... Steam inlet 2 ... First reactor 3 ... Cooler 4 ... Gas scrubber 5 ... Second reactor 5a ... Ultrasonic vibrator 5b ... Ultrasonic oscillator 5c ... Control Circuit 6 ... Filtration device 7 ... Compressor 8 ... Residual gas recovery container 9 ... Product outlet

Claims (4)

化学物質の分解生成ガスに超音波を照射することによって、化学物質の反応を促進することを特徴とする超音波を利用した化学物質の反応促進方法。   A method of promoting reaction of a chemical substance using ultrasonic waves, characterized by accelerating the reaction of the chemical substance by irradiating the decomposition product gas of the chemical substance with ultrasonic waves. 化学物質の分解生成ガスに超音波を照射して疎密波を作ることで、高速反転を繰り返す分子運動を起こし、分子同士の激しい衝突とその頻度を多くすることと、超音波による圧縮部分が断熱圧縮となることから局部的な高温高圧状態となることを利用して化学物質の反応を促進することを特徴とする超音波を利用した化学物質の反応促進方法。   By irradiating ultrasonic waves to the decomposition gas of chemical substances to create a dense wave, molecular motion that repeats high-speed reversal occurs, increasing the frequency and frequency of intense collisions between molecules, and the compressed part by ultrasonic waves is insulated. A method of promoting reaction of a chemical substance using ultrasonic waves, characterized in that the reaction of the chemical substance is promoted by utilizing a local high temperature and high pressure state due to compression. 二重結合を有する化学物質の分解生成ガスに超音波を照射することによって、該二重結合を解裂することを特徴とする超音波を利用した化学物質の反応促進方法。   A method for promoting a reaction of a chemical substance using ultrasonic waves, wherein the double bond is cleaved by irradiating ultrasonic waves to a decomposition product gas of the chemical substance having a double bond. 二重結合を有する化学物質の分解生成ガスに超音波を照射して疎密波を作ることで、高速反転を繰り返す分子運動を起こし、分子同士の激しい衝突とその頻度を多くすることと、超音波による圧縮部分が断熱圧縮となることから局部的な高温高圧状態となることを利用して二重結合を解裂することを特徴とする超音波を利用した化学物質の反応促進方法。   By irradiating ultrasonic waves to the decomposition product gas of a chemical substance having a double bond to create a dense wave, it causes molecular motion that repeats high-speed reversal, increases the frequency and frequency of intense collisions between molecules, A method for promoting the reaction of a chemical substance using ultrasonic waves, wherein the double bond is cleaved by utilizing a local high temperature and high pressure state because the compression part by adiabatic becomes adiabatic compression.
JP2005236512A 2005-08-17 2005-08-17 Method for accelerating reaction of chemical substance utilizing ultrasonic wave Pending JP2006035217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236512A JP2006035217A (en) 2005-08-17 2005-08-17 Method for accelerating reaction of chemical substance utilizing ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236512A JP2006035217A (en) 2005-08-17 2005-08-17 Method for accelerating reaction of chemical substance utilizing ultrasonic wave

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003388533A Division JP3725889B2 (en) 2003-11-18 2003-11-18 Method and apparatus for promoting reaction of chemical substance using ultrasonic wave, and method for producing fluororesin using ultrasonic wave

Publications (1)

Publication Number Publication Date
JP2006035217A true JP2006035217A (en) 2006-02-09

Family

ID=35900763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236512A Pending JP2006035217A (en) 2005-08-17 2005-08-17 Method for accelerating reaction of chemical substance utilizing ultrasonic wave

Country Status (1)

Country Link
JP (1) JP2006035217A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132195A (en) * 1993-11-09 1995-05-23 Kyoshin:Kk Method for decomposing away dry cleaning solvent by utilizing ultrasonic wave
JPH08115911A (en) * 1994-08-25 1996-05-07 Sony Corp Manufacture of semiconductor device
JPH10272352A (en) * 1997-03-31 1998-10-13 Ouei Kaihatsu Kogyo Kk Reaction method utilizing high temperature and high pressure fluid, and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132195A (en) * 1993-11-09 1995-05-23 Kyoshin:Kk Method for decomposing away dry cleaning solvent by utilizing ultrasonic wave
JPH08115911A (en) * 1994-08-25 1996-05-07 Sony Corp Manufacture of semiconductor device
JPH10272352A (en) * 1997-03-31 1998-10-13 Ouei Kaihatsu Kogyo Kk Reaction method utilizing high temperature and high pressure fluid, and apparatus therefor

Similar Documents

Publication Publication Date Title
Han et al. Treatment of the potent greenhouse gas, CHF3—an overview
US5750823A (en) Process and device for destruction of halohydrocarbons
CN109310949B (en) Integrated treatment system for mixed exhaust gases including nitrogen oxides, chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, and perfluorochemicals
JP4387671B2 (en) Method for producing fluorocarbon
US5416247A (en) Chemical disposal of halocarbons
JP3725889B2 (en) Method and apparatus for promoting reaction of chemical substance using ultrasonic wave, and method for producing fluororesin using ultrasonic wave
JP2006035217A (en) Method for accelerating reaction of chemical substance utilizing ultrasonic wave
US8088959B2 (en) Conversion of fluorocarbons
JP2732472B2 (en) Method and apparatus for decomposing organic halogen compounds by high frequency induction plasma
TW200829327A (en) Apparatus for treating a gas stream
JP2681034B2 (en) How to make CFCs harmless
KR102029258B1 (en) Recovery apparatus and method of foaming gas emitted from foaming process
JP3626319B2 (en) Reaction method and apparatus using high-temperature and high-pressure fluid
JP4399938B2 (en) Monochlorodifluoromethane treatment method
JP2011115795A (en) Method and apparatus for decomposing persistent substance
JP3457518B2 (en) Method and apparatus for treating waste containing urethane foam
Blake Solar thermal technology for the destruction of CFC waste
JPH1028836A (en) Fluorocarbon decomposition treatment apparatus using discharge plasma
JP2003130324A (en) Method of processing fluorocarbon
JP3606575B1 (en) Method and apparatus for treating organohalogen compounds
KR102276506B1 (en) Method for Preparation of Flux for Aluminum Brazing Using Waste Refrigerant
Tong et al. Enhanced degradation of fluorinated refrigerants and resourceful conversion under external physical and chemical fields: Principle, technology and perspective
JP2000189539A (en) Cracking treatment of hardly crackable material and apparatus therefor
JP5342805B2 (en) Method for detoxifying HFC-134a and method for producing calcium carbonate
JP2010202433A (en) Method for recovering calcium fluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080124

A711 Notification of change in applicant

Effective date: 20080229

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Effective date: 20080324

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20091109

Free format text: JAPANESE INTERMEDIATE CODE: A132

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100823