JP2006034042A - Thermosetting resin composite for vacuum and its production - Google Patents

Thermosetting resin composite for vacuum and its production Download PDF

Info

Publication number
JP2006034042A
JP2006034042A JP2004211670A JP2004211670A JP2006034042A JP 2006034042 A JP2006034042 A JP 2006034042A JP 2004211670 A JP2004211670 A JP 2004211670A JP 2004211670 A JP2004211670 A JP 2004211670A JP 2006034042 A JP2006034042 A JP 2006034042A
Authority
JP
Japan
Prior art keywords
thermosetting resin
resin composition
hydrophobic polymer
vacuum
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004211670A
Other languages
Japanese (ja)
Inventor
Satokazu Hamao
聡和 浜尾
Iwao Sasaki
巌 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004211670A priority Critical patent/JP2006034042A/en
Publication of JP2006034042A publication Critical patent/JP2006034042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting resin composition at low manufacturing cost without generation of crack or gas discharge. <P>SOLUTION: This thermosetting resin composition is formed by filling a surface of thermosetting resin with an inorganic filler of nanometer size. Its manufacturing method includes a film forming process of forming a hydrophobic polymer film 5 by blending a hydrophobic polymer material with the inorganic filler of nanometer size, a molding process of forming the thermosetting resin composition by blending a thermosetting resin material with a hardening agent and molding it to form the thermosetting resin composition, and an absolute contact process of forming the hydrophobic polymer film on the surface of the thermosetting resin composition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体製造装置内におけるウエハ搬送等の真空環境で使用される真空用モータのモールド樹脂に関する。   The present invention relates to a mold resin for a vacuum motor used in a vacuum environment such as wafer conveyance in a semiconductor manufacturing apparatus.

真空環境で使用される機器には、ガス放出が少ないことが要求される。真空雰囲気でのガスの放出は、材料表面に吸着された物質の離脱や、材料内部に吸蔵されるガスの拡散により生ずる。そこで、真空環境で使用される機器は、ガス放出が少ない材料で構成される。
従来のガス放出速度を低減したモータは、モールド樹脂の表面を、めっきなどの低ガス放出の金属皮膜で被覆している (例えば、特許文献1参照)。
図3は、従来のめっき処理構造物でモールドした真空用アキシャルギャップモータのステータを示す側断面図である。図3において、1はステータコア、2はコイル、3はモールド樹脂、4はステータハウジング、7はモールド樹脂表面に施しためっきである。
このように、従来の真空用モータは、モールド樹脂表面の全面を一様にめっき処理したものである。
特開2002−272086号公報(第3項、第2図)
Equipment used in a vacuum environment is required to have low outgassing. The release of gas in a vacuum atmosphere is caused by the separation of substances adsorbed on the surface of the material and the diffusion of gas stored in the material. Therefore, equipment used in a vacuum environment is made of a material that emits less gas.
In a conventional motor with a reduced gas release rate, the surface of the mold resin is covered with a low-gas release metal film such as plating (see, for example, Patent Document 1).
FIG. 3 is a side sectional view showing a stator of a vacuum axial gap motor molded with a conventional plating structure. In FIG. 3, 1 is a stator core, 2 is a coil, 3 is a mold resin, 4 is a stator housing, and 7 is a plating applied to the surface of the mold resin.
Thus, the conventional vacuum motor is obtained by uniformly plating the entire surface of the mold resin.
Japanese Patent Application Laid-Open No. 2002-272086 (term 3, FIG. 2)

ところが、従来の熱硬化性樹脂にてモールドされたモータのめっきは、モールド樹脂の成形・硬化後にめっき処理されるため、製造工数がかかるという問題があった。また、モールド樹脂の表面全体にわたって施されていて、めっきの面積が大きいため、めっきの収縮による応力が大きいので網目状のクラックが発生し、真空中でのモールド表面からのガス放出速度が増大するというような問題もあった。
本発明は、このような問題点に鑑みてなされたものであり、製造コストが安価で、クラックの発生がなく、ガス放出の極めて少ない熱硬化性樹脂組成物を提供することを目的とする。
However, the conventional plating of a motor molded with a thermosetting resin has a problem that it takes a number of manufacturing steps because it is plated after the molding resin is molded and cured. Moreover, since it is applied over the entire surface of the mold resin and the plating area is large, the stress due to the contraction of the plating is large, so that a mesh-like crack is generated and the gas release rate from the mold surface in vacuum is increased. There was also a problem like this.
The present invention has been made in view of such problems, and an object of the present invention is to provide a thermosetting resin composition that is low in production cost, does not generate cracks, and emits very little gas.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、 熱硬化性樹脂の表面に、ナノメートルサイズの無機充填材を充填した疎水性高分子皮膜を設けたことを特徴とする真空用熱硬化性樹脂組成物。
ものである。
請求項2に記載の発明は、前記疎水性高分子は、23℃での吸水率が0.05%以下の熱可塑性樹脂または熱硬化性樹脂とするものである。
請求項3に記載の発明は、前記疎水性高分子の材質は、ポリエチレン、ポリプロピレン、塩化ビニル、ポリスチレン、ふっ素樹脂、ポリイミド、シリコン樹脂の少なくとも一つとするものである。
請求項4に記載の発明は、前記無機充填材の材質は、カーボンナノチューブ、カーボンナノファイバー、フラーレンなどの炭素材料、クレイやマイカなどの層状ケイ酸塩、シリカ、酸化チタンなどの酸化物の少なくとも一つからなるものである。
請求項5に記載の発明は、前記無機充填材の大きさは、粒子状や繊維状の場合は直径が100nm以下、箔状の場合は厚さが100nm以下するものである。
請求項6に記載の発明は、疎水性高分子材料にナノメートルサイズの無機充填材を配合して疎水性高分子皮膜を形成する皮膜形成工程と、熱硬化性樹脂の原料に硬化剤を配合してモールドし熱硬化性樹脂組成物を形成するモールド工程と、前記熱硬化性樹脂組成物の表面に前記疎水性高分子皮膜を設ける密着工程とからなるものである。
請求項7に記載の発明は、前記皮膜形成工程は、前記疎水性高分子皮膜の表面を粗し処理する工程を含むものである。
請求項8に記載の発明は、前記密着工程は、前記疎水性高分子皮膜を金型に設けた後、モールド工程を行うものである。
請求項9に記載の発明は、前記密着工程は、前記疎水性高分子皮膜の融点以上の温度で前記モールド工程を行うものである。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 is a vacuum thermosetting resin composition characterized in that a hydrophobic polymer film filled with a nanometer-sized inorganic filler is provided on the surface of a thermosetting resin.
Is.
According to a second aspect of the present invention, the hydrophobic polymer is a thermoplastic resin or a thermosetting resin having a water absorption at 23 ° C. of 0.05% or less.
According to a third aspect of the present invention, the material of the hydrophobic polymer is at least one of polyethylene, polypropylene, vinyl chloride, polystyrene, fluorine resin, polyimide, and silicon resin.
In the invention according to claim 4, the material of the inorganic filler is at least carbon materials such as carbon nanotubes, carbon nanofibers and fullerenes, layered silicates such as clay and mica, and oxides such as silica and titanium oxide. It consists of one.
In the invention according to claim 5, the size of the inorganic filler is such that the diameter is 100 nm or less in the case of particles or fibers, and the thickness is 100 nm or less in the case of foil.
The invention according to claim 6 is a film forming step of forming a hydrophobic polymer film by blending a nanometer-sized inorganic filler with a hydrophobic polymer material, and a curing agent is blended with the raw material of the thermosetting resin. And molding to form a thermosetting resin composition, and an adhesion process for forming the hydrophobic polymer film on the surface of the thermosetting resin composition.
According to a seventh aspect of the present invention, the film forming step includes a step of roughening the surface of the hydrophobic polymer film.
According to an eighth aspect of the present invention, in the adhesion step, the molding step is performed after the hydrophobic polymer film is provided on the mold.
In the invention according to claim 9, the adhesion step performs the molding step at a temperature equal to or higher than the melting point of the hydrophobic polymer film.

請求項1に記載の発明によると、熱硬化性樹脂との密着性が良く、クラックの発生しにくい皮膜で熱硬化性樹脂組成物の表面を疎水性にすることができ、クラックの発生を防止し、真空中での水分ガス放出を抑制することができる。
また、請求項2に記載の発明によると、熱硬化性樹脂組成物の表面を疎水性にすることができ、真空中での水分ガス放出を抑制することができる。
請求項3に記載の発明によると、クラックの発生しにくい皮膜で熱硬化性樹脂組成物の表面を疎水性にすることができ、水分ガス放出の増大を防止することができる。
請求項4に記載の発明によると、皮膜の摺動性や耐磨耗性を高めることができ、皮膜の傷を防止することができる。
請求項5に記載の発明によると、無機充填材の表面を疎水性樹脂で完全に覆うことことができ、水分が無機充填材界面を通過して内部に浸入することを防止することができる。
請求項6に記載の発明によると、熱硬化性樹脂との密着性が良く、クラックの発生しにくい皮膜で熱硬化性樹脂組成物の表面を疎水性にすることができ、成形コストを低減し、クラックの発生を防止し、真空中での水分ガス放出を抑制することができる。
請求項7に記載の発明によると、無機充填材と熱硬化性樹脂が接触することで皮膜と熱硬化性樹脂との密着性を高めることができ、一体成形することができる。
請求項8に記載の発明によると、皮膜と熱硬化性樹脂とを液状でなじませることで密着性を高めることができ、一体成形することができる。
請求項9に記載の発明によると、皮膜と熱硬化性樹脂とを液状でなじませることで密着性を高めることができ、一体成形することができる。
According to the first aspect of the present invention, the surface of the thermosetting resin composition can be made hydrophobic with a film that has good adhesion to the thermosetting resin and is less likely to generate cracks, thereby preventing the occurrence of cracks. In addition, the release of moisture gas in a vacuum can be suppressed.
Further, according to the invention described in claim 2, the surface of the thermosetting resin composition can be made hydrophobic, and moisture gas emission in a vacuum can be suppressed.
According to the third aspect of the present invention, the surface of the thermosetting resin composition can be made hydrophobic by a film in which cracks do not easily occur, and an increase in moisture gas emission can be prevented.
According to the fourth aspect of the present invention, the slidability and wear resistance of the film can be improved, and the film can be prevented from being damaged.
According to the fifth aspect of the present invention, the surface of the inorganic filler can be completely covered with the hydrophobic resin, and moisture can be prevented from entering the inside through the inorganic filler interface.
According to the sixth aspect of the present invention, the surface of the thermosetting resin composition can be made hydrophobic with a film that has good adhesion to the thermosetting resin and is less likely to generate cracks, thereby reducing molding costs. The generation of cracks can be prevented, and the release of moisture gas in a vacuum can be suppressed.
According to the seventh aspect of the present invention, the contact between the inorganic filler and the thermosetting resin can increase the adhesion between the film and the thermosetting resin, and the integral molding can be performed.
According to the eighth aspect of the present invention, the adhesion can be enhanced by blending the film and the thermosetting resin in a liquid state, and the film can be integrally formed.
According to the ninth aspect of the present invention, the adhesion can be enhanced by blending the film and the thermosetting resin in a liquid state, and the film can be integrally formed.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明のめっき処理構造物でモールドした真空用アキシャルギャップモータの側断面図である。図1において、1はステータコア、2はコイル、3はモールド樹脂、4はステータハウジング、5はモールド樹脂3の表面に施した疎水性高分子皮膜、6はナノメートルサイズの無機充填材である。図2は、疎水性高分子皮膜5の拡大断面図である。
本発明が特許文献1と異なる部分は、めっき7の代わりに、ナノメートルサイズの無機充填材6を充填した疎水性高分子皮膜5を備えた部分である。疎水性高分子皮膜5は疎水性であるため水分のバリア効果が高い。このため、真空中での水分ガスの放出を、めっき7と同等に抑制することができる。また、疎水性高分子皮膜5は高分子であるため、クラックを防止することができる。また、疎水性高分子皮膜5にはナノメートルサイズの無機充填材6が充填されているため、摺動性や耐磨耗性を高めることができる。また、ナノメートルサイズとすることで、ミクロンサイズ充填材の界面で生じやすい、水分が充填材界面を伝って早期に内部に侵入する現象を防止することができる。
FIG. 1 is a cross-sectional side view of a vacuum axial gap motor molded with a plating structure of the present invention. In FIG. 1, 1 is a stator core, 2 is a coil, 3 is a mold resin, 4 is a stator housing, 5 is a hydrophobic polymer film applied to the surface of the mold resin 3, and 6 is a nanometer-sized inorganic filler. FIG. 2 is an enlarged cross-sectional view of the hydrophobic polymer film 5.
The part where the present invention differs from Patent Document 1 is a part provided with a hydrophobic polymer film 5 filled with a nanometer-sized inorganic filler 6 instead of the plating 7. Since the hydrophobic polymer film 5 is hydrophobic, it has a high moisture barrier effect. For this reason, the release of moisture gas in vacuum can be suppressed to be equivalent to that of the plating 7. Moreover, since the hydrophobic polymer film 5 is a polymer, cracks can be prevented. Moreover, since the hydrophobic polymer film 5 is filled with the nanometer-sized inorganic filler 6, the slidability and wear resistance can be improved. In addition, by using the nanometer size, it is possible to prevent a phenomenon that moisture easily occurs at the interface of the micron-size filler and enters the interior at an early stage through the filler interface.

表1に本発明の疎水性高分子皮膜と熱硬化性樹脂とで一体成形したステータの作製条件および評価結果を示す。作製条件は、粗し処理や成形・硬化温度、皮膜や無機充填材の材質などであり、評価結果は成形後の観察結果および真空中でのガス放出速度である。なお、表2に従来例のめっき処理を施したステータおよび比較例の高分子皮膜や条件で一体モールドしたステータについて、同様に作製条件および評価結果を示す。
疎水性高分子皮膜や無機充填材、めっき、熱硬化性樹脂に用いた材料は以下のとおりである。
(イ)皮膜の高分子
ポリプロピレン(PP)は、融点130℃、吸水率0.02〜0.05%、ポリテトラフルオロエチレン(PTFE)は、吸水率0.01〜0.02%、ナイロンは吸水率2%以上である。
(ロ)皮膜中の無機充填材
カーボンナノチューブ(CNT)は、直径10〜100nm、モンモリロナイト(クレイ)は、厚さ1〜100nmで層間剥離させたもの、炭素繊維(CF)は、直径10μm、長さ100μmである。
(ハ)めっき
無電解ニッケルめっきにより厚さ10μmとした。
(ニ)熱硬化性モールド樹脂
・主剤:ビスフェノールA型エポキシ
・硬化剤:DDMベース芳香族アミン
・充填材:シリカ(平均粒子径15μm)
なお、疎水性高分子皮膜の厚さは50μmとした。また、疎水性高分子皮膜表面の粗し処理は#600のサンドペーパにて行った。また、皮膜の高分子の吸水率は、ASTM D570に従い、厚さ1mmの板状試料を、110℃、1hrと50℃、24hrの空気中加熱乾燥後の重量と、加熱乾燥後、23℃、24hrの純水中浸漬後の重量にて測定した。
ガス放出速度の評価基準は、従来のめっきを被覆(特許文献1に記載)したステータに多く見られたクラックの発生したステータと比較して、その2分の1以下であれば○印、2分の1以上であれば×印とした。
Table 1 shows the production conditions and evaluation results of a stator integrally molded with the hydrophobic polymer film of the present invention and a thermosetting resin. The production conditions are roughening treatment, molding / curing temperature, the material of the film and the inorganic filler, and the evaluation results are the observation results after molding and the gas release rate in vacuum. Table 2 shows the manufacturing conditions and evaluation results for the stator plated with the conventional example and the stator integrally molded with the polymer film and conditions of the comparative example.
The materials used for the hydrophobic polymer film, inorganic filler, plating, and thermosetting resin are as follows.
(A) Polymer of film Polypropylene (PP) has a melting point of 130 ° C., water absorption of 0.02 to 0.05%, polytetrafluoroethylene (PTFE) has a water absorption of 0.01 to 0.02%, nylon is The water absorption is 2% or more.
(B) Inorganic filler in the film Carbon nanotubes (CNT) have a diameter of 10 to 100 nm, montmorillonite (clay) has a thickness of 1 to 100 nm, and carbon fibers (CF) have a diameter of 10 μm and are long. The thickness is 100 μm.
(C) Plating The thickness was set to 10 μm by electroless nickel plating.
(D) Thermosetting mold resin ・ Main agent: bisphenol A type epoxy ・ Curing agent: DDM-based aromatic amine ・ Filler: Silica (average particle size 15 μm)
The thickness of the hydrophobic polymer film was 50 μm. The surface of the hydrophobic polymer film was roughened using # 600 sandpaper. In addition, the water absorption rate of the polymer of the film is as follows: according to ASTM D570, a 1 mm thick plate sample is heated and dried in air at 110 ° C., 1 hr and 50 ° C., 24 hr, The weight was measured after immersion in pure water for 24 hours.
The evaluation standard of the gas release rate is ◯, 2 if it is less than half that of the stator with cracks often seen in the stator coated with conventional plating (described in Patent Document 1). If it was 1 / min or more, it was marked with x.

表1から分かるとおり、本発明の実施例では、疎水性高分子皮膜にクラックや傷やはがれは発生しなかった。また、ガス放出速度は、従来のめっきを被覆したステータに多く見られたクラックの発生したステータと比較して、全て従来の2分の1以下と良好な結果であった。中でも試料番号1,2,5は10分の1以下と優れた結果が得られた。親水性高分子であるナイロン皮膜を施した比較例1では、クラックや傷やはがれは生じていないが、ガス放出抑制効果が小さかった。疎水性高分子とナノメートルサイズの無機充填材で構成された皮膜を施した比較例2,3では、粗し処理や融点以上での成形・硬化がなされていないため熱硬化性樹脂との密着性が悪く、皮膜が一部はがれていた。ミクロンサイズの無機充填材を充填した皮膜を施した比較例4は、密着性を確保してもガス放出抑制効果が小さかった。   As can be seen from Table 1, in the examples of the present invention, no cracks, scratches or peeling occurred in the hydrophobic polymer film. In addition, the gas release rate was a good result of less than half of the conventional one, as compared with the conventional cracked stator, which was often found in the stator coated with plating. In particular, Sample Nos. 1, 2, and 5 gave excellent results of 1/10 or less. In Comparative Example 1 in which a nylon film, which is a hydrophilic polymer, was applied, cracks, scratches, and peeling did not occur, but the effect of suppressing gas release was small. In Comparative Examples 2 and 3, which were coated with a hydrophobic polymer and nanometer-sized inorganic filler, roughening treatment and molding / curing above the melting point were not performed, so adhesion with the thermosetting resin The film was bad and part of the film was peeled off. In Comparative Example 4 in which a film filled with a micron-sized inorganic filler was applied, the effect of suppressing gas release was small even when the adhesion was ensured.

なお、皮膜の疎水性高分子の材質については、疎水性が高ければ、例えばASTM D570に規定された23℃での吸水率が約0.05%以下であれば、本実施例に用いた材質以外でも、ポリエチレン、ポリスチレン、塩化ビニル、ポリイミド、シリコン樹脂など、熱可塑性樹脂や硬化性樹脂なら何でも良い。ナノメートルサイズの無機充填材も、本実施例に用いた材質以外でも、マイカなどの層状ケイ酸塩、カーボンナノファイバー、フラーレンなどの炭素材料、酸化チタンなどの酸化物など何でも良い。   In addition, as for the material of the hydrophobic polymer of the film, if the hydrophobicity is high, for example, if the water absorption at 23 ° C. defined in ASTM D570 is about 0.05% or less, the material used in this example Other than the above, any thermoplastic resin or curable resin such as polyethylene, polystyrene, vinyl chloride, polyimide, or silicone resin may be used. The nanometer-sized inorganic filler may be anything other than the material used in the present embodiment, such as layered silicates such as mica, carbon materials such as carbon nanofibers and fullerenes, and oxides such as titanium oxide.

Figure 2006034042
Figure 2006034042

Figure 2006034042
Figure 2006034042

モールド樹脂表面に、吸水率の小さい疎水性高分子とナノメートルサイズの無機充填材で構成された皮膜を、一体成形にて被覆することによって、成形コストは増加させずに、クラックや傷やはがれも発生せず、ガス放出速度は低減することができるので、高真空用や宇宙分野のキャンレスモータという用途にも適用できる。   By coating the surface of the mold resin with a hydrophobic polymer with a low water absorption rate and a nanometer-size inorganic filler by integral molding, without increasing the molding cost, cracks, scratches and peeling Therefore, it can be applied to applications such as high vacuum and spaceless canless motors.

本発明の実施例を示す真空用アキシャルギャップモータの側断面図Side sectional view of a vacuum axial gap motor showing an embodiment of the present invention. 図1における疎水性高分子皮膜を示す拡大断面図FIG. 1 is an enlarged sectional view showing a hydrophobic polymer film in FIG. 従来のめっき処理した真空用アキシャルギャップモータを示す側断面図Cross-sectional side view of a conventional plated axial gap motor with plating treatment

符号の説明Explanation of symbols

1 ステータコア
2 コイル
3 モールド樹脂
4 ステータハウジング
5 疎水性高分子皮膜
6 無機充填材
7 めっき
1 Stator Core 2 Coil 3 Mold Resin 4 Stator Housing 5 Hydrophobic Polymer Film 6 Inorganic Filler 7 Plating

Claims (9)

熱硬化性樹脂の表面に、ナノメートルサイズの無機充填材を充填した疎水性高分子皮膜を設けたことを特徴とする真空用熱硬化性樹脂組成物。   A thermosetting resin composition for vacuum, wherein a hydrophobic polymer film filled with a nanometer-sized inorganic filler is provided on the surface of a thermosetting resin. 前記疎水性高分子は、23℃での吸水率が0.05%以下の熱可塑性樹脂または熱硬化性樹脂であることを特徴とする請求項1記載の真空用熱硬化性樹脂組成物。   2. The vacuum thermosetting resin composition according to claim 1, wherein the hydrophobic polymer is a thermoplastic resin or a thermosetting resin having a water absorption rate of 0.05% or less at 23 ° C. 3. 前記疎水性高分子の材質は、ポリエチレン、ポリプロピレン、塩化ビニル、ポリスチレン、ふっ素樹脂、ポリイミド、シリコン樹脂の少なくとも一つであることを特徴とする請求項1または2記載の真空用熱硬化性樹脂組成物。   The vacuum thermosetting resin composition according to claim 1 or 2, wherein the material of the hydrophobic polymer is at least one of polyethylene, polypropylene, vinyl chloride, polystyrene, fluorine resin, polyimide, and silicon resin. object. 前記無機充填材の材質は、カーボンナノチューブ、カーボンナノファイバー、フラーレンなどの炭素材料、クレイやマイカなどの層状ケイ酸塩、シリカ、酸化チタンなどの酸化物の少なくとも一つからなることを特徴とする請求項1から3のいずれか1項に記載の真空用熱硬化性樹脂組成物。   The inorganic filler is made of at least one of carbon materials such as carbon nanotubes, carbon nanofibers and fullerenes, layered silicates such as clay and mica, and oxides such as silica and titanium oxide. The vacuum thermosetting resin composition according to any one of claims 1 to 3. 前記無機充填材の大きさは、粒子状や繊維状の場合は直径が100nm以下、箔状の場合は厚さが100nm以下であることを特徴とする請求項1から4のいずれか1項に記載の真空用熱硬化性樹脂組成物。   The size of the inorganic filler is any one of claims 1 to 4, wherein the diameter is 100 nm or less in the case of particles or fibers, and the thickness is 100 nm or less in the case of foil. The thermosetting resin composition for vacuum as described. 疎水性高分子材料にナノメートルサイズの無機充填材を配合して疎水性高分子皮膜を形成する皮膜形成工程と、熱硬化性樹脂の原料に硬化剤を配合してモールドし熱硬化性樹脂組成物を形成するモールド工程と、前記熱硬化性樹脂組成物の表面に前記疎水性高分子皮膜を設ける密着工程とからなることを特徴とする真空用熱硬化性樹脂組成物の製造方法。   A film forming process that forms a hydrophobic polymer film by blending a nanometer-sized inorganic filler with a hydrophobic polymer material, and a thermosetting resin composition that is molded by blending a curing agent with the raw material of the thermosetting resin. The manufacturing method of the thermosetting resin composition for vacuum characterized by comprising the mold process which forms a thing, and the contact | adherence process which provides the said hydrophobic polymer membrane | film | coat on the surface of the said thermosetting resin composition. 前記皮膜形成工程は、前記疎水性高分子皮膜の表面を粗し処理する工程を含むことを特徴とする請求項6記載の真空用熱硬化性樹脂組成物の製造方法。   The method for producing a vacuum thermosetting resin composition according to claim 6, wherein the film forming step includes a step of roughening the surface of the hydrophobic polymer film. 前記密着工程は、前記疎水性高分子皮膜を金型に設けた後、前記モールド工程を行うことを特徴とする請求項6または7記載の真空用熱硬化性樹脂組成物の製造方法。   The method for producing a thermosetting resin composition for vacuum according to claim 6 or 7, wherein, in the adhesion step, the molding step is performed after the hydrophobic polymer film is provided on a mold. 前記密着工程は、前記疎水性高分子皮膜の融点以上の温度で前記モールド工程を行うことを特徴とする請求項6または7記載の真空用熱硬化性樹脂組成物の製造方法。   The method for producing a thermosetting resin composition for vacuum according to claim 6 or 7, wherein in the adhesion step, the molding step is performed at a temperature equal to or higher than a melting point of the hydrophobic polymer film.
JP2004211670A 2004-07-20 2004-07-20 Thermosetting resin composite for vacuum and its production Pending JP2006034042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004211670A JP2006034042A (en) 2004-07-20 2004-07-20 Thermosetting resin composite for vacuum and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211670A JP2006034042A (en) 2004-07-20 2004-07-20 Thermosetting resin composite for vacuum and its production

Publications (1)

Publication Number Publication Date
JP2006034042A true JP2006034042A (en) 2006-02-02

Family

ID=35899707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211670A Pending JP2006034042A (en) 2004-07-20 2004-07-20 Thermosetting resin composite for vacuum and its production

Country Status (1)

Country Link
JP (1) JP2006034042A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348650C (en) * 2006-06-08 2007-11-14 上海交通大学 Process for preparing hydrophobic polyimide thin film
JP2008004595A (en) * 2006-06-20 2008-01-10 Yaskawa Electric Corp Coil molding and linear motor for vacuum using the same
JP2008050469A (en) * 2006-08-24 2008-03-06 Yaskawa Electric Corp Film having graft-polymerized film, method for producing the same, optical graft-polymerization apparatus, stretchable polymer film and method for producing the same
JP2008160938A (en) * 2006-12-21 2008-07-10 Toyota Motor Corp Stator of motor, and manufacturing method of stator
JP2008178256A (en) * 2007-01-19 2008-07-31 Toyota Motor Corp Stator and manufacturing method therefor, and motor
JP2008237005A (en) * 2007-02-20 2008-10-02 Yaskawa Electric Corp Motor coil for vacuums, its manufacturing method, and electric motor for vacuum
JP2010028905A (en) * 2008-07-16 2010-02-04 Yaskawa Electric Corp Vacuum apparatus and method of manufacturing the same
CN109135052A (en) * 2018-07-17 2019-01-04 浙江大学宁波理工学院 Can resistance to high temperature oxidation polypropylene material and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220518A (en) * 1995-12-15 1997-08-26 Sekisui Chem Co Ltd Article bearing water-repelling coating film and manufacture thereof
JPH10172354A (en) * 1996-12-16 1998-06-26 Showa Electric Wire & Cable Co Ltd Insulating wire and electrical machinery and apparatus using thereof
WO2001085848A1 (en) * 2000-05-09 2001-11-15 Daikin Industries, Ltd. Polymer composition containing clean filler incorporated therein
JP2004504436A (en) * 2000-07-14 2004-02-12 アーベーベー・リサーチ・リミテッド Volume-modified casting material based on polymer matrix resin
JP2004067717A (en) * 2002-08-01 2004-03-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004137367A (en) * 2002-10-17 2004-05-13 Nippon Paint Co Ltd Cationic electrodeposition coating and method for controlling gloss level of electrodeposition coating film
JP2004140316A (en) * 2002-03-20 2004-05-13 Nippon Steel Corp High-temperature operating electrical apparatus and manufacturing method thereof
JP2004168829A (en) * 2002-11-18 2004-06-17 Yaskawa Electric Corp Epoxy resin composition and vacuum equipment using the same
JP2004292486A (en) * 2003-03-25 2004-10-21 Nichias Corp Fluororubber molded item and its molding method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220518A (en) * 1995-12-15 1997-08-26 Sekisui Chem Co Ltd Article bearing water-repelling coating film and manufacture thereof
JPH10172354A (en) * 1996-12-16 1998-06-26 Showa Electric Wire & Cable Co Ltd Insulating wire and electrical machinery and apparatus using thereof
WO2001085848A1 (en) * 2000-05-09 2001-11-15 Daikin Industries, Ltd. Polymer composition containing clean filler incorporated therein
JP2004504436A (en) * 2000-07-14 2004-02-12 アーベーベー・リサーチ・リミテッド Volume-modified casting material based on polymer matrix resin
JP2004140316A (en) * 2002-03-20 2004-05-13 Nippon Steel Corp High-temperature operating electrical apparatus and manufacturing method thereof
JP2004067717A (en) * 2002-08-01 2004-03-04 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004137367A (en) * 2002-10-17 2004-05-13 Nippon Paint Co Ltd Cationic electrodeposition coating and method for controlling gloss level of electrodeposition coating film
JP2004168829A (en) * 2002-11-18 2004-06-17 Yaskawa Electric Corp Epoxy resin composition and vacuum equipment using the same
JP2004292486A (en) * 2003-03-25 2004-10-21 Nichias Corp Fluororubber molded item and its molding method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348650C (en) * 2006-06-08 2007-11-14 上海交通大学 Process for preparing hydrophobic polyimide thin film
JP2008004595A (en) * 2006-06-20 2008-01-10 Yaskawa Electric Corp Coil molding and linear motor for vacuum using the same
JP2008050469A (en) * 2006-08-24 2008-03-06 Yaskawa Electric Corp Film having graft-polymerized film, method for producing the same, optical graft-polymerization apparatus, stretchable polymer film and method for producing the same
JP2008160938A (en) * 2006-12-21 2008-07-10 Toyota Motor Corp Stator of motor, and manufacturing method of stator
JP4735529B2 (en) * 2006-12-21 2011-07-27 トヨタ自動車株式会社 Motor stator
US8063518B2 (en) 2006-12-21 2011-11-22 Toyota Jidosha Kabushiki Kaisha Motor stator and stator manufacturing method
JP2008178256A (en) * 2007-01-19 2008-07-31 Toyota Motor Corp Stator and manufacturing method therefor, and motor
JP4682989B2 (en) * 2007-01-19 2011-05-11 トヨタ自動車株式会社 Stator manufacturing method
JP2008237005A (en) * 2007-02-20 2008-10-02 Yaskawa Electric Corp Motor coil for vacuums, its manufacturing method, and electric motor for vacuum
JP2010028905A (en) * 2008-07-16 2010-02-04 Yaskawa Electric Corp Vacuum apparatus and method of manufacturing the same
CN109135052A (en) * 2018-07-17 2019-01-04 浙江大学宁波理工学院 Can resistance to high temperature oxidation polypropylene material and preparation method thereof
CN109135052B (en) * 2018-07-17 2020-12-29 浙江大学宁波理工学院 Polypropylene material capable of resisting high-temperature oxidation and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4991881B2 (en) Articles containing silicone compositions and methods for their production
JP4572056B2 (en) Thermally conductive silicone rubber composite sheet
JP6662458B2 (en) Thermal conductive silicone rubber composite sheet
JP2011025676A (en) Heat-conductive silicone rubber composite sheet
JP6625659B2 (en) Thermal radiation coating composition and thermal radiation unit formed using the same
TW201521989A (en) Mold release film and semiconductor package manufacturing method
TW201741383A (en) Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device
US20110014466A1 (en) Composite materials comprising core-shell nano-fibrils
JP6068733B2 (en) Thermally conductive resin molded product
JP2006034042A (en) Thermosetting resin composite for vacuum and its production
JP2017005906A (en) Commutator
TWI713674B (en) Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device
JPWO2015093260A1 (en) Thermosetting resin composition and metal resin composite
JP6683563B2 (en) Adhesive sheet
JP2005292218A (en) Fixing roller
JP2018134779A (en) Multilayer resin sheet, method for producing multilayer resin sheet, multilayer resin sheet cured product, multilayer resin sheet laminate, and multilayer resin sheet laminate cured product
JP2008158332A (en) Fixing member and method of manufacturing the same
TWI761435B (en) Thermally conductive sheet
US20110195879A1 (en) Inert wear resistant fluoropolymer-based solid lubricants, methods of making and methods of use
JP7370537B2 (en) Release film and method for producing release film
JP2019071380A (en) Thermally-conductive composite sheet and manufacturing method thereof
KR101986168B1 (en) Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof
JP2004359712A (en) High heat-conducting member and method for producing the same
TW202035637A (en) Conductive adhesive agent composition
CN114761198A (en) Release film and method for producing release film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712