KR101986168B1 - Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof - Google Patents

Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof Download PDF

Info

Publication number
KR101986168B1
KR101986168B1 KR1020180019720A KR20180019720A KR101986168B1 KR 101986168 B1 KR101986168 B1 KR 101986168B1 KR 1020180019720 A KR1020180019720 A KR 1020180019720A KR 20180019720 A KR20180019720 A KR 20180019720A KR 101986168 B1 KR101986168 B1 KR 101986168B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
coating liquid
acid
self
prepare
Prior art date
Application number
KR1020180019720A
Other languages
Korean (ko)
Inventor
이준균
김주영
박치언
이정옥
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020180019720A priority Critical patent/KR101986168B1/en
Application granted granted Critical
Publication of KR101986168B1 publication Critical patent/KR101986168B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0075Processes relating to semiconductor body packages relating to heat extraction or cooling elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a manufacturing method of a coating liquid applicable to LED radiation plates capable of realizing dust collection prevention and self-cleaning functions and providing excellent durability and electrostatic shielding properties and, more specifically, to a manufacturing method of a coating liquid applicable to LED radiation fins for 100 W which adds an organic or inorganic binder to a solution in which a carbon nanotube (CNT) is dispersed to manufacture a coating liquid, sprays the coating liquid on LED heat radiation fins, and then thermally cures and dries the coating liquid so as to increase hydrophobicity and surface resistance, thereby realizing dust collection and self-cleaning functions and having excellent durability and electrostatic shielding properties.

Description

집진방지 및 자가세정 기능을 갖는 LED용 방열 핀에 적용 가능한 코팅액 및 이의 제조방법{Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating liquid applicable to an LED heat dissipation fin having a dust collecting prevention function and a self-cleaning function,

본 발명은 집진방지 및 자가세정 기능을 가지고, 뛰어난 내구성 및 정전기 차폐 특성을 갖는 LED용 방열핀 또는 방열판에 적용 가능한 코팅액 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 탄소나노튜브(Carbon Nano Tube, CNT)를 분산한 용액과 유기 또는 무기 바인더를 포함하는 코팅액, 상기 코팅액의 제조 방법, 및 상기 코팅액을 LED 방열 핀 또는 방열판에 스프레이 도포한 후 열 경화하여 소수성과 표면저항을 향상시켜 정전기차폐 및 초발수표면을 통한 집진방지 및 자가세정 기능을 구현시키고, 뛰어난 내구성 및 정전기 차폐 특성을 갖는, 100W급 LED용 방열 핀 또는 방열판의 제조 방법에 관한 것이다.[0001] The present invention relates to a coating liquid and a method of manufacturing the same, which can be applied to a radiating fin or heat sink for LED having excellent durability and electrostatic shielding characteristics, and more particularly to a carbon nano tube ), A coating solution containing an organic or inorganic binder, a method for producing the coating solution, and a method of applying the coating solution to an LED heat-dissipating fin or a heat dissipating plate by spraying and thermosetting to improve hydrophobicity and surface resistance, To a method of manufacturing a heat dissipation fin or a heat dissipating plate for a 100 W class LED, which has a durability and an electrostatic shielding characteristic by implementing dust collecting prevention and self cleaning function through the surface.

기존 빌딩이나 공장 내외 등으로 사용되어왔던 100W용 LED의 방열판은 집진방지 및 자가세정 기능이 전혀 없어 시간이 지남에 따라 미세먼지나 기타 오염물질에 노출되어 방열 효과가 극도로 떨어지게 된다. 그 결과 100W용 LED의 수명(내구성)이 감소하며 방치 시 100W용 LED의 고열에 의한 불량 발생 및 절연파괴 후 트래킹 현상에 의하여 화재발생 가능성이 높은 문제점이 있다.The 100W LED heat sink, which has been used in existing buildings and factories, has no dust collecting and self-cleaning functions, and the heat dissipation effect is extremely reduced due to exposure to fine dust and other contaminants over time. As a result, the lifetime (durability) of the LED for 100W is decreased, and there is a problem that a fire is caused by a high heat of the LED for 100W at the time of leaving and a tracking phenomenon after an insulation breakdown.

상기 현상을 방지하기 위한 정기적인 오염물질 제거 작업으로 세정(Cleaning) 비용뿐만 아니라 작업 시 생산라인을 정지해야 하는 문제점이 있다.In order to prevent the above-mentioned phenomenon, there is a problem that it is necessary to stop the production line at the time of work as well as the cleaning cost.

집진방지 및 자가세정 기능을 가진 방열 핀용 코팅액을 만들기 위해 표면 에너지 뿐만 아니라 표면 조도를 조절하여 소수성을 구현시키며 표면저항을 감소시키는 다양한 나노 소재를 배합한 코팅액 제조 기술이 매우 필요한 실정이다.In order to prepare a coating liquid for a heat dissipation pin having a dust collecting prevention function and a self-cleaning function, it is necessary to prepare a coating liquid containing various nanomaterials which reduce the surface resistance by realizing hydrophobicity by controlling surface roughness as well as surface energy.

이에 본 발명자들은 LED용 방열 핀 또는 방열판의 집진방지 및 자가세정 기능을 구현시키기 위해 노력한 결과, 탄소나노튜브(CNT)를 분산한 용액과 유기 또는 무기 바인더를 첨가하여 LED 방열 핀에 스프레이 도포한 후 열 경화하여 소수성과 표면저항을 향상시켜, 집진방지 자가세정 기능을 구현하고, 뛰어난 내구성 및 정전기 차폐 특성을 갖는 LED용 방열 핀 또는 방열판을 개발함으로써, 본 발명을 완성하였다.As a result, the present inventors have made efforts to prevent dust collecting and self-cleaning of LED heat-radiating fins or heat sinks, and as a result, they have found that a solution in which carbon nanotubes (CNTs) are dispersed and an organic or inorganic binder are added and sprayed on the LED heat- The present invention has been accomplished by developing a heat dissipation fin or a heat dissipating plate for an LED which has improved durability and electrostatic shielding property by improving the hydrophobicity and surface resistance by thermosetting,

일본 특허등록번호 제5330336호Japanese Patent Registration No. 5330336 미국 특허등록번호 제9562284호U.S. Patent No. 9562284 미국 특허공개번호 제2011-0214285호United States Patent Publication No. 2011-0214285 한국 특허공개번호 제10-2017-0035029호Korean Patent Publication No. 10-2017-0035029

본 발명의 목적은 탄소나노튜브(CNT)를 분산한 용액과 유기 또는 무기 바인더를 포함하고, LED용 발열핀 또는 방열판에 적용하여 집진방지 및 자가세정 기능을 구현하고, 내구성 및 정전기 차폐 특성을 향상시키는, 코팅액 및 이의 제조 방법을 제공하는 것이다.It is an object of the present invention to provide a solution in which carbon nanotubes (CNTs) are dispersed and an organic or inorganic binder, and is applied to heat-generating fins or heat sinks for LEDs to realize dust collection prevention and self-cleaning functions and improve durability and electrostatic shielding And a process for producing the same.

본 발명의 다른 목적은 탄소나노튜브(CNT)를 분산한 용액과 유기 또는 무기 바인더를 첨가하여 LED 방열 핀에 스프레이 도포한 후 열 경화 후 건조하여 소수성과 표면저항을 향상시켜 집진방지 자가세정 기능을 구현시키고, 또한 뛰어난 내구성 및 정전기 차폐 특성을 가지는, LED용 발열핀 또는 방열판, 및 이들의 제조 방법을 제공하는 것이다.It is another object of the present invention to provide a method of manufacturing a semiconductor device, which comprises adding a solution of a carbon nanotube (CNT) dispersed therein and an organic or inorganic binder to the LED heat-dissipating fins, spraying the heat- And has excellent durability and electrostatic shielding characteristics, and a method of manufacturing the same.

상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object,

i) 탄소나노튜브를 산에 침지시켜 탄소나노튜브를 산처리하는 단계;i) acid-treating the carbon nanotubes by immersing the carbon nanotubes in an acid;

ii) 산처리된 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조하는 단계;ii) dispersing the acid-treated carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion;

iii) 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하여 코팅액을 제조하는 단계; 및iii) mixing a carbon nanotube dispersion with one or both of an inorganic binder and an organic binder, and an additive to prepare a coating solution; And

iv) 코팅액을 LED 방열 핀 또는 방열판에 스프레이 도포한 후 열 경화시키는 단계;iv) spray coating the coating liquid onto the LED radiating fin or the heat sink, and thermally curing the coating;

를 포함하는 집진방지 및 자가세정 기능을 구현시키고, 뛰어난 내구성 및 정전기 차폐 특성을 가지는, LED 방열 핀 또는 방열판의 제조방법을 제공한다.The present invention provides a method of manufacturing an LED heat dissipation fin or a heat dissipation fin that realizes a dust collecting prevention and self-cleaning function including excellent durability and electrostatic shielding characteristics.

또한, 본 발명은 In addition,

i) 탄소나노튜브를 산에 침지시켜 탄소나노튜브를 산처리한 후, 산처리된 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조한 다음, 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하여 제1층(1st layer) 코팅액을 제조하는 단계;i) acid-treating the carbon nanotubes by immersing the carbon nanotubes in an acid, and then dispersing the acid-treated carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion. Then, an inorganic binder or an organic binder Or a mixture of one or both of the additive and the additive to prepare a first layer coating liquid;

ii) 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조한 다음, 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하여 제2층(2nd layer) 코팅액을 제조하는 단계;(ii) dispersing the carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion, and then mixing the carbon nanotube dispersion with one or both of an inorganic binder and an organic binder and additives to prepare a second layer coating solution Producing;

iii) LED 방열 핀 또는 방열판에 제1층(1st layer) 코팅액을 스프레이 도포한 후, 제2층(2nd layer) 코팅액으로 스프레이 도포하여 코팅하는 단계; 및iii) spraying a first layer coating liquid on the LED radiating fins or the heat sink, spraying and coating the first layer coating liquid with a second layer coating liquid; And

iv) 코팅액된 LED 방열 핀 또는 방열판을 열 경화시키는 단계;iv) thermally curing the coated LED radiating fin or heat sink;

를 포함하는 집진방지 및 자가세정 기능을 구현시키고, 뛰어난 내구성 및 정전기 차폐 특성을 가지는, LED 방열 핀 또는 방열판의 제조방법을 제공한다.The present invention provides a method of manufacturing an LED heat dissipation fin or a heat dissipation fin that realizes a dust collecting prevention and self-cleaning function including excellent durability and electrostatic shielding characteristics.

또한, 본 발명은 상기 본 발명에 따른 제조방법들 중 어느 하나로 제조된 집진방지 및 자가세정 기능을 구현시키고, 뛰어난 내구성 및 정전기 차폐 특성을 가지는, LED 방열 핀 또는 방열판을 제공한다.Also, the present invention provides an LED heat dissipation fin or a heat dissipation plate which realizes dust collection prevention and self-cleaning function manufactured by any one of the manufacturing methods according to the present invention and has excellent durability and electrostatic shielding characteristics.

또한, 본 발명은 탄소나노튜브 분산액, 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 포함하는, 집진방지 및 자가세정 기능을 구현하고, 뛰어난 내구성 및 정전기 차폐 특성을 부여하기 위한, LED 방열 핀 또는 방열판용 코팅액을 제공한다.The present invention also relates to an LED light emitting diode package for realizing dust collection prevention and self-cleaning function, including one or both of a carbon nanotube dispersion, an inorganic binder or an organic binder, and an additive and providing excellent durability and electrostatic shielding characteristics Thereby providing a coating liquid for a fin or a heat sink.

또한, 본 발명은In addition,

i) 탄소나노튜브를 산에 침지시켜 탄소나노튜브를 산처리하는 단계;i) acid-treating the carbon nanotubes by immersing the carbon nanotubes in an acid;

ii) 산처리된 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조하는 단계; 및ii) dispersing the acid-treated carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion; And

iii) 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하는 단계;iii) mixing one or both of an inorganic binder or an organic binder and an additive in the carbon nanotube dispersion;

를 포함하는, 집진방지 및 자가세정 기능을 구현하고, 뛰어난 내구성 및 정전기 차폐 특성을 부여하기 위한, LED 방열 핀 또는 방열판용 코팅액의 제조 방법을 제공한다.The present invention provides a method of manufacturing a coating liquid for an LED radiating fin or a heat sink, which realizes dust collection prevention and self-cleaning function and provides excellent durability and electrostatic shielding property.

아울러, 본 발명은 상기 본 발명에 따른 코팅액을 LED 방열 핀 또는 방열판에 스프레이 도포하여 LED 방열 핀 또는 방열판의 집진방지 및 자가세정 기능을 구현하고, 뛰어난 내구성 및 정전기 차폐 특성을 부여하는 방법을 제공한다.In addition, the present invention provides a method of spraying a coating liquid according to the present invention onto an LED heat-dissipating fin or a heat dissipating plate to realize a dust-collecting prevention function and a self-cleaning function of an LED heat dissipating fin or a heat dissipating plate and providing excellent durability and electrostatic shielding property .

본 발명은 탄소나노튜브(CNT)를 분산한 용액과 유기 또는 무기 바인더를 첨가하여 제조된 코팅액을 LED 방열 핀 또는 방열판에 스프레이 도포한 후 열 경화하여 소수성과 표면저항을 향상시킴으로써, 100W LED용 방열 핀 또는 방열판의 집진방지 및 자가세정 기능을 구현할 수 있고, 뛰어난 내구성 및 정전기 차폐 특성을 가질수 있다.The present invention can improve the hydrophobicity and surface resistance by spraying a coating solution prepared by adding a solution of a carbon nanotube (CNT) and an organic or inorganic binder to an LED radiating fin or a heat sink, It is possible to realize dust collecting prevention and self-cleaning function of a fin or a heat sink, and excellent durability and electrostatic shielding property can be obtained.

본 발명에 따른 코팅액은 사용 시 마이크로구조물(micro-structure) 표면에 나노구조물(nano-structure)을 형성하는 계층구조(hierarchical structure)를 형성하여 150°이상의 초발수 표면을 구현하고, 전기전도성이 뛰어난 탄소 재료를 함유하여 103Ω/sq 이하의 표면 저항을 가짐으로써 LED용 방열 핀 또는 방열판의 집진방지 및 자가세정 기능을 구현할 수 있으며, 뛰어난 내구성 및 정전기 차폐 특성을 가질 수 있다.The coating solution according to the present invention forms a hierarchical structure that forms a nano-structure on the micro-structure surface to realize a super water-repellent surface of 150 DEG or more, By having a surface resistance of 10 3 Ω / sq or less by containing a carbon material, it is possible to prevent dust collecting and self-cleaning of heat dissipation fins or heat sinks for LEDs, and have excellent durability and electrostatic shielding characteristics.

도 1은 실시예 3의 코팅막의 SEM 촬영 결과를 보여주는 그림이다: (a) 100 배율, (b) 500 배율, (c) 10K 배율, (d) 20K 배율.
도 2는 실시예 3의 코팅막의 물방울 내부 촬영 결과를 보여주는 그림이다.
도 3은 실시예 3의 접촉각을 측정한 결과를 보여주는 그림이다.
도 4는 실시예 4의 접촉각을 측정한 결과를 보여주는 그림이다.
도 5는 실시예 4의 코팅막의 SEM 촬영 결과를 보여주는 그림이다: (a) 50 배율, (b) 400 배율, (c) 1K 배율, (d) 10K 배율.
도 6은 실시예 1 및 비교예 1의 크로스 컷 테스트(cross cut test) 결과를 보여주는 그림이다: (a) 비교예 1 cross cut 전, (b) 비교예 1 cross cut 후 테이프, (c) 실시예 1 cross cut 전, (d) 실시예 1 cross cut 후 테이프.
도 7의(a) 비교예 2의 비불소계 코팅층 표면의 물방울 및 (b)실시예 1의 불소계 코팅층 표면의 물방울의 촬영 결과를 보여주는 그림이다.
도 8은 비교예 3의 스프레이 이격에 따른 접촉각 변화를 보여주는 그림이다.
FIG. 1 is a SEM photograph of the coating film of Example 3: (a) 100 magnification, (b) 500 magnification, (c) 10K magnification, and (d) 20K magnification.
2 is a view showing a result of photographing the inside of water drops of the coating film of Example 3. Fig.
3 is a view showing a result of measurement of the contact angle of Example 3. Fig.
4 is a graph showing the result of measurement of the contact angle of Example 4. FIG.
5 is a SEM photograph showing the coating film of Example 4: (a) 50 magnification, (b) 400 magnification, (c) 1K magnification, and (d) 10K magnification.
6 is a cross-cut test result of Example 1 and Comparative Example 1: (a) Comparative Example 1 before cross-cut, (b) Comparative Example 1 after tape cross-cut, and (c) Example 1 Before a cross cut, (d) Tape after Example 1 cross cut.
Fig. 7 (a) is a view showing the water droplet on the surface of the non-fluorine coating layer of Comparative Example 2 and (b) the water droplet on the surface of the fluorine coating layer of Example 1. Fig.
8 is a graph showing the change in contact angle according to the spray spacing of Comparative Example 3. Fig.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 탄소나노튜브(Carbon Nano Tube, CNT)를 분산한 용액과 유기 또는 무기 바인더를 첨가한 코팅액을 LED 방열 핀 또는 방열판에 스프레이 도포한 후 열 경화한 다음 건조하여 소수성과 표면저항을 향상시켜 집진방지 및 자가세정 기능을 구현시키고, 뛰어난 내구성 및 정전기 차폐 특성을 가지는, LED용 방열 핀 또는 방열판의 제조 방법을 제공한다.In the present invention, a solution in which carbon nanotubes (CNTs) are dispersed and a coating solution to which an organic or inorganic binder is added is sprayed on an LED radiating fin or a heat sink, followed by thermosetting and then drying to improve hydrophobicity and surface resistance Provided is a method of manufacturing a heat dissipation fin or a heat dissipation plate for an LED which realizes dust collection prevention and self cleaning function and has excellent durability and electrostatic shielding property.

구체적으로, 상기 제조 방법은Specifically,

i) 탄소나노튜브를 산에 침지시켜 탄소나노튜브를 산처리하는 단계;i) acid-treating the carbon nanotubes by immersing the carbon nanotubes in an acid;

ii) 산처리된 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조하는 단계;ii) dispersing the acid-treated carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion;

iii) 탄소나노튜브 분산액에 무기 바인더, 유기 바인더 또는 유무기 하이브리드 바인더를 혼합하여 코팅액을 제조하는 단계; 및iii) mixing a carbon nanotube dispersion with an inorganic binder, an organic binder or an organic hybrid binder to prepare a coating solution; And

iv) 코팅액을 LED 방열 핀 또는 방열판에 스프레이 도포한 후 열 경화시킨 다음 건조시키는 단계;iv) spraying the coating liquid onto the LED radiating fin or the heat sink, thermosetting and drying the coating;

를 포함할 수 있다.. ≪ / RTI >

상기 제조 방법에 있어서, 상기 단계 i)의 탄소나노튜브는 단일벽 탄소나노튜브(single wall carbon nanotube, SWCNT), 이중벽 탄소나노튜브(double wall carbon nanotube, DWCNT) 및 다중벽 탄소나노튜브(multi wall carbon nanotube, MWCNT)로 구성된 군으로부터 선택된 어느 하나 또는 둘 이상인 것이 바람직하고, 다중벽 탄소나노튜브(multi wall carbon nanotube, MWCNT)인 것이 더욱 바람직하나 이에 한정되지 않는다.In the above manufacturing method, the carbon nanotubes of step i) may be single wall carbon nanotubes (SWCNTs), double wall carbon nanotubes (DWCNTs) and multi wall carbon nanotubes carbon nanotubes (MWCNT), and more preferably multi wall carbon nanotubes (MWCNT), but the present invention is not limited thereto.

상기 단계 i)의 산처리용 용액은 질산(nitric acid), 황산(sulfuric acid), 염산(hydrochloric acid), 인산(phosphoric acid) 및 과염소산(perchloric acid)으로 구성된 군으로부터 선택된 어느 하나 또는 둘 이상인 것이 바람직하고, 황산과 질산의 혼합물인 것이 더욱 바람직하나 이에 한정되지 않는다.The acid treatment solution of step i) may be any one or more selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid and perchloric acid More preferably a mixture of sulfuric acid and nitric acid, but is not limited thereto.

상기 단계 i)의 산처리용 용액의 조성은 탄소나노튜브 1 g당 10 ~ 100 ml인 것이 바람직하고, 탄소나노튜브 1 g당 30 ~ 70 ml인 것이 더욱 바람직하다.The composition of the acid treatment solution in step i) is preferably 10 to 100 ml per 1 g of carbon nanotubes, and more preferably 30 to 70 ml per 1 g of carbon nanotubes.

상기 제조 방법에 있어서, 상기 단계 ii)에서 산처리된 탄소나노튜브에 추가적으로 산처리하지 않은 탄소나노튜브를 첨가하여 탄소나노튜브 분산액을 제조할 수 있다.In the above manufacturing method, the carbon nanotube dispersion may be prepared by adding carbon nanotubes not subjected to further acid treatment to the acid-treated carbon nanotubes in the step ii).

상기 단계 ii)의 유기용매는 이소 프로필 알콜(iso propyl alcohol, IPA), 아세톤(acetone), N,N-디메틸포름아미드(N,N-dimethylformamide, DMF), N,N-디메틸아세트아미드(N,N-dimethylacetamide, DMA), N,N-디에틸아세트아미드(N,N-diethylacetamide, DEA), N,N-디메틸프로판아미드(N,N-dimethylpropanamide, DMP), 에탄올, 메탄올, 이소프로판올, 1,2-디 클로로 벤젠(1,2-Dichlorobenzene), 클로로포름 및 디메틸포름아미드로 구성된 군으로부터 선택된 어느 하나 또는 둘 이상인 것이 바람직하고, IPA인 것이 더욱 바람직하나 이에 한정되지 않는다.The organic solvent of step ii) may be selected from the group consisting of isopropyl alcohol (IPA), acetone, N, N-dimethylformamide (DMF), N, N-dimethylacetamide N-dimethylacetamide, DMA), N, N-diethylacetamide (DEA), N, N-dimethylpropanamide (DMP), ethanol, methanol, isopropanol, , 2-dichlorobenzene, chloroform, and dimethylformamide, and is more preferably one or more of IPA, but is not limited thereto.

상기 단계 ii)의 탄소나노튜브 분산액의 조성은 유기용매에 대해 탄소나노튜브가 0.1 내지 3.0 중량%인 것이 바람직하고, 0.5 내지 2.0 중량%인 것이 더욱 바람직하다.The carbon nanotube dispersion of step ii) preferably has a composition of carbon nanotubes of 0.1 to 3.0% by weight, more preferably 0.5 to 2.0% by weight, based on the organic solvent.

상기 단계 ii)의 분산방법은 초음파 분산, 볼-밀(ball-mill) 분산, 기계적 스터링(mechanical stirring), 마그네틱 스터링(magnetic stirring), 산처리 분산 및 분산제를 이용한 분산으로 구성된 군으로부터 선택된 어느 하나로 수행하는 것이 바람직하고, 초음파 분산으로 수행하는 것이 더욱 바람직하다.The dispersion method of step ii) may be any one selected from the group consisting of ultrasonic dispersion, ball-mill dispersion, mechanical stirring, magnetic stirring, acid treatment dispersion, and dispersion using a dispersing agent And it is more preferable to carry out by ultrasonic dispersion.

상기 제조 방법에 있어서, 상기 단계 iii)의 유기바인더는 아크릴계 유기바인더인 것이 바람직하나 이에 한정되지 않는다.In the above production method, the organic binder in the step iii) is preferably an acrylic organic binder, but is not limited thereto.

상기 단계 iii)의 무기바인더는 디메틸벤젠(dimethylbenzene), 티타늄 디옥사이드(titanium dioxide), 실리콘 디옥사이드(silicon dioxide), 유기 세라믹 레진(organic ceramic resin)로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상인 것이 바람직하나 이에 한정되지 않는다.The inorganic binder in step iii) is preferably one or more selected from the group consisting of dimethylbenzene, titanium dioxide, silicon dioxide, organic ceramic resin, It is not limited.

상기 단계 iii)의 첨가제는 불소계 실란인 것이 바람직하다.The additive of step iii) is preferably a fluorine-based silane.

상기 불소계 실란은 트리메톡시(3,3,3-트리플루오로프로필)실란(Trimethoxy(3,3,3-trifluoropropyl)silane), 트리메톡시(1H, 1H, 2H, 2H 노나플루오로 헥실) 실란(Trimethoxy(1H,1H,2H,2Hnonafluorohexyl)silane), 트리에톡시(1H, 1H, 2H, 2H 노나플루오로 헥실) 실란(Triethoxy(1H,1H,2H,2Hnonafluorohexyl)silane), 트리클로로(1H, 1H, 2H, 2H 트리데카 플루오로-n-옥틸) 실란(Trichloro(1H,1H,2H,2Htridecafluoro-n-octyl)silane), 트리에톡시-1H, 1H, 2H, 2H 트리데카 플루오로-n-옥틸 실란(Triethoxy-1H,1H,2H,2Htridecafluoro-n-octylsilane), 트리클로로(1H, 1H, 2H, 2H 헵타데카 플루오로데실) 실란(Trichloro(1H,1H,2H,2Hheptadecafluorodecyl)silane), 트리메톡시(1H, 1H, 2H, 2H 헵타데카 플루오로데실) 실란(Trimethoxy(1H,1H,2H,2Hheptadecafluorodecyl)silane), 트리에톡시-1H, 1H, 2H, 2H 헵타데카 플루오로데실 실란(Triethoxy-1H,1H,2H,2Hheptadecafluorodecylsilane), 펜타플루오로 페닐디메틸클로로 실란(Pentafluorophenyldimethylchlorosilane), 펜타플루오로 페닐에톡시디메틸 실란(Pentafluorophenylethoxydimethylsilane), 클로로디메틸 [3-(2,3,4,5,6- 펜타플루오로페닐) 프로필] 실란(Chlorodimethyl[3-(2,3,4,5,6-pentafluorophenyl)propyl]-silane), 트리클로로 [3-(펜타플루오로페닐) 프로필] 실란(Trichloro[3-(pentafluorophenyl)propyl]silane), 및 트리메톡시 (11-펜타플루오로펜옥시운데실) 실란(Trimethoxy(11-pentafluorophenoxyundecyl)silane)으로 구성된 군으로부터 선택된 어느 하나 또는 둘 이상인 것이 바람직하고, 트리메톡시(3,3,3-트리플루오로프로필)실란(Trimethoxy(3,3,3-trifluoropropyl) silane), 트리메톡시(1H, 1H, 2H, 2H 노나플루오로 헥실) 실란(Trimethoxy (1H,1H,2H,2H nonafluorohexyl)silane), 트리에톡시(1H, 1H, 2H, 2H 노나플루오로 헥실) 실란(Triethoxy (1H,1H,2H,2Hnonafluorohexyl)silane) 및 트리클로로(1H, 1H, 2H, 2H 트리데카 플루오로-n-옥틸) 실란으로 구성된 군으로부터 선택된 어느 하나 또는 둘 이상이 더욱 바람직하나 이에 한정되지 않는다.The fluorine-based silane may be at least one selected from the group consisting of trimethoxy (3,3,3-trifluoropropyl) silane, trimethoxy (1H, 1H, 2H, 2H nonafluorohexyl) (1H, 1H, 2H, 2Hnonafluorohexyl) silane), trichloro (1H, 1H, 2H, 2Hnonafluorohexyl) silane), triethoxy 2H, tridecafluoro-n-octyl) silane), triethoxy-1H, 1H, 2H, 2H tridecafluoro- (1H, 1H, 2H, 2Hheptadecafluorodecyl) silane (Trichloro (1H, 1H, 2H, 1H) , 1H, 1H, 2H, 2H trimethylsilane), trimethoxy (1H, 1H, 2H, 2H heptadecafluorodecyl) silane), triethoxy-1H, 1H, 2H, 2H heptadecafluorodecylsilane (Triethoxy-1H, 1H, 2H, 2Hheptadecafluorodecylsilane), pentafluorophenyldimethyl But are not limited to, pentafluorophenyldimethylchlorosilane, pentafluorophenylethoxydimethylsilane, chlorodimethyl [3- (2,3,4,5,6-pentafluorophenyl) propyl] silane (chlorodimethyl [3- (Trichloro [3- (pentafluorophenyl) propyl] silane), and trimethoxy (11- (11-pentafluorophenoxyundecyl) silane), and one or more selected from the group consisting of trimethoxy (3,3,3-trifluoropropyl) silane (Trimethoxy (1H, 2H, 2H nonafluorohexyl) silane), triethoxy (1H, 2H, 2H nonafluorohexyl) silane, 1H, 1H, 2H, 2H trinodecafluoro) silane) and trichloro (1H, -n- octyl) one the one or more than one selected from the group consisting of silane and more preferably is not limited to this.

상기 단계 iii)에서 탄소나노튜브 분산액, 유무기 바인더 및 첨가제는 각각 65 내지 90 wt%, 5 내지 30 wt% 및 0.1 내지 10 wt% 첨가하는 것이 바람직하고, 각각 70 내지 85 wt%, 10 내지 25 wt% 및 1 내지 10 wt% 첨가하는 것이 더욱 바람직하다.In the step iii), the carbon nanotube dispersion, the organic binder and the additive are preferably added in an amount of 65 to 90 wt%, 5 to 30 wt% and 0.1 to 10 wt%, respectively, and 70 to 85 wt%, 10 to 25 wt% wt.% and 1 to 10 wt%, based on the total weight of the composition.

상기 제조 방법에 있어서, 상기 단계 iv)에서 스프레이의 종류는 압송식, 중력식, 흡상식 또는 자동이고, 스프레이 노즐의 종류로는 플랫 팬(flat fan), 풀 콘(full cone), 할로우 콘(hollow cone) 또는 스트레이트(straight)인 것이 바람직하다.In the above manufacturing method, the type of the spray in the step iv) is a press-feed type, a gravity type, a suction type or an automatic type, and the types of the spray nozzle include a flat fan, a full cone, cone or straight.

상기 단계 iv)의 스프레이 도포는 노즐 틸트 각도가 5 내지 25°인 것이 바람직하고, 노즐 높이가 150 내지 300 mm가 바람직하고, 200 내지 250 mm가 더욱 바람직하다.The application of the spray of the step iv) preferably has a nozzle tilt angle of 5 to 25 °, a nozzle height of 150 to 300 mm, and more preferably 200 to 250 mm.

상기 단계 iv)에서 스프레이는 2회 내지 5회 도포하는 것이 바람직하고, 3회 내지 4회 도포하는 것이 더욱 바람직하다.In the step iv), spraying is preferably applied two to five times, more preferably three to four times.

상기 단계 iv)의 열 경화는 온도 100 내지 200℃ 분위기에서 수행하는 것이 바람직하고, 150 내지 170℃ 분위기에서 수행하는 것이 더욱 바람직하다.The thermosetting in step iv) is preferably carried out in an atmosphere at a temperature of from 100 to 200 캜, and more preferably in an atmosphere of from 150 to 170 캜.

또한, 본 발명은 In addition,

i) 탄소나노튜브를 산에 침지시켜 탄소나노튜브를 산처리한 후, 산처리된 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조한 다음, 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하여 제1층(1st layer) 코팅액을 제조하는 단계;i) acid-treating the carbon nanotubes by immersing the carbon nanotubes in an acid, and then dispersing the acid-treated carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion. Then, an inorganic binder or an organic binder Or a mixture of one or both of the additive and the additive to prepare a first layer coating liquid;

ii) 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조한 다음, 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하여 제2층(2nd layer) 코팅액을 제조하는 단계;(ii) dispersing the carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion, and then mixing the carbon nanotube dispersion with one or both of an inorganic binder and an organic binder and additives to prepare a second layer coating solution Producing;

iii) LED 방열 핀 또는 방열판에 제1층(1st layer) 코팅액을 스프레이 도포한 후, 제2층(2nd layer) 코팅액으로 스프레이 도포하여 코팅하는 단계; 및iii) spraying a first layer coating liquid on the LED radiating fins or the heat sink, spraying and coating the first layer coating liquid with a second layer coating liquid; And

iv) 코팅액된 LED 방열 핀 또는 방열판을 열 경화시킨 후 건조시키는 단계;iv) thermally curing and drying the coated LED radiating fin or heat sink;

를 포함하는 집진방지 및 자가세정 기능을 구현시키고, 뛰어난 내구성 및 정전기 차폐 특성을 가지는, LED 발열 핀 또는 방열판의 제조 방법을 제공한다.The present invention provides a manufacturing method of an LED heat generating fin or a heat sink having an excellent durability and an electrostatic shielding property.

상기 제조 방법에 있어서, 단계 i) 내지 단계 ii)의 탄소나노튜브, 산, 유기용매, 유무기 바인더 및 첨가제의 종류 및 조성은 상술한 바와 동일하다.In the above production method, the types and compositions of carbon nanotubes, acids, organic solvents, organic binder, and additives in steps i) to ii) are the same as those described above.

상기 제조 방법에 있어서, 단계 i) 내지 단계 ii)의 순서는 상관없이 차례로 또는 동시에 제조할 수 있으며, 제1층(1st layer) 코팅액을 도포한 후 제2층(2nd layer) 코팅액을 제조할 수 있다.In the above-mentioned production method, the order of steps i) to ii) may be produced sequentially or simultaneously, irrespective of whether the first layer coating solution is applied and the second layer coating solution is prepared have.

상기 제조 방법에 있어서, 단계 iii) 내지 단계 iv)의 스프레이 도포 및 열 경화 수행 방법은 상술한 바와 동일하다.In the above-mentioned production method, the spray application and thermal curing of steps iii) to iv) are the same as described above.

또한, 본 발명은 상기 본 발명에 따른 제조방법들 중 어느 하나로 제조된 집진방지 및 자가세정 기능이 구현되고, 뛰어난 내구성 및 정전기 차폐 특성을 가지는, LED 발열 핀 또는 방열판을 제공한다.Also, the present invention provides an LED heating pin or a heat sink having an anti-dust and self-cleaning function manufactured by any one of the manufacturing methods according to the present invention and having excellent durability and electrostatic shielding characteristics.

상기 LED 발열 핀 또는 방열판은 고전력용 LED, 즉 50 내지 300W급 LED에 사용되는 것이 바람직하고, 100W급 LED에 사용되는 것이 더욱 바람직하다.The LED heating fins or heat sinks are preferably used for high power LEDs, that is, for 50 to 300 W class LEDs, and more preferably for 100 W class LEDs.

또한, 본 발명은 탄소나노튜브 분산액, 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 포함하는, 집진방지 및 자가세정 기능을 구현하고, 뛰어난 내구성 및 정전기 차폐 특성을 부여하기 위한, LED 방열 핀 또는 방열판용 코팅액을 제공한다.The present invention also relates to an LED light emitting diode package for realizing dust collection prevention and self-cleaning function, including one or both of a carbon nanotube dispersion, an inorganic binder or an organic binder, and an additive and providing excellent durability and electrostatic shielding characteristics Thereby providing a coating liquid for a fin or a heat sink.

상기 탄소나노튜브 분산액은 산처리된 탄소나노튜브 단독, 또는 산처리된 탄소나노튜브에 산처리되지 않은 탄소나노튜브를 추가로 포함하여 분산시킨 분산액일 수 있다.The carbon nanotube dispersion may be an acid-treated carbon nanotube alone, or a dispersion in which carbon nanotubes not acid-treated with acid-treated carbon nanotubes are further dispersed.

상기 첨가제는 불소계 실란인 것이 바람직하고, 트리메톡시(3,3,3-트리플루오로프로필)실란(Trimethoxy(3,3,3-trifluoropropyl) silane), 트리메톡시(1H, 1H, 2H, 2H 노나플루오로 헥실) 실란(Trimethoxy (1H,1H,2H,2H nonafluorohexyl)silane), 트리에톡시(1H, 1H, 2H, 2H 노나플루오로 헥실) 실란(Triethoxy (1H,1H,2H,2Hnonafluorohexyl)silane), 트리클로로(1H, 1H, 2H, 2H 트리데카 플루오로-n-옥틸) 실란으로 구성된 군으로부터 선택된 것이 더욱 바람직하다.The additive is preferably a fluorine-based silane. The additive is preferably trimethoxy (3,3,3-trifluoropropyl) silane, trimethoxy (1H, 1H, 2H, 1H, 2H, 2Hnonafluorohexyl) silane), triethoxy (1H, 1H, 2H, 2H nonafluorohexyl) silane (Triethoxy silane), trichloro (1H, 1H, 2H, 2H tridecafluoro-n-octyl) silane.

상기 코팅액의 조성은 탄소나노튜브 분산액, 유무기 바인더 및 첨가제가 각각각 65 내지 90 wt%, 5 내지 30 wt% 및 0.1 내지 10 wt% 첨가하는 것이 바람직하고, 각각 70 내지 85 wt%, 10 내지 25 wt% 및 1 내지 10 wt% 첨가하는 것이 더욱 바람직하다.The composition of the coating liquid is preferably 65 to 90 wt%, 5 to 30 wt%, and 0.1 to 10 wt%, respectively, and preferably 70 to 85 wt%, 10 to 10 wt%, respectively, of the carbon nanotube dispersion, the organic binder, 25 wt% and 1 wt% to 10 wt%.

상기 코팅액은 마이크로구조물(micro-structure) 표면에 나노구조물(nano-structure)을 형성하는 계층구조(hierarchical structure)를 형성하여 150°이상의 초발수 표면을 구현하고 전기전도성이 뛰어난 탄소 재료를 함유하여 103Ω/sq 이하의 표면 저항을 가짐으로써 자가세정 및 정전기 차폐 특성을 탁월하게 구현할 수 있고, 아울러 뛰어난 내구성 및 정전기 차폐 특성을 가질 수 있다.The coating solution forms a hierarchical structure that forms a nano-structure on the surface of a micro-structure to realize a super water-repellent surface of 150 ° or more and contains a carbon material having excellent electrical conductivity. By having a surface resistance of 3 Ω / sq or less, excellent self-cleaning and electrostatic shielding characteristics can be realized, and excellent durability and electrostatic shielding characteristics can be obtained.

또한, 본 발명은In addition,

i) 탄소나노튜브를 산에 침지시켜 탄소나노튜브를 산처리하는 단계;i) acid-treating the carbon nanotubes by immersing the carbon nanotubes in an acid;

ii) 산처리된 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조하는 단계; 및ii) dispersing the acid-treated carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion; And

iii) 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하는 단계;iii) mixing one or both of an inorganic binder or an organic binder and an additive in the carbon nanotube dispersion;

를 포함하는, 집진방지 및 자가세정 기능을 구현하고, 뛰어난 내구성 및 정전기 차폐 특성을 부여하기 위한, LED 방열 핀 또는 방열판용 코팅액의 제조 방법을 제공한다.The present invention provides a method of manufacturing a coating liquid for an LED radiating fin or a heat sink, which realizes dust collection prevention and self-cleaning function and provides excellent durability and electrostatic shielding property.

상기 제조 방법에 있어서, 탄소나노튜브, 산, 유기용매, 유무기 바인더 및 첨가제의 종류 및 조성은 상술한 바와 동일하다.In the above production method, the kinds and compositions of the carbon nanotubes, the acid, the organic solvent, the organic binder, and the additive are the same as those described above.

아울러, 본 발명은 상기 본 발명에 따른 코팅액을 LED 방열 핀 또는 방열판에 스프레이 도포하여 LED 방열 핀 또는 방열판의 집진방지 및 자가세정 기능을 구현하고, 뛰어난 내구성 및 정전기 차폐 특성을 부여하는 방법을 제공한다.In addition, the present invention provides a method of spraying a coating liquid according to the present invention onto an LED heat-dissipating fin or a heat dissipating plate to realize a dust-collecting prevention function and a self-cleaning function of an LED heat dissipating fin or a heat dissipating plate and providing excellent durability and electrostatic shielding property .

상기 코팅액은 사용 시 마이크로구조물(micro-structure) 표면에 나노구조물(nano-structure)을 형성하는 계층구조(hierarchical structure)를 형성하여 150°이상의 초발수 표면을 구현하고 전기전도성이 뛰어난 탄소 재료를 함유하여 103Ω/sq 이하의 표면 저항을 가짐으로써 자가세정 및 정전기 차폐 특성을 탁월하게 향상시킬 수 있다.The coating solution forms a hierarchical structure that forms a nano-structure on a micro-structure surface in use, realizes a super water-repellent surface of 150 ° or more, and contains a carbon material having excellent electrical conductivity By having a surface resistance of 10 3 Ω / sq or less, self-cleaning and electrostatic shielding properties can be improved remarkably.

본 발명의 바람직한 실시예는 아래와 같다. 아래의 실시예들은 본 발명의 기술적 특징을 예시적으로 보인 것으로서, 본 발명이 이들 실시예에 한정되는 것은 아니다.A preferred embodiment of the present invention is as follows. The following embodiments are illustrative of the technical features of the present invention, and the present invention is not limited to these embodiments.

<< 실시예Example 1>  1> MWCNTMWCNT , 유기바인더 및 불소계 , Organic binders and fluorine-based 실란을Silane 포함하는 코팅액으로 코팅 Coating with coating fluid

H2SO4:HNO3를 3:1 부피비로 만든 산처리 용액 500 ml에 다중벽 탄소나노튜브(Multi walled carbon nanotubes, MWCNT) 10 g를 침지시킨 후 프로브 초음파 파쇄기(probe sonicator)(500 watt, 20 KHz, 25% generating capacity)로 초음파 분산하며 산처리한 후 중화시켜 산성화된 MWCNT를 확보하였다. IPA 용액 200 ml에 1 ~ 3 g의 산성화된 MWCNT를 침지시켜 프로브 초음파 파쇄기(500 watt, 20 KHz, 25% generating capacity)를 통하여 16 ~ 23분간 초음파 분산하였다. 초음파 분산 된 MWCNT 분산액 70 ~ 85 wt%와 유기바인더 10 ~ 25 wt%, 불소계 실란 1 ~ 10 wt%를 첨가하여 10분간 자기 교반(magnetic stirring)하여 집진방지 및 자가세정용 코팅액 제조하였다.10 g of multiwalled carbon nanotubes (MWCNT) were immersed in 500 ml of an acid treatment solution of H 2 SO 4 : HNO 3 in a volume ratio of 3: 1, and then immersed in a probe sonicator (500 watt, 20 KHz, 25% generating capacity), and acidified MWCNT was obtained by neutralization after acid treatment. 1 to 3 g of acidified MWCNT was immersed in 200 ml of IPA solution and ultrasonically dispersed for 16 to 23 minutes through a probe ultrasonic wave crusher (500 watt, 20 KHz, 25% generating capacity). 70 to 85 wt% of ultrasonic dispersed MWCNT dispersion, 10 to 25 wt% of organic binder and 1 to 10 wt% of fluorine silane were added and magnetic stirring was performed for 10 minutes to prepare a coating solution for preventing dust collection and self cleaning.

배합된 집진방지 및 자가세정용 코팅액을 중력방식의 스프레이 코팅(spray coating)을 공기 인입부 압력(0.4 ~ 0.6 MPa), 풀콘(full cone) 노즐, 노즐 tilt degree 15 ± 7°, 노즐 높이 200 mm으로 3회 도포하여 코팅하였다. 도포된 코팅층을 150℃ 분위기에서 열경화하여 코팅막을 확보하였다.The coating solution for prevention of dust collection and self-cleaning was sprayed by gravity spray coating at air inlet pressure (0.4-0.6 MPa), full cone nozzle, nozzle tilt degree 15 ± 7 °, nozzle height 200 mm 3 times. The applied coating layer was thermally cured in an atmosphere of 150 캜 to secure a coating film.

<< 실시예Example 2>  2> MWCNTMWCNT , 무기바인더 및 불소계 , Inorganic binders and fluorine-based 실란을Silane 포함하는 코팅액으로 코팅 Coating with coating fluid

200 ml의 IPA 97.0 wt% ~ 99.0 wt%에 상기 <실시예 1>의 산성화된 MWCNT를 3 g 침지시킨 후 프로브 초음파 파쇄기(probe sonicator)(500 watt, 20 KHz, 25% generating capacity)를 통하여 16 ~ 23분간 초음파 분산하였다. 초음파 분산된 MWCNT 분산액 70 ~ 85 wt%와 무기바인더 10 ~ 25 wt%, 불소계실란 1 ~ 10 wt% 첨가하여 10분간 자기 교반(magnetic stirring)하여 집진방지 및 자가세정용 코팅액을 제조하였다.3 g of the acidified MWCNT of Example 1 was immersed in 200 ml of IPA at 97.0 wt% to 99.0 wt%, and then immersed in a probe sonicator (500 watt, 20 KHz, 25% generating capacity) For 23 minutes. 70 to 85 wt% of ultrasonic dispersed MWCNT dispersion, 10 to 25 wt% of inorganic binder and 1 to 10 wt% of fluoric silane were added and magnetic stirring was performed for 10 minutes to prepare a coating solution for prevention of dust collection and self-cleaning.

배합된 집진방지 및 자가세정 코팅액을 중력방식의 스프레이 코팅(spray coating)을 공기 인입부 압력(0.4 ~ 0.6 MPa), 풀콘(full cone) 노즐, 노즐 tilt degree 15 ± 7°, 노즐 높이 200 mm으로 3회 도포하여 코팅하였다. 도포된 코팅층을 150℃ 분위기에서 열경화하여 코팅막을 확보하였다.The gravity prevention and self-cleaning coating solution was sprayed by gravity spray coating at an air inlet pressure of 0.4-0.6 MPa, a full cone nozzle, a nozzle tilt degree of 15 ± 7 °, a nozzle height of 200 mm 3 times. The applied coating layer was thermally cured in an atmosphere of 150 캜 to secure a coating film.

<< 실시예Example 3>  3> MWCNTMWCNT 및 유기바인더를 포함하는 1층 코팅액, 및  And a single-layer coating liquid containing an organic binder, and MWCNTMWCNT , 유기바인더 및 불소계 실란을 포함하는 2층 코팅액으로 코팅, An organic binder, and a fluorinated silane

IPA 97.0 wt% ~ 99.0 wt%에 상기 <실시예 1>의 산성화된 MWCNT를 침지시킨 후 프로브 초음파 파쇄기(probe sonicator)(500 watt, 20 KHz, 25% generating capacity)를 통하여 40분간 분산하였다. 초음파 분산된 MWCNT 분산액 50 ~ 65 wt% 와 유기바인더 35 ~ 50 wt%를 첨가하여 10분간 자기 교반(magnetic stirring)하여 집진방지 및 자가세정용 첫번째 층(1st layer) 코팅액을 제조하였다.The acidified MWCNT of Example 1 was immersed in 97.0 wt% to 99.0 wt% of IPA and dispersed through a probe sonicator (500 watt, 20 KHz, 25% generating capacity) for 40 minutes. Ultrasonic dispersed MWCNT dispersion of 50 ~ 65 wt% and 10 minutes magnetic stirring in an organic binder was added to 35 ~ 50 wt% (magnetic stirring ) to prevent dust and self-cleaning for the first layer (1 st layer) coating solution was prepared.

IPA 97.0 wt% ~ 99.0 wt%에 MWCNT를 침지시킨 후 프로브 초음파 파쇄기(probe sonicator)(500 watt, 20 KHz, 25% generating capacity)를 통하여 20 ~ 27분간 초음파 분산하였다. 초음파 분산된 MWCNT 분산액 70 ~ 85 wt% 와 유기바인더 10 ~ 25 wt%, 불소계실란 1 ~ 10 wt% 첨가하여 10분간 자기 교반(magnetic stirring)하여 집진방지 및 자가세정용 두번째 층(2nd layer) 코팅액을 제조하였다.MWCNT was immersed in 97.0 wt% to 99.0 wt% of IPA and then ultrasonically dispersed for 20 to 27 minutes using a probe sonicator (500 watt, 20 KHz, 25% generating capacity). A second layer (2 nd layer) for prevention of dust collection and self-cleaning was prepared by magnetic stirring for 10 minutes by adding 70 ~ 85 wt% of ultrasonic dispersed MWCNT dispersion, 10 ~ 25 wt% of organic binder and 1 ~ 10 wt% To prepare a coating solution.

배합된 집진방지 및 자가세정용 1st , 2nd 코팅액을 중력방식의 스프레이 코팅(spray coating)을 공기 인입부 압력(0.4 ~ 0.6 MPa), 토출량, 풀콘(full cone) 노즐, 노즐 tilt degree +15°, 노즐 높이 200 mm으로 2회 1st 코팅액을 도포한 후 2nd 코팅액을 도포하여 코팅하였다. 도포된 코팅층을 150℃ 분위기에서 열경화하여 코팅막을 확보하였다.For combined dust prevention and self cleaning 1 st , 2 nd The coating solution was applied by spraying a gravitational spray coating twice with a 1 st coating solution at an air inlet pressure (0.4-0.6 MPa), a discharge amount, a full cone nozzle, a nozzle tilt degree of + 15 ° and a nozzle height of 200 mm Then, 2 nd coating liquid was applied and coated. The applied coating layer was thermally cured in an atmosphere of 150 캜 to secure a coating film.

<< 실시예Example 4>  4> MWCNTMWCNT 및 무기바인더를 포함하는 1층 코팅액, 및  And an inorganic binder, and MWCNTMWCNT , 무기바인더 및 불소계 , Inorganic binders and fluorine-based 실란을Silane 포함하는 2층 코팅액으로 코팅 Coating with two-layer coating fluid

IPA 97.0 wt% ~ 99.0 wt%에 상기 <실시예 1>의 산성화된 MWCNT를 침지시킨 후 프로브 초음파 파쇄기(probe sonicator)(500 watt, 20 KHz, 25% generating capacity)를 통하여 40분간 초음파 분산하였다. 초음파 분산된 MWCNT 분산액 50 ~ 65wt%와 무기바인더 35 ~ 50 wt% 첨가하여 10분간 자기 교반(magnetic stirring)하여 집진방지 및 자가세정용 첫번째 층(1st layer) 코팅액을 제조하였다.The acidified MWCNT of Example 1 was immersed in 97.0 wt% to 99.0 wt% of IPA and then dispersed by a probe sonicator (500 watt, 20 KHz, 25% generating capacity) for 40 minutes. 50-65 wt% of ultrasonic dispersed MWCNT dispersion and 35-50 wt% of inorganic binder were added and magnetic stirring was performed for 10 minutes to prepare a 1 st layer coating solution for prevention of dust collection and self-cleaning.

IPA 97.0 wt% ~ 99.0 wt%에 MWCNT를 침지시킨 후 프로브 초음파 파쇄기(probe sonicator)(500 watt, 20 KHz, 25% generating capacity)를 통하여 20 ~ 27분간 초음파 분산하였다. 초음파 분산된 MWCNT 분산액 70 ~ 85 wt%와 무기바인더 10 ~ 25 wt%, 불소계실란 1 ~ 10 wt% 첨가하여 10분간 자기 교반(magnetic stirring)하여 집진방지 및 자가세정용 두번째 층(2nd layer) 코팅액을 제조하였다.MWCNT was immersed in 97.0 wt% to 99.0 wt% of IPA and then ultrasonically dispersed for 20 to 27 minutes using a probe sonicator (500 watt, 20 KHz, 25% generating capacity). A second layer (2 nd layer) for prevention of dust collection and self-cleaning was prepared by magnetic stirring for 10 minutes by adding 70 ~ 85 wt% of ultrasonic dispersed MWCNT dispersion, 10 ~ 25 wt% of inorganic binder and 1 ~ 10 wt% of fluoric silane, To prepare a coating solution.

배합된 집진방지 및 자가세정용 1st , 2nd 코팅액을 중력방식의 스프레이 코팅(spray coating)을 공기 인입부 압력(0.4 ~ 0.6 MPa), 토출량, 풀콘(full cone) 노즐, 노즐 tilt degree +15°, 노즐 높이 200 mm으로 2회 1st 코팅액을 도포한 후 2nd 코팅액을 도포하여 코팅하였다. 도포된 코팅층을 150℃ 분위기에서 열경화하여 코팅막을 확보하였다.For combined dust prevention and self cleaning 1 st , 2 nd The coating solution was applied by spraying a gravitational spray coating twice with a 1 st coating solution at an air inlet pressure (0.4-0.6 MPa), a discharge amount, a full cone nozzle, a nozzle tilt degree of + 15 ° and a nozzle height of 200 mm Then, 2 nd coating liquid was applied and coated. The applied coating layer was thermally cured in an atmosphere of 150 캜 to secure a coating film.

<< 비교예Comparative Example 1> 바인더 및 불소계  1> Binder and Fluorine 실란을Silane 제외한 코팅액으로 코팅 Coating with coating liquid

IPA 97.0 wt% ~ 99.0 wt%에 MWCNT를 침지시킨 후 프로브 초음파 파쇄기(probe sonicator)(500 watt, 20 KHz, 25% generating capacity)를 통하여 40분간 초음파 분산하고, 중력방식의 스프레이 코팅(spray coating)을 공기 인입부 압력(0.4 ~ 0.6 MPa), 풀콘(full cone) 노즐, 노즐 tilt degree 15±7°, 노즐높이 200 mm으로 도포하여 1회 코팅하였다. 도포된 코팅측 건조하여 코팅막을 확보하였다.IPA 97.0 wt% to 99.0 wt% of MWCNT was immersed in the solution, ultrasonically dispersed for 40 minutes through a probe sonicator (500 watt, 20 KHz, 25% generating capacity), sprayed by gravity, Was coated with air inlet pressure (0.4-0.6 MPa), full cone nozzle, nozzle tilt degree 15 ± 7 °, nozzle height 200 mm, and coated once. The coated side was dried to obtain a coating film.

<< 비교예Comparative Example 2> 불소계  2> Fluorine 실란을Silane 제외한 코팅액으로 코팅 Coating with coating liquid

H2SO4:HNO3 3:1로 만든 산처리 용액 500 ml에 MWCNT 10 g를 침지시킨 후 프로브 초음파 파쇄기(probe sonicator)(500 watt, 20 KHz, 25% generating capacity)로 초음파 분산하며 산처리한 후 중화시켜 산성화된 MWCNT를 확보하였다. IPA 용액 200 ml에 1 ~ 3 g의 산처리된 MWCNT를 침지시켜 프로브 초음파 파쇄기(probe sonicator)(500 watt, 20 KHz, 25% generating capacity)를 통하여 16 ~ 23분간 초음파 분산하였다. 초음파 분산된 MWCNT 분산액 70 ~ 85 wt%와 유기바인더 10 ~ 25 wt% 첨가하여 10분간 자기 교반(magnetic stirring)하여 집진방지 및 자가세정용 코팅액을 제조하였다.After immersing 10 g of MWCNT in 500 ml of acid treatment solution made of H 2 SO 4 : HNO 3 3: 1, ultrasonic dispersion was carried out using a probe sonicator (500 watt, 20 KHz, 25% generating capacity) And neutralized to obtain acidified MWCNT. 1 to 3 g of acid-treated MWCNT was immersed in 200 ml of IPA solution and ultrasonically dispersed through a probe sonicator (500 watt, 20 KHz, 25% generating capacity) for 16 to 23 minutes. 70 ~ 85 wt% of ultrasonic dispersed MWCNT dispersion and 10 ~ 25 wt% of organic binder were added and magnetic stirring was performed for 10 minutes to prepare a coating solution for prevention of dust collection and self cleaning.

배합된 집진방지 및 자가세정 코팅액을 중력방식의 스프레이 코팅(spray coating)을 공기 인입부 압력(0.4 ~ 0.6 MPa), 토출량, 풀콘(full cone) 노즐, 노즐 tilt degree 15 ± 7°, 노즐 높이 200 mm으로 3회 도포하여 코팅하였다. 도포된 코팅층을 150℃ 분위기에서 열경화하여 코팅막을 확보하였다.The spraying of gravity-protected and self-cleaning coating solution was carried out by spray coating with air inlet pressure (0.4-0.6 MPa), discharge amount, full cone nozzle, nozzle tilt degree 15 ± 7 °, nozzle height 200 lt; RTI ID = 0.0 &gt; mm. &lt; / RTI &gt; The applied coating layer was thermally cured in an atmosphere of 150 캜 to secure a coating film.

< < 비교예Comparative Example 3> 스프레이 도포시  3> When applying spray 이격거리를Distance 변경하여 코팅 Modified Coating

상기 <실시예 2>의 코팅액을 스프레이 코팅(spray coating)하여 도포할 때 공기 인입부 압력(0.4 ~ 0.6 MPa), full cone 노즐, 노즐 tilt degree +15°조건에서 노즐높이 200 mm 및 400 mm 이격하여 스프레이 1회 분사하여 이격 거리에 따른 코팅막 표면을 코팅하였다. 도포된 코팅층을 150℃ 분위기에서 열경화하여 코팅막을 확보하였다.When the coating liquid of Example 2 was applied by spray coating, the nozzle height was 200 mm and 400 mm at the air inlet pressure (0.4-0.6 MPa), full cone nozzle, nozzle tilt degree + 15 °, Sprayed once to coat the surface of the coating film according to the separation distance. The applied coating layer was thermally cured in an atmosphere of 150 캜 to secure a coating film.

<< 실험예Experimental Example 1>  1>

상기 <실시예 1>의 결과, 접촉각은 152°104. 5Ω/sq의 표면저항, 2H의 연필경도, 5% 이내의 cross cut test, 내열 (80 ± 2) ℃ 120hr 시험시 이상없음, 내습 (80 ±2) ℃, (80 ±3) % R.H. 120hr 시험시 이상없음을 갖는 것으로 측정되어 유연성(flexible)이 있으며, 초발수성을 갖는 얇은 코팅층이 필요한 곳에 적용이 가능함을 확인하였다.The <Example 1> of the result, the contact angle is 152 ° 10 4. 5 Ω / sq surface resistivity of, for pencil hardness, within 5% of the cross cut test 2H, heat-resistant (80 ± 2) ℃ 120hr test when no abnormality, (80 ± 2) ° C, (80 ± 3)% RH 120hr. It was confirmed that the test was applicable to a place where a thin coating layer having flexibility and flexibility and super-water repellency was required.

상기 <실시에 2>의 결과, 접촉각은 155°이상, 103. 5Ω/sq의 표면저항, 4H의 연필경도, 5% 이내의 cross cut test, 내열 (80 ±2) ℃ 120hr 시험시 이상없음, 내습 (80 ±2) ℃, (80 ±3) % R.H. 120hr 시험시 이상없음을 갖는 것으로 측정되어 단단(rigid)하며, 초발수성을 갖는 얇은 코팅층이 필요한 곳에 적용이 가능함을 확인하였다.As a result of <Example 2>, the contact angle was 155 ° or more, surface resistance of 10 3 5 Ω / sq, pencil hardness of 4H, cross cut test within 5%, heat resistance (80 ± 2) (80 ± 2) ° C, (80 ± 3)% RH 120hr It was confirmed that there is no abnormality in the test, and it is confirmed that it is applicable to a place where a thin coating layer having rigidity and super water repellency is required.

상기 <실시예 3>의 결과, 접촉각은 150°이상, 105. 5Ω/sq의 표면저항, 5H의 연필경도, 5% 이내의 cross cut test, 내열 (80 ±2) ℃ 120hr 시험시 이상없음, 내습 (80 ±2) ℃, (80 ±3) % R.H. 120hr 시험시 이상없음을 갖는 것으로 측정되어 유연성(flexible)이 있으며, 초발수성과 약간의 경도를 갖는 두꺼운 코팅층이 필요한 곳에 적용이 가능함을 확인하였다.The <Example 3> of the result, the contact angle is more than 150 °, 10 5. 5 Ω / sq surface resistivity of the, pencil hardness of 5H, less than 5% cross cut test, heat-resistant (80 ± 2) ℃ 120hr test Abnormal (80 ± 2) ° C, (80 ± 3)% RH 120hr Measured with no abnormality during testing, flexible, applicable to applications requiring thick coatings with super water repellency and slight hardness Respectively.

도 1에 나타난 바와 같이, SEM 이미지 촬영 결과, 50배율의 사진(a) 관측 결과 표면에 5 ㎛ ~ 30 ㎛급의 돌기가 형성됨을 확인하였다. 400배율의 사진(b) 관측 결과 5 ~ 30 ㎛ 돌기에 1 ~ 10 ㎛의 돌기가 형성됨을 확인하였다. 10K 배율의 확대사진(c) 관측 결과 1 ~ 10 ㎛급 돌기 표면에 조도가 형성됨을 확인할 수 있었으며, 20K 배율의 확대사진(d) 관측결과 1 ~ 10 ㎛급 돌기는 MWCNT와 유기바인더로 이루어진 복합체로 확인하였다. 결과적으로 5 ~ 30 ㎛ 구조물의 군집형태가 관찰되었으며, 마이크로 구조물 표면에는 1 ~ 10 ㎛의 구조물로 둘러쌓여 있는 계층적(hierarchical) 구조물 형태로 관찰되었다(도 1).As shown in FIG. 1, SEM image capturing showed that protrusions having a size of 5 μm to 30 μm were formed on the surface of a 50 × magnification photograph (a) observation result. (B) Observation results confirmed that protrusions of 1 to 10 μm were formed on the protrusions of 5 to 30 μm. (C) Observation Result It was confirmed that roughness was formed on the surface of the protrusion of 1 ~ 10 ㎛ in size. (D) Observation result showed that the protrusion of 1 ~ 10 ㎛ protrusion was composed of composite of MWCNT and organic binder Respectively. As a result, clusters of 5 ~ 30 ㎛ structures were observed and observed on the surface of microstructures in the form of hierarchical structures surrounded by structures of 1 ~ 10 ㎛ (Fig. 1).

도 2에 나타난 바와 같이, 물방울 내부 촬영 결과, cassie-baxter 모델의 발수성을 나타냄을 확인하였다(도 2).As shown in FIG. 2, it was confirmed that water repellency of the cassie-baxter model was observed as a result of photographing the inside of the water drop (FIG. 2).

도 3에 나타난 바와 같이, 실시예 3의 접촉각 측정 결과, 155°이상의 초발수 표면을 구현함을 확인하였다(도 3).As shown in FIG. 3, it was confirmed that the contact angle measurement of Example 3 realizes a super water-repellent surface of 155 ° or more (FIG. 3).

상기 <실시예 4>의 결과, 접촉각 157°이상(도 4), 103. 0Ω/sq의 표면저항, 7H의 연필경도, 5% 이내의 cross cut test, 내열 (80 ±2) ℃ 120hr 시험시 이상없음, 내습 (80 ±2) ℃, (80 ±3) % R.H. 120hr 시험시 이상없음을 갖는 것으로 측정되어 단단(rigid)하며 초발수성과 경도를 갖는 두꺼운 코팅층이 필요한 곳에 적용이 가능하다.As a result of the above Example 4, the surface resistance of 10 3 0 Ω / sq, the pencil hardness of 7H, the cross cut test within 5%, the heat resistance (80 ± 2) (80 ± 2) ° C, (80 ± 3)% RH 120hr It is possible to apply it where a thick coating layer which is rigid and has super water repellency and hardness is measured as having no abnormality in the test .

도 5에 나타난 바와 같이, SEM 이미지 촬영 결과, 100배율의 사진(a) 관측 결과 표면에 10 ㎛ ~ 100 ㎛급의 돌기가 형성됨을 확인하였다. 500배율의 사진(b) 관측 결과 10 ~ 100 ㎛ 돌기에 1 ~ 50 ㎛의 돌기가 형성됨을 확인하였다. 1K 배율의 확대사진(c) 관측 결과 1 ~ 50 ㎛급 돌기 표면에 조도가 형성됨을 확인할 수 있었으며, 10K 배율의 확대사진(d) 관측결과 1 ~ 50 ㎛급 돌기는 MWCNT와 바인더로 이루어진 복합체로 확인하였다. 결과적으로, 500 ㎛ 구조물의 군집형태가 관찰되었으며, 마이크로 구조물 표면에는 1 ~ 50 ㎛의 구조물로 둘러쌓여 있는 계층적(hierarchical) 구조물 형태로 관찰되었다(도 5).As shown in FIG. 5, it was confirmed by SEM image capturing that protrusions of the order of 10 μm to 100 μm were formed on the surface of the observation image (a) at a magnification of 100 magnification. 500 magnification images (b) Observation results confirmed that protrusions of 1 to 50 μm were formed on the protrusions of 10 to 100 μm. (C) Observation Results It was confirmed that roughness was formed on the surface of the protrusion of 1 ~ 50 ㎛ level. (D) The enlargement of 10K magnification. (D) The protrusion of 1 ~ 50 ㎛ level was composed of MWCNT and binder Respectively. As a result, a cluster structure of a 500 탆 structure was observed and observed on a microstructure surface in the form of a hierarchical structure surrounded by structures of 1 to 50 탆 (Fig. 5).

초발수 표면에 물방울을 드랍(drop)하고 그 내부 촬영결과 도 3과 같이 전면에 물방울이 붙는 것이 아닌 표면 조도에 따라 봉우리 부분만 물방울을 지탱하는 현상을 확인하였다.As shown in Fig. 3, the water droplets were dropped on the super water-repellent surface, and the water droplets were supported only on the peaks according to the surface roughness, as shown in Fig.

상기 <비교예 1>의 결과, 접촉각이 가장 높은 163°로 나타났고 표면저항이 102.0Ω/sq 으로 낮은 반면, 표면경도가 0이고, 도 6과 같이 cross cut test 결과 전면 박리되는 문제점이 있었다(도 6). 따라서 <비교예 1>은 코팅층은 외부 충격이 없으며, 자가세정이 필요한 기기 내부에 적용이 가능한 것을 확인하였다.As a result of the above <Comparative Example 1>, the contact angle was the highest 163 ° and the surface resistance was 10 2.0 Ω / sq, while the surface hardness was 0, (Fig. 6). Therefore, in Comparative Example 1, it was confirmed that the coating layer was free from external impact and applicable to the inside of a device requiring self-cleaning.

상기 <비교예 2>의 결과 불소계 실란이 사용되지 않는 코팅액의 경우, 도 7의 a와 같이 121°로 초발수 표면이 아님을 확인하였다(도 7).As a result of the Comparative Example 2, it was confirmed that the coating liquid in which the fluorine-based silane was not used was not a super water-repellent surface at 121 ° as shown in FIG. 7 (a).

상기 <비교예 3>과 같이 동일한 재료로 스프레이 도포시 이격 거리를 제외한 공정을 동일하게 실행한 결과, 이격거리에 따라 도 8과 같이 코팅액의 균질 도포 정도가 차이가 있었으며, 이에 따라 접촉각이 크게 차이남을 확인하였다(도 8).As a result of performing the same processes except for the separation distance when spraying with the same material as in the above-mentioned <Comparative Example 3>, the degree of homogeneous coating of the coating liquid was different according to the separation distance as shown in FIG. 8, (Fig. 8).

아래 표 1에 나타난 바와 같이, 코팅 조성물 및 공정에 따른 물성 변화를 분석한 결과, 유기바인더가 첨가된 실시예 1 및 3의 경우에는 flexible한 재료에 적용이 가능하며, 무기바인더가 첨가된 실시예 2 및 4의 경우에는 rigid한 재료에 적용이 가능한 것을 확인하였다. As shown in Table 1 below, the coating composition and the physical property changes according to the process were analyzed. As a result, it was found that the organic binders of Examples 1 and 3 can be applied to flexible materials, 2 and 4 were applicable to rigid materials.

또한, 단층구조인 실시예 1 및 2의 경우에는 얇고 열전도율이 뛰어난 코팅층을 요구하는 제품에 적용이 가능하며, 복층구조인 실시예 3 및 4의 경우는 열전도율보다는 코팅층의 내구성을 요구하는 제품에 적용이 가능한 것을 확인하였다. Examples 1 and 2 having a single layer structure can be applied to products requiring a coating layer having a thin and excellent thermal conductivity. Examples 3 and 4 having a multi-layer structure are applicable to products requiring coating layer durability rather than thermal conductivity .

비교예의 공란은 데이터 측정이 불가하여 공란으로 두었으며, 비교예 대비 실시예는 월등한 데이터가 나온 것을 확인하였다. In the blank of the comparative example, the data can not be measured and is left blank, and it is confirmed that the comparative example is superior to the comparative example.

코팅 조성물 및 공정에 따른 물성 변화Changes in physical properties of coating compositions and processes 구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 이격거리
200 mm
Separation distance
200 mm
이격거리
400 mm
Separation distance
400 mm
접촉각
(°)
Contact angle
(°)
152152 155155 150150 157157 163163 121121 141141 9797
표면저항
(Ω/sq)
Surface resistance
(Ω / sq)
104.5 10 4.5 103.5 10 3.5 105.5 10 5.5 103.0 10 3.0 102.0 10 2.0 104.5 10 4.5 -- --
코팅두께
(㎛)
Coating thickness
(탆)
23.123.1 22.322.3 43.243.2 41.841.8 19.819.8 21.621.6 -- --
표면경도
(H)
Surface hardness
(H)
1One 33 44 77 00 22 -- --
cross cut
(%)
crosscut
(%)
5 이내Within 5 5 이내Within 5 5 이내Within 5 5 이내Within 5 5 이내Within 5 5 이내Within 5 -- --
적용부위Application site 내부inside 내부inside 외부Out 외부Out -- -- -- -- 기재타입Base type flexibleflexible rigidrigid flexibleflexible rigidrigid -- -- -- -- 내열
(80±2)℃
120hr
Heat resistance
(80 ± 2) ° C
120hr
이상없음clear 이상없음clear 이상없음clear 이상없음clear -- -- -- --
내습
(80±2)℃
(80±3)%
R.H.
120hr
inroad
(80 ± 2) ° C
(80 ± 3)%
RH
120hr
이상없음clear 이상없음clear 이상없음clear 이상없음clear -- -- -- --

Claims (8)

i) 탄소나노튜브를 산에 침지시켜 탄소나노튜브를 산처리하는 단계;
ii) 산처리된 탄소나노튜브 및 산처리되지 않은 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조하는 단계;
iii) 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하여 코팅액을 제조하는 단계; 및
iv) 코팅액을 LED 방열 핀 또는 방열판에 스프레이 도포한 후 열 경화시킨 다음 건조시키는 단계;
를 포함하는 집진방지 자가세정 기능을 구현시키고, 내구성 및 정전기 차폐 특성을 가지는, LED 방열판의 제조방법.
i) acid-treating the carbon nanotubes by immersing the carbon nanotubes in an acid;
ii) dispersing the acid-treated carbon nanotubes and the acid-untreated carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion;
iii) mixing a carbon nanotube dispersion with one or both of an inorganic binder and an organic binder, and an additive to prepare a coating solution; And
iv) spraying the coating liquid onto the LED radiating fin or the heat sink, thermosetting and drying the coating;
Wherein the dust-collecting device has a dirt-repellent self-cleaning function and has durability and electrostatic shielding characteristics.
제 1항에 있어서,
상기 단계 i)의 탄소나노튜브는 단일벽 탄소나노튜브(single wall carbon nanotube, SWCNT), 이중벽 탄소나노튜브(double wall carbon nanotube, DWCNT) 및 다중벽 탄소나노튜브(multi wall carbon nanotube, MWCNT)로 구성된 군으로부터 선택된 어느 하나 또는 둘 이상인 것을 특징으로 하는 LED 방열판의 제조방법.
The method according to claim 1,
The carbon nanotubes of step i) may be single wall carbon nanotubes (SWCNTs), double wall carbon nanotubes (DWCNTs), and multi wall carbon nanotubes (MWCNTs). Wherein the heat sink is made of one or more selected from the group consisting of aluminum alloy, aluminum alloy and aluminum alloy.
삭제delete 제 1항에 있어서,
상기 단계 iii)에서 첨가제는 불소계 실란인 것을 특징으로 하는 LED 방열판의 제조방법.
The method according to claim 1,
Wherein the additive in step iii) is a fluorine-based silane.
제 1항에 있어서,
상기 단계 iii)에서 첨가제의 조성은 0.1 내지 10.0 중량%인 것을 특징으로 하는 LED 방열판의 제조방법.
The method according to claim 1,
Wherein the composition of the additive in the step iii) is 0.1 to 10.0 wt%.
i) 탄소나노튜브를 산에 침지시켜 탄소나노튜브를 산처리한 후, 산처리된 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조한 다음, 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하여 제1층(1st layer) 코팅액을 제조하는 단계;
ii) 탄소나노튜브를 유기용매에 분산시켜 탄소나노튜브 분산액을 제조한 다음, 탄소나노튜브 분산액에 무기 바인더 또는 유기 바인더 중 하나 또는 둘 모두, 및 첨가제를 혼합하여 제2층(2nd layer) 코팅액을 제조하는 단계;
iii) LED 방열 핀 또는 방열판에 제1층(1st layer) 코팅액을 스프레이 도포한 후, 제2층(2nd layer) 코팅액으로 스프레이 도포하여 코팅하는 단계; 및
iv) 코팅액된 LED 방열 핀 또는 방열판을 열 경화시킨 후 건조시키는 단계;
를 포함하는 집진방지 및 자가세정 기능을 구현시키고, 내구성 및 정전기 차폐 특성을 가지는, LED 방열판의 제조방법.



i) acid-treating the carbon nanotubes by immersing the carbon nanotubes in an acid, and then dispersing the acid-treated carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion. Then, an inorganic binder or an organic binder Or a mixture of one or both of the additive and the additive to prepare a first layer coating liquid;
(ii) dispersing the carbon nanotubes in an organic solvent to prepare a carbon nanotube dispersion, and then mixing the carbon nanotube dispersion with one or both of an inorganic binder and an organic binder and additives to prepare a second layer coating solution Producing;
iii) spraying a first layer coating liquid on the LED radiating fins or the heat sink, spraying and coating the first layer coating liquid with a second layer coating liquid; And
iv) thermally curing and drying the coated LED radiating fin or heat sink;
And a self-cleaning function, and has durability and electrostatic shielding characteristics.



삭제delete 삭제delete
KR1020180019720A 2018-02-20 2018-02-20 Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof KR101986168B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180019720A KR101986168B1 (en) 2018-02-20 2018-02-20 Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180019720A KR101986168B1 (en) 2018-02-20 2018-02-20 Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR101986168B1 true KR101986168B1 (en) 2019-06-05

Family

ID=66844694

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180019720A KR101986168B1 (en) 2018-02-20 2018-02-20 Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101986168B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220145578A (en) * 2021-04-22 2022-10-31 울산과학기술원 Method of hydrophobic surface modification for self-cleaning

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330336A (en) 1976-09-01 1978-03-22 Fujitsu Ltd Recording electrode
JPH03100060A (en) * 1989-09-14 1991-04-25 Mitsubishi Materials Corp Water-and oil-repellent wax additive
JP2011033754A (en) * 2009-07-31 2011-02-17 Ricoh Co Ltd Polygon mirror, optical deflector, optical scanner and image forming apparatus
US20110214285A1 (en) 2005-12-30 2011-09-08 Chrysler Gregory M Carbon nanotube and metal thermal interface material, process of making same, packages containing same, and systems containing same
KR20120107403A (en) * 2011-03-21 2012-10-02 (주)월드튜브 Composition for radiating heat and product for radiating heat using the same
WO2014115792A1 (en) * 2013-01-26 2014-07-31 株式会社 ジャパンナノコート Dispersion liquid for formation of transparent conductive thin film and substrate equipped with transparent conductive thin film
US9562284B2 (en) 2009-11-06 2017-02-07 The University Of Akron Materials and methods for thermal and electrical conductivity
KR20170035029A (en) 2015-09-22 2017-03-30 경북대학교 산학협력단 method for manufacturing a heat sink with stacked multilayer of Graphene/CNT complex thin film and a heat sink manufactured by the same method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330336A (en) 1976-09-01 1978-03-22 Fujitsu Ltd Recording electrode
JPH03100060A (en) * 1989-09-14 1991-04-25 Mitsubishi Materials Corp Water-and oil-repellent wax additive
US20110214285A1 (en) 2005-12-30 2011-09-08 Chrysler Gregory M Carbon nanotube and metal thermal interface material, process of making same, packages containing same, and systems containing same
JP2011033754A (en) * 2009-07-31 2011-02-17 Ricoh Co Ltd Polygon mirror, optical deflector, optical scanner and image forming apparatus
US9562284B2 (en) 2009-11-06 2017-02-07 The University Of Akron Materials and methods for thermal and electrical conductivity
KR20120107403A (en) * 2011-03-21 2012-10-02 (주)월드튜브 Composition for radiating heat and product for radiating heat using the same
WO2014115792A1 (en) * 2013-01-26 2014-07-31 株式会社 ジャパンナノコート Dispersion liquid for formation of transparent conductive thin film and substrate equipped with transparent conductive thin film
JP5933043B2 (en) * 2013-01-26 2016-06-08 株式会社 ジャパンナノコート Dispersion for forming transparent conductive thin film and substrate with transparent conductive thin film
KR20170035029A (en) 2015-09-22 2017-03-30 경북대학교 산학협력단 method for manufacturing a heat sink with stacked multilayer of Graphene/CNT complex thin film and a heat sink manufactured by the same method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220145578A (en) * 2021-04-22 2022-10-31 울산과학기술원 Method of hydrophobic surface modification for self-cleaning
KR102510676B1 (en) * 2021-04-22 2023-03-16 울산과학기술원 Method of hydrophobic surface modification for self-cleaning

Similar Documents

Publication Publication Date Title
TWI432298B (en) Antistatic treated working stage
JP5355423B2 (en) Process for preparing a conductive film and article prepared using the process
KR101081988B1 (en) An electrically conductive and anti-corrosive coating composition, a method for preparing the same and an article coated with the same
Aparna et al. Recent advances in boron nitride based hybrid polymer nanocomposites
JP6625659B2 (en) Thermal radiation coating composition and thermal radiation unit formed using the same
KR101381864B1 (en) Cnt coating film and cnt soluttion forming the cnt coating film
JP6683485B2 (en) Boron nitride nanotube material and thermosetting material
KR101986168B1 (en) Coating liquid applicable to radiation fins for LED with dust collection prevention and self-cleaning function and manufacturing method thereof
WO2021022055A1 (en) Thermal interface materials
JP2017208505A (en) Structure, and electronic component and electronic apparatus including the structure
CN114574050A (en) Composite anticorrosive coating for condensation type flue gas waste heat recovery heat exchange equipment and preparation method thereof
WO2019244847A1 (en) Liquid composition, layered body, heat exchanger and production method for corrosion-resistant cover film
KR102175580B1 (en) Heat radiation composition and printed circuit board using the same
WO2022153931A1 (en) Method for producing liquid composition and composition
KR20160125560A (en) Heat-spreading adhesive tape and method of the same
JPWO2015111738A1 (en) Film adhesive containing conductive fiber coated particles
WO2022113926A1 (en) Composition, laminate , and film of tetrafluoroethylene-based polymer
JP2005199666A (en) Surface treated metallic material excellent in heat absorption and radiation profile
KR101739047B1 (en) method for manufacturing a heat sink with stacked multilayer of Graphene/CNT complex thin film and a heat sink manufactured by the same method
JP6625262B2 (en) Coating composition, method for producing the same, and method for forming coating film
Oh et al. Fabrication of high-performance graphene nanoplatelet-based transparent electrodes via self-interlayer-exfoliation control
KR101789172B1 (en) heat dissipation paste composition using thermal conductive material coated nano carbonaceous materials and manufacturing method thereof
KR101045276B1 (en) Painting composition having heat disspation
JP2006034042A (en) Thermosetting resin composite for vacuum and its production
WO2021125049A1 (en) Coated substrate, heat exchanger, coated substrate production method, and liquid composition

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant