JP2004168829A - Epoxy resin composition and vacuum equipment using the same - Google Patents

Epoxy resin composition and vacuum equipment using the same Download PDF

Info

Publication number
JP2004168829A
JP2004168829A JP2002333684A JP2002333684A JP2004168829A JP 2004168829 A JP2004168829 A JP 2004168829A JP 2002333684 A JP2002333684 A JP 2002333684A JP 2002333684 A JP2002333684 A JP 2002333684A JP 2004168829 A JP2004168829 A JP 2004168829A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
thermoplastic resin
glycidyl ether
diluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002333684A
Other languages
Japanese (ja)
Other versions
JP4054981B2 (en
Inventor
Satokazu Hamao
聡和 浜尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002333684A priority Critical patent/JP4054981B2/en
Publication of JP2004168829A publication Critical patent/JP2004168829A/en
Application granted granted Critical
Publication of JP4054981B2 publication Critical patent/JP4054981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition which has a small gas-releasing rate in a vacuum atmosphere, and to provide a vacuum equipment using the same. <P>SOLUTION: This epoxy resin composition is characterized in that at least a vacuum atmosphere-contacting surface is formed from a composition prepared by adding a thermoplastic resin to a mixture of a catalyst or a curing agent with an epoxy resin having two or more epoxy groups in the chemical structure. A reactive epoxy resin having one or more epoxy groups in the chemical structure is preferably contained as a diluent. The epoxy resin composition is used on the surface of vacuum equipment contacting with vacuum atmosphere. The epoxy resin composition may be applied by a coating method such as a coating method, a two layer casting method, a gel coating method, a powder coating method or a prepreg adhering method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、真空下で使用されるエポキシ樹脂およびそのエポキシ樹脂を用いた真空用機器に関する。
【0002】
【従来の技術】
真空用機器では、電子回路の基板や電磁コイルの含浸モールド材などの電気絶縁部材や、表面のコーティング材には、その混合・成形の容易さから、エポキシ樹脂に触媒または硬化剤や、必要に応じて希釈剤や無機充填材を混合し、硬化させたエポキシ樹脂組成物が主に使用されている(例えば、特許文献1参照)。
【0003】
【特許文献1】特開2002−317031号公報(第1―3頁)
【0004】
【発明が解決しようとする課題】
しかし、エポキシ樹脂組成物を用いた真空用機器では、真空下におけるガス放出速度が大きく、目標の到達圧力を得る事が出来ないといった問題が有った。この放出ガスは、樹脂表面に吸着された水の脱離や、樹脂内部に吸蔵された水の表面への拡散により放出された水が主成分である。ガス放出を抑制するため、吸水性が小さい無機充填材を高充填して、吸水性の高いエポキシ樹脂部分の体積分率を低減させる手段は、充填材の体積分率に対して水分ガス放出抑制効果はきわめて小さかった。
そこで、本発明はこれらの問題に鑑みてなされたものであり、真空環境に暴露されてもガス放出速度が小さいエポキシ樹脂組成物およびこれを用いた真空用機器を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記問題を解決するため、本発明のエポキシ樹脂組成物および真空用機器は、つぎの構成にしている。
(1)少なくとも真空雰囲気と接触する表面が、化学構造中にエポキシ基を2個以上持つエポキシ樹脂と触媒または硬化剤との混合物に、熱可塑性樹脂を添加した組成物によって形成されたエポキシ樹脂組成物である。
本構成によれば、熱可塑性樹脂の配合比に応じて親水基が減少するので、
吸水性が小さなり、ガス放出も小さくなる。
(2)希釈剤として、化学構造式中にエポキシ基を1個以上持つ反応性のエポキシ系樹脂を含ませたエポキシ樹脂組成物である。
本構成によれば、希釈剤によってエポキシ樹脂と熱可塑性樹脂の相溶性が高まり熱可塑性樹脂の配合比を高めることができるので、吸水性が小さくなり、ガス放出も小さくなる。
(3)前記熱可塑性樹脂の配合比は、前記エポキシ樹脂と前記触媒または前記硬化剤と前記希釈剤との合計100重量部に対して、10重量部以上100重量部以下としたエポキシ樹脂組成物である。
本構成によれば、吸水率の小さい熱可塑性樹脂を高い割合で配合するので、
吸水性が小さくなり、ガス放出も小さくなる。
(4)前記熱可塑性樹脂は、室温での吸水率が0.05%以下としたエポキシ樹脂組成物である。
本構成によれば、吸水率が小さい熱可塑性樹脂を配合するので、吸水性が小さくなり、ガス放出も小さくなる。
(5)前記熱可塑性樹脂は、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンオキサイド、メチルペンテン樹脂、ポリフェニレンスルフィドのいずれか一つとしたエポキシ樹脂組成物である。
本構成によれば、吸水率が小さい熱可塑性樹脂を配合するので、吸水性が小さくなり、ガス放出も小さくなる。
(6)前記熱可塑性樹脂は、前記エポキシ樹脂と前記触媒または前記硬化剤との未硬化混合物と混合された後、前記エポキシ樹脂を硬化させたエポキシ樹脂組成物である。
本構成によれば、エポキシ樹脂と分子レベルで配合、相互溶解するので、吸水性が小さくなり、ガス放出も小さくなる。
(7)前記希釈剤は、フェニルグリシジルエーテル、ブチルグリシジルエーテル、3級カルボン酸グリシジルエステル、アリルグリシジルエーテル、スチレンオキサイド、クレジルグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、ポリプロピレングリコールグリシジルエーテルのいずれか一つとしたエポキシ樹脂組成物である。
本構成によれば、希釈剤によってエポキシ樹脂と熱可塑性樹脂の相溶性が高まり熱可塑性樹脂の配合比を高めることができるので、吸水性が小さくなくなり、ガス放出も小さくなる。
(8)前記熱可塑性樹脂は、前記エポキシ樹脂と前記触媒または前記硬化剤と前記希釈剤との未硬化混合物と混合された後、前記エポキシ樹脂と前記希釈剤が硬化させたエポキシ樹脂組成物である。
本構成によれば、エポキシ樹脂と分子レベルで配合、相互溶解するので、吸水性が小さくなり、ガス放出も小さくなる。
(9)請求項1から8に記載のエポキシ樹脂組成物によって、真空雰囲気と接触する表面を形成した真空用機器である。
本構成によれば、吸水率の小さい熱可塑性樹脂を高い割合で配合し、エポキシ樹脂と分子レベルで配合、相互溶解するので、吸水性が小さくなり、ガス放出も小さくなる。
(10)前記エポキシ樹脂組成物の形成方法が、塗布、二層注型、ゲルコート、粉体塗装、プリプレグ貼付のいずれかのコーティングであることを特徴とする請求項9に記載の真空用機器。
である。
本構成によれば、真空雰囲気と接触する表面の吸水性が低下するので、ガス放出が小さくなり、ガス放出も小さくなる。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
一般的に、エポキシ樹脂組成物は疎水性の熱可塑性樹脂よりも真空中での水分ガス放出速度が大きい。それは化学構造中に親水基が多く存在し、大気中の水分を吸着、吸蔵しやすいためである。例えば、アミン系硬化剤を用いた硬化物は水酸基が、酸無水物硬化剤を用いた硬化物はカルボニル基が、エポキシ樹脂や反応性希釈剤のエポキシ基との架橋点に発生し、吸水性が大きくなる。また、これらの官能基が生じない触媒硬化エポキシ樹脂では、アミン硬化物や酸無水物硬化物よりも吸水性は小さくなるが、触媒分子の親水性が強いため、疎水性の熱可塑性樹脂と比較して、水分ガス放出速度や吸水率が10倍以上大きい。吸水性を抑制するため、エポキシ樹脂と触媒または硬化剤と希釈剤の体積分率を低減する手段として、吸水性が小さい無機充填材を高充填する手段もあるが、樹脂/充填材界面の吸湿が大きいため、抑制効果が小さかった。
本発明では、吸水性の大きいエポキシ樹脂と触媒または硬化剤と希釈剤の体積分率を低減し、しかも充填材との界面が生じない手段として、疎水性の熱可塑性樹脂とのポリマーアロイを形成することで、エポキシ樹脂組成物からの水分ガス放出量を低減させた。疎水性の熱可塑性樹脂は、ASTM D570に規定された、室温浸漬における吸水率が0.05%以下の物を用いた。これは、一般的なエポキシ樹脂硬化物の吸水率は0.3〜1%であり、その1/10以下のものとした。
一般的に疎水性の熱可塑性樹脂とエポキシ樹脂とは相互溶解性が悪い。そこで、熱可塑性樹脂の配合比を高めるため、相溶化剤として、熱可塑性樹脂の化学構造と似た官能基とエポキシ基とをもつ希釈剤と熱硬化性樹脂とを混合した後、エポキシ樹脂と混合し、相互溶解させる手段をとった。ちなみに、エポキシ基を持たない希釈剤、いわゆる有機溶剤は、相互溶解の効果は有るが、硬化物の化学構造に取り込まれないため真空雰囲気では有機系ガスとして放出され、半導体製造装置や液晶製造装置では使用できない。
【0007】
(第一の実施形態)
本発明の第一の実施形態は、本発明のエポキシ樹脂組成物単体について、ガス放出速度を低減させたものである。試料とその作製方法、および評価方法はつぎのようにした。
(1)試料
エポキシ樹脂:ビスフェノールA型(BPA型、エポキシ当量は190)
触媒:2エチル4メチルイミダゾール(2E4MZ)
アミン型硬化剤:4,4’ジアミノジフェニルメタンと誘導体の混合物(DDM)
充填材:溶融シリカ(SiO2、平均粒径15μm)
熱可塑性樹脂:ポリエチレン(PE、吸水率0.01%)、
ポリプロピレン(PP、吸水率0.02%)、
ポリスチレン(PS、吸水率0.03%)
希釈剤:3級カルボン酸グリシジルエステル(通称カージュラE(CaE)、PE,PPと同じアルキル基を持つ1官能エポキシ)、
フェニルグリシジルエーテル(PGE、PSと同じフェニル基を持つ1官能エポキシ)
なお、エポキシ樹脂組成物の配合比を、触媒硬化型について表1に、アミン系硬化剤硬化型について表2に示す。
(2)試料の作製方法
試料寸法は、50mm×50mm、厚さ1mmの板状とした。全試料とも、硬化条件はすべて150℃、5時間とし、硬化後に25℃、60%RH、24時間の調湿をした。
(3)評価方法
150℃、6時間のベーキング後のガス放出速度と残留ガススペクトルを、室温にて測定した。
(4)評価結果
ガス放出速度の評価結果を、表1,2に示す。なお、残留ガススペクトルの測定結果より、いずれの試料も室温での放出ガスの主成分は水であり、全ガス放出速度は水の放出速度で決められていた。
表1(No.1〜11)は、イミダゾール系触媒硬化エポキシ樹脂組成物の結果であり、そのうち、No.1〜2は比較例、No.3〜11は実施例である。比較例No.1は、充填材と熱可塑性樹脂を含まないもので、ガス放出速度を1としている。比較例No.2は、充填材を含むが熱可塑性樹脂は含まないものである。実施例No.3〜11および比較例No.2のガス放出速度は、比較例No.1のガス放出速度に対する比率を示している。
表2(No.12〜22)は、アミン硬化エポキシ樹脂組成物の結果であり、そのうち、No.12〜13は比較例、No.14〜22は実施例である。
比較例No.12は、充填材と熱可塑性樹脂を含まないもので、ガス放出速度を1としている。比較例No.13は、充填材を含むが熱可塑性樹脂は含まないものである。実施例No.14〜22および比較例No.13のガス放出速度は、比較例No.12のガス放出速度に対する比率を示している。
表1、表2とも、充填材を含む比較例はその充填材の体積分率が約50%であるにもかかわらず、ガス放出速度の低下幅は小さなものであった。
これに対して、本実施例の熱可塑性樹脂を含むものは、比較例よりもガス放出速度が小さく、その低下幅は、概ね熱可塑性樹脂の配合比に近い値となり、吸水率の小さい熱可塑性樹脂を含むことで、エポキシ樹脂組成物のガス放出速度が大幅に抑制されることが確認された。
【0008】
【表1】

Figure 2004168829
【0009】
【表2】
Figure 2004168829
【0010】
なお、本実施例で用いた熱可塑性樹脂以外にも、吸水率が極めて小さい熱可塑性樹脂であるポリフェニレンオキサイド、メチルペンテン樹脂、ポリフェニレンスルフィドを用いても良い。また、希釈剤についても、フェニルグリシジルエーテルの代わりに、フェニル基を持つスチレンオキサイドやクレジルグリシジルエーテルを用いても良く、または3級カルボン酸グリシジルエステルの代わりに、アルキル基を持つブチルグリシジルエーテル、アリルグリシジルエーテル、ポリプロピレングリコールグリシジルエーテルを用いても良い。
【0011】
(第二の実施形態)
本発明の第二の実施形態は、ガス放出速度が大きなエポキシ樹脂組成物の表面を、本発明のエポキシ樹脂組成物にてコーティングすることによるガス放出を抑制したものである。試料とその作製方法、および評価方法はつぎのようにした。
(1)試料
本実施例で用いた材料ならびに配合比は、第一の実施形態で用いたものの中から選択した。その配合比を表3に示す。
(2)試料の作製方法
試料の形状を図1に示す。図において、1はアルミニウム製の容器、2は内層樹脂組成物、3はコーティング層である。試料は、50mm×50mm×2.5mmの容積を持つ容器1にガス放出速度の大きいエポキシ樹脂組成物を内層樹脂組成物2として2mmの深さで容器に注入・硬化させ、コーティング層3を施して作製した。
比較例No.23は、第一の実施形態のNo.1のエポキシ樹脂組成物を内層樹脂組成物2としたものである。
実施例No.24〜33は、比較例No.23と同じ条件で作製した内層樹脂組成物2の表面に触媒硬化エポキシ樹脂組成物を後述の方法にて厚さ0.2mmのコーティング層3を施したものである。
内層樹脂組成物2およびコーティング層3とも硬化条件は、150℃、5時間とし、コーティング層3の硬化後に25℃、60%RH、24時間の調湿をした。
次に、コーティング層3の形成方法について説明する。
塗布については、通常のはけ塗りで形成した。
ゲルコート法については、容器3の蓋(図示しない)に未硬化のコーティング層3を施した後、内層樹脂組成物2を容器3に注型・硬化し、蓋を外すことでコーティング層3を形成した。なお、これらの未硬化コーティング層3は熱可塑性樹脂の配合比が高いため室温では固形であり、加熱溶融させて塗布した後、室温に冷却した。
プリプレグ法については、コーティング層3に用いる未硬化のエポキシ樹脂/触媒/熱可塑性樹脂/希釈剤混合物にてプリプレグシートを作製し、硬化した内層樹脂組成物2の表面に貼付・硬化させてコーティングした。このプリプレグシート作製について、コーティング層3に用いる未硬化樹脂は室温では固形であり、プリプレグ成型治具上に加熱溶融させた後、冷却することで形成した。
粉体塗装については、通常の塗装方法をとった。塗装用の粉末は、コーティング層3に用いる未硬化のエポキシ樹脂/触媒/熱可塑性樹脂/希釈剤混合物を、ドライアイスにて冷却しながら、ミルにて粉砕することで作製した。
(3)評価方法
第一の実施形態と同様にした。
(4)評価結果
ガス放出速度の比較結果を表3に示す。コーティングを施さない比較例であるNo.23のガス放出速度を1として、実施例であるNo.24〜33のガス放出速度の比率を示した。ちなみに、残留ガススペクトルの測定結果より、いずれの試料も室温での放出ガスの主成分は水であり、全ガス放出速度は水の放出速度で決められていた。
熱可塑性樹脂を含む実施例No.24〜33は、その比較例となるNo.23よりもガス放出速度が小さく、その低下幅は、概ね熱可塑性樹脂の配合比に近い値となり、吸水率の小さな熱可塑性樹脂を含むエポキシ樹脂組成物をコーティングすることでガス放出速度は小さくなることがわかった。よって、表面に本発明のエポキシ樹脂組成物をコーティングすることによるガス放出速度抑制の効果と、本実施例に用いたコーティング方法の有効性が確認された。
なお、本実施例で用いた熱可塑性樹脂以外にも、吸水率が極めて小さい熱可塑性樹脂であるポリプロピレン、ポリフェニレンオキサイド、メチルペンテン樹脂、ポリフェニレンスルフィドを用いても良い。また、希釈剤についても、フェニルグリシジルエーテルの代わりに、フェニル基を持つスチレンオキサイドやクレジルグリシジルエーテルを用いても良く、または3級カルボン酸グリシジルエステルの代わりに、アルキル基を持つブチルグリシジルエーテル、アリルグリシジルエーテル、ポリプロピレングリコールグリシジルエーテルを用いても良い。
【0012】
【表3】
Figure 2004168829
【0013】
(第三の実施形態)
本発明の第三の実施形態は、ガス放出速度が大きなエポキシ樹脂組成物にて含浸したコイルの表面を、本発明のエポキシ樹脂組成物にてコーティングすることによりガス放出を抑制したものである。
本発明の第三の実施形態に係る実施例について述べる。試料とその作製方法、および評価方法はつぎのようにした。
(1)試料
本実施例で用いたエポキシ樹脂組成物の配合比は、実施例2と同じである。本実施例で用いた試料の断面図を図2に、比較例で用いた試料の断面図を図3に示す。図において、4はボビン、5はアミドイミド線、6はコイル、7は含浸材である。試料はガス放出速度の大きいNo.1のエポキシ樹脂組成物で作製したボビン4、アミドイミド線(0種φ0.5mm)2を巻回したコイル6、No.1のエポキシ樹脂組成物からなり、コイル6の素線間に含浸した含浸材7、実施例2にて用いた触媒硬化エポキシ樹脂組成物を用いたコーティング層3からなる。
(2)試料の作製方法
比較例No.34は、ボビン4に、アミドイミド線5を長さ50mm、幅30mm、厚さ4mmの外形寸法となるように整列巻きしたコイル6を、No.1のエポキシ樹脂組成物にて素線間含浸したものを用いた。実施例No.35〜44は、比較例の試料の表面に、熱可塑性樹脂を含むエポキシ樹脂組成物を、表4に示した方法にて厚さ0.2mmのコーティング層3を施したものを用いた。コーティング層3を形成する条件は実施例2と同じであるが、ゲルコート法については蓋ではなく、金型(図示しない)に未硬化のコーティング層3を形成した。また、ボビン4、含浸材7、コーティング層3の硬化条件はすべて150℃、5時間とした。最後に25℃、60%RH、24時間の調湿をした。
(3)評価方法
実施例1と同様にした。
(4)評価結果
ガス放出速度の比較結果を表4中に、コーティングを施さない比較例であるNo.34のガス放出速度を1として、実施例であるNo.35〜44のガス放出速度の比率を示した。ちなみに、残留ガススペクトルの測定結果より、いずれの試料も室温での放出ガスの主成分は水であり、全ガス放出速度は水の放出速度で決められていた。
熱可塑性樹脂を含む実施例No.35〜44は、比較例No.34よりもガス放出速度が小さく、その低下幅は、概ね熱可塑性樹脂の配合比に近い値となり、吸水率の小さな熱可塑性樹脂を含むエポキシ樹脂組成物をコーティングすることでのガス放出速度は小さくなることがわかった。よって、表面に本発明のエポキシ樹脂組成物をコーティングすることによるガス放出速度抑制の効果と、本実施例に用いたコーティング方法の有効性が確認された。
なお、本実施例で用いた熱可塑性樹脂以外にも、ポリプロピレン、ポリフェニレンオキサイド、メチルペンテン樹脂、ポリフェニレンスルフィドを用いても良い。また、希釈剤についても、フェニルグリシジルエーテルの代わりに、フェニル基を持つスチレンオキサイドやクレジルグリシジルエーテルを用いても良く、または3級カルボン酸グリシジルエステルの代わりに、アルキル基を持つブチルグリシジルエーテル、アリルグリシジルエーテル、ポリプロピレングリコールグリシジルエーテルを用いても良い。
【0014】
【表4】
Figure 2004168829
【0015】
【発明の効果】
以上述べたように、本発明によればつぎの効果がある。
(1)少なくとも真空雰囲気と接触する表面が、化学構造中にエポキシ基を2個以上持つエポキシ樹脂と触媒または硬化剤との混合物に、熱可塑性樹脂を添加した組成物によってエポキシ樹脂組成物を形成したので、吸水性が小さくなり、ガス放出も小さくなる。
(2)希釈剤として、化学構造式中にエポキシ基を1個以上持つ反応性のエポキシ系樹脂を含ませたので、吸水性が小さくなり、ガス放出も小さくなる。
(3)熱可塑性樹脂の配合比を、エポキシ樹脂と触媒または硬化剤と希釈剤との合計100重量部に対して、10重量部以上100重量部以下としたので、
吸水性が小さくなり、ガス放出も小さくなる。
(4)熱可塑性樹脂は、室温での吸水率が0.05%以下としたので、吸水性が小さくなり、ガス放出も小さくなる。
(5)熱可塑性樹脂を、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンオキサイド、メチルペンテン樹脂、ポリフェニレンスルフィドのいずれか一つとしたので、吸水性が小さくなり、ガス放出も小さくなる。
(6)熱可塑性樹脂は、エポキシ樹脂と触媒または硬化剤との未硬化混合物と混合された後、エポキシ樹脂を硬化させたので、吸水性が小さくなり、ガス放出も小さくなる。
(7)希釈剤を、フェニルグリシジルエーテル、ブチルグリシジルエーテル、3級カルボン酸グリシジルエステル、アリルグリシジルエーテル、スチレンオキサイド、クレジルグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、ポリプロピレングリコールグリシジルエーテルのいずれか一つとしたので、樹脂の吸水性が小さくなり、ガス放出も小さくなる。
(8)熱可塑性樹脂は、エポキシ樹脂と触媒または硬化剤と希釈剤との未硬化混合物と混合された後、エポキシ樹脂と希釈剤を硬化させたので、吸水性が小さくなり、ガス放出も小さくなる。
(9)真空雰囲気と接触する真空用機器の表面に、上記のエポキシ樹脂組成物を形成したので、ガス放出が小さい真空用機器が得られる。
(10)エポキシ樹脂組成物を、塗布、二層注型、ゲルコート、粉体塗装、プリプレグ貼付などのコーティングにより形成したので、ガス放出の小さな真空用機器が得られる。
【図面の簡単な説明】
【図1】本発明の第二の実施形態に用いた試料の構造を示す断面図である。
【図2】本発明の第三の実施形態に用いた試料の構造を示す断面図である。
【図3】本発明の第三の実施形態に用いた比較例の試料の構造を示す断面図である。
【符号の説明】
1 容器
2 内層樹脂組成物
3 コーティング層
4 ボビン
5 アミドイミド線
6 コイル
7 含浸材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an epoxy resin used in a vacuum and a vacuum device using the epoxy resin.
[0002]
[Prior art]
In vacuum equipment, epoxy resin is required to use a catalyst or curing agent for epoxy resin because of the ease of mixing and molding. An epoxy resin composition mixed with a diluent or an inorganic filler and hardened accordingly is mainly used (for example, see Patent Document 1).
[0003]
[Patent Document 1] JP-A-2002-317031 (pages 1-3)
[0004]
[Problems to be solved by the invention]
However, vacuum equipment using an epoxy resin composition has a problem that the gas release rate under vacuum is high and a target ultimate pressure cannot be obtained. The released gas is mainly composed of water released by desorption of water adsorbed on the resin surface or diffusion to the surface of water absorbed in the resin. In order to suppress outgassing, the means to reduce the volume fraction of the epoxy resin part with high water absorption by filling the inorganic filler with low water absorption high is to control the release of moisture gas with respect to the volume fraction of the filler. The effect was very small.
Therefore, the present invention has been made in view of these problems, and an object of the present invention is to provide an epoxy resin composition having a low gas release rate even when exposed to a vacuum environment, and a vacuum device using the same.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the epoxy resin composition and the vacuum device of the present invention have the following configurations.
(1) An epoxy resin composition formed by adding a thermoplastic resin to a mixture of an epoxy resin having at least two epoxy groups in a chemical structure and a catalyst or a curing agent, at least a surface of which is in contact with a vacuum atmosphere. Things.
According to this configuration, the number of hydrophilic groups decreases according to the blending ratio of the thermoplastic resin,
Water absorption and outgassing are small.
(2) An epoxy resin composition containing, as a diluent, a reactive epoxy resin having at least one epoxy group in a chemical structural formula.
According to this configuration, the compatibility between the epoxy resin and the thermoplastic resin is increased by the diluent, and the mixing ratio of the thermoplastic resin can be increased, so that the water absorption is reduced and the gas emission is also reduced.
(3) An epoxy resin composition in which the mixing ratio of the thermoplastic resin is 10 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of the total of the epoxy resin and the catalyst or the curing agent and the diluent. It is.
According to this configuration, since the thermoplastic resin having a small water absorption is blended in a high ratio,
Water absorption and outgassing are reduced.
(4) The thermoplastic resin is an epoxy resin composition having a water absorption at room temperature of 0.05% or less.
According to this configuration, since a thermoplastic resin having a small water absorption is mixed, the water absorption is reduced and the gas emission is also reduced.
(5) The thermoplastic resin is an epoxy resin composition containing any one of polyethylene, polypropylene, polystyrene, polyphenylene oxide, methylpentene resin, and polyphenylene sulfide.
According to this configuration, since a thermoplastic resin having a small water absorption is mixed, the water absorption is reduced and the gas emission is also reduced.
(6) The thermoplastic resin is an epoxy resin composition obtained by mixing an uncured mixture of the epoxy resin and the catalyst or the curing agent and then curing the epoxy resin.
According to this configuration, since it is blended and dissolved with the epoxy resin at a molecular level, the water absorption is reduced and the gas emission is also reduced.
(7) The diluent is any one of phenyl glycidyl ether, butyl glycidyl ether, tertiary carboxylic acid glycidyl ester, allyl glycidyl ether, styrene oxide, cresyl glycidyl ether, polyethylene glycol glycidyl ether, and polypropylene glycol glycidyl ether. It is an epoxy resin composition.
According to this configuration, the compatibility between the epoxy resin and the thermoplastic resin is increased by the diluent, and the blending ratio of the thermoplastic resin can be increased, so that the water absorption is not reduced and the gas emission is also reduced.
(8) The thermoplastic resin is an epoxy resin composition obtained by mixing the epoxy resin and the catalyst or an uncured mixture of the curing agent and the diluent, and then curing the epoxy resin and the diluent. is there.
According to this configuration, since it is blended and dissolved with the epoxy resin at a molecular level, the water absorption is reduced and the gas emission is also reduced.
(9) A vacuum device having a surface in contact with a vacuum atmosphere formed by the epoxy resin composition according to any one of claims 1 to 8.
According to this configuration, the thermoplastic resin having a small water absorption is blended in a high ratio, and is blended and dissolved with the epoxy resin at a molecular level, so that the water absorption is reduced and the gas emission is also reduced.
(10) The vacuum apparatus according to claim 9, wherein the method of forming the epoxy resin composition is any one of coating, two-layer casting, gel coating, powder coating, and prepreg attachment.
It is.
According to this configuration, the water absorption of the surface in contact with the vacuum atmosphere is reduced, so that the gas emission is reduced and the gas emission is also reduced.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
Generally, an epoxy resin composition has a higher moisture gas release rate in vacuum than a hydrophobic thermoplastic resin. This is because there are many hydrophilic groups in the chemical structure and it is easy to adsorb and occlude moisture in the atmosphere. For example, a cured product using an amine-based curing agent has a hydroxyl group, and a cured product using an acid anhydride curing agent has a carbonyl group at a cross-linking point with an epoxy group of an epoxy resin or a reactive diluent. Becomes larger. In addition, catalyst-cured epoxy resins that do not have these functional groups have lower water absorption than amine-cured and acid-anhydride cured products, but have a higher degree of hydrophilicity of the catalyst molecules, and are therefore compared to hydrophobic thermoplastic resins. As a result, the moisture gas release speed and the water absorption are 10 times or more larger. As a means to reduce the volume fraction of the epoxy resin and the catalyst or the curing agent and the diluent in order to suppress water absorption, there is also a means of highly filling the inorganic filler having a small water absorption, but the moisture absorption at the resin / filler interface. , The suppression effect was small.
In the present invention, a polymer alloy with a hydrophobic thermoplastic resin is formed as a means for reducing the volume fraction of the epoxy resin having high water absorption, the catalyst or the curing agent and the diluent, and preventing the interface between the filler and the filler. By doing so, the amount of moisture gas released from the epoxy resin composition was reduced. As the hydrophobic thermoplastic resin, a resin having a water absorption of 0.05% or less when immersed at room temperature, as defined in ASTM D570, was used. The water absorption of a general cured epoxy resin is 0.3 to 1%, which is 1/10 or less.
Generally, the mutual solubility between a hydrophobic thermoplastic resin and an epoxy resin is poor. Therefore, in order to increase the mixing ratio of the thermoplastic resin, as a compatibilizer, a diluent having a functional group and an epoxy group similar to the chemical structure of the thermoplastic resin and a thermosetting resin are mixed, and then mixed with the epoxy resin. Measures were taken to mix and mutually dissolve. By the way, diluents without epoxy groups, so-called organic solvents, have the effect of mutual dissolution, but are not taken into the chemical structure of the cured product, so they are released as organic gases in a vacuum atmosphere, and semiconductor manufacturing equipment and liquid crystal manufacturing equipment Cannot be used.
[0007]
(First embodiment)
In the first embodiment of the present invention, the outgassing rate of the epoxy resin composition alone of the present invention is reduced. The sample, its preparation method, and evaluation method were as follows.
(1) Sample epoxy resin: bisphenol A type (BPA type, epoxy equivalent is 190)
Catalyst: 2-ethyl-4-methylimidazole (2E4MZ)
Amine type curing agent: mixture of 4,4 'diaminodiphenylmethane and derivative (DDM)
Filler: fused silica (SiO2, average particle size 15 μm)
Thermoplastic resin: polyethylene (PE, water absorption 0.01%),
Polypropylene (PP, water absorption 0.02%),
Polystyrene (PS, water absorption 0.03%)
Diluent: tertiary carboxylic acid glycidyl ester (commonly known as Kadura E (CaE), a monofunctional epoxy having the same alkyl group as PE and PP),
Phenyl glycidyl ether (monofunctional epoxy with the same phenyl group as PGE and PS)
The mixing ratio of the epoxy resin composition is shown in Table 1 for the catalyst-curable type and Table 2 for the amine-based curing agent-curable type.
(2) Sample Preparation Method The sample dimensions were 50 mm × 50 mm and a 1 mm thick plate. For all samples, the curing conditions were all 150 ° C. for 5 hours, and after curing, the humidity was adjusted at 25 ° C., 60% RH for 24 hours.
(3) Evaluation method The gas release rate and residual gas spectrum after baking at 150 ° C. for 6 hours were measured at room temperature.
(4) Evaluation Results The evaluation results of the gas release rate are shown in Tables 1 and 2. From the measurement result of the residual gas spectrum, the main component of the released gas at room temperature was water in all samples, and the total gas release rate was determined by the release rate of water.
Table 1 (Nos. 1 to 11) shows the results of the imidazole-based catalyst-cured epoxy resin composition. Nos. 1 and 2 are comparative examples; 3 to 11 are examples. Comparative Example No. Reference numeral 1 does not include a filler and a thermoplastic resin, and has a gas release rate of 1. Comparative Example No. No. 2 contains a filler but does not contain a thermoplastic resin. Example No. Nos. 3 to 11 and Comparative Example Nos. The gas release rate of Comparative Example No. 2 was The ratio of 1 to the gas release rate is shown.
Table 2 (Nos. 12 to 22) shows the results of the amine-cured epoxy resin composition. Nos. 12 to 13 are comparative examples. 14 to 22 are examples.
Comparative Example No. Reference numeral 12 does not include a filler and a thermoplastic resin, and has a gas release rate of 1. Comparative Example No. Reference numeral 13 includes a filler but does not include a thermoplastic resin. Example No. 14 to 22 and Comparative Example Nos. The gas release rates of Comparative Example Nos. 12 shows the ratio to the gas release rate.
In both Tables 1 and 2, the decrease in the gas release rate of the comparative example containing the filler was small even though the volume fraction of the filler was about 50%.
On the other hand, those containing the thermoplastic resin of the present example have a smaller gas release rate than the comparative example, and the decrease width is almost a value close to the mixing ratio of the thermoplastic resin, and the thermoplastic resin having a small water absorption rate It was confirmed that by including the resin, the gas release rate of the epoxy resin composition was significantly suppressed.
[0008]
[Table 1]
Figure 2004168829
[0009]
[Table 2]
Figure 2004168829
[0010]
In addition, besides the thermoplastic resin used in this example, a polyphenylene oxide, a methylpentene resin, or a polyphenylene sulfide, which is a thermoplastic resin having a very small water absorption, may be used. Also, as for the diluent, styrene oxide or cresyl glycidyl ether having a phenyl group may be used instead of phenyl glycidyl ether, or butyl glycidyl ether having an alkyl group instead of tertiary carboxylic acid glycidyl ester, Allyl glycidyl ether or polypropylene glycol glycidyl ether may be used.
[0011]
(Second embodiment)
The second embodiment of the present invention suppresses gas release by coating the surface of an epoxy resin composition having a large gas release rate with the epoxy resin composition of the present invention. The sample, its preparation method, and evaluation method were as follows.
(1) Sample The materials and compounding ratios used in this example were selected from those used in the first embodiment. Table 3 shows the compounding ratio.
(2) Sample preparation method FIG. 1 shows the shape of the sample. In the figure, 1 is an aluminum container, 2 is an inner layer resin composition, and 3 is a coating layer. A sample is prepared by injecting and curing an epoxy resin composition having a large outgassing rate into a container 1 having a volume of 50 mm × 50 mm × 2.5 mm as an inner layer resin composition 2 at a depth of 2 mm into a container 1 having a volume of 50 mm × 50 mm × 2.5 mm. Produced.
Comparative Example No. 23 is No. 23 of the first embodiment. The epoxy resin composition of No. 1 was used as the inner layer resin composition 2.
Example No. Nos. 24 to 33 are Comparative Examples Nos. A coating layer 3 having a thickness of 0.2 mm was formed by applying a catalyst-cured epoxy resin composition to the surface of an inner layer resin composition 2 prepared under the same conditions as in Example 23 by a method described later.
The curing conditions for the inner layer resin composition 2 and the coating layer 3 were 150 ° C. for 5 hours, and after the coating layer 3 was cured, the humidity was controlled at 25 ° C., 60% RH, and 24 hours.
Next, a method for forming the coating layer 3 will be described.
About application, it formed by usual brush application.
In the gel coating method, after the uncured coating layer 3 is applied to the lid (not shown) of the container 3, the inner layer resin composition 2 is cast and cured in the container 3, and the coating layer 3 is formed by removing the lid. did. The uncured coating layer 3 was solid at room temperature due to the high mixing ratio of the thermoplastic resin, and was heated and melted and applied, and then cooled to room temperature.
With respect to the prepreg method, a prepreg sheet was prepared from a mixture of the uncured epoxy resin / catalyst / thermoplastic resin / diluent used for the coating layer 3, applied to the surface of the cured inner layer resin composition 2, cured, and coated. . In the preparation of the prepreg sheet, the uncured resin used for the coating layer 3 was solid at room temperature, and was formed by heating and melting on a prepreg molding jig and then cooling.
For powder coating, the usual coating method was used. The powder for coating was prepared by pulverizing an uncured epoxy resin / catalyst / thermoplastic resin / diluent mixture used in the coating layer 3 with a mill while cooling the mixture with dry ice.
(3) Evaluation method The evaluation method was the same as in the first embodiment.
(4) Evaluation Results Table 3 shows the comparison results of the gas release rates. No. No. which is a comparative example without coating. Assuming that the gas release rate of No. 23 is 1, No. 23 of the example was used. The ratio of outgassing rates of 24-33 was shown. Incidentally, from the measurement results of the residual gas spectrum, the main component of the released gas at room temperature was water in all the samples, and the total gas release rate was determined by the release rate of water.
Example No. 1 containing a thermoplastic resin. Nos. 24 to 33 are Nos. As comparative examples. The gas emission rate is smaller than 23, and the decrease width is almost a value close to the blending ratio of the thermoplastic resin, and the gas emission rate is reduced by coating the epoxy resin composition containing the thermoplastic resin having a small water absorption. I understand. Therefore, the effect of suppressing the gas release rate by coating the surface with the epoxy resin composition of the present invention and the effectiveness of the coating method used in this example were confirmed.
In addition, besides the thermoplastic resin used in this example, polypropylene, polyphenylene oxide, methylpentene resin, and polyphenylene sulfide, which are thermoplastic resins having extremely low water absorption, may be used. Also, as for the diluent, styrene oxide or cresyl glycidyl ether having a phenyl group may be used instead of phenyl glycidyl ether, or butyl glycidyl ether having an alkyl group instead of tertiary carboxylic acid glycidyl ester, Allyl glycidyl ether or polypropylene glycol glycidyl ether may be used.
[0012]
[Table 3]
Figure 2004168829
[0013]
(Third embodiment)
In the third embodiment of the present invention, gas release is suppressed by coating the surface of a coil impregnated with an epoxy resin composition having a high gas release rate with the epoxy resin composition of the present invention.
An example according to the third embodiment of the present invention will be described. The sample, its preparation method, and evaluation method were as follows.
(1) Sample The mixing ratio of the epoxy resin composition used in this example is the same as that in Example 2. FIG. 2 is a cross-sectional view of the sample used in this example, and FIG. 3 is a cross-sectional view of the sample used in the comparative example. In the figure, 4 is a bobbin, 5 is an amide-imide wire, 6 is a coil, and 7 is an impregnating material. The sample No. having a large outgassing rate was used. No. 1, a bobbin 4 made of the epoxy resin composition, a coil 6 wound with an amide imide wire (type 0, φ0.5 mm) 2, It comprises the impregnating material 7 impregnated between the wires of the coil 6 and the coating layer 3 using the catalyst-cured epoxy resin composition used in Example 2.
(2) Sample preparation method Comparative Example No. No. 34 is a coil 6 in which an amide-imide wire 5 is wound around a bobbin 4 so as to have an outer dimension of 50 mm in length, 30 mm in width and 4 mm in thickness. What was impregnated between the wires with the epoxy resin composition of No. 1 was used. Example No. In Nos. 35 to 44, the surface of the sample of the comparative example was obtained by applying a coating layer 3 having a thickness of 0.2 mm to the surface of the epoxy resin composition containing a thermoplastic resin by the method shown in Table 4. The conditions for forming the coating layer 3 were the same as those in Example 2, except that the gel coating method was used to form the uncured coating layer 3 on a mold (not shown) instead of a lid. The curing conditions of the bobbin 4, the impregnating material 7, and the coating layer 3 were all set at 150 ° C. for 5 hours. Finally, humidity control was performed at 25 ° C. and 60% RH for 24 hours.
(3) Evaluation method The same as in Example 1.
(4) Evaluation Results Table 4 shows the results of comparison of the gas release rates. Assuming that the gas release rate of sample No. 34 is 1, No. 34 of the example was used. The ratio of the gas release rate of 35 to 44 is shown. Incidentally, from the measurement results of the residual gas spectrum, the main component of the released gas at room temperature was water in all the samples, and the total gas release rate was determined by the release rate of water.
Example No. 1 containing a thermoplastic resin. Nos. 35 to 44 are Comparative Example Nos. The gas emission rate is smaller than that of No. 34, and the decrease width is almost a value close to the mixing ratio of the thermoplastic resin, and the gas emission rate by coating the epoxy resin composition containing the thermoplastic resin having a small water absorption is small. It turned out to be. Therefore, the effect of suppressing the gas release rate by coating the surface with the epoxy resin composition of the present invention and the effectiveness of the coating method used in this example were confirmed.
In addition, polypropylene, polyphenylene oxide, methylpentene resin, and polyphenylene sulfide may be used in addition to the thermoplastic resin used in this embodiment. Also, as for the diluent, styrene oxide or cresyl glycidyl ether having a phenyl group may be used instead of phenyl glycidyl ether, or butyl glycidyl ether having an alkyl group instead of tertiary carboxylic acid glycidyl ester, Allyl glycidyl ether or polypropylene glycol glycidyl ether may be used.
[0014]
[Table 4]
Figure 2004168829
[0015]
【The invention's effect】
As described above, the present invention has the following effects.
(1) At least a surface in contact with a vacuum atmosphere forms an epoxy resin composition by a composition obtained by adding a thermoplastic resin to a mixture of an epoxy resin having two or more epoxy groups in a chemical structure and a catalyst or a curing agent. As a result, the water absorption is reduced and the gas emission is also reduced.
(2) Since a reactive epoxy resin having one or more epoxy groups in the chemical structural formula is included as a diluent, water absorption and gas emission are reduced.
(3) Since the mixing ratio of the thermoplastic resin is set to 10 parts by weight or more and 100 parts by weight or less with respect to the total 100 parts by weight of the epoxy resin and the catalyst or the curing agent and the diluent,
Water absorption and outgassing are reduced.
(4) Since the water absorption of the thermoplastic resin at room temperature is 0.05% or less, the water absorption is small and the gas emission is small.
(5) Since the thermoplastic resin is any one of polyethylene, polypropylene, polystyrene, polyphenylene oxide, methylpentene resin, and polyphenylene sulfide, water absorption is reduced and gas emission is also reduced.
(6) Since the thermoplastic resin is mixed with an uncured mixture of the epoxy resin and the catalyst or the curing agent and then cured, the epoxy resin is cured, so that the water absorption and the gas emission are reduced.
(7) Since the diluent was any one of phenyl glycidyl ether, butyl glycidyl ether, tertiary carboxylic acid glycidyl ester, allyl glycidyl ether, styrene oxide, cresyl glycidyl ether, polyethylene glycol glycidyl ether, and polypropylene glycol glycidyl ether In addition, the resin absorbs less water and emits less gas.
(8) Since the thermoplastic resin is mixed with the uncured mixture of the epoxy resin and the catalyst or the curing agent and the diluent, and then hardens the epoxy resin and the diluent, the water absorption becomes smaller and the gas emission becomes smaller. Become.
(9) Since the above-described epoxy resin composition is formed on the surface of the vacuum device that comes into contact with the vacuum atmosphere, a vacuum device with low gas emission can be obtained.
(10) Since the epoxy resin composition is formed by coating, such as coating, two-layer casting, gel coating, powder coating, and prepreg affixing, a vacuum device with small gas release can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of a sample used in a second embodiment of the present invention.
FIG. 2 is a sectional view showing a structure of a sample used in a third embodiment of the present invention.
FIG. 3 is a sectional view showing a structure of a sample of a comparative example used in the third embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 container 2 inner layer resin composition 3 coating layer 4 bobbin 5 amide imide wire 6 coil 7 impregnating material

Claims (10)

少なくとも真空雰囲気と接触する表面が、化学構造中にエポキシ基を2個以上持つエポキシ樹脂と触媒または硬化剤との混合物に、熱可塑性樹脂を添加した組成物によって形成されていることを特徴とするエポキシ樹脂組成物。At least a surface in contact with a vacuum atmosphere is formed by a composition obtained by adding a thermoplastic resin to a mixture of an epoxy resin having two or more epoxy groups in a chemical structure and a catalyst or a curing agent. Epoxy resin composition. 希釈剤として、化学構造式中にエポキシ基を1個以上持つ反応性のエポキシ系樹脂を含むことを特徴とする請求項1記載のエポキシ樹脂組成物。2. The epoxy resin composition according to claim 1, wherein the diluent comprises a reactive epoxy resin having at least one epoxy group in a chemical structural formula. 前記熱可塑性樹脂の配合比は、前記エポキシ樹脂と前記触媒または前記硬化剤と前記希釈剤との合計100重量部に対して、10重量部以上100重量部以下であることを特徴とする請求項1または2に記載のエポキシ樹脂組成物。The compounding ratio of the thermoplastic resin is 10 parts by weight or more and 100 parts by weight or less with respect to a total of 100 parts by weight of the epoxy resin and the catalyst or the curing agent and the diluent. 3. The epoxy resin composition according to 1 or 2. 前記熱可塑性樹脂は、室温での吸水率が0.05%以下であることを特徴とする請求項1から3のいずれか1項に記載のエポキシ樹脂組成物。The epoxy resin composition according to any one of claims 1 to 3, wherein the thermoplastic resin has a water absorption at room temperature of 0.05% or less. 前記熱可塑性樹脂は、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンオキサイド、メチルペンテン樹脂、ポリフェニレンスルフィドのいずれか一つであることを特徴とする請求項1から4のいずれか1項に記載のエポキシ樹脂組成物。The epoxy resin composition according to any one of claims 1 to 4, wherein the thermoplastic resin is any one of polyethylene, polypropylene, polystyrene, polyphenylene oxide, methylpentene resin, and polyphenylene sulfide. . 前記熱可塑性樹脂は、前記エポキシ樹脂と前記触媒または前記硬化剤との未硬化混合物と混合された後、前記エポキシ樹脂が硬化されたことを特徴とする請求項1から5のいずれか1項に記載のエポキシ樹脂組成物。The thermoplastic resin according to any one of claims 1 to 5, wherein the epoxy resin is cured after being mixed with an uncured mixture of the epoxy resin and the catalyst or the curing agent. The epoxy resin composition according to the above. 前記希釈剤は、フェニルグリシジルエーテル、ブチルグリシジルエーテル、3級カルボン酸グリシジルエステル、アリルグリシジルエーテル、スチレンオキサイド、クレジルグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、ポリプロピレングリコールグリシジルエーテルのいずれか一つであることを特徴とする請求項2から6のいずれか1項に記載のエポキシ樹脂組成物。The diluent is one of phenyl glycidyl ether, butyl glycidyl ether, tertiary carboxylic acid glycidyl ester, allyl glycidyl ether, styrene oxide, cresyl glycidyl ether, polyethylene glycol glycidyl ether, and polypropylene glycol glycidyl ether. The epoxy resin composition according to any one of claims 2 to 6, characterized in that: 前記熱可塑性樹脂は、前記エポキシ樹脂と前記触媒または前記硬化剤と前記希釈剤との未硬化混合物と混合された後、前記エポキシ樹脂と前記希釈剤が硬化されたことを特徴とする請求項2から7のいずれか1項に記載のエポキシ樹脂組成物。3. The epoxy resin and the diluent are cured after the thermoplastic resin is mixed with an uncured mixture of the epoxy resin and the catalyst or the curing agent and the diluent. 8. The epoxy resin composition according to any one of items 1 to 7. 請求項1から8に記載のエポキシ樹脂組成物によって、真空雰囲気と接触する表面が形成されていることを特徴とする真空用機器。A vacuum device, wherein a surface that is in contact with a vacuum atmosphere is formed by the epoxy resin composition according to claim 1. 前記エポキシ樹脂組成物の形成方法が、塗布、二層注型、ゲルコート、粉体塗装、プリプレグ貼付のいずれかのコーティングであることを特徴とする請求項9に記載の真空用機器。The vacuum apparatus according to claim 9, wherein the method of forming the epoxy resin composition is any one of coating, two-layer casting, gel coating, powder coating, and prepreg attachment.
JP2002333684A 2002-11-18 2002-11-18 Epoxy resin composition and vacuum equipment using the same Expired - Fee Related JP4054981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333684A JP4054981B2 (en) 2002-11-18 2002-11-18 Epoxy resin composition and vacuum equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333684A JP4054981B2 (en) 2002-11-18 2002-11-18 Epoxy resin composition and vacuum equipment using the same

Publications (2)

Publication Number Publication Date
JP2004168829A true JP2004168829A (en) 2004-06-17
JP4054981B2 JP4054981B2 (en) 2008-03-05

Family

ID=32698331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333684A Expired - Fee Related JP4054981B2 (en) 2002-11-18 2002-11-18 Epoxy resin composition and vacuum equipment using the same

Country Status (1)

Country Link
JP (1) JP4054981B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034042A (en) * 2004-07-20 2006-02-02 Yaskawa Electric Corp Thermosetting resin composite for vacuum and its production
JP2008004595A (en) * 2006-06-20 2008-01-10 Yaskawa Electric Corp Coil molding and linear motor for vacuum using the same
JP2008001730A (en) * 2006-06-20 2008-01-10 Yaskawa Electric Corp Epoxy resin composition for vacuum, its manufacturing method and equipment for vacuum using the resin
JP2009167360A (en) * 2008-01-18 2009-07-30 Yaskawa Electric Corp Vacuum sealing resin, and vacuum device and vacuum magnetic sensor using the resin
JP2010027525A (en) * 2008-07-24 2010-02-04 Yaskawa Electric Corp Vacuum equipment
CN102873949A (en) * 2012-10-24 2013-01-16 天津亿利科能源科技发展股份有限公司 Manufacturing method of antiseptic flame-retarding static conductive composite coating for storage tank
CN112194961A (en) * 2020-08-24 2021-01-08 艾普科模具材料(上海)有限公司 Manufacturing method of spraying gel coat and mold

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034042A (en) * 2004-07-20 2006-02-02 Yaskawa Electric Corp Thermosetting resin composite for vacuum and its production
JP2008004595A (en) * 2006-06-20 2008-01-10 Yaskawa Electric Corp Coil molding and linear motor for vacuum using the same
JP2008001730A (en) * 2006-06-20 2008-01-10 Yaskawa Electric Corp Epoxy resin composition for vacuum, its manufacturing method and equipment for vacuum using the resin
JP2009167360A (en) * 2008-01-18 2009-07-30 Yaskawa Electric Corp Vacuum sealing resin, and vacuum device and vacuum magnetic sensor using the resin
JP2010027525A (en) * 2008-07-24 2010-02-04 Yaskawa Electric Corp Vacuum equipment
CN102873949A (en) * 2012-10-24 2013-01-16 天津亿利科能源科技发展股份有限公司 Manufacturing method of antiseptic flame-retarding static conductive composite coating for storage tank
CN112194961A (en) * 2020-08-24 2021-01-08 艾普科模具材料(上海)有限公司 Manufacturing method of spraying gel coat and mold

Also Published As

Publication number Publication date
JP4054981B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US10424419B2 (en) Insulation system for an electrical machine
Yung et al. Effect of the filler size and content on the thermomechanical properties of particulate aluminum nitride filled epoxy composites
JP2014518921A (en) Insulation compound
BRPI0722152A2 (en) POLYMERIC CONCRETE ELECTRIC INSULATION SYSTEM
JP2014520172A (en) Insulation compound
JP2008179786A (en) Molding composition for producing bipolar plate
JP2004168829A (en) Epoxy resin composition and vacuum equipment using the same
JP5383642B2 (en) Powder coating method and gas insulated switchgear
JP2006022316A (en) Filler for use in epoxy resin composition
JP3022135B2 (en) Epoxy resin composition
JPH1192550A (en) Liquid epoxy resin composition
JP2006193615A (en) Epoxy resin composition for vacuum and vacuum equipment using the same
JP5254359B2 (en) Curable reactive resin system
JP7249209B2 (en) Epoxy resin composition for casting, electronic component, and method for producing electronic component
JP2008237005A (en) Motor coil for vacuums, its manufacturing method, and electric motor for vacuum
JP4863705B2 (en) Filler for epoxy resin composition
Li et al. Insights into the role of surface hydroxyl of the silica fillers in the bulk properties of resulting underfills
JP5515220B2 (en) Sealing resin composition used for vacuum equipment, vacuum equipment using the same, and vacuum magnetic sensor
JP2000086869A (en) Epoxy resin composition and coil
Asif et al. Effect of Interfacial Adhesion on Tensile Strength of 3D Printed Particulate Nanocomposites
CN116985317A (en) Preparation method of resin spline and resin spline
WO2019215955A1 (en) Method for packaging insulated sheet, and packaged article of insulated sheet
US4221750A (en) Method of curing phenolic resin in an electrical apparatus without degrading polyethyleneterephthalate insulation also in the electrical apparatus
JPH0786465A (en) Epoxy resin composition for sealing semiconductor
WO2019003600A1 (en) Sealing resin composition, electronic component, and electronic component manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141221

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees