JP2006032173A - Fuel cell power generation system and stopping method for it - Google Patents

Fuel cell power generation system and stopping method for it Download PDF

Info

Publication number
JP2006032173A
JP2006032173A JP2004210733A JP2004210733A JP2006032173A JP 2006032173 A JP2006032173 A JP 2006032173A JP 2004210733 A JP2004210733 A JP 2004210733A JP 2004210733 A JP2004210733 A JP 2004210733A JP 2006032173 A JP2006032173 A JP 2006032173A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
power generation
fuel
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004210733A
Other languages
Japanese (ja)
Other versions
JP4977311B2 (en
Inventor
Akira Fujio
昭 藤生
Akira Hamada
陽 濱田
Hirokazu Izaki
博和 井崎
Yasushi Sato
康司 佐藤
Takeshi Samura
健 佐村
Akira Goto
後藤  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Eneos Corp
Original Assignee
Sanyo Electric Co Ltd
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Nippon Oil Corp filed Critical Sanyo Electric Co Ltd
Priority to JP2004210733A priority Critical patent/JP4977311B2/en
Publication of JP2006032173A publication Critical patent/JP2006032173A/en
Application granted granted Critical
Publication of JP4977311B2 publication Critical patent/JP4977311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell power generation system and a stopping method for it for safely, economically, and easily stopping the system with causing no damage in a reactor due to high-pressure gas or negative pressure gas generated in stopping or no deterioration of a catalyst by air or condensed water without assembling any nitrogen gas cylinder into the system. <P>SOLUTION: This fuel cell power generation system 1B is provided with a fuel reforming device 10 and a fuel cell 11. The fuel cell power generation system 1B is provided with a circulation gas circulation passage 18, which connects a fuel supply part 16 to the fuel reforming device 10 and a reformed gas discharge part 17 from the fuel reforming device 10 to each other, and a catalyst combustor 21 having an air introducing means 20 introducing air from the outside of the system. A check valve 30 is arranged in the circulation gas circulation passage 18 connecting the catalyst combustor 21 and the fuel reforming device 10 together. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば家庭用の小型電源として好適な燃料電池発電システムおよびその停止方法に関するものである。   The present invention relates to a fuel cell power generation system suitable as, for example, a small power source for home use and a method for stopping the same.

近年、天然ガス、都市ガス、メタノール、LPG、ブタンなどの炭化水素系燃料ガス中に含まれる硫黄を除去する脱硫器と、燃料ガスを水蒸気と反応させて水素に改質する改質器(RF)と、一酸化炭素を変成するCO変成器(SH)と、一酸化炭素を除去するCO除去器(PROX)と、このようにして得られた水素(改質ガス)と空気中の酸素などの酸化剤とを化学反応させて発電する燃料電池とを備えた小型電源としての燃料電池発電システムが提案されている(例えば特許文献1、2、3参照)。   In recent years, a desulfurizer that removes sulfur contained in hydrocarbon fuel gases such as natural gas, city gas, methanol, LPG, and butane, and a reformer (RF that reacts the fuel gas with water vapor to reform hydrogen) ), A CO converter (SH) that converts carbon monoxide, a CO remover (PROX) that removes carbon monoxide, hydrogen (reformed gas) thus obtained, oxygen in the air, etc. There has been proposed a fuel cell power generation system as a small power source provided with a fuel cell that generates electricity by chemically reacting with an oxidant (see, for example, Patent Documents 1, 2, and 3).

燃料極(AN)に水素を含む燃料ガス、空気極(CA)に空気を供給すると、燃料極では、水素分子を水素イオンと電子に分解する燃料極反応、空気極では、酸素と水素イオンと電子から水を生成する電気化学反応がそれぞれ行われ、燃料極から空気極に向かって外部回路を移動する電子により電力が負荷に供給されるとともに、空気極側に水が生成される。   When a fuel gas containing hydrogen is supplied to the fuel electrode (AN) and air is supplied to the air electrode (CA), a fuel electrode reaction that decomposes hydrogen molecules into hydrogen ions and electrons at the fuel electrode, and oxygen and hydrogen ions at the air electrode Electrochemical reactions that generate water from the electrons are performed, and electric power is supplied to the load by electrons moving in the external circuit from the fuel electrode toward the air electrode, and water is generated on the air electrode side.

図11に従来の燃料電池発電システムを示す。
図11に示すように、燃料電池発電システム1Aは、天然ガス、都市ガス、メタノール、LPG、ブタンなどの炭化水素系燃料ガス(LPG)を、閉止弁2を経て脱硫器へ送って脱硫した後、逆止弁40を経て改質器(RF)へ送り、一方、水を閉止弁1を経て気化器へ送って気化して逆止弁50を経て改質器(RF)へ水蒸気を送って燃料ガスを水素に改質した後、得られた改質ガスをCO変成器(SH)へ送って改質ガス中の一酸化炭素を変成し、次いでCO除去器(PROX)へ送って一酸化炭素を除去する燃料改質装置10を備えている。
この燃料改質装置10で得られたCO濃度を低減した水素を閉止弁4を経て燃料電池11の燃料極(AN)へ送るとともに、空気を燃料電池11の空気極(CA)へ送って、燃料極(AN)に供給された改質ガス中の水素と、空気極(CA)へ供給された空気中の酸素との電気化学反応によって発電が行われる。
水蒸気改質による反応は吸熱反応であり、改質反応を維持するための加熱媒体として改質器用バーナ12が使用される。
燃料電池11から排出される水素ガス(オフガス)は閉止弁8を経てバーナ12に供給されるとともに、必要に応じて燃料ガス(LPG)が閉止弁3を経てバーナ12に追加されて燃焼用空気により燃焼して改質器(RF)の改質反応に必要な熱量を供給するようになっている。
FIG. 11 shows a conventional fuel cell power generation system.
As shown in FIG. 11, after the fuel cell power generation system 1A desulfurizes natural gas, city gas, hydrocarbon fuel gas (LPG) such as methanol, LPG, butane, etc., through the shut-off valve 2 and desulfurizes it. The water is sent to the reformer (RF) through the check valve 40, while the water is sent to the vaporizer through the stop valve 1 and vaporized, and the water vapor is sent to the reformer (RF) through the check valve 50. After reforming the fuel gas to hydrogen, the resulting reformed gas is sent to the CO converter (SH) to transform carbon monoxide in the reformed gas, and then sent to the CO remover (PROX) to monoxide A fuel reformer 10 for removing carbon is provided.
The hydrogen obtained by reducing the CO concentration obtained in the fuel reformer 10 is sent to the fuel electrode (AN) of the fuel cell 11 through the shut-off valve 4, and the air is sent to the air electrode (CA) of the fuel cell 11, Power generation is performed by an electrochemical reaction between hydrogen in the reformed gas supplied to the fuel electrode (AN) and oxygen in the air supplied to the air electrode (CA).
The reaction by steam reforming is an endothermic reaction, and the reformer burner 12 is used as a heating medium for maintaining the reforming reaction.
Hydrogen gas (off-gas) discharged from the fuel cell 11 is supplied to the burner 12 through the shut-off valve 8, and fuel gas (LPG) is added to the burner 12 through the shut-off valve 3 as necessary to burn the combustion air. The amount of heat necessary for the reforming reaction of the reformer (RF) is supplied by combustion.

燃料電池発電システム1Aの停止時にはシステム中に可燃性ガスが残留しているとともに、システム中には十分気化していない液体の水が残留しており、出入口を閉止すると、水の気化により反応器内の圧力が上昇したり、出入口を閉止したまま温度が低下すると、反応器内の水蒸気が凝縮して、圧力低下が発生し、反応器内が負圧となり反応器を破損したり、凝縮水が触媒に悪影響を及ぼす問題がある。
一方、出口を開放したまま温度が低下すると、反応器内が負圧になり、外部空気が反応器内に混入し反応触媒が酸化により劣化する問題があり、例えばCO変成触媒にCu−Zn系触媒などを使用すると、酸化反応により反応器が発熱する問題が生じる。
When the fuel cell power generation system 1A is stopped, flammable gas remains in the system, and liquid water that is not sufficiently vaporized remains in the system. When the inlet / outlet is closed, the reactor is caused by vaporization of water. If the pressure in the reactor rises or the temperature drops while the inlet / outlet is closed, the water vapor in the reactor will condense, resulting in a drop in pressure, causing the reactor to become negative pressure, damaging the reactor, Has a problem of adversely affecting the catalyst.
On the other hand, when the temperature is lowered with the outlet opened, the inside of the reactor becomes negative pressure, and there is a problem that external air is mixed into the reactor and the reaction catalyst deteriorates due to oxidation. When a catalyst or the like is used, there arises a problem that the reactor generates heat due to an oxidation reaction.

そこで、燃料ガス供給部の脱硫器の前に開閉弁を備えた窒素ボンベからの窒素供給経路13を設けるとともに、燃料電池11から排出される水素ガス(オフガス)の経路14に開閉弁を備えた排出経路15を設け、燃料電池発電システム1Aの停止時に閉止弁1、2、3を閉めて、窒素ガスを窒素ボンベから燃料ガス供給部を経て燃料改質装置10、燃料電池11へ送り排出経路15から大気に放出するなどしてシステム内を窒素ガスで置換するようにしている。
特開2003−217620号公報 特開2003−217623号公報 特開2000−277137号公報
Therefore, a nitrogen supply path 13 from a nitrogen cylinder provided with an open / close valve is provided in front of the desulfurizer of the fuel gas supply unit, and an open / close valve is provided in the path 14 of hydrogen gas (off-gas) discharged from the fuel cell 11. A discharge path 15 is provided, and when the fuel cell power generation system 1A is stopped, the closing valves 1, 2, and 3 are closed, and nitrogen gas is sent from the nitrogen cylinder to the fuel reformer 10 and the fuel cell 11 through the fuel gas supply unit. The inside of the system is replaced with nitrogen gas by, for example, releasing it from the air to the atmosphere.
JP 2003-217620 A JP 2003-217623 A JP 2000-277137 A

しかし、窒素ガスボンベをシステムに組み込んで使用する方法では窒素ガスボンベ中のガス量のチェック、窒素ガスボンベの交換などの必要があり、システムの管理が煩雑になり、コストアップになるという問題があった。   However, in the method of using a nitrogen gas cylinder incorporated in the system, it is necessary to check the amount of gas in the nitrogen gas cylinder, replace the nitrogen gas cylinder, etc., and there is a problem that the management of the system becomes complicated and the cost increases.

本発明の第1の目的は、窒素ガスボンベをシステムに組み込むことなく、安全に経済的にかつ容易にシステムを停止することができる燃料電池発電システムであって、停止時に出入口を閉止した際に発生する反応器内の圧力上昇を抑え、また出入口を閉止したまま温度が低下する際に発生する反応器内の圧力低下を抑えて、反応器が破損したり、凝縮水が触媒に悪影響を及ぼすのを防止し、また反応器内が負圧になって外部空気が混入し反応触媒が酸化により劣化したり、酸化反応により反応器が発熱するのを防止した燃料電池発電システムを提供することであり、
本発明の第2の目的は、燃料電池発電システムを経済的にかつ容易に停止する方法を提供することである。
A first object of the present invention is a fuel cell power generation system capable of safely, economically and easily shutting down a system without incorporating a nitrogen gas cylinder into the system, and is generated when an inlet / outlet is closed at the time of stopping. The pressure drop in the reactor is suppressed, and the pressure drop in the reactor that occurs when the temperature drops with the inlet / outlet closed is suppressed, causing the reactor to be damaged or the condensed water adversely affecting the catalyst. It is also possible to provide a fuel cell power generation system that prevents the reaction catalyst from deteriorating due to oxidation due to negative pressure inside the reactor due to negative pressure inside the reactor, and preventing the reactor from generating heat due to oxidation reaction. ,
A second object of the present invention is to provide a method for economically and easily stopping a fuel cell power generation system.

上記課題を解消するための本発明の請求項1に記載の燃料電池発電システムは、燃料ガスを水素リッチな改質ガスに改質する燃料改質装置と、改質ガスと空気とを電気化学的に反応させて発電する燃料電池とを具備する燃料電池発電システムであって、
前記燃料改質装置への燃料ガス供給部と前記燃料改質装置からの改質ガス排出部とを連絡する循環ガス循環経路を設けるとともに系外からの空気導入手段を備えた触媒燃焼器を有し、前記触媒燃焼器と前記燃料改質装置間を連結する前記循環ガス循環経路に逆止弁を設けることを特徴とする燃料電池発電システム。
In order to solve the above problems, a fuel cell power generation system according to claim 1 of the present invention comprises a fuel reformer for reforming a fuel gas into a hydrogen-rich reformed gas, an electrochemical reaction between the reformed gas and air. A fuel cell power generation system comprising a fuel cell that generates electricity by reacting automatically,
Provided with a catalytic combustor provided with a circulation gas circulation path for connecting a fuel gas supply unit to the fuel reformer and a reformed gas discharge unit from the fuel reformer and provided with air introduction means from outside the system And a check valve is provided in the circulating gas circulation path connecting the catalytic combustor and the fuel reformer.

本発明の請求項2に記載の燃料電池発電システムは、請求項1記載の燃料電池発電システムにおいて、前記逆止弁と前記触媒燃焼器間を連結する前記循環ガス循環経路から分岐した経路を設け、前記分岐した経路に閉止弁およびバッファタンクを備えたことを特徴とする。   The fuel cell power generation system according to claim 2 of the present invention is the fuel cell power generation system according to claim 1, wherein a path branched from the circulation gas circulation path connecting the check valve and the catalytic combustor is provided. The branched path is provided with a shut-off valve and a buffer tank.

本発明の請求項3に記載の燃料電池発電システムは、請求項2記載の燃料電池発電システムにおいて、前記閉止弁のかわりに真空破壊弁を備えたことを特徴とする。   A fuel cell power generation system according to a third aspect of the present invention is the fuel cell power generation system according to the second aspect, wherein a vacuum break valve is provided instead of the shut-off valve.

本発明の請求項4に記載の燃料電池発電システムは、請求項2記載の燃料電池発電システムにおいて、前記循環ガス循環経路内に気液分離装置を設けたことを特徴とする。   A fuel cell power generation system according to a fourth aspect of the present invention is the fuel cell power generation system according to the second aspect, wherein a gas-liquid separation device is provided in the circulation gas circulation path.

本発明の請求項5に記載の燃料電池発電システムは、請求項2から請求項4のいずれかに記載の燃料電池発電システムにおいて、前記循環ガス循環経路内に圧力計測手段を設けたことを特徴とする。   A fuel cell power generation system according to a fifth aspect of the present invention is the fuel cell power generation system according to any one of the second to fourth aspects, wherein pressure measurement means is provided in the circulation gas circulation path. And

本発明の請求項6は、請求項5記載の燃料電池発電システムの燃料改質装置の停止直後に前記バッファタンクと前記循環ガス循環経路との間を連通状態とし、その後前記循環ガス循環経路内の圧力が予め設定した第1規定値以上になった時点で前記バッファタンクと前記循環ガス循環経路との間を非連通状態とし、そして前記循環ガス循環経路内の圧力が予め設定した第2規定値以下になった時点で前記触媒燃焼器へ空気導入手段により空気供給を開始するとともに前記バッファタンクと前記循環ガス循環経路との間を連通状態とすることを特徴とする燃料電池発電システムの停止方法である。   According to a sixth aspect of the present invention, immediately after the fuel reformer of the fuel cell power generation system according to the fifth aspect of the present invention is stopped, the buffer tank and the circulating gas circulation path are brought into communication with each other. When the pressure becomes equal to or higher than a first predetermined value set in advance, the buffer tank and the circulating gas circulation path are disconnected from each other, and the pressure in the circulating gas circulation path is set to a second predetermined value. When the fuel cell power generation system becomes lower than the value, the supply of air to the catalyst combustor is started by the air introduction means, and the buffer tank and the circulating gas circulation path are in communication with each other. Is the method.

本発明の請求項7は、請求項6記載の停止方法において、前記循環ガス循環経路内の圧力が予め設定した第3規定値となった時点で前記触媒燃焼器への空気供給を停止するとともに前記バッファタンクと前記循環ガス循環経路との間を非連通状態とすることを特徴とする。   According to a seventh aspect of the present invention, in the stopping method according to the sixth aspect, the air supply to the catalytic combustor is stopped when the pressure in the circulating gas circulation path reaches a preset third specified value. The buffer tank and the circulating gas circulation path are not communicated with each other.

本発明の請求項1に記載の燃料電池発電システムは、燃料ガスを水素リッチな改質ガスに改質する燃料改質装置と、改質ガスと空気とを電気化学的に反応させて発電する燃料電池とを具備する燃料電池発電システムであって、
前記燃料改質装置への燃料ガス供給部と前記燃料改質装置からの改質ガス排出部とを連絡する循環ガス循環経路を設けるとともに系外からの空気導入手段を備えた触媒燃焼器を有し、前記触媒燃焼器と前記燃料改質装置間を連結する前記循環ガス循環経路に逆止弁を設けたので、窒素ガスボンベをシステムに組み込むことなく、停止時に発生する高圧ガスや負圧ガスで装置を損傷させることなく、空気や凝縮水で触媒を劣化させることなく、安全に経済的にかつ容易に燃料電池発電システムを停止することができる、という顕著な効果を奏する。
According to a first aspect of the present invention, there is provided a fuel cell power generation system that generates power by electrochemically reacting a reformed gas and air with a fuel reformer that reforms a fuel gas into a hydrogen-rich reformed gas. A fuel cell power generation system comprising a fuel cell,
Provided with a catalytic combustor provided with a circulation gas circulation path for connecting a fuel gas supply unit to the fuel reformer and a reformed gas discharge unit from the fuel reformer and provided with air introduction means from outside the system In addition, since a check valve is provided in the circulating gas circulation path that connects the catalytic combustor and the fuel reformer, a high pressure gas or a negative pressure gas generated at the time of stopping can be used without incorporating a nitrogen gas cylinder into the system. There is a remarkable effect that the fuel cell power generation system can be stopped safely, economically and easily without damaging the apparatus and without deteriorating the catalyst with air or condensed water.

すなわち、燃料電池発電システムの停止時には燃料電池発電システムへの原料燃料ガスや水蒸気の供給を停止し、改質反応に必要な熱量を供給するバーナへの燃焼用燃料ガスの供給を停止し、燃料電池本体への改質ガスの供給も停止する。 前記燃料改質装置中の水分の気化や残ガスの反応により高圧の改質ガスを主体とするガスが生じた時は、この高圧のガスを前記循環ガス循環経路に導入して緩和するので高圧のガスで反応器が損傷を受けたりすることがなくなる。
また、水蒸気が凝縮したりして負圧が大きくなった時は、系外から空気導入手段を経て触媒燃焼器にこの負圧を補償するのに必要な適量の空気を送って系内の高圧の改質ガスを燃焼させ、前記空気中の酸素を消費して窒素にして、窒素を前記循環ガス循環経路を経て前記燃料改質装置へ繰り返し送るようにできるので、停止時に発生する高圧ガスや負圧ガスで反応器が損傷を受けたりせず、負圧で外部空気がシステム中に混入して反応器が損傷を受けたりせず、また触媒が空気や凝縮水で劣化しない、という顕著な効果を奏する。
That is, when the fuel cell power generation system is stopped, the supply of the raw material fuel gas and water vapor to the fuel cell power generation system is stopped, the supply of the combustion fuel gas to the burner that supplies the amount of heat necessary for the reforming reaction is stopped, and the fuel The supply of the reformed gas to the battery body is also stopped. When a gas mainly composed of a high-pressure reformed gas is generated by the vaporization of water in the fuel reformer or the reaction of the residual gas, the high-pressure gas is introduced into the circulation gas circulation path and relaxed. The gas will not damage the reactor.
Also, when the negative pressure increases due to condensation of water vapor, an appropriate amount of air necessary to compensate for this negative pressure is sent from outside the system to the catalytic combustor via the air introduction means. The reformed gas is combusted, oxygen in the air is consumed to form nitrogen, and the nitrogen can be repeatedly sent to the fuel reformer through the circulation gas circulation path. Prominent that negative pressure gas will not damage the reactor, negative pressure will not allow external air to enter the system and damage the reactor, and the catalyst will not be degraded by air or condensed water There is an effect.

本発明の請求項2に記載の燃料電池発電システムは、請求項1記載の燃料電池発電システムにおいて、前記逆止弁と前記触媒燃焼器間を連結する前記循環ガス循環経路から分岐した経路を設け、前記分岐した経路に閉止弁およびバッファタンクを備えたので、燃料電池発電システムの停止時に高圧の改質ガスを主体とするガスが生じた時は、この高圧のガスを前記循環ガス循環経路に導入し、前記分岐した経路の閉止弁を開けて前記バッファタンク内に入れて緩和できるので高圧の改質ガスを主体とするガスで反応器が損傷を受けない。
また水蒸気が凝縮したりして負圧が大きくなった時は、系外から空気導入手段を経て触媒燃焼器にこの負圧を補償するのに必要な適量の空気を送るとともに、前記バッファタンク内に入れた高圧の改質ガスを必要な量だけ触媒燃焼器に送って、燃焼させ、前記空気中の酸素を消費して窒素にして窒素を前記循環ガス循環経路を経て前記燃料改質装置へ繰り返し送るようにできるので、停止時に発生する高圧ガスや負圧ガスで反応器が損傷を受けたりせず、負圧で外部空気がシステム中に混入して反応器が損傷を受けたりせず、また触媒が空気や凝縮水で劣化しないようにできる、というさらなる顕著な効果を奏する。
The fuel cell power generation system according to claim 2 of the present invention is the fuel cell power generation system according to claim 1, wherein a path branched from the circulation gas circulation path connecting the check valve and the catalytic combustor is provided. Since the branch path is provided with a shut-off valve and a buffer tank, when a gas mainly composed of high-pressure reformed gas is generated when the fuel cell power generation system is stopped, the high-pressure gas is supplied to the circulation gas circulation path. Introducing, opening the shut-off valve of the branched path and putting it in the buffer tank can alleviate, so the reactor is not damaged by the gas mainly composed of high pressure reformed gas.
When water vapor is condensed or the negative pressure increases, an appropriate amount of air necessary to compensate for this negative pressure is sent from outside the system to the catalytic combustor through the air introduction means, The required amount of high-pressure reformed gas put into the catalyst is sent to the catalyst combustor to be burnt, and oxygen in the air is consumed to form nitrogen into the fuel reformer through the circulation gas circulation path. Since it can be sent repeatedly, the reactor will not be damaged by high pressure gas or negative pressure gas generated at the time of shutdown, and external air will be mixed into the system at negative pressure and the reactor will not be damaged. Further, there is a further remarkable effect that the catalyst can be prevented from being deteriorated by air or condensed water.

本発明の請求項3に記載の燃料電池発電システムは、請求項2記載の燃料電池発電システムにおいて、前記閉止弁のかわりに真空破壊弁を備えたので、真空・圧力に応じて機械的に自動的に開閉するため電力を節約できるという、さらなる顕著な効果を奏する。   The fuel cell power generation system according to claim 3 of the present invention is the fuel cell power generation system according to claim 2, wherein a vacuum break valve is provided instead of the shut-off valve. As a result, the power can be saved because the door is opened and closed.

本発明の請求項4に記載の燃料電池発電システムは、請求項2記載の燃料電池発電システムにおいて、前記循環ガス循環経路内に気液分離装置を設けたので、例えば、前記バッファタンク内に入れた高圧の改質ガスを必要な量だけ気液分離器を経て触媒燃焼器に送って、燃焼させることができ、また、前記空気中の酸素を消費して窒素にして、この窒素中の水蒸気は気液分離器で分離し、水分を分離した窒素を前記循環ガス循環経路を経て前記燃料改質装置へ繰り返し送るようにできるので、前記燃料改質装置の触媒が凝縮水で劣化しないようにできる、というさらなる顕著な効果を奏する。   A fuel cell power generation system according to a fourth aspect of the present invention is the fuel cell power generation system according to the second aspect, wherein a gas-liquid separation device is provided in the circulation gas circulation path. The necessary amount of the high pressure reformed gas can be sent to the catalytic combustor through the gas-liquid separator and burned, and the oxygen in the air is consumed to form nitrogen, and the water vapor in the nitrogen is Can be separated by a gas-liquid separator, and nitrogen separated from the water can be repeatedly sent to the fuel reformer through the circulation gas circulation path so that the catalyst of the fuel reformer does not deteriorate with condensed water. There is a further remarkable effect that it is possible.

本発明の請求項5に記載の燃料電池発電システムは、請求項2から請求項4のいずれかに記載の燃料電池発電システムにおいて、前記循環ガス循環経路内に圧力計測手段を設けたので、この圧力計測手段により前記循環ガス循環経路内の圧力を計測し、それにより開閉弁の開閉を行って、例えば負圧が大きくなった時は系外から空気導入手段を経て触媒燃焼器に空気を送ったり、前記バッファタンク内に入れた高圧の改質ガスを触媒燃焼器に送ったりすることができる、というさらなる顕著な効果を奏する。   The fuel cell power generation system according to claim 5 of the present invention is the fuel cell power generation system according to any one of claims 2 to 4, wherein pressure measurement means is provided in the circulation gas circulation path. The pressure in the circulating gas circulation path is measured by the pressure measuring means, and the on-off valve is opened and closed.For example, when the negative pressure increases, air is sent from outside the system to the catalytic combustor through the air introducing means. Or a high-pressure reformed gas placed in the buffer tank can be sent to the catalytic combustor.

本発明の請求項6は、請求項5記載の燃料電池発電システムの燃料改質装置の停止直後に前記バッファタンクと前記循環ガス循環経路との間を連通状態とし、その後前記循環ガス循環経路内の圧力が予め設定した第1規定値以上になった時点で前記バッファタンクと前記循環ガス循環経路との間を非連通状態とし、そして前記循環ガス循環経路内の圧力が予め設定した第2規定値以下になった時点で前記触媒燃焼器へ空気導入手段により空気供給を開始するとともに前記バッファタンクと前記循環ガス循環経路との間を連通状態とすることを特徴とする燃料電池発電システムの停止方法であり、窒素ガスボンベをシステムに組み込むことなく、停止時に発生する高圧ガスや負圧ガスで反応器を損傷させずに、触媒を劣化させることなく、安全に経済的にかつ容易に燃料電池発電システムを停止することができる、という顕著な効果を奏する。   According to a sixth aspect of the present invention, immediately after the fuel reformer of the fuel cell power generation system according to the fifth aspect of the present invention is stopped, the buffer tank and the circulating gas circulation path are brought into communication with each other. When the pressure becomes equal to or higher than a first predetermined value set in advance, the buffer tank and the circulating gas circulation path are disconnected from each other, and the pressure in the circulating gas circulation path is set to a second predetermined value. When the fuel cell power generation system becomes lower than the value, the supply of air to the catalyst combustor is started by the air introduction means, and the buffer tank and the circulating gas circulation path are in communication with each other. It is a safe method without degrading the catalyst without incorporating a nitrogen gas cylinder into the system, damaging the reactor with high-pressure gas or negative-pressure gas generated at the time of shutdown. It can be stopped economically and easily the fuel cell power generation system, a marked effect of.

すなわち、燃料電池発電システムの停止時には燃料電池発電システムへの原料燃料ガスや水蒸気の供給を停止し、改質反応に必要な熱量を供給するバーナへの燃焼用燃料ガスの供給を停止し、燃料電池本体への改質ガスの供給も停止する。 前記燃料改質装置中の水分の気化や残ガスの反応により高圧の改質ガスを主体とするガスが生じるので、前記バッファタンクと前記循環ガス循環経路との間を連通状態としこの高圧のガスを前記循環ガス循環経路に導入して前記バッファタンク内に入れて高圧を緩和するようにする。
そして圧が低下して前記循環ガス循環経路内の圧力が予め設定した第1規定値以下になった時点で前記バッファタンクと前記循環ガス循環経路との間を非連通状態として導入した改質ガスを蓄える。
そして圧がさらに低下して負圧になり前記循環ガス循環経路内の圧力が予め設定した第2規定値以下になった時点で、系外から空気導入手段を経て触媒燃焼器にこの負圧を補償するのに必要な適量の空気を送るとともに、前記バッファタンクと前記循環ガス循環経路との間を連通状態として前記バッファタンク内に入れた高圧の改質ガスを必要な量だけ、気液分離器で水分を分離した後、触媒燃焼器に送って燃焼させる。
そして、前記空気中の酸素を消費して窒素にして、この窒素中の水蒸気は気液分離器で分離し、水分を分離した窒素を前記循環ガス循環経路を経て前記燃料改質装置へ繰り返し送るようにしたので、停止時に発生する高圧ガスや負圧ガスで装置が損傷を受けたりせず、負圧で外部空気がシステム中に混入して配管などの装置が損傷を受けたりせず、空気や凝縮水で前記各触媒を劣化させることがない、という顕著な効果を奏する。
That is, when the fuel cell power generation system is stopped, the supply of the raw material fuel gas and water vapor to the fuel cell power generation system is stopped, the supply of the combustion fuel gas to the burner that supplies the amount of heat necessary for the reforming reaction is stopped, and the fuel The supply of the reformed gas to the battery body is also stopped. Since the gas mainly composed of high-pressure reformed gas is generated by the vaporization of water in the fuel reformer and the reaction of residual gas, the high-pressure gas is brought into communication between the buffer tank and the circulation gas circulation path. Is introduced into the circulating gas circulation path and placed in the buffer tank to relieve high pressure.
Then, the reformed gas introduced in a non-communication state between the buffer tank and the circulation gas circulation path when the pressure decreases and the pressure in the circulation gas circulation path becomes equal to or lower than a first predetermined value set in advance. Store.
Then, when the pressure further decreases and becomes negative pressure, and the pressure in the circulating gas circulation path becomes equal to or lower than a preset second specified value, this negative pressure is applied to the catalytic combustor from outside the system through the air introduction means. An appropriate amount of air necessary for compensation is sent, and a necessary amount of high-pressure reformed gas placed in the buffer tank with the buffer tank and the circulating gas circulation path in communication with each other is separated into gas and liquid. After the water is separated by the vessel, it is sent to the catalyst combustor for combustion.
Then, oxygen in the air is consumed to form nitrogen, and water vapor in the nitrogen is separated by a gas-liquid separator, and nitrogen separated from moisture is repeatedly sent to the fuel reformer through the circulation gas circulation path. As a result, the equipment is not damaged by the high-pressure gas or negative-pressure gas generated at the time of shutdown, and external air is mixed into the system due to negative pressure and equipment such as piping is not damaged. In addition, there is a remarkable effect that the respective catalysts are not deteriorated by condensed water.

本発明の請求項7は、請求項6記載の停止方法において、その後、前記循環ガス循環経路内の圧力が予め設定した第3規定値となった時点で前記触媒燃焼器への空気供給を停止するとともに前記バッファタンクと前記循環ガス循環経路との間を非連通状態とするので、前記バッファタンク内の圧力を維持でき、繰り返し前記バッファタンク内のガスを使用して負圧を解消できる、というさらなる顕著な効果を奏する。   According to a seventh aspect of the present invention, in the stopping method according to the sixth aspect, after that, the air supply to the catalytic combustor is stopped when the pressure in the circulating gas circulation path reaches a preset third specified value. In addition, since the buffer tank and the circulating gas circulation path are in a non-communication state, the pressure in the buffer tank can be maintained, and the negative pressure can be eliminated by repeatedly using the gas in the buffer tank. There is a further remarkable effect.

次に本発明を図を用いて実施の形態に基づいて詳細に説明する。
[第1の実施の形態]
図1は、本発明の燃料電池発電システムの1例を模式的に説明する説明図である。
図1に示すように、本発明の燃料電池発電システム1Bは、天然ガス、都市ガス、メタノール、LPG、ブタンなどの炭化水素系燃料ガス(LPG)を、燃料ガス供給部16の閉止弁2を経て脱硫器へ送って、脱硫した後、逆止弁40を経て改質器(RF)へ送り、一方、水を閉止弁1を経て気化器へ送って気化して水蒸気として逆止弁50を経て改質器(RF)へ送って水蒸気を添加して燃料ガスを水素に改質した後、得られた改質ガスをCO変成器(SH)へ送って改質ガス中の一酸化炭素を変成し、次いでCO除去器(PROX)へ送って一酸化炭素を除去する燃料改質装置10を備えている。
この燃料改質装置10で得られたCO濃度を低減した水素を改質ガス排出部17の改質ガス供給経路19の閉止弁4を経て燃料電池11の燃料極(AN)へ送るとともに、空気を燃料電池11の空気極(CA)へ送って、燃料極(AN)に供給された改質ガス中の水素と、空気極(CA)へ供給された空気中の酸素との電気化学反応によって発電が行われる。
水蒸気改質による反応は吸熱反応であり、改質反応を維持するための加熱媒体として改質器用バーナ12が使用される。
燃料電池11から排出される水素ガス(オフガス)が閉止弁8を経てバーナ12に供給されるとともに、必要に応じて燃料ガス(LPG)が閉止弁3を経てバーナ12に追加されて燃焼用空気により燃焼して改質器(RF)の改質反応に必要な熱量を供給するようになっている。
Next, the present invention will be described in detail based on embodiments with reference to the drawings.
[First Embodiment]
FIG. 1 is an explanatory diagram schematically illustrating an example of a fuel cell power generation system according to the present invention.
As shown in FIG. 1, the fuel cell power generation system 1B of the present invention uses a hydrocarbon fuel gas (LPG) such as natural gas, city gas, methanol, LPG, butane, etc., and a shutoff valve 2 of the fuel gas supply unit 16. After being sent to the desulfurizer and desulfurized, it is sent to the reformer (RF) via the check valve 40, while water is sent to the vaporizer via the shutoff valve 1 and vaporized to form the check valve 50 as water vapor. Then, it is sent to the reformer (RF) and steam is added to reform the fuel gas to hydrogen, and the resulting reformed gas is sent to the CO converter (SH) to convert the carbon monoxide in the reformed gas. A fuel reformer 10 is provided that transforms and then sends to a CO remover (PROX) to remove carbon monoxide.
The hydrogen having a reduced CO concentration obtained by the fuel reformer 10 is sent to the fuel electrode (AN) of the fuel cell 11 through the shut-off valve 4 of the reformed gas supply path 19 of the reformed gas discharge unit 17 and air. Is sent to the air electrode (CA) of the fuel cell 11 by an electrochemical reaction between hydrogen in the reformed gas supplied to the fuel electrode (AN) and oxygen in the air supplied to the air electrode (CA). Power generation is performed.
The reaction by steam reforming is an endothermic reaction, and the reformer burner 12 is used as a heating medium for maintaining the reforming reaction.
Hydrogen gas (off-gas) discharged from the fuel cell 11 is supplied to the burner 12 via the shut-off valve 8 and, if necessary, fuel gas (LPG) is added to the burner 12 via the shut-off valve 3 and combustion air. The amount of heat necessary for the reforming reaction of the reformer (RF) is supplied by combustion.

本発明の燃料電池発電システム1Bは、燃料改質装置10へ燃料ガスを供給する燃料ガス供給部16と燃料改質装置10から改質ガスを排出する改質ガス排出部17を連絡する循環ガス循環経路18が、燃料電池11本体への改質ガス供給経路19とは別に設けられている。
そして、循環ガス循環経路18には、圧力計測手段22、逆止弁30、気液分離器23、系外からの空気導入手段20(閉止弁7)を備えた触媒燃焼器(水素を燃焼させるための例えば担体に担持した白金触媒などを充填してある)21、気液分離器24、閉止弁6を設けるとともに、逆止弁30と触媒燃焼器21間を連結する循環ガス循環経路18に循環ガス循環経路18から分岐した経路25を設け、分岐した経路25に閉止弁5およびバッファタンク26が設けられている。
循環ガス循環経路18は燃料ガス供給部16の逆止弁40の後に連結されており、そして循環ガス循環経路18内のガスを循環できるようになっている。
The fuel cell power generation system 1B of the present invention is a circulating gas that communicates a fuel gas supply unit 16 that supplies fuel gas to the fuel reformer 10 and a reformed gas discharge unit 17 that discharges reformed gas from the fuel reformer 10. A circulation path 18 is provided separately from the reformed gas supply path 19 to the main body of the fuel cell 11.
In the circulating gas circulation path 18, a catalytic combustor (hydrogen is combusted) provided with a pressure measuring means 22, a check valve 30, a gas-liquid separator 23, and an air introduction means 20 (close valve 7) from outside the system. (For example, a platinum catalyst supported on a carrier is filled) 21, a gas-liquid separator 24, a shut-off valve 6 are provided, and a circulating gas circulation path 18 that connects the check valve 30 and the catalytic combustor 21 is provided. A path 25 branched from the circulating gas circulation path 18 is provided, and the shutoff valve 5 and the buffer tank 26 are provided in the branched path 25.
The circulation gas circulation path 18 is connected after the check valve 40 of the fuel gas supply unit 16 so that the gas in the circulation gas circulation path 18 can be circulated.

図2は、図1に示した燃料電池発電システム1Bの停止時における燃料改質装置内の圧力、温度の経時的変化を示すグラフおよび各閉止弁の開閉状態との関係を示す説明図である。
図3は、図1に示した燃料電池発電システム1Bの停止時における各閉止弁の開閉状態との関係を示すフローチャートである。
図2の左縦軸は燃料改質装置内の圧力(実線)、右縦軸は改質器(RF)内温度(波線)、横軸は経過時間を示し、経過時間に対応する温度、圧力、閉止弁1〜8の開閉状態を示してある。
FIG. 2 is an explanatory diagram showing a graph showing changes over time in pressure and temperature in the fuel reformer when the fuel cell power generation system 1B shown in FIG. 1 is stopped, and a relationship between the open / close states of the respective shut-off valves. .
FIG. 3 is a flowchart showing the relationship between the open / close states of the shut-off valves when the fuel cell power generation system 1B shown in FIG. 1 is stopped.
In FIG. 2, the left vertical axis represents the pressure in the fuel reformer (solid line), the right vertical axis represents the reformer (RF) temperature (dashed line), the horizontal axis represents the elapsed time, and the temperature and pressure corresponding to the elapsed time. The open / closed states of the shut-off valves 1 to 8 are shown.

図2、3に示すように、燃料電池発電システム1Bの停止時には、閉止弁1、2、3、4、8を閉める(閉止弁6、7は運転中は閉めてある)。そして閉止弁5を開ける。このようにして原料燃料ガスや水蒸気の供給を停止し、改質反応に必要な熱量を供給するバーナへの燃焼用燃料ガスの供給を停止し、燃料電池11本体への改質ガスの供給も停止すると燃料改質装置10中の水分の気化や残ガスの反応により高圧の改質ガスを主体とするガスが生じるが、この高圧のガスは循環ガス循環経路18に入り、逆止弁30を通って分岐した経路25に入り閉止弁5を経てバッファタンク26に導入される。高い圧力は緩和され、時間経過とともに燃料改質装置10内の圧力と温度は低下する。   As shown in FIGS. 2 and 3, when the fuel cell power generation system 1B is stopped, the closing valves 1, 2, 3, 4, and 8 are closed (the closing valves 6 and 7 are closed during operation). Then, the stop valve 5 is opened. In this way, the supply of the raw material fuel gas and water vapor is stopped, the supply of the combustion fuel gas to the burner that supplies the amount of heat necessary for the reforming reaction is stopped, and the reformed gas is also supplied to the fuel cell 11 body. When stopped, gas mainly composed of high-pressure reformed gas is generated by the vaporization of water in the fuel reformer 10 and the reaction of the residual gas. This high-pressure gas enters the circulating gas circulation path 18 and the check valve 30 is turned on. It enters into a path 25 branched through and is introduced into the buffer tank 26 through the closing valve 5. The high pressure is relieved, and the pressure and temperature in the fuel reformer 10 decrease with time.

圧力計測手段22により計測された圧力が0kPa以下になった時(循環ガス循環経路18内の水蒸気が凝縮したりして負圧が大きくなった時)、閉止弁7、閉止弁6を開く。
そして、系外から空気導入手段20(閉止弁7)を経て触媒燃焼器21にこの負圧を補償するのに必要な適量の空気を送る。
同時にバッファタンク26内に入れた高圧の改質ガスを必要な量だけ閉止弁5を経た後、気液分離器23で水分を分離し、触媒燃焼器21に送って、改質ガスを燃焼させ、空気中の酸素を消費して、残ガスは窒素主体のガスにする。
この窒素中の水蒸気を気液分離器24で分離し、水分を分離した窒素を閉止弁6を通して循環ガス循環経路18を経て燃料改質装置10へ送る。
When the pressure measured by the pressure measuring means 22 becomes 0 kPa or less (when the water pressure in the circulating gas circulation path 18 condenses or the negative pressure increases), the closing valve 7 and the closing valve 6 are opened.
Then, an appropriate amount of air necessary to compensate for this negative pressure is sent from outside the system to the catalytic combustor 21 through the air introduction means 20 (the shut-off valve 7).
At the same time, after passing the required amount of high-pressure reformed gas in the buffer tank 26 through the shut-off valve 5, water is separated by the gas-liquid separator 23 and sent to the catalytic combustor 21 to burn the reformed gas. The oxygen in the air is consumed, and the remaining gas is converted to a nitrogen-based gas.
The water vapor in the nitrogen is separated by the gas-liquid separator 24, and the nitrogen from which the water has been separated is sent to the fuel reformer 10 through the shut-off valve 6 and the circulation gas circulation path 18.

そして圧力計測手段22により計測された圧力が−0.5kPa以上になったら閉止弁7を閉じる。閉止弁7を閉じた際、バッファタンク26内の圧力を保持することで、次回の触媒燃焼器21への改質ガス供給が可能になるので閉止弁5も閉じることが好ましい。
そして同圧力が−3kPa以下になったら閉止弁7を開け前記のように水分を分離した窒素を閉止弁6を通して循環ガス循環経路18を経て燃料改質装置10へ送る。そして、同圧力が−0.5kPa以上になったら閉止弁7を閉じる。
そして、改質器(RF)の図示しない温度計による温度計測を行い、室温になるまでこの操作を繰り返し、室温になったら閉止弁5、閉止弁6を閉じ、次回の運転まで待機する。
このようにして燃料電池発電システムを停止することにより、窒素ガスボンベをシステムに組み込むことなく、高圧ガスや負圧ガスで装置を損傷させずに、また各触媒を劣化させることなく、安全に経済的にかつ容易に停止することができる。
When the pressure measured by the pressure measuring means 22 becomes −0.5 kPa or more, the closing valve 7 is closed. Since the reformed gas can be supplied to the catalytic combustor 21 next time by holding the pressure in the buffer tank 26 when the closing valve 7 is closed, the closing valve 5 is also preferably closed.
When the pressure becomes -3 kPa or less, the shut-off valve 7 is opened and nitrogen separated from the water as described above is sent to the fuel reformer 10 through the shut-off valve 6 and the circulating gas circulation path 18. When the pressure becomes −0.5 kPa or more, the stop valve 7 is closed.
Then, the temperature is measured by a thermometer (not shown) of the reformer (RF) and this operation is repeated until the temperature reaches room temperature. When the temperature reaches room temperature, the closing valve 5 and the closing valve 6 are closed, and the next operation is awaited.
By shutting down the fuel cell power generation system in this way, it is safe and economical without incorporating nitrogen gas cylinders into the system, without damaging the equipment with high pressure gas or negative pressure gas, and without degrading each catalyst. And can be stopped easily.

[第2の実施の形態]
図4は、図1に示した燃料電池発電システム1Bの他の実施の形態の停止時における燃料改質装置内の圧力、温度の経時的変化を示すグラフおよび各閉止弁の開閉状態との関係を示す説明図である。
図5は、図1に示した燃料電池発電システム1Bの他の実施の形態の停止時における各閉止弁の開閉状態との関係を示すフローチャートである。
図4の左縦軸は燃料改質装置内の圧力(実線)、右縦軸は改質器(RF)内温度(波線)、横軸は経過時間を示し、経過時間に対応する閉止弁1〜8の開閉状態を示してある。
[Second Embodiment]
FIG. 4 is a graph showing changes over time in the pressure and temperature in the fuel reformer when the fuel cell power generation system 1B shown in FIG. 1 is stopped, and the relationship between the open / close states of the shut-off valves. It is explanatory drawing which shows.
FIG. 5 is a flowchart showing the relationship between the open / close state of each shut-off valve when the fuel cell power generation system 1B shown in FIG. 1 is stopped according to another embodiment.
In FIG. 4, the left vertical axis represents the pressure in the fuel reformer (solid line), the right vertical axis represents the reformer (RF) temperature (dashed line), the horizontal axis represents the elapsed time, and the closing valve 1 corresponding to the elapsed time. -8 open / closed states are shown.

第2の実施の形態は、図1に示したバッファタンク26として、内容積可変の構造を有する膨張タンク、例えば、水封式可動タンクやジャバラ式あるいはシリンダ式あるいは風船式などの内容積可変の構造を有する膨張タンクを用いた以外は第1の実施の形態と同様になっている。
図4、5に示すように、燃料電池発電システム1Bの停止時には、閉止弁1、2、3、4、8を閉める(閉止弁6、7は運転中は閉めてある)。そして閉止弁5を開ける。このようにして原料燃料ガスや水蒸気の供給を停止し、改質反応に必要な熱量を供給するバーナへの燃焼用燃料ガスの供給を停止し、燃料電池11本体への改質ガスの供給も停止すると燃料改質装置10中の水分の気化や残ガスの反応により高圧の改質ガスを主体とするガスが生じるが、この高圧のガスは循環ガス循環経路18に入り、逆止弁30を通って分岐した経路25に入り閉止弁5を経てバッファタンク(内容積可変の構造を有する膨張タンク)26に導入され、この高い圧力は容易に緩和されほぼ0kPa(大気圧)となり、温度は時間とともに低下する。
In the second embodiment, as the buffer tank 26 shown in FIG. 1, an expansion tank having a variable internal volume structure, for example, a water-sealable movable tank, a bellows type, a cylinder type, a balloon type or the like, which has a variable internal volume. It is the same as that of 1st Embodiment except having used the expansion tank which has a structure.
As shown in FIGS. 4 and 5, when the fuel cell power generation system 1B is stopped, the closing valves 1, 2, 3, 4, and 8 are closed (the closing valves 6 and 7 are closed during operation). Then, the stop valve 5 is opened. In this way, the supply of the raw material fuel gas and water vapor is stopped, the supply of the combustion fuel gas to the burner that supplies the amount of heat necessary for the reforming reaction is stopped, and the reformed gas is also supplied to the fuel cell 11 body. When stopped, gas mainly composed of high-pressure reformed gas is generated by the vaporization of water in the fuel reformer 10 and the reaction of the residual gas. This high-pressure gas enters the circulating gas circulation path 18 and the check valve 30 is turned on. It passes through the branched path 25 and is introduced into the buffer tank (expansion tank having a variable internal volume structure) 26 through the shut-off valve 5, and this high pressure is easily relieved to almost 0 kPa (atmospheric pressure), and the temperature is changed over time. Decreases with.

圧力計測手段22により計測された圧力が0kPa以下になった時以降は、図5に示したように、閉止弁7、閉止弁6を開く。そして、系外から空気導入手段20(閉止弁7)を経て触媒燃焼器21にこの負圧を補償するのに必要な適量の空気を吸引させるとともに、バッファタンク26内に入れた高圧の改質ガスを必要な量だけ閉止弁5を経た後、気液分離器23で水分を分離し、触媒燃焼器21に送って、改質ガスを燃焼させ、空気中の酸素を消費して、残ガスは窒素主体のガスにして、この窒素中の水蒸気を気液分離器24で分離し、水分を分離した窒素を閉止弁6を通して循環ガス循環経路18を経て燃料改質装置10へ送る。
そして圧力計測手段22により計測された圧力が−0.5kPa以上になったら閉止弁7を閉じる。閉止弁7を閉じた際、バッファタンク26内の圧力を保持することで、次回の触媒燃焼器21への改質ガス供給が可能になるので閉止弁5も閉じることが好ましい。
そして同圧力が−3kPa以下になったら閉止弁7を開け前記のように水分を分離した窒素を閉止弁6を通して循環ガス循環経路18を経て燃料改質装置10へ送る。そして、同圧力が−0.5kPa以上になったら閉止弁7を閉じる。
そして、改質器(RF)の図示しない温度計による温度計測を行い、室温になるまでこの操作を繰り返し、室温になったら閉止弁5、閉止弁6を閉じ、次回の運転まで待機する。
このようにして燃料電池発電システムを停止することにより、窒素ガスボンベをシステムに組み込むことなく、高圧ガスや負圧ガスで装置を損傷させずに、また各触媒を劣化させることなく、安全に経済的にかつ容易に停止することができる。
After the pressure measured by the pressure measuring means 22 becomes 0 kPa or less, the closing valve 7 and the closing valve 6 are opened as shown in FIG. Then, an appropriate amount of air necessary to compensate for this negative pressure is sucked into the catalytic combustor 21 from outside the system through the air introduction means 20 (the shut-off valve 7), and the high-pressure reforming put in the buffer tank 26. After passing the required amount of gas through the shut-off valve 5, water is separated by the gas-liquid separator 23 and sent to the catalytic combustor 21 to burn the reformed gas, consuming oxygen in the air, and residual gas Is converted into a gas mainly composed of nitrogen, the water vapor in the nitrogen is separated by the gas-liquid separator 24, and the nitrogen from which the moisture has been separated is sent to the fuel reformer 10 through the shut-off valve 6 and the circulation gas circulation path 18.
When the pressure measured by the pressure measuring means 22 becomes −0.5 kPa or more, the closing valve 7 is closed. Since the reformed gas can be supplied to the catalytic combustor 21 next time by holding the pressure in the buffer tank 26 when the closing valve 7 is closed, the closing valve 5 is also preferably closed.
When the pressure becomes -3 kPa or less, the shut-off valve 7 is opened and nitrogen separated from the water as described above is sent to the fuel reformer 10 through the shut-off valve 6 and the circulating gas circulation path 18. When the pressure becomes −0.5 kPa or more, the stop valve 7 is closed.
Then, the temperature is measured by a thermometer (not shown) of the reformer (RF) and this operation is repeated until the temperature reaches room temperature. When the temperature reaches room temperature, the closing valve 5 and the closing valve 6 are closed, and the next operation is awaited.
By shutting down the fuel cell power generation system in this way, it is safe and economical without incorporating nitrogen gas cylinders into the system, without damaging the equipment with high pressure gas or negative pressure gas, and without degrading each catalyst. And can be stopped easily.

[第3の実施の形態]
図6は、図1に示した燃料電池発電システム1Bの他の実施の形態の停止時における燃料改質装置内の圧力、温度の経時的変化を示すグラフおよび各閉止弁の開閉状態との関係を示す説明図である。
図7は、図1に示した燃料電池発電システム1Bの他の実施の形態の停止時における各閉止弁の開閉状態との関係を示すフローチャートである。
図6の左縦軸は燃料改質装置内の圧力(実線)、右縦軸は改質器(RF)内温度(波線)、横軸は経過時間を示し、経過時間に対応する閉止弁1〜8の開閉状態を示してある。
[Third Embodiment]
FIG. 6 is a graph showing changes over time in the pressure and temperature in the fuel reformer when the fuel cell power generation system 1B shown in FIG. 1 is stopped, and the relationship between the open / close states of the shut-off valves. It is explanatory drawing which shows.
FIG. 7 is a flowchart showing the relationship between the open / close state of each shut-off valve when the fuel cell power generation system 1B shown in FIG. 1 is stopped according to another embodiment.
In FIG. 6, the left vertical axis represents the pressure in the fuel reformer (solid line), the right vertical axis represents the reformer (RF) temperature (dashed line), the horizontal axis represents the elapsed time, and the closing valve 1 corresponding to the elapsed time. -8 open / closed states are shown.

図6、7に示すように、燃料電池発電システム1Bの停止時には、閉止弁1、2、3、4、8を閉める(閉止弁6、7は運転中は閉めてある)。そして閉止弁5を開ける。このようにして原料燃料ガスや水蒸気の供給を停止し、改質反応に必要な熱量を供給するバーナへの燃焼用燃料ガスの供給を停止し、燃料電池11本体への改質ガスの供給も停止すると燃料改質装置10中の水分の気化や残ガスの反応により高圧の改質ガスを主体とするガスが生じるが、この高圧のガスは循環ガス循環経路18に入り、逆止弁30を通って分岐した経路25に入り閉止弁5を経てバッファタンク26に導入される。高い圧力は緩和され、時間経過とともに燃料改質装置10内の圧力と温度は低下する。   As shown in FIGS. 6 and 7, when the fuel cell power generation system 1B is stopped, the closing valves 1, 2, 3, 4, and 8 are closed (the closing valves 6 and 7 are closed during operation). Then, the stop valve 5 is opened. In this way, the supply of the raw material fuel gas and water vapor is stopped, the supply of the combustion fuel gas to the burner that supplies the amount of heat necessary for the reforming reaction is stopped, and the reformed gas is also supplied to the fuel cell 11 body. When stopped, gas mainly composed of high-pressure reformed gas is generated by the vaporization of water in the fuel reformer 10 and the reaction of the residual gas. This high-pressure gas enters the circulating gas circulation path 18 and the check valve 30 is turned on. It enters into a path 25 branched through and is introduced into the buffer tank 26 through the closing valve 5. The high pressure is relaxed, and the pressure and temperature in the fuel reformer 10 decrease with time.

しかし水分の気化などにより圧力計測手段22により計測された圧力が40kPa(第1規定値の例)以上になった時は一旦閉止弁5を閉じ、バッファタンク26へ改質ガスを蓄える。
そして同圧力が0kPa(第2規定値の例)以下になった時(循環ガス循環経路18内の水蒸気が凝縮したりして負圧が大きくなった時)、閉止弁7、閉止弁6、閉止弁5を開く。
そして、系外から空気導入手段20(閉止弁7)を経て触媒燃焼器21にこの負圧を補償するのに必要な適量の空気を送るとともに、バッファタンク26内に入れた高圧の改質ガスを必要な量だけ閉止弁5を経た後、気液分離器23で水分を分離し、触媒燃焼器21に送って、改質ガスを燃焼させ、導入した空気中の酸素を消費して、残ガスは窒素主体のガスにして、この窒素中の水蒸気を気液分離器24で分離し、水分を分離した窒素を閉止弁6を通して循環ガス循環経路18を経て燃料改質装置10へ送る。
However, when the pressure measured by the pressure measuring means 22 becomes 40 kPa (example of the first specified value) or more due to vaporization of moisture or the like, the shutoff valve 5 is temporarily closed and the reformed gas is stored in the buffer tank 26.
When the pressure becomes 0 kPa (example of the second specified value) or less (when the water vapor in the circulation gas circulation path 18 is condensed or the negative pressure is increased), the closing valve 7, the closing valve 6, Open the shut-off valve 5.
Then, an appropriate amount of air necessary to compensate for this negative pressure is sent from the outside of the system to the catalytic combustor 21 via the air introduction means 20 (close valve 7), and the high-pressure reformed gas placed in the buffer tank 26 is supplied. After the required amount passes through the shut-off valve 5, the moisture is separated by the gas-liquid separator 23 and sent to the catalytic combustor 21 to burn the reformed gas, consuming oxygen in the introduced air, and the remaining The gas is a nitrogen-based gas, the water vapor in the nitrogen is separated by the gas-liquid separator 24, and the nitrogen from which the moisture has been separated is sent to the fuel reformer 10 through the closed valve 6 and the circulation gas circulation path 18.

そして同圧力が−0.5kPa(第3規定値の例)以上になったら閉止弁5、閉止弁7を閉じる。閉止弁7を閉じた際、バッファタンク26内の圧力を保持することで、次回の触媒燃焼器21への改質ガス供給が可能になるので閉止弁5も閉じることが好ましい。
そして、同圧力が−3kPa以下になったら閉止弁5、閉止弁7を開け、前記水分を分離した窒素を循環ガス循環経路18を経て燃料改質装置10へ送る。そして、同圧力が−0.5kPa以上になったら閉止弁5、閉止弁7を閉じる。
そして、そして、改質器(RF)の図示しない温度計による温度計測の結果、室温になった時、閉止弁6を閉じ、次回の運転まで待機する。
このようにして燃料電池発電システムを停止することにより、窒素ガスボンベをシステムに組み込むことなく、高圧ガスや負圧ガスで装置を損傷させずに、また各触媒を劣化させることなく、安全に経済的にかつ容易に停止することができる。
When the pressure becomes -0.5 kPa (example of the third specified value) or more, the closing valve 5 and the closing valve 7 are closed. Since the reformed gas can be supplied to the catalytic combustor 21 next time by holding the pressure in the buffer tank 26 when the closing valve 7 is closed, the closing valve 5 is also preferably closed.
When the pressure becomes -3 kPa or less, the shutoff valve 5 and the shutoff valve 7 are opened, and nitrogen separated from the moisture is sent to the fuel reformer 10 through the circulation gas circulation path 18. When the pressure becomes −0.5 kPa or more, the closing valve 5 and the closing valve 7 are closed.
Then, as a result of temperature measurement by a thermometer (not shown) of the reformer (RF), when the temperature reaches room temperature, the shutoff valve 6 is closed and the next operation is awaited.
By shutting down the fuel cell power generation system in this way, it is safe and economical without incorporating nitrogen gas cylinders into the system, without damaging the equipment with high pressure gas or negative pressure gas, and without degrading each catalyst. And can be stopped easily.

[第4の実施の形態]
図8は、本発明の燃料電池発電システムの他の例を模式的に説明する説明図である。
図8に示した本発明の燃料電池発電システム1Cは、図1に示した本発明の燃料電池発電システム1Bの閉止弁7が、機械的に自動的に閉止、復帰を繰り返すことができる真空破壊弁20Aに代えた以外は同じようになっている。
図9は、図8に示した燃料電池発電システム1Cの停止時における燃料改質装置内の圧力、温度の経時的変化を示すグラフおよび各閉止弁の開閉状態との関係を示す説明図である。
図10は、図8に示した燃料電池発電システム1Cの停止時における各閉止弁の開閉状態との関係を示すフローチャートである。
図9の左縦軸は燃料改質装置内の圧力(実線)、右縦軸は改質器(RF)内温度(波線)、横軸は経過時間を示し、経過時間に対応する閉止弁1〜8の開閉状態を示してある。
[Fourth Embodiment]
FIG. 8 is an explanatory diagram schematically illustrating another example of the fuel cell power generation system of the present invention.
The fuel cell power generation system 1C according to the present invention shown in FIG. 8 is a vacuum breaker in which the shutoff valve 7 of the fuel cell power generation system 1B according to the present invention shown in FIG. It is the same except having replaced with valve 20A.
FIG. 9 is an explanatory diagram showing a graph showing changes in pressure and temperature with time in the fuel reformer when the fuel cell power generation system 1C shown in FIG. 8 is stopped, and a relationship between the open / close states of the respective shut-off valves. .
FIG. 10 is a flowchart showing the relationship between the open / close states of the shut-off valves when the fuel cell power generation system 1C shown in FIG. 8 is stopped.
In FIG. 9, the left vertical axis represents the pressure in the fuel reformer (solid line), the right vertical axis represents the reformer (RF) temperature (dashed line), the horizontal axis represents the elapsed time, and the closing valve 1 corresponding to the elapsed time. -8 open / closed states are shown.

図9、10に示すように、燃料電池発電システム1Cの停止時には、閉止弁1、2、3、4、8を閉める(閉止弁6は運転中は閉めてある)。真空破壊弁20Aは閉まっている。そして閉止弁5を開ける。
このようにして原料燃料ガスや水蒸気の供給を停止し、改質反応に必要な熱量を供給するバーナへの燃焼用燃料ガスの供給を停止し、燃料電池11本体への改質ガスの供給も停止すると燃料改質装置10中の水分の気化や残ガスの反応により高圧の改質ガスを主体とするガスが生じるが、この高圧のガスは循環ガス循環経路18に入り、逆止弁30を通って分岐した経路25に入り閉止弁5を経てバッファタンク26に導入される。高い圧力は緩和され、時間経過とともに燃料改質装置10内の圧力と温度は低下する。
As shown in FIGS. 9 and 10, when the fuel cell power generation system 1C is stopped, the closing valves 1, 2, 3, 4, and 8 are closed (the closing valve 6 is closed during operation). The vacuum break valve 20A is closed. Then, the stop valve 5 is opened.
In this way, the supply of the raw material fuel gas and water vapor is stopped, the supply of the combustion fuel gas to the burner that supplies the amount of heat necessary for the reforming reaction is stopped, and the reformed gas is also supplied to the fuel cell 11 body. When stopped, gas mainly composed of high-pressure reformed gas is generated by the vaporization of water in the fuel reformer 10 and the reaction of the residual gas. This high-pressure gas enters the circulating gas circulation path 18 and the check valve 30 is turned on. It enters into a path 25 branched through and is introduced into the buffer tank 26 through the closing valve 5. The high pressure is relaxed, and the pressure and temperature in the fuel reformer 10 decrease with time.

圧力計測手段22により計測された圧力が0kPa以下になった時(循環ガス循環経路18内の水蒸気が凝縮したりして負圧が大きくなった時)、閉止弁6を開く。
すると、真空破壊弁20Aが自動的に開いて、真空破壊弁20Aを経て触媒燃焼器21にこの負圧を補償するのに必要な適量の空気が系外から送られ、バッファタンク26内に入れた高圧の改質ガスの必要な量が閉止弁5を経た後、気液分離器23で水分が分離され触媒燃焼器21に送られ、改質ガスが燃焼して、導入された空気中の酸素を消費して、残ガスは窒素主体のガスになり、この窒素中の水蒸気が気液分離器24で分離され、水分を分離した窒素が閉止弁6を通して循環ガス循環経路18を経て燃料改質装置10へ送られる。
圧力計測手段22により計測された圧力が上昇して、所定圧力(例えば、−0.5kPa以上)になるとこの真空破壊弁20Aが自動的に閉まり、以後これを繰り返す。
そして改質器(RF)の図示しない温度計による温度計測の結果、室温になった時、閉止弁5、閉止弁6を閉じ、次回の運転まで待機する。
このようにして燃料電池発電システムを停止することにより、窒素ガスボンベをシステムに組み込むことなく、高圧ガスや負圧ガスで装置を損傷させずに、また各触媒を劣化させることなく、安全に経済的にかつ容易に停止することができる。
When the pressure measured by the pressure measuring means 22 becomes 0 kPa or less (when the negative pressure increases due to condensation of water vapor in the circulation gas circulation path 18), the closing valve 6 is opened.
Then, the vacuum break valve 20A automatically opens, and an appropriate amount of air necessary to compensate for this negative pressure is sent from the outside of the system through the vacuum break valve 20A to enter the buffer tank 26. After the necessary amount of the high pressure reformed gas passes through the shut-off valve 5, the moisture is separated by the gas-liquid separator 23 and sent to the catalyst combustor 21, where the reformed gas burns and is introduced into the introduced air. Oxygen is consumed, and the residual gas becomes a nitrogen-based gas. The water vapor in the nitrogen is separated by the gas-liquid separator 24, and the nitrogen from which the moisture has been separated passes through the shut-off valve 6 and the circulating gas circulation path 18 to improve the fuel. Sent to the quality device 10.
When the pressure measured by the pressure measuring means 22 increases and reaches a predetermined pressure (for example, −0.5 kPa or more), the vacuum break valve 20A is automatically closed, and this is repeated thereafter.
As a result of temperature measurement by a thermometer (not shown) of the reformer (RF), when the temperature reaches room temperature, the closing valve 5 and the closing valve 6 are closed, and the next operation is awaited.
By shutting down the fuel cell power generation system in this way, it is safe and economical without incorporating nitrogen gas cylinders into the system, without damaging the equipment with high pressure gas or negative pressure gas, and without degrading each catalyst. And can be stopped easily.

なお、上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。   The description of the above embodiment is for explaining the present invention, and does not limit the invention described in the claims or reduce the scope. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.

本発明の燃料電池発電システムは、燃料ガスを水素リッチな改質ガスに改質する燃料改質装置と、改質ガスと空気とを電気化学的に反応させて発電する燃料電池とを具備する燃料電池発電システムであって、
前記燃料改質装置への燃料ガス供給部と前記燃料改質装置からの改質ガス排出部とを連絡する循環ガス循環経路を設けるとともに系外からの空気導入手段を備えた触媒燃焼器を有し、前記触媒燃焼器と前記燃料改質装置間を連結する前記循環ガス循環経路に逆止弁を設けたので、窒素ガスボンベをシステムに組み込むことなく、停止時に発生する高圧ガスや負圧ガスで装置を損傷させることなく、空気や凝縮水で触媒を劣化させることなく、安全に経済的にかつ容易に燃料電池発電システムを停止することができる、という顕著な効果を奏するので、産業上の利用価値が高い。
The fuel cell power generation system of the present invention includes a fuel reformer that reforms a fuel gas into a hydrogen-rich reformed gas, and a fuel cell that generates electricity by electrochemically reacting the reformed gas and air. A fuel cell power generation system,
Provided with a catalytic combustor provided with a circulation gas circulation path for connecting a fuel gas supply unit to the fuel reformer and a reformed gas discharge unit from the fuel reformer and provided with air introduction means from outside the system In addition, since a check valve is provided in the circulating gas circulation path that connects the catalytic combustor and the fuel reformer, a high pressure gas or a negative pressure gas generated at the time of stopping can be used without incorporating a nitrogen gas cylinder into the system. There is a remarkable effect that the fuel cell power generation system can be shut down safely, economically and easily without damaging the equipment and without degrading the catalyst with air or condensed water. High value.

本発明の燃料電池発電システムの1例を模式的に説明する説明図である。It is explanatory drawing which illustrates typically an example of the fuel cell power generation system of this invention. 図1に示した燃料電池発電システムの停止時における燃料改質装置内の圧力、温度の経時的変化を示すグラフおよび各閉止弁の開閉状態との関係を示す説明図である。FIG. 2 is a graph showing changes in pressure and temperature with time in the fuel reformer when the fuel cell power generation system shown in FIG. 図1に示した燃料電池発電システムの停止時における各閉止弁の開閉状態との関係を示すフローチャートである。It is a flowchart which shows the relationship with the opening-and-closing state of each closing valve at the time of the stop of the fuel cell power generation system shown in FIG. 図1に示した燃料電池発電システムの他の実施の形態の停止時における燃料改質装置内の圧力、温度の経時的変化を示すグラフおよび各閉止弁の開閉状態との関係を示す説明図である。FIG. 5 is a graph showing changes in pressure and temperature with time in the fuel reformer when the fuel cell power generation system of the other embodiment shown in FIG. 1 is stopped, and an explanatory diagram showing the relationship between the open / close states of the shut-off valves. is there. 図1に示した燃料電池発電システムの他の実施態様の停止時における各閉止弁の開閉状態との関係を示すフローチャートである。It is a flowchart which shows the relationship with the open / close state of each closing valve at the time of the stop of the other embodiment of the fuel cell power generation system shown in FIG. 図1に示した燃料電池発電システムの他の実施態様の停止時における燃料改質装置内の圧力、温度の経時的変化を示すグラフおよび各閉止弁の開閉状態との関係を示す説明図である。FIG. 2 is a graph showing changes in pressure and temperature over time in the fuel reformer when the fuel cell power generation system shown in FIG. 1 is stopped, and an explanatory diagram showing the relationship between the open / close states of the shut-off valves. . 図1に示した燃料電池発電システムの他の実施態様の停止時における各閉止弁の開閉状態との関係を示すフローチャートである。It is a flowchart which shows the relationship with the open / close state of each closing valve at the time of the stop of the other embodiment of the fuel cell power generation system shown in FIG. 本発明の燃料電池発電システムの他の例を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the other example of the fuel cell power generation system of this invention. 図8に示した燃料電池発電システムの停止時における燃料改質装置内の圧力、温度の経時的変化を示すグラフおよび各閉止弁の開閉状態との関係を示す説明図である。FIG. 9 is an explanatory diagram showing a graph showing changes over time in pressure and temperature in the fuel reformer when the fuel cell power generation system shown in FIG. 8 is stopped, and a relationship between open / closed states of the shut-off valves. 図8に示した燃料電池発電システムの停止時における各閉止弁の開閉状態との関係を示すフローチャートである。It is a flowchart which shows the relationship with the opening / closing state of each closing valve at the time of the stop of the fuel cell power generation system shown in FIG. 従来の燃料電池発電システムを模式的に説明する説明図である。It is explanatory drawing which illustrates the conventional fuel cell power generation system typically.

符号の説明Explanation of symbols

1A、1B、1C 燃料電池発電システム
1〜8 閉止弁
30、40、50 逆止弁
10 燃料改質装置
11 燃料電池
12 バーナ
16 燃料ガス供給部
17 改質ガス排出部
18 循環ガス循環経路
19 改質ガス供給経路
20 空気導入手段
20A 真空破壊弁
21 触媒燃焼器
22 圧力計測手段
23、24 気液分離器
25 分岐した経路
26 バッファタンク
1A, 1B, 1C Fuel cell power generation systems 1-8 Stop valve 30, 40, 50 Check valve 10 Fuel reformer 11 Fuel cell 12 Burner 16 Fuel gas supply unit 17 Reformed gas discharge unit 18 Circulating gas circulation path 19 Gas supply path 20 Air introducing means 20A Vacuum break valve 21 Catalytic combustor 22 Pressure measuring means 23, 24 Gas-liquid separator 25 Branched path 26 Buffer tank

Claims (7)

燃料ガスを水素リッチな改質ガスに改質する燃料改質装置と、改質ガスと空気とを電気化学的に反応させて発電する燃料電池とを具備する燃料電池発電システムであって、
前記燃料改質装置への燃料ガス供給部と前記燃料改質装置からの改質ガス排出部とを連絡する循環ガス循環経路を設けるとともに系外からの空気導入手段を備えた触媒燃焼器を有し、前記触媒燃焼器と前記燃料改質装置間を連結する前記循環ガス循環経路に逆止弁を設けることを特徴とする燃料電池発電システム。
A fuel cell power generation system comprising a fuel reformer that reforms a fuel gas into a hydrogen-rich reformed gas, and a fuel cell that generates electricity by electrochemically reacting the reformed gas and air,
Provided with a catalytic combustor provided with a circulation gas circulation path for connecting a fuel gas supply unit to the fuel reformer and a reformed gas discharge unit from the fuel reformer and provided with air introduction means from outside the system And a check valve is provided in the circulating gas circulation path connecting the catalytic combustor and the fuel reformer.
前記逆止弁と前記触媒燃焼器間を連結する前記循環ガス循環経路から分岐した経路を設け、前記分岐した経路に閉止弁およびバッファタンクを備えたことを特徴とする請求項1記載の燃料電池発電システム。 2. The fuel cell according to claim 1, wherein a path branched from the circulating gas circulation path connecting the check valve and the catalytic combustor is provided, and a stop valve and a buffer tank are provided in the branched path. Power generation system. 前記閉止弁のかわりに真空破壊弁を備えたことを特徴とする請求項2記載の燃料電池発電システム。 The fuel cell power generation system according to claim 2, further comprising a vacuum breaker valve instead of the shut-off valve. 前記循環ガス循環経路内に気液分離装置を設けたことを特徴とする請求項2記載の燃料電池発電システム。 The fuel cell power generation system according to claim 2, wherein a gas-liquid separator is provided in the circulation gas circulation path. 前記循環ガス循環経路内に圧力計測手段を設けたことを特徴とする請求項2から請求項4のいずれかに記載の燃料電池発電システム。 The fuel cell power generation system according to any one of claims 2 to 4, wherein pressure measurement means is provided in the circulation gas circulation path. 請求項5記載の燃料電池発電システムの燃料改質装置の停止直後に前記バッファタンクと前記循環ガス循環経路との間を連通状態とし、その後前記循環ガス循環経路内の圧力が予め設定した第1規定値以上になった時点で前記バッファタンクと前記循環ガス循環経路との間を非連通状態とし、そして前記循環ガス循環経路内の圧力が予め設定した第2規定値以下になった時点で前記触媒燃焼器へ空気導入手段により空気供給を開始するとともに前記バッファタンクと前記循環ガス循環経路との間を連通状態とすることを特徴とする燃料電池発電システムの停止方法。 6. A first state in which the buffer tank and the circulating gas circulation path are brought into communication immediately after the fuel reformer of the fuel cell power generation system according to claim 5 is stopped, and thereafter the pressure in the circulating gas circulation path is set in advance. The buffer tank and the circulating gas circulation path are disconnected from each other when the specified value or more is reached, and when the pressure in the circulating gas circulation path becomes equal to or lower than a second predetermined value set in advance. A method for stopping a fuel cell power generation system, characterized in that air supply to a catalyst combustor is started by air introduction means and the buffer tank and the circulating gas circulation path are in communication with each other. 前記循環ガス循環経路内の圧力が予め設定した第3規定値となった時点で前記触媒燃焼器への空気供給を停止するとともに前記バッファタンクと前記循環ガス循環経路との間を非連通状態とすることを特徴とする請求項6記載の停止方法。 When the pressure in the circulating gas circulation path reaches a preset third specified value, the air supply to the catalytic combustor is stopped and the communication between the buffer tank and the circulating gas circulation path is not established. The stopping method according to claim 6.
JP2004210733A 2004-07-16 2004-07-16 Method for stopping fuel cell power generation system Expired - Fee Related JP4977311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210733A JP4977311B2 (en) 2004-07-16 2004-07-16 Method for stopping fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210733A JP4977311B2 (en) 2004-07-16 2004-07-16 Method for stopping fuel cell power generation system

Publications (2)

Publication Number Publication Date
JP2006032173A true JP2006032173A (en) 2006-02-02
JP4977311B2 JP4977311B2 (en) 2012-07-18

Family

ID=35898258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210733A Expired - Fee Related JP4977311B2 (en) 2004-07-16 2004-07-16 Method for stopping fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP4977311B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311161A (en) * 2006-05-18 2007-11-29 Honda Motor Co Ltd Fuel cell system and its operation method
CN114335626A (en) * 2021-12-29 2022-04-12 山东国创燃料电池技术创新中心有限公司 Fuel cell hydrogen circulation system and hydrogen discharge and water discharge method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213358A (en) * 1996-01-31 1997-08-15 Matsushita Electric Ind Co Ltd Power supply apparatus
JPH09324958A (en) * 1996-04-05 1997-12-16 Iwatani Internatl Corp Cryogenic temperature refrigerating machine
JP2000277137A (en) * 1999-03-24 2000-10-06 Matsushita Electric Works Ltd Method for purging residual gas from fuel cell power generating system
JP2003151588A (en) * 2001-11-09 2003-05-23 Honda Motor Co Ltd Fuel circulation fuel cell system
JP2004043218A (en) * 2002-07-10 2004-02-12 Mitsubishi Heavy Ind Ltd Fuel reformer and its operation method
JP2004134226A (en) * 2002-10-10 2004-04-30 Ishikawajima Harima Heavy Ind Co Ltd Fuel battery power generating facility and method for stopping its operation
JP2004178842A (en) * 2002-11-25 2004-06-24 Mitsubishi Electric Corp Fuel cell generator and its operation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213358A (en) * 1996-01-31 1997-08-15 Matsushita Electric Ind Co Ltd Power supply apparatus
JPH09324958A (en) * 1996-04-05 1997-12-16 Iwatani Internatl Corp Cryogenic temperature refrigerating machine
JP2000277137A (en) * 1999-03-24 2000-10-06 Matsushita Electric Works Ltd Method for purging residual gas from fuel cell power generating system
JP2003151588A (en) * 2001-11-09 2003-05-23 Honda Motor Co Ltd Fuel circulation fuel cell system
JP2004043218A (en) * 2002-07-10 2004-02-12 Mitsubishi Heavy Ind Ltd Fuel reformer and its operation method
JP2004134226A (en) * 2002-10-10 2004-04-30 Ishikawajima Harima Heavy Ind Co Ltd Fuel battery power generating facility and method for stopping its operation
JP2004178842A (en) * 2002-11-25 2004-06-24 Mitsubishi Electric Corp Fuel cell generator and its operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311161A (en) * 2006-05-18 2007-11-29 Honda Motor Co Ltd Fuel cell system and its operation method
CN114335626A (en) * 2021-12-29 2022-04-12 山东国创燃料电池技术创新中心有限公司 Fuel cell hydrogen circulation system and hydrogen discharge and water discharge method

Also Published As

Publication number Publication date
JP4977311B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5584507B2 (en) Solid oxide fuel cell system
JP4248182B2 (en) Fuel cell power generation system and fuel cell purging method
JP5269447B2 (en) High-temperature fuel cell system and operation method thereof
JP2007254251A (en) Operation stopping method of reforming device
JP4274754B2 (en) Operation method of hydrogen-containing gas generator
JP5852011B2 (en) Fuel cell system
JP2010177211A (en) Fuel cell system
JP2007311350A (en) Fuel cell system
CA2656376A1 (en) Indirect internal reforming solid oxide fuel cell system
JP2002151124A (en) Stopping method of reformer for solid polymer fuel cell
JP4977311B2 (en) Method for stopping fuel cell power generation system
JP5102938B2 (en) Fuel cell power generation system and starting method thereof
JP2003132926A (en) Reformer for fuel cell generator
JP2007194098A (en) Fuel cell power generation system
KR101447864B1 (en) Inert gas purging system for fuel cell system of a ship
JP4936645B2 (en) Hydrogen production apparatus and fuel cell system
JP5291915B2 (en) Indirect internal reforming type solid oxide fuel cell and operation method thereof
JPH0676847A (en) Starting method for fuel cell and device thereof
JP4977312B2 (en) Method for stopping fuel cell power generation system
KR20080016112A (en) Fuel processor providing improved warming up structure for co removing unit and managing method thereof
JP5395168B2 (en) Hydrogen generator and fuel cell system
KR102216661B1 (en) Fuel cell system and start-up method thereof
JP2004238267A (en) Hydrogen producing apparatus, fuel cell power generation system, and operation method of hydrogen producing apparatus
JP2009078969A (en) Method for operating hydrogen-containing gas-producing apparatus
JP2009227479A (en) Method for stopping hydrogen production apparatus and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees